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Abstract
We develop heuristic interpolation methods for the functions t �→ log det (A + tB) and t �→ trace ((A + tB)p) where the
matrices A and B are Hermitian and positive (semi) definite and p and t are real variables. These functions are featured
in many applications in statistics, machine learning, and computational physics. The presented interpolation functions are
based on the modification of sharp bounds for these functions. We demonstrate the accuracy and performance of the proposed
method with numerical examples, namely, the marginal maximum likelihood estimation for Gaussian process regression and
the estimation of the regularization parameter of ridge regression with the generalized cross-validation method.

Keywords Parameter estimation · Gaussian process · Generalized cross-validation · Maximum likelihood method · Schatten
norm · Anti-norm

1 Introduction

Estimation of the determinant and trace of matrices is a key
component and often a computational challenge in many
algorithms in data analysis, statistics, machine learning,
computational physics, and computational biology. Some
applications of trace estimation can be found in Ubaru and
Saad (2018). A few examples of such applications are high-
performance uncertainty quantification (Bekas et al. 2012;
Kalantzis et al. 2013), optimal Bayesian experimental design
(Chaloner and Verdinelli 1995), regression using Gaussian
process (MacKay et al. 2003), rank estimation (Ubaru and
Saad 2016), and computing observables in lattice quantum
chromodynamics (Wu et al. 2016).
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1.1 Motivation

In this paper, we are interested in estimating the functions

t �→ log det (A + tB) , (1a)

and

t �→ trace
(
(A + tB)p

)
, (1b)

where A and B are Hermitian and positive semi-definite
(positive-definite if p < 0), and p and t are real numbers.1

These functions are featured in a vast number of applications
in statistics and machine learning. Often, in these applica-
tions, the goal is to optimize a problem for the parameter t ,
and the above functions should be evaluated for a wide range
of t during the optimization process.

A common example of such an application can be found
in regularization techniques applied to inverse problems and
supervised learning. For instance, in ridge regression by gen-
eralized cross-validation (Wahba 1977; Craven and Wahba
1978; Golub and von Matt 1997), the optimal regularization
parameter t is sought by minimizing a function that involves
(1b) at p = −1 (see Sect. 4.3). Another common usage of
(1a) and (1b), for instance, is the mixed covariance func-
tions of the form A + tI that appear frequently in Gaussian

1 We use boldface lowercase letters for vectors, boldface upper case
letters for matrices, and normal face letters for scalars, including the
components of vectors and matrices, such as xi and Hi j respectively
for the components of the vector x and the matrix H.
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processes with additive noise (Ameli and Shadden 2022c, d)
(see also Sect. 4.2). In most of these applications, the log-
determinant of the covariancematrix is common, particularly
in likelihood functions or related variants. Namely, if one
aims tomaximize the likelihood by its derivative with respect
to the parameter, the expression,

∂

∂t
log det(A + tI) = trace

(
(A + tI)−1

)
,

frequently appears. More generally, the function (1b) for
p ∈ Z<0 appears in the |p|th derivative of such likelihood
functions. Other examples of (1a) and (1b) are in experi-
mental design (Haber et al. 2008), probabilistic principal
component analysis (Bishop2006, Sect. 12.2), relevance vec-
tor machines (Tipping 2001) and (Bishop 2006, Sect. 7.2),
kernel smoothing (Rasmussen andWilliams 2006, Sect. 2.6),
and Bayesian linear models (Bishop 2006, Sect. 3.3).

1.2 Overview of related works

The difficulty of estimating (1a) and (1b) in all the above
applications is that the matrices are generally large. Also,
often in these applications, cases of particular interest in (1b)
are when p < 0, but the |p|th inverse of the matrix A + tB
is not available explicitly, rather it is implicitly known by
matrix-vector multiplications through solving a linear sys-
tem. Because of these, the evaluation of (1a) and (1b) are
usually the main computational challenge in these problems,
and several algorithms have been developed to address this
problem.

The determinant and trace of the inverse of a Hermi-
tian and positive-definite matrix can be calculated by the
Cholesky factorization [cf. Eq. (24a) and (24b) in Sect. 4.2].
Using the Cholesky factorization, Takahashi et al. (1973)
developed amethod to find desired entries of amatrix inverse,
such as its diagonals. The latter method was extended by
Niessner and Reichert (1983). Also, Golub and Plemmons
(1980) found entries of the inverse of the covariance matrix
provided that the corresponding entries of its Cholesky fac-
torization are non-zero. The complexity of this method is
O(nw) where w is the bandwidth of the Cholesky matrix
(see also Björck 1996, Sect. 6.7.4). Recently, probing and
hierarchical probing methods were presented by Tang and
Saad (2012) and Stathopoulos et al. (2013), respectively, to
compute the diagonal entries of a matrix inverse.

In contrast to the above exact methods, many approxi-
mation methods have been developed. The stochastic trace
estimator by Hutchinson (1990), which evolved from Girard
(1989), usesMonte-Carlo sampling of random vectors with a
Gaussian or Rademacher distribution. A similar concept was
presented by Gibbs and MacKay (1997). Another random-
ized trace estimator was given by Avron and Toledo (2011)

for symmetric and positive-definite implicit matrices. Based
on the stochastic trace estimation, Wu et al. (2016) interpo-
lated the diagonals of a matrix inverse. Also, Saibaba et al.
(2017) improved the randomized estimation by a low-rank
approximation of the matrix. Another tier of methods com-
bines the idea of a stochastic trace estimator and Lanczos
quadrature (Golub and Strakoš 1994; Bai et al. 1996; Bai and
Golub 1997; Golub and Meurant 2009), which is known as
stochastic Lanczos quadrature (SLQ). The numerical details
of the SLQ method using either Lanczos tridiagonalization
or Golub–Kahn bidiagonalization can be found for instance
in Ubaru et al. (2017, Algorithms 1 and 2).

1.3 Objective and our contribution

Our objective is to develop a method to efficiently estimate
(1a) or (1b) for a wide range of t . Note, if B is the identity
matrix and the matrix A is small enough to pre-compute is
eigenvalues, λi (A), then, the evaluation of (1a) and (1b) for
any t is immediate by

log det(A + tI) =
n∑

i=1

log(λi (A) + t), (2a)

trace
(
(A + tI)p

) =
n∑

i=1

(λi (A) + t)p. (2b)

However, for large matrices, estimating all eigenvalues is
impractical. Thus,we herein develop an interpolation scheme
for the functions (1a) and (1b) based on the following devel-
opments:

• Wepresent aSchatten-type operator that unifies the repre-
sentation of (1a) and (1b) by a single continuous function.
This operator leads to definitions of an associated norm
and anti-norm on matrices. Sharp inequalities for this
norm and anti-norm on the sum of two Hermitian and
positive (semi) definite matrices provide rough estimates
for (1a) and (1b).

• We propose two interpolation methods based on the
sharp norm and anti-norm inequalities mentioned above.
Namely, we introduce interpolation functions based on
a linear combination of orthogonal basis functions, or
interpolation by rational polynomials.

We demonstrate the computational advantage of our
method through two examples:

• Gaussian process regressionWecompute (1a) and (1b) in
the context ofmarginal likelihood estimation ofGaussian
process regression. We show that with very few interpo-
lation points, an accuracy of 0.01% can be achieved.
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• Ridge regression We estimate the regularization param-
eter of ridge regression with the generalized cross-
validation method. We demonstrate that with only a few
interpolation points, the ridge parameters can be esti-
mated and the overall computational cost is reduced by
2 orders of magnitude.

The outline of the paper is as follows. In Sect. 2,we present
matrix determinant and trace inequalities. In Sect. 3, we pro-
pose interpolation methods. In Sect. 4 we provide examples
and a software package that implements the presented algo-
rithms. In Sect. 5, we provide further applications of the
method. Section 6 concludes the paper. Proofs are given in
“Appendix A”.

2 Determinant and trace inequalities

We will derive interpolations for (1a) and (1b) by modifying
sharp bounds for these functions. In this section, we present
these bounds.Without loss of generality,we temporarily omit
the parameter t . However, in Sect. 3, we will retrieve the
desired relations by replacing B with |t |B.

LetMn,m(C) denote the space of all n×m matrices with
entries over the field C. We assume A,B ∈ Mn,n(C) are
Hermitian and positive semi-definite. Furthermore, for p <

0, we require matrices A and B to be positive-definite. The
notationsA � B andA � B onmatricesA andB denotesA−
B is positive-definite and positive semi-definite, respectively.
Also, λ(A) := (λ1(A), . . . , λn(A)) indicates the n-tuple of
eigenvalues of matrix A.

Define a Schatten-class operator ‖·‖p : Mn,n(C) �→ R≥0

by

‖A‖p :=
{

(det(|A|)) 1
n , p = 0,

( 1
n trace(|A|p)) 1

p , p ∈ R \ {0},
(3)

where |A| := √
A∗A andA∗ denotes theHermitian transpose

ofA. Sincewe assume thematrices are Hermitian and at least
positive semi-definite, we omit |·| in subsequent expressions.
Also, we note that p �→ ‖ · ‖p is continuous at p = 0 since

‖A‖0 = lim
p→0

‖A‖p. (4)

Namely, (4) is justifiedbyobserving that‖A‖p = Mp(λ(A)),
where Mp(λ(A)) is the generalized mean of λ(A) defined by

Mp(λ(A)) :=

⎧
⎪⎨

⎪⎩

( ∏n
i=1 λi (A)

) 1
n
, p = 0,

(
1
n

∑n
i=1 λ

p
i (A)

) 1
p
, p ∈ R \ {0}.

(5)

It is known that the generalized mean converges to the geo-
metric mean, M0, as p → 0 (Hardy et al. 1952, p. 15), which
concludes (4).

For p ∈ [1,∞), the operator ‖·‖p is an equivalent norm to
the Schatten p-normofA. Conventionally, the Schatten norm
is defined without the normalizing factor 1

n in (3), but the
inclusion of this factor is justified by the continuity granted
by (4). The Schatten norm is a subadditive function, meaning
that it satisfies the triangle inequality

‖A + B‖p ≤ ‖A‖p + ‖B‖p. (6a)

The reverse triangle inequality follows from the above by

‖A − B‖p ≥ ‖A‖p − ‖B‖p, (6b)

provided that A � B for (6b) to hold. For p = 1, the two
above relations become equality by the additivity of the trace
operator.

When p < 1, the operator (3) is no longer a norm, rather,
is an anti-norm (Bourin and Hiai 2011) that satisfies super-
additivity property

‖A + B‖p ≥ ‖A‖p + ‖B‖p. (7a)

A reversed inequality can also be derived from the above as

‖A − B‖p ≤ ‖A‖p − ‖B‖p, (7b)

provided that A � B (or A � B if p < 0) for (7b) to hold.
We also note that inequality (7a) at p = 0 reduces to Brunn–
Minkowski determinant inequality (Horn and Johnson 1990,
p. 482, Theorem 7.8.8)

(det(A + B))
1
n ≥ (det(A))

1
n + (det(B))

1
n . (8)

For proofs and discussions of a general class of anti-
norms, which includes (3), we refer the reader to Bourin and
Hiai (2011, 2014). However, in “Appendix A”, we provide
a direct proof of (7a) and (7b) and the necessary and suffi-
cient conditions for equality to hold in these relations for the
operator (3) at p < 1.

Remark 1 (Comparisons to other inequalities) There are
other known bounds to functions (1a) and (1b). For instance,
for the common case of p = −1, we can obtain the upper
bound (Zhang 2011, p. 210, Theorem 7.7)

trace
(
(A + B)−1

)

≤ 1

4

(
trace(A−1) + trace(B−1)

)
. (9)

Also, a lower bound can be obtained, for instance, by the
arithmetic-harmonic mean inequality M−1(λ(A ± B)) ≤
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M1(λ(A ± B)), where M−1 and M1 are the harmonic mean
and arithmetic mean, respectively, (Mitrinović and Vasić
1970, Ch. 2, Theorem 1), which leads to

trace((A ± B)−1) ≥ n2

trace(A) ± trace(B)
. (10)

The inequalities (9) or (10), however, are not as useful as the
inequality (7a) for p = −1, since if B is either too small or
too large compared to A, (9) and (10) do not asymptote to
equality, whereas (7a) and (7b) become asymptotic equali-
ties, which is a desired property for our purpose.

3 Interpolation of determinant and trace

We use the bounds provided by inequalities (6a), (6b), (7a),
and (7b) to interpolate the functions (1b) and (1a). To this
end, we replace the matrix B with |t |B in the bounds found
in Sect. 2. Define

τp(t) := ‖A + tB‖p

‖B‖p
, and τp,0 := τp(0).

We assume τp,0 is known by directly computing ( 1n trace

(Ap))
1
p and ( 1n trace(B

p))
1
p when p 
= 0, or (det(A))

1
n and

(det(B))
1
n when p = 0.2 Then, (6a) and (7a) imply

τp(t) ≤ τp,0 + t, p ≥ 1, t ∈ [0,∞), (11a)

τp(t) ≥ τp,0 + t, p < 1, t ∈ [0,∞), (11b)

and (6b) and (7b) imply

τp(t) ≥ τp,0 + t, p ≥ 1, t ∈ (tinf , 0], (11c)

τp(t) ≤ τp,0 + t, p < 1, t ∈ (tinf , 0], (11d)

where tinf := inf{t |A+ tB � 0}. The above sharp inequali-
ties become equality at t = 0. Also, (11a) and (11b) become
asymptotic equalities as t → ∞. Based on the above, the
bound function

τ̂p(t) := τp,0 + t, (12)

can be regarded as a reasonable approximation of τp(t) at
|t | � τp,0 where τp(t) ≈ τp,0, and at t � τp,0 where
τp(t) ≈ t . We expect τ̂p(t) to deviate the most from τp(t)
when O(tτ−1

p,0) ≈ 1.
Furthermore, to improve the approximation in the inter-

mediate interval tτ−1
p,0 ∈ (c, c−1) for some c � 1, we

2 Computing the determinant directly should be avoided as it can

be a very large number. Rather, (det(·)) 1
n can be computed via

exp( 1n log det(·)). See Sect. 4.2 for an example.

define interpolating functions based on the above bounds to
honor the known function values at some intermediate points
ti ∈ (cτp,0, c−1τp,0). In particular, we specify interpolation
points over logarithmically spaced intervals, because t is usu-
ally varied in a wide logarithmic range in most applications.
We compute the function values at the interpolation points,
τp(ti ), with any of the trace estimation methods mentioned
earlier.

Many types of interpolating functions can be employed to
improve the above approximation. However, we seek inter-
polating functions whose parameters can be easily obtained
by solving a linear system of equations. We define two such
types of interpolations, namely, by a linear combination of
basis functions and by rational polynomials, respectively in
Sects. 3.1 and 3.2.

3.1 Interpolation with a linear combination of basis
functions

Based on (12), we define an interpolating function τ̃p(t) by

τ̃p(t) := τp,0 +
q∑

i=0

wiφi (t), (13)

where φi are basis functions and wi the weights. The basis
functions

φi (t) = t
1

i+1 , i = 0, . . . , q, (14)

for the domain t ∈ [0,∞) can be used, which are inverse
functions of the monomials and we refer to them as inverse-
monomials. These basis functions satisfy the conditions
φ0(t) = t , φi (0) = 0, and φ0(t) � φi (t), i > 0 when
t � 1. For consistency with (12), we setw0 = 1. The coeffi-
cients wi , i = 1, . . . , q are found by solving a linear system
of q equations using a priori known values τp,i := τp(ti ),
i = 1, . . . , q. When q = 0, no intermediate interpolation
point is introduced and the approximation function is the
same as the bound τ̂p(t) given by (12).

Remark 2 An alternative could be to use monomials t i for
interpolation functions, e.g.,

τ̃p(t)
q+1 := τ

q+1
p,0 +

q+1∑

i=1

wi t
i , (15)

with wq+1 = 1, and the rest of the weights wi , i = 1, . . . , q
determined from the known values of the function. This is not
particularly useful in practice, as the exponentiation terms,
t i , cause arithmetic underflows; also, Runge’s phenomenon
occurs even for low-order interpolations q > 1.
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In practice, just a few interpolating points ti are sufficient
to obtain a reasonable interpolation of τp(t). However, when
more interpolation points are used (such as when p ≥ 6),
the linear system of equations for the weights wi becomes
ill-conditioned. To overcome this issue, orthogonal basis
functions can be used (see e.g., Seber and Lee 2012, Sect.
7.1 for a general discussion).

For our application, we seek basis functions φ⊥
i (t) that are

orthogonal on the unit interval t ∈ [0, 1]. Since we are inter-
ested in functions in the logarithmic scale of t , we define
the inner product in the space of functions using the Haar
measure d log(t) = dt/t . Applicability of Haar measure
can be justified by letting ti = exi , where xi are normally
spaced interpolant points. Following the discussion of Seber
and Lee (2012, Sect. 7.1) for linear regression using orthog-
onal polynomials, we use the conventional integrals with the
Lebesguemeasure dx to define the inner product of functions.
The measure dx is equivalent to the Haar measure d log t for
the variable t .

The desired orthogonality condition in theHilbert space of
functions on [0, 1]with respect to the Haar measure becomes

〈φ⊥
i , φ⊥

j 〉L2([0,1],dt/t) =
∫ 1

0
φ⊥
i (t)φ⊥

j (t)
dt

t
= δi j , (16)

where δi j is the Kronecker delta function. A set of orthog-
onal functions φ⊥

i (t) can be constructed from the set of
non-orthogonal basis functions {φi }qi=1 in (14) by recursive
application of Gram-Schmidt orthogonalization

φ⊥
i (t) = αi

q∑

j=1

ai jφ j (t), i = 1, . . . , q. (17)

The first nine orthogonal basis functions are shown in Fig. 1
and the respective coefficients αi and ai j are given by Table
1.3

A set of orthogonal functions can also be defined on inter-
vals other than [0, 1] by adjusting the bounds of integration
in (16), which yields a different set of function coefficients.
However, it is more convenient to fix the domain of orthog-
onal functions to the unit interval [0, 1], and later scale
the domain as desired, e.g., to [0, l] where l := max(ti ).
Although this approach does not lead to orthogonal functions
in [0, l], it nonetheless produces a well-conditioned system
of equations for the weights wi .

Remark 3 The interpolation function defined in (13) asymp-
totes consistently to τ̃p(t) → t at t � τp,0. On the other end,
the convergence τ̃p(t) → τp,0 at t � τp,0 is not uniform,

3 We developed the python package ortho to generate an arbitrary
number of orthogonal functions φ⊥

j (t) using symbolic computations.
See https://ameli.github.io/ortho for details.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

t

−1

0

1

φ
⊥ i
(t
)

Orthogonalized inverse-monomial functions

i = 1
i = 2
i = 3

i = 4
i = 5
i = 6

i = 7
i = 8
i = 9

Fig. 1 Orthogonalized inverse-monomial functions φ⊥
i (t) in the loga-

rithmic scale of t

rather the interpolation function oscillates. This behavior is
originated from the basis functions φi , i > 0, that are not
independent at t � τp,0, particularly, near the origin. This
dependency of basis functions cannot be resolved by the
orthogonalized functions φ⊥

i , as they are orthogonal with
respect to the singular weight function t−1 at the origin.
Thus, (13) should not be employed on very small logarith-
mic scales, rather, other interpolation functions should be
employed for such purpose, such as presented in Sect. 3.2.

3.2 Interpolation with rational polynomials

We define another type of interpolating function that can per-
form well at small scales of t , by using rational polynomials.
Define

τ̃p(t) := tq+1 + aqtq + · · · + a1t + a0
tq + bq−1tq−1 + · · · + b1t + b0

, (18)

which is the Padé approximation of τp of order [q + 1, q].
We set a0 = b0τp,0 in order to satisfy τp(0) = τp,0. Also,
we note that the above interpolation satisfies the asymptotic
relation τp(t) → t as t → ∞. At q = 0, when no interpolant
point is used, the above interpolation function falls back to
(12) by setting b0 = 1. For q > 0, 2q interpolant points
ti are needed to solve the linear system of equations for the
coefficients a1, . . . , aq and b0, . . . , bq−1.

An alternative rational polynomial is the Chebyshev ratio-
nal function (Guo et al. 2002)

ri (t) := Ti

(
t − 1

t + 1

)
, (19)

where Ti , i ∈ N are the Chebyshev polynomials of the
first kind. The Chebyshev rational functions are orthogonal
in [0,∞) with respect to the weight function (t + 1)−1√t
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Table 1 Coefficients of orthogonal functions in (17)

i αi ai1 ai2 ai3 ai4 ai5 ai6 ai7 ai8 ai9

1 +√
2/2 1

2 −√
2/3 6 −5

3 +√
2/4 20 −40 21

4 −√
2/5 50 −175 210 −84

5 +√
2/6 105 −560 1134 −1008 330

6 −√
2/7 196 −1470 4410 −6468 4620 −1287

7 +√
2/8 336 −3360 13860 −29568 34320 −20592 5005

8 −√
2/9 540 −6930 37422 −108108 180180 −173745 90090 −19448

9 +√
2/10 825 −13200 90090 −336336 750750 −1029600 850850 −388960 75582

10−4 10−3 10−2 10−1 100 101 102 103 104

t

0

1

1 2
(1

−
r i
(t
))

Chebyshev rational functions

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6

Fig. 2 Chebyshev rational functions (excluding r0) used in (20) in the
logarithmic scale of t

and satisfy the recursive relation ri+1(t) = 2((t − 1)/(t +
1))ri (t)−ri−1(t)with r0(t) = 1 and r1(t) = (t−1)/(t+1).
An interpolation of τp(t) using Chebyshev rational functions
can be given by

τ̃p(t)

τp,0 + t
− 1 =

q+1∑

i=1

wi

2

(
1 − ri

(
t

α

))
, (20)

where α > 0 is a given scale parameter and will be
explained shortly. Both sides of the above relation converge
to zero at t → ∞. To satisfy τp(0) = τp,0, we require
∑q+1

i=1
wi
2 (1 − (−1)i ) = 0 considering ri (0) = (−1)i . The

latter condition together with q linear equations on the inter-
polating points ti > 0, i = 1, . . . , q solve the weights wi .
An advantage of using the above interpolation scheme is that
we can arrange the interpolant points ti on the corresponding
Chebyshev nodes to reduce the interpolation error.

Figure 2 shows the Chebyshev rational basis functions in
the form that are used on the right-hand side of (20). These
basis functions converge at t � 1 and t � 1, whereas
the main variability of these functions is mostly observed

near O(t) ≈ 1. Thus, it is desirable to shift the interval
of interpolation to the vicinity of O(t) = 1, which can be
achieved by setting the scale parameter α. One approach
to find an optimal interpolation parameter, α, is to mini-
mize the curvature of the interpolating function, which is a
common practice, for instance, in smoothing splines (New-
bery and Garrett 1991). To this end, let wi (α) denote the
solved weights for a given α. For simplicity, we transform
the graph (t, τ̃p) to (x, yα) where x := (t − α)/(t + α) and

yα(x) := ∑q+1
i=1

wi (α)
2 (1 − Ti (x)). Then, an optimal α∗ can

be sought to minimize the arc integral of curvature squared
of yα(x) by

α∗ = argminα

∫ 1

−1

|y′′
α(x)|2

(1 + |y′
α(x)|2) 5

2

dx . (21)

We note that in the absence of enough interpolant points,
minimizing the curvature of the interpolating curve does
not necessarily reduce interpolation error. However, when
an adequate number of interpolant points are employed, the
above approach can practically lead to a scale parameter α

that enhances the interpolation.
Finally, we note that unlike the interpolation scheme of

Sect. 3.1 with the inverse monomial basis (14), both the Padé
approximation of (18) and Chebyshev rational interpolation
in (20) can interpolate τp at negative values of t , namely in
the domain t > tinf when tinf < 0 [see (11c) and (11d)].

4 Numerical examples

In Sect. 4.1, we briefly introduce a software package we
developed for the presented numerical algorithm. This pack-
age was used to produce the results in Sects. 4.2 and 3.2.
Indeed, the source code to reproduce the results and plots in
the following sections can be found on the documentation of
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Listing1 Aminimalistic usageof imate.InterpolateSchatten
class

# Install imate with "pip install imate"
from numpy import logspace
import imate

5 # Generate a sample correlation matrix using
# the kernel e−r/0.1.
A = imate.sample_matrices.correlation_matrix(

50, dimension=2, kernel=’exponential’,
scale=0.1)

10

# Create an interpolating object for
# f p : t �→ ‖A + tI‖p, p = −1.
f = imate.InterpolateSchatten(A, B=None, p=-1,

ti=logspace(-4, 3, 8), kind=’IMBF’,
15 options={’method’: ’cholesky’})

# Interpolate 1000 points in [10−4, 103].
t = logspace(-4, 3, 1000)
y = f(t)

20

# Plot the interpolated normalized curve τp(t) =
‖A + tI‖p/‖I‖p, compare with exact values.
f.plot(t, compare=True, normalize=True)

the software package.4 Section 4.2 considers the problem of
marginal likelihood estimation, which considers a full rank
correlation matrix, and for this we use the interpolation func-
tions of Sect. 3.1. Section 4.3 considers the problem of ridge
regression, which considers a singular matrix, and for this
we use the rational polynomial interpolation method of Sect.
3.2. We note that the interpolation with Chebyshev ratio-
nal functions provide similar results to the orthogonalized
inverse-monomials in (13) and we omit in our numerical
examples for brevity.

4.1 Software package

The methods developed in this manuscript have been imple-
mented into the python package imate, an implicit matrix
trace estimator (Ameli and Shadden 2022b). This library
estimates the determinant and trace of various functions of
implicit matrices using either direct or stochastic estima-
tion techniques and can process both dense matrices and
large-scale sparse matrices. The main library of this pack-
age is written in C++ and NVIDIA® CUDA and accelerated
on both parallel CPU processors and CUDA-capable multi-
GPU devices. The imate library is employed in the python
packageglearn, amachine learning library usingGaussian
process regression (Ameli and Shadden 2022a).

In Lisiting 1, we demonstrate a minimalistic usage
of imate.InterpolateSchatten class that interpo-

4 See https://ameli.github.io/imate.
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Fig. 3 Result of the code in Lisiting 1. a Comparison of interpolated
versus exact value of the function τ−1(t). The exact function (red curve)
is overlaid by the interpolated curve (black curve). b Relative error of
the comparison

lates f p : t �→ ‖A + tB‖p. Briefly, Line 9 generates
a sample correlation matrix A ∈ Mn,n(R) on a ran-
domly generated set of n = 502 points using an expo-
nential decay kernel. In Line 15, we create an instance
of the class imate.InterpolateSchatten. Setting
B=None indicates B is the identity matrix using an effi-
cient implementation that does not require storing iden-
tity matrix. The instantiation in Line 19 internally com-
putes τ−1,i = τ−1(ti ) on eight interpolant points ti =
10−4, 10−3, . . . , 103 and obtains the interpolation coeffi-
cients for the orthogonalized inverse-monomial basis func-
tions (14) since kind=’IMBF’ was specified. Other possi-
ble methods can be the exact method with no interpolation
(EXT), eigenvalue method (EIG) given in (2b), monomial
basis functions (MBF) given in (15), Padé rational poly-
nomial functions (RPF) given in (18), Chebyshev rational
functions (CRF) given in (20), or radial basis functions (RBF)
(which we do not cover herein for brevity). The evaluation
of τ−1,i can be configured by passing a dictionary of set-
tings to the options argument, and we refer the interested
reader to the package documentation for further details. In
this minimalistic example, we compute τ−1,i using Cholesky
decomposition, as further detailed inSect. 4.2.Othermethods
include stochastic Lanczos quadrature or Hutchinson esti-
mation; we compare such methods in Sect. 4.3. Once the
interpolation object is initialized, future calls to interpolate
an arbitrary number of points t are returned almost instantly.
In Line 19, the interpolation is performed on 1000 points
in the interval [10−4, 103] spaced uniformly on the logarith-
mic scale. A comparison of the interpolated result versus the
exact solution are shown in Fig. 3. It can be seen that with
only eight interpolant points, the relative error of interpola-
tion over a wide range of parameter t is around 0.1%.

4.2 Marginal likelihood estimation for Gaussian
process regression

Here we generate a full rank correlation matrix from a spa-
tially correlated set of points x ∈ D = [0, 1]2. To define a

123

https://ameli.github.io/imate


108 Page 8 of 18 Statistics and Computing (2022) 32 :108

spatial correlation function, we use the isotropic exponential
decay kernel given by

κ(x, x′|ρ) = exp

(
−‖x − x′‖2

ρ

)
, (22)

where ρ is the correlation scale, set to ρ = 0.1. The above
exponential decay kernel represents an Ornstein-Uhlenbeck
random process, which is a Gaussian and zeroth-order
Markov process (Rasmussen and Williams 2006, p. 85). To
produce discrete data, we sample n = 502 points from D,
which yields the symmetric and positive-definite correlation
matrix A with the components Ai j = κ(xi , x j |ρ). We aim
to interpolate functions

log det (A + tI) = n log τ0(t), (23a)

trace
(
(A + tI)p

) = n(τp(t))
p, (23b)

for p = −1,−2, which appear in many statistical applica-
tions, such as the estimation of noise in Gaussian process
regression (Ameli and Shadden 2022c). Specifically, the
above functions for p = 0, −1, and −2 appear in the corre-
sponding likelihood function, and its Jacobian and Hessian,
respectively.

We compute the exact value of τp(t) for p ∈ Z≤0 (either at
interpolant points ti or at all points t for the purpose of bench-
mark comparison) as follows. We compute the Cholesky
factorization of (A + tI)|p| = L|p|Lᵀ

|p|, where L|p| is lower
triangular. Then

log det(A + tI) = 2
n∑

i=1

log((L1)i i ), (24a)

trace
(
(A + tI)p

) = trace(L−ᵀ
|p| L

−1
|p|)

= trace(L−1
|p|L

−ᵀ
|p| )

= ‖L−1
|p|‖2F , p ∈ Z<0, (24b)

where (L1)i i is the i th diagonal element of L1 and ‖ · ‖F is
the Frobenius norm. The second equality in (24b) employs
the cyclic property of the trace operator. A simple method to
compute ‖L−1

|p|‖2F without storing L−1
|p| is to solve the lower

triangular system L|p|xi = ei for xi , i = 1, . . . , n, where
ei = (0, . . . , 0, 1, 0, . . . , 0)ᵀ is a column vector of zeros,
except, its i th entry is one. The solution vector xi is the i th
column of L−1

|p| . Thus, ‖L−1
|p|‖2F = ∑n

i=1 ‖xi‖2. This method
is memory efficient since the vectors xi do not need to be
stored.

We note that the complexity of the interpolation method
is the number of evaluations of τp at interpolant points ti and
at t = 0 (which is proportional to q) times the complexity of
computing τp at a single point t . For instance, by using the
Cholesky method in (24a) or (24b) which costsO( 13n

3) for a

matrix of size n, the complexity of the interpolation method
is O( 13n

3q).

Remark 4 (Case of Sparse Matrices) There exist efficient
methods to compute the Cholesky factorization of sparse
matrices (see e.g., Davis 2006, Ch. 4). Also, the inverse of
the sparse triangular matrix L|p| can be computed at O(n2)
complexity (Stewart 1998, pp. 93-95), and a linear system
with both sparse kernel L|p| and sparse right-hand side ei
can be solved efficiently (see Davis 2006, Sect. 3.2).

The exact value of τp(t), for p = 0,−1,−2, computed
directly using the Cholesky factorization method described
above are respectively shown in Fig. 4a, c, e by the solid black
curve (overlaid by the red curve) in the range t ∈ [10−4, 103].
The dashed black curves in Fig. 4a, c, e are the lower bounds
τ̂p(t) given by (12), which can be thought of as the estimation
with zero interpolant points, i.e., q = 0. For completeness,
we have also shown the upper bound of τ−1(t) by the black
dash-dot line in Fig. 4c, given by

τ̌−1(t) := 1 + t ≥ τ−1(t). (25)

The above upper bound can be obtained from (10) and the
fact that trace(A) = n, since the diagonals of the correlation
matrix are 1. However, unlike the lower bound in (7a), the
upper bound (25) is not useful for approximation as it does
not asymptote to τ−1(t) at small t . Nonetheless, both the
lower and upper bounds asymptote to t at large t .

To estimate τp, we used the interpolation function in (13)
with the set of orthonormal basis functions in Table 1. The
colored solid lines in Fig. 4a, c, e are the interpolations τ̃p(t)
with q = 1, 3, 5, 7, and 9 interpolant points, ti , spanning
from 10−4 to 103. It can be seen from the embedded dia-
grams in Fig. 4a, c, e that τ̃p(t) is remarkably close to the
true function value. In practice, fewer interpolant points in
a small range, e.g., [10−2, 102], are sufficient to effectively
interpolate τp.

To better compare the exact and interpolated functions, the
relative error of the interpolations is shown in Fig. 4b, d, f.
The relative error of the lower bound (dashed curve) rapidly
vanishes at both ends, namely, at t � τp,0 and t � τp,0,
where τ0,0 = 0.22, τ−1,0 = 0.16, and τ−2,0 = 0.14. The
absolute error of the upper bound is highest atO(tτ−1

p,0) = 1,
or t ≈ τp,0, which is slightly to the left of the relative error
peak on each diagram.

Based on the lower bound, we distribute the interpolant
points, ti , almost evenly around t ≈ τp,0 where the lower
bound has the highest error. The blue curve in Fig. 4b, d, f
corresponds to the case with only one interpolation point at
t1 = 10−1,which already leads to a relative error less than 3%
almost everywhere. On the other hand, with only nine inter-
polation points ti ∈ {10−4, 4 × 10−4, 10−3, 10−2, . . . , 103}
the relative error becomes less than 0.01%.Beyond the strong
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Fig. 4 Left columns: Comparison of the exact function τp(t), bounds
τ̂p , and the interpolations τ̃p(t) for various numbers of interpolant
points. The interpolation becomes almost indistinguishable from the
exact solution once 5 or more interpolation points are used. Right

columns: Relative error of the interpolations and the bounds. The inter-
polations using 7 and 9 points lead to relative errors of less than 0.02%
and 0.01%, respectively. Rows correspond to p = 0, −1, and −2,
respectively
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accuracy shown by the relative errors, the absolute errors are
more compelling since τp(t) decays by orders of magnitude
at large t , making the absolute error negligible at t � τp,0.

4.3 Ridge regression with generalized
cross-validation

Here we calculate the optimal regularization parameter for
a linear ridge regression model using generalized cross-
validation (GCV). Consider the linear model y = Xβ + ε,
where y ∈ R

n is a column vector of given data, X ∈
Mn,m(R) is the known design matrix representing m basis
functions where m < n, β ∈ R

m is the unknown coef-
ficients of the linear model, and ε ∼ N (0, σ 2K) is the
correlated residual error of the model, which is a zero-mean
Gaussian random vector with the symmetric and positive-
definite correlation matrix K and unknown variance σ 2.
A generalized least-squares solution to this problem mini-
mizes the square Mahalanobis distance ‖ y − Xβ‖2K−1 :=
( y − Xβ)ᵀK−1( y − Xβ) yielding an estimation of β by
β̂ = (XᵀK−1X)−1XᵀK−1 y (Seber and Lee 2012, p. 67).

When X is not full rank, the least-squares problem is
not well-conditioned. A resolution of the ill-conditioned
problems is the ridge (Tikhonov) regularization, where the
function ‖ y − Xβ‖2K−1 + nθ‖β‖2� is minimized instead
(Seber and Lee 2012, Sect. 12.5.2). Here, the penalty term
is ‖β‖2� = βᵀ�β where � is the symmetric and positive-
definite penalty matrix. The estimate of β using the penalty
term becomes

β̂ = (XᵀK−1X + nθ�)−1XᵀK−1 y. (26)

Also, the fitted values on the training points are ŷ = Xβ̂,
which can be written as ŷ = Sθ y, where the smoother matrix
Sθ is defined by

Sθ := X(XᵀK−1X + nθ�)−1XᵀK−1. (27)

The regularization parameter, θ , plays a crucial role to
balance the residual error versus the added penalty term. The
generalized cross-validation method (Wahba 1977; Craven
and Wahba 1978; Golub et al. 1979) is a popular way to
seek an optimal regularization parameter without needing to
estimate the error variance σ 2. Namely, the regularization
parameter is sought as the minimizer of

V (θ) :=
1
n ‖(I − Sθ ) y‖2K−1

( 1
n trace(I − Sθ )

)2 , (28)

(Hastie et al. 2001, p. 244).5 For large matrices, it is difficult
is to compute trace(Sθ ) (also known as the effective degrees
of freedom) in the denominator of (28), and several methods
have been developed to address this problem (Golub and von
Matt 1997; Lukas et al. 2010).

4.3.1 Estimating the trace

Using the presented interpolationmethod, we aim to estimate
trace(Sθ ). Let � = LLᵀ be the Cholesky decomposition of
�. Using the cyclic property of trace operator, we have

trace(Sθ )

= trace((XᵀK−1X + nθ�)−1XᵀK−1X)

= trace(Im×m − nθ(XᵀK−1X + nθ�)−1�)

= m − nθ trace(Lᵀ(XᵀK−1X + nθ�)−1L)

= m − nθ trace((L−1XᵀK−1XL−ᵀ + nθI)−1). (29)

In the above, Im×m is identity matrix of size m. To compute
the above term, we interpolate

trace
(
(A + tI)−1

)
= m(τ−1(t))

−1, (30)

where t := nθ − s and

A := L−1XᵀK−1XL−ᵀ + sI.

We note that the size of A and I is m. Also, A is sym-
metric and positive-definite since it can be written as a
Gramian matrix. The purpose of the fixed parameter s � 1
is to slightly shift the singular matrix L−1XᵀK−1XL−ᵀ to
make A non-singular. The shift is necessary since without
it, (30) is undefined at t = 0, and we cannot compute
τ−1,0 = m/ trace(A−1). Also, the shift can improve inter-
polation by relocating the origin of t to the vicinity of the
interval where we are interested to compute V (θ).

For simplicity in our numerical experiment, we setK and
� to identity matrices of sizes n andm, respectively. We also
set s = 10−3. We create an ill-conditioned design matrix X
for our numerical example using singular value decomposi-
tion X = U�Vᵀ. The orthogonal matrices U ∈ Mn,n(R)

and V ∈ Mm,m(R) were produced by the Householder
matrices

U := I − 2
uuᵀ

‖u‖22
, and V := I − 2

vvᵀ

‖v‖22
,

5 The function (28) is modified to incorporate the correlation of error
usingK, and can be derived from the conventional definition of general-
ized cross-validation function for the decorrelated error ε′ := L−1ε ∼
N (0, σ 2I) where K = LLᵀ is the Cholesky decomposition of K.
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Fig. 5 a The exact solution τ−1(t), bounds τ̂−1(t), and Padé rational
polynomial interpolations τ̃−1(t) for q = 1, 2, 3 are shown. The green
curve and the exact solution in the solid black curve are overlaid by the
red curve. The embedded diagram (with linear axes) magnifies a portion

of the curves with the highest interpolation error. b The relative error
of the curves in a with respect to the exact solution is shown. In both
diagrams (a) and b, the horizontal axis in the interval [−10−6, 10−6] is
linear, but outside this interval, the axis is logarithmic

where u ∈ R
n and v ∈ R

m are random vectors (see also
Golub and von Matt 1997, Sect. 10). The diagonal matrix
� ∈ Mn,m(R) was defined by


i i := exp

(
− 40

( i − 1

m

)3/4)
, i = 1, . . . ,m. (31)

We set n = 103 and m = 500. We generated data by letting
y = Xβ + ε, where β, and ε, were randomly generated with
a unit variance, and σ = 0.4, respectively.

We computed the exact solution of τ−1(t) in (30), and
interpolation points τ−1(ti ), using the Cholesky factorization
method described by (24b). The exact solution is shown by
the solid black curve in Fig. 5 (overlaid by the red curve)
with τ−1,0 = 960.5−1. The lower bound τ̂−1(t) from (7a) is
shown by the dashed black curve for t > 0. In contrast, at
t ∈ (tinf , 0], the upper bound from (7b) is shown,where tinf =
−min(λ(A)) and min(λ(A)) ≈ s = 10−3 is the smallest
eigenvalue ofA. The relative error of the bounds with respect
to the exact solution are shown in Fig. 5b. The peak of the
absolute error of the lower bound is located approximately
at t ≈ τ−1,0 ≈ 10−3, and the peak of its relative error of the
lower bound is slightly to the right of this value.

We sought to interpolate (30) in the interval θ ∈
[10−7, 10]. Accordingly, since we set s = 10−3, we shifted
the origin of t = nθ − s inside the interval nθ ∈ [10−4, 104].
Thus, we approximately had −10−3 < t < 104. Because
this interval contains the origin, we employed the Padé ratio-
nal polynomial interpolation method in Sect. 3.2. (Recall
that at small t , particularly at |t | � τ−1,0, the rational
polynomial interpolation performs better than the basis func-

tions interpolation.) We distributed the interpolant points at
ti ≥ τ−1,0 ≈ 10−3 where the rational polynomial interpola-
tion has to adhere to the exact solution.

The interpolation function τ̃−1(t) with q = 1, 2, 3 is
shown inFig. 5a using2q interpolationpoints ti in the interval
ti ∈ [5 × 10−3, 5] that are equally distanced in the logarith-
mic scale. The red curve corresponding to q = 3 and the
black curve (exact solution) are indistinguishable even in the
embedded diagram that magnifies the location with the high-
est error. The relative error of the interpolations is shown by
Fig. 5b. On the far left of the range of t , the error spikes due
to the singularity of the matrixX, which makes τ−1(t) unde-
fined at t = −10−3, corresponding to θ = 0. On the rest of
the range, the green and red curves respectively show less
than 0.1% and 0.05% relative errors, which are compelling
accuracy for a broad range of t , and achieved with only four
and six interpolation points, respectively.

4.3.2 Optimization of generalized cross-validation

Here we apply the result of our trace interpolations above
to solve the generalized cross-validation problem. The func-
tion V (θ) from (28) is plotted in Fig. 6, with the black curve,
corresponding to the exact solution with τ−1(t) applied in
the denominator of V (θ), serving as a benchmark for com-
parison. The blue, green, and red curves correspond to the
proceeding trace interpolations applied in the denominator of
V (θ). The interpolated curves exhibit both local minima of
V (θ) similar to the benchmark curve, but with slight differ-
ences in the positions of the minima. Due to the singularity
at θ = 0, the interpolations of τ−1(t) become less accurate
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Fig. 6 The generalized cross-validation function is shown, where the
black and colored curves correspond respectively to the exact and inter-
polated computation of τ−1(t) in the denominator of V (θ). The global
minimum of each curve is shown by a dot

at low values of θ . At higher values of θ , all curves steadily
asymptote to a constant. We note that the results in Fig. 6 are
compelling since the estimation of V (θ) is sensitive to the
interpolation of its denominator. Namely, a consistent inter-
polation accuracy over all the parameter range is essential to
capture the qualitative shape of V (θ) correctly.

The global minimum of V (θ) at θ = θ∗ is the optimal
compromise between an ill-conditioned regression problem
(small θ) and a highly regularized regression problem (large
θ ). We aimed to test the practicality of our interpolation
method in searching the global minimum, V (θ∗), by numeri-
cal optimization.Wenote thatwe constructedX in (31) so that
V (θ) would have two local minima thus making optimiza-
tion less trivial. In general, the generalized cross-validation
function may have more than one local minimum necessi-

tating global search algorithms (Kent and Mohammadzadeh
2000). The optimization was performed using a differential
evolution optimization method (Storn and Price 1997) with
a best/1/exp strategy and 40 initial guess points. The results
are shown in the first four rows of Table 2, where the trace
of a matrix inverse is computed by the Cholesky factoriza-
tion described in (24b). In the first row, τ−1 is computed
exactly, i.e., without interpolation, at all requested locations
t during the optimization procedure. On the second to fourth
rows, τ−1 is first pre-computed at the interpolation points, ti ,
by the Cholesky factorization, and then the interpolation is
subsequently used during the optimization procedure.

In the table, Ntr counts the number of exact evaluations of
τ−1. For the Padé rational polynomial interpolation method
of degree q, we had Ntr = 2q + 1, accounting for 2q inter-
polant points in addition to the evaluation of τ−1,0 at t = 0.
Ntot is the total number of estimations of τ−1 during the opti-
mization process. In the first row, Ntr = Ntot as all points
are evaluated exactly, i.e., without interpolation. However,
for the interpolation methods, Ntot consists of Ntr plus the
evaluations of τ−1 via interpolation.

The exact computations of τ−1 (at Ntr points) are the most
computationally expensive part of the overall process. Our
numerical experiments were performed on the Intel Xeon
E5-2640 v4 processor using shared memory parallelism. We
measured computational costs by the total CPU processing
time of all computing cores. Ttr denotes the processing time
of computing τ−1 exactly at the Ntr points. Ttot measures the
processing time of the overall optimization, which includes
Ttr. As shown, the interpolation methods took significantly
less processing time compared to no interpolation, namely,
by two orders ofmagnitude for Ttr, and an order ofmagnitude
for Ttot. We also observe that without interpolation, Ttr is the

Table 2 Comparison of methods to optimize the regularization parameter θ , with and without interpolation of τ−1(t), and by various algorithms
of computing trace of a matrix inverse

Computing τ−1(t) Iterations Time (s) Results Relative error

Algorithm Interpolation method Ntr Ntot Ttr Ttot V (θ∗) log10 θ∗ |� log10 θ∗|
| log10 θ∗| (%) ‖�β̂‖2

‖β̂‖2 (%) ‖� ŷ‖2
‖ ŷ‖2 (%)

Cholesky No interpolation (exact) 282 282 27.49 30.90 0.16376 −3.8164 0.00 0.00 0.00

Rational polynomial, q = 1 3 364 0.29 4.70 0.16352 −3.5628 6.65 29.71 17.59

Rational polynomial, q = 2 5 282 0.49 3.93 0.16372 −3.8446 0.74 3.69 1.95

Rational polynomial, q = 3 7 284 0.69 4.12 0.16376 −3.8218 0.14 0.71 0.37

Hutchinson No interpolation 312 312 61.33 65.14 0.16372 −3.7939 0.59 2.98 1.58

Rational polynomial, q = 1 3 364 0.57 4.96 0.16348 −3.5649 6.59 29.49 17.45

Rational polynomial, q = 2 5 282 0.88 4.29 0.16371 −3.8274 0.29 1.45 0.76

Rational polynomial, q = 3 7 282 1.25 4.66 0.16374 −3.8119 0.12 0.61 0.32

SLQ No interpolation 322 322 66.67 88.75 0.16373 −3.7939 0.59 2.98 1.58

Rational polynomial, q = 1 3 364 0.58 5.04 0.16352 −3.5597 6.73 30.03 17.81

Rational polynomial, q = 2 5 282 1.03 4.52 0.16376 −3.8778 1.61 7.88 4.18

Rational polynomial, q = 3 7 282 0.70 4.13 0.16378 −3.7770 1.03 5.17 2.76
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dominant part of the total processing time, Ttot. In contrast,
with interpolation, Ttr becomes so small that Ttot is dominated
by the cost of evaluating the numerator of V (θ) in (28), which
is proportional to Ntot.

The results of computing the optimized parameter, θ∗, and
the corresponding minimum, V (θ∗), are shown in the sev-
enth and eighth columns of Table 2, respectively. The ninth
column is the relative error of estimating θ∗, and obtained
by comparing log10 θ∗ between the interpolated and bench-
mark solution (i.e., first row). The last two columns are the
�2 norm of the error of β̂ [using (26)] and ŷ compared to
their exact solution, and their relative error are obtained by
normalizing with the �2 norm of their exact solution. We
observed, for example for q = 2, that with one-tenth of the
processing time, an accuracy of 2% error for ŷ is achieved,
which is generally sufficient in practical applications. Also,
for q = 3, the error reduces to <1% with similar processing
time. In general, the error can be improved simply by using
more interpolant points. We have found that simple heuris-
tics for setting defaults for q are broadly effective. Namely,
if θ∗ is expected to be found in an known interval, one can
use a small number of interpolating points (q = 1 ∼ 2) on
the boundary or center of the interval. If there is no prior
knowledge of the range, one can let an optimization scheme
search for θ∗ in a wide logarithmic range, e.g., [10−7, 10+1]
with q = 3 ∼ 4.

4.3.3 Testing alternative trace estimators

Besides theCholesky factorization algorithm,wealso repeated
the numerical experiments above with stochastic trace esti-
mators, namely, the Hutchinson’s algorithm (Hutchinson
1990) and stochastic Lanczos quadrature algorithm (Golub
and Meurant 2009, Sect. 11.6.1) to compute the trace of
a matrix inverse. These class of randomized methods are
attractive due to their scalability to very large matrices,
where employing the exact methods could be inefficient, if
not infeasible. However, these methods do not compute the
exact value of determinant or trace, rather they converge to
a solution by Monte-Carlo sampling through iterations. The
complexity of Hutchinson method using conjugate gradient
isO(ρn2s)where ρ is the density of matrix (ρ = 1 for dense
matrices) and s is the number of random vectors for Monte-
Carlo sampling. We recall that in our application, the cost
of the interpolation scheme is q times the above-mentioned
complexity, i.e.,

O
(
qρn2s

)
.

Alternatively, the computational cost of the SLQ method is
O((ρn2 + nl)sl) where l is the Lanczos degree, which is the
number of Lanczos tri-diagonalization iterations (see details

e.g., in Ubaru et al. 2017, Sect. 3). Thus, the complexity of
the interpolation method becomes

O
(
q(ρn2 + nl)sl

)
.

In both these algorithms, we employed s = 30 random
vectors with Rademacher distribution for Monte-Carlo sam-
pling. Also, in SLQ algorithm, we set the Lanczos degree to
30.

The results for Hutchinson’s algorithm are shown in the
fifth to eighth rows, and results for the SLQ algorithm are
shown in the ninth to twelfth rows, of Table 2. Similar to
the Cholesky factorization, in both stochastic estimators, the
interpolation technique reduces the processing times com-
pared to no interpolation, namely, Ttr is reduced by twoorders
of magnitude, and Ttot by an order of magnitude, while main-
taining a reasonable accuracy.

We note that the interpolation with the stochastic methods
introduces error due to the uncertainly in the randomized
estimation of τ−1 at the interpolant points ti . However, the
additional error caused by interpolation itself can be less than
the error due to aforementioned stochastic estimation. For
instance, without interpolation, the SLQ method estimates
ŷ with a 1.58% error, whereas, interpolation with q = 3
results in a similar error of 2.76% but at a greater than 20-
fold reduction in computational cost.

5 Further applications

We recall that the presented interpolation scheme can be
applied to any formulation that consists of the trace or deter-
minant of a power of the one-parameter affinematrix function
A + tB where A and B are Hermitian and positive-definite.
Often in applications, an algebraic trick [such as in (29)]
is required to form such an affine matrix function. We here
provide two other closely related examples where such affine
matrix function can be formulated.

5.1 Reproducing kernel Hilbert space

LetHK be a reproducing kernel Hilbert space equipped with
the reproducing kernel K that defines the function evaluation
f (x) = 〈 f , K (·, x)〉HK . Consider an infinite-dimensional
generalized ridge regression on HK to estimate y = f (x)

with the given training set {(xi , yi )}ni=1 by the minimization
problem (Hastie et al. 2001, Sect. 5.8.2)

min
f ∈HK

n∑

i=1

|yi − f (xi )|2 + θ‖ f ‖2HK
.
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The solution to the above problem has the form f (·) =∑
j α j K (·, x j ). For thefinite-dimensional formulation, define

the kernel matrixK with the components Ki j := K (xi , x j ),
which is symmetric andpositive-definite. Letα := [α1, . . . , αn]ᵀ
and y := [y1, . . . , yn]ᵀ. The minimization problem in finite-
dimensional setting becomes

min
α

‖ y − Kα‖22 + θ‖α‖2K,

where ‖α‖2K = αᵀKα. The optimal solution to the above
problem is

α̂ = (K + θI)−1 y,

and the fitted values on the training points are ŷ = Kα̂ =:
Sθ ywhere the smoothermatrixSθ is definedbySθ := K(K+
θI)−1.

One may seek the optimal value for θ as the minimizer of
the GCV function

V (θ) :=
1
n ‖(I − Sθ ) y‖22

( 1
n trace(I − Sθ )

)2 . (32)

We recall that the expensive part of computing (32) is the
term trace(Sθ ). To apply our interpolation scheme, write Sθ

as the Reinsch form

Sθ = θ−1(K−1 + θ−1I)−1.

We realize that

trace(Sθ ) = tn(τ−1(t))
−1,

where t := θ−1. The proposed interpolation method follows
by using A = K−1, B = I, and τ−1,0 = n/ trace(K).

5.2 Kernel-based GCV for mixedmodels

Another formulation of kernel-based GCV, for instance by
Xu and Zhu (2009, Eqs. 9 and 10), yields a function of the
form

V (h, φ) =
1
n ‖(I − H(h, φ)) y‖22

( 1
n trace(I − H(h, φ))

)2 , (33)

where

H(h, φ) =
H̃ + (I − H̃)Z

(
Zᵀ(I − H̃)ᵀ(I − H̃)Z + �

)−1

Zᵀ(I − H̃)ᵀ(I − H̃). (34)

In the above, the covariance � = �(φ) is symmetric and
positive-definite, the design matrix of random effects Z has
full column-rank, and H̃ = H̃(h) is the smoother matrix
when the random effects are absent. Optimal values of the
parameters (h, φ) are sought by minimizing V .

It is possible to represent the term in the denominator of
(33) by the trace of the inverse of a single matrix to be written
as τ−1. To do so, let P := I − H̃ and Y := PZ. Using the
Woodburymatrix identity and (34), we can represent the term
inside the trace in (33) as

I − H(h, φ) =
(
I − Y(YᵀY + �)−1Yᵀ

)
P

=
(
I + Y�−1Yᵀ

)−1
P.

If P is positive-definite, then let P = LLᵀ be the Cholesky
decomposition of P. By using the cyclic property of trace
operator, we have

trace(I − H(h, φ))

= trace
(
Lᵀ(I + Y�−1Yᵀ)−1L

)

= trace
(
(L−1L−ᵀ + L−1Y�−1YᵀL−ᵀ)−1

)
. (35)

Note that bothmatricesA := L−1L−ᵀ andB := L−1Y�−1Yᵀ

L−ᵀ are symmetric and positive-definite since they are in the
Gramian form. To compute (35), the presented interpolation
method can be applied for instance if �(φ) is linear in its
parameter. Such assumption is common, for instance when
� = φKwhere φ is variance andK is the correlation matrix.
In such a case, the sum of two matrices in (35) becomes an
affine function of t := φ−1 and trace(I − H̃(h, φ)) can be
written as τ−1(t).

6 Conclusions

In many applications in statistics and machine learning, it
is desirable to estimate the determinant and trace of the real
powers of a one-parameter family of matrix functionsA+ tB
where the parameter t varies and the matrices A and B in
the formulation remain unchanged. There exist many effi-
cient techniques to estimate the determinant and trace of
implicitmatrices (such as inverse of amatrix), however, these
methods are geared toward generic matrices. Using those
methods, the computation of the determinant and trace of the
parametric matrices should be repeated for each parameter
value as the matrix is updated. To efficiently perform such
computation for a wide range of parameter t , we presented
in this work heuristic methods to interpolate the functions
t �→ log det(A + tB) and t �→ trace((A + tB)p). The
interpolation approach is based on sharp bounds for these
functions using inequalities for a Schatten-type norm and
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anti-norm.We proposed two types of interpolation functions,
namely, interpolation with a linear combination of orthogo-
nalized inverse-monimial basis functions, and interpolation
with rational polynomials, which includes Padé approxima-
tion and Chebushev rational functions. We demonstrated
that both functions can provide highly accurate interpola-
tion over a wide range of t using very few interpolation
points. The rational polynomials generally provide better
results in the neighborhood of the origin of the parameter.
In the regions away from the origin, choice of interpolation
method is less important; namely we observed e.g., the inter-
polation with Chebyshev rational functions provide similar
results to the orthogonalized inverse-monomials in (13) in
such cases. All the presented interpolation methods can lead
to one to two orders of magnitude savings in processing time
in practical applications that require frequent evaluations of
log det(A + tB) or trace((A + tB)p).

For applications where one is interested in values of
t � τp,0 (such as in Sect. 4.3 where the matrix was shifted
due to being ill-conditioned) interpolation using (18) is rec-
ommended. One should keep in mind that there exists the
possibility that (18) can become singular at its poles, but
a slight rearrangement of the interpolant points ti can be
used to ensure these poles are outside the domain of interest.
Although (18) provides accurate interpolation for a broad
range of t , for a higher number of interpolation points (e.g 6
or more), relation (13) or (20) is preferred.

In closing, the presented interpolation method can be
effectively utilized on large data, particularly with the pow-
erful framework of randomized estimators of trace and
log-determinant. A practical application of this method
together with stochastic Lanczos quadrature on sparse matri-
ces is given by Ameli and Shadden (2022c) to efficiently
train Gaussian process regression. The interested reader may
refer to Ameli and Shadden (2022b) where the interpolation
scheme can be applied to massive data (e.g., n ∼ 225) using
the imate package.

Acknowledgements Theauthors acknowledge support from theNational
Science Foundation, Award No. 1520825, and American Heart Associ-
ation, Award No. 18EIA33900046.

Declaration

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Proofs

In Theorem 1, we show (7a) and (7b) for the operator (3) and
p ∈ (−∞, 1) \ {0}. The results for p = 0 follows by the
continuity condition in (4).

Theorem 1 Suppose p ∈ (−∞, 1) \ {0} and let the matrices
A,B ∈ Mn,n(C) be Hermitian and positive semi-definite
(positive definite if p < 0). Then

‖A + B‖p ≥ ‖A‖p + ‖B‖p, (A.1a)

‖A − B‖p ≤ ‖A‖p − ‖B‖p, (A.1b)

provided that A � B (A � B if p < 0) for (A.1b) to hold. In
both (A.1a) and (A.1b), the equality is achieved if and only
if A = cB for c ∈ R≥0 (c ∈ R>0 if p < 0).

We prove Theorem 1 as follows.

Definition 1 (Majorization) For then-tuple x = (x1, . . . , xn)
∈ R

n , we denote by x↓ = (x↓
1 , . . . , x↓

n ) the tuple with the
same components as x, but sorted in decreasing order. Let
x, y ∈ R

n . We say x weakly majorizes y from below (sub-
majorizes) and indicate by x �w y if and only if

k∑

i=1

x↓
i ≥

k∑

i=1

y↓
i , for all k = 1, . . . , n.

Furthermore, if x �w y and
∑n

i=1 x
↓
i = ∑n

i=1 y
↓
i , we say x

majorizes y and indicate by x � y.

Proposition 2 Suppose p ∈ (−∞, 1)\{0}, and let the matri-
cesA,B ∈ Mn,n(C) beHermitian and positive semi-definite
(positive-definite if p < 0) with the n-tuple of eigenvalues
λ(A) and λ(B), respectively. Then

‖A + B‖p ≥ Mp(λ
↓(A) + λ↓(B)), (A.2)

where Mp is the generalizedmean defined in (5). The equality
in the above holds if and only if λ↓(A+B) = λ↓(A)+λ↓(B).

Proof We proceed the proof for p < 0 as the case p ∈
(0, 1) follows similarly. By Ky Fan eigenvalue inequality for
Hermitian matrices (Zhang 2011, p. 356, Theorems 10.21)

λ(A + B) ≺ λ↓(A) + λ↓(B). (A.3)

Let I := [λmin, λmax], λmin := min{λ↓
n (A), λ

↓
n (B)} and

λmax := max{λ↓
1 (A), λ

↓
1 (B)}. Since A and B are Hermi-

tian and at least positive semi-definite, we have I ⊂ R≥0.
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Define the convex function f (t) := t p on I. Applying (A.3)
to Theorem 5.A.1 of Marshall et al. (2011, p. 165) yields

f (λ(A + B)) ≺w f
(
λ↓(A) + λ↓(B)

)
. (A.4)

(We note that for p ∈ (0, 1), the function f is concave and
the direction of the above and subsequent inequalities are
flipped instead). The above relation in particular, implies

n∑

i=1

f (λi (A + B)) ≤
n∑

i=1

f
(
λ

↓
i (A) + λ

↓
i (B)

)
. (A.5)

Raising (A.5) to the power 1
p (which flips the direction of

inequality if p < 0) concludes (A.2).
Also, the condition λ(A + B)) = λ↓(A) + λ↓(B) is

sufficient for the equality in (A.5). To show the necessity con-
dition, suppose in contrary that the equality in (A.5) holds.
This equality condition together with (A.4) imply

f (λ(A + B)) ≺ f
(
λ↓(A) + λ↓(B)

)
. (A.6)

The above condition can be achieved if and only if either f is
linear (Marshall et al. 2011, p. 166, Theorem 5.A.1.e), which
is not, or if λ(A + B) = λ↓(A) + λ↓(B). ��

The equality condition in Proposition 2 is contingent on
the following condition.

Lemma 3 Let A,B ∈ Mn,n(C) be Hermitian matrices with
the n-tuple of eigenvalues λ(A) and λ(B), respectively. Then,
λ↓(A + B) = λ↓(A) + λ↓(B) only if A and B commute.

Proof Using theGolden–Thompson inequality (Bhatia 1997,
p. 261, Eq. IX.19) and Von Neumann’s trace inequality
(Mirsky 1975) respectively, we have

trace
(
eA+B

)
≤ trace

(
eAeB

)
≤

n∑

i=1

eλ
↓
i (A)eλ

↓
i (B)

=
n∑

i=1

eλ
↓
i (A)+λ

↓
i (B) = trace

(
eA+B

)
.

But, the equality in Golden–Thompson inequality holds if
and only if A and B commute (Petz 1994). ��
Remark 5 The equality (2b) is a special case of (A.2) since
A commutes with B = tI. This also applies to (2a) as it can
be obtained from (2b) at p → 0.

We also show superadditivity of the generalized mean
function, Mp, for p < 1.

Lemma 4 Mp for p < 1 is a concave function on Rn≥0 (R
n
>0

if p < 0).

Proof We show theHessianH of the functionMp(x) is nega-
tive semi-definite. The component Hi j of the Hessian matrix
H is

Hi j := ∂2Mp

∂xi∂x j

= p − 1

n
1
p

(
n∑

k=1

x p
k

) 1
p −2

x p−1
i

(
δi j

xi

n∑

k=1

x p
k − x p−1

j

)

,

where δi j is the Kronecker delta function. The matrix H
is negative semi-definite if and only if wᵀHw ≤ 0 for all
nonzero vectors w := (w1, . . . , wn). The latter condition is
equivalent to

n∑

i=1

n∑

j=1

wiw j x
p−1
i

(
δi j

xi

n∑

k=1

x p
k − x p−1

j

)

≥ 0,

which simplifies to

⎛

⎝
n∑

j=1

w j x
p−1
j

⎞

⎠

2

≤
(

n∑

k=1

x p
k

)(
n∑

i=1

w2
i x

p−2
i

)

.

The above relation holds by the Cauchy–Schwarz inequality

for the product two vectors with the components x
p
2
j and

w j x
p
2 −1
j . Thus, H is negative semi-definite and it concludes

the proof. ��
Proposition 5 Mp for p < 1 is superadditive on R

n≥0 (R
n
>0

if p < 0). That is, for x, y ∈ R
n
>0,

Mp(x + y) ≥ Mp(x) + Mp( y). (A.7)

The equality in the above holds if and only if x = c y where
c ≥ 0 (c > 0 if p < 0).

Proof Since by Lemma 4, the function Mp is concave, from
the Jensen inequality (see e.g., Hardy et al. 1952, Sect. 3.12
we have Mp(

1
2 (x + y)) ≥ 1

2 (Mp(x) + Mp( y)), which con-
cludes (A.7). The Jensen inequality becomes an equality if
x = y. But, since Mp(cx) = cMp(x), the equality criterion
can be extended to x = c y. ��

We can now prove Theorem 1.

Proof of Theorem 1 We have Mp(λ
↓(A)) = ‖A‖p and

Mp(λ
↓(B)) = ‖B‖p.ApplyingProposition5 toMp(λ

↓(A)+
λ↓(B)) and using Proposition 2 concludes (A.1a). Also,
applying (A.1a) to ‖B + (A − B)‖p = ‖A‖p concludes
(A.1b).

The equality in Proposition 5 holds if and only if λ↓(A) =
cλ↓(B) for some positive constant c. Also, by Lemma 3,
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the equality in Proposition 2 holds if A and B commute,
which means A and B have the same eigenspace (Horn and
Johnson 1990, p. 50, Theorem 1.3.12). By combining these
two conditions, equality in (A.1a) and (A.1b) is achieved
when A is a scalar multiple of B. ��
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Mitrinović, D.S., Vasić, P.M.: Analytic Inequalities. Grundlehren
der mathematischen Wissenschaften in Einzeldarstellungen mit
besonderer Berücksichtigung der Anwendungsgebiete. Springer,
Berlin (1970). https://doi.org/10.1007/978-3-642-99970-3

Newbery, A.C.R., Garrett, T.S.: Interpolation with minimized curva-
ture. Comput. Math. Appl. 22(1), 37–43 (1991). https://doi.org/
10.1016/0898-1221(91)90023-W

Niessner, H., Reichert, K.: On computing the inverse of a sparse matrix.
Int. J. Numer. Methods Eng. 19(10), 1513–1526 (1983). https://
doi.org/10.1002/nme.1620191009

Petz, D.: A survey of certain trace inequalities. Banach Center Publ.
30(1), 287–298 (1994). https://doi.org/10.4064/-30-1-287-298

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning, MIT
Press, Cambridge (2006)

123

https://pypi.org/project/glearn/
https://pypi.org/project/glearn/
https://pypi.org/project/imate/
http://arxiv.org/abs/2206.09976
http://arxiv.org/abs/2207.08038
https://doi.org/10.1145/1944345.1944349
https://doi.org/10.1016/0377-0427(96)00018-0
https://doi.org/10.1016/0377-0427(96)00018-0
https://doi.org/10.1002/cpe.1770
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1142/S0129167X1100715X
https://doi.org/10.1142/S0129167X1100715X
https://doi.org/10.1016/j.laa.2014.05.030
https://doi.org/10.1214/ss/1177009939
https://doi.org/10.1214/ss/1177009939
https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/BF01404567
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1007/BF01395775
https://doi.org/10.1080/10618600.1997.10474725
https://doi.org/10.1080/10618600.1997.10474725
https://doi.org/10.1016/0024-3795(80)90156-1
https://doi.org/10.1016/0024-3795(80)90156-1
https://doi.org/10.1007/BF02142693
https://doi.org/10.1007/BF02142693
https://doi.org/10.1080/00401706.1979.10489751
https://doi.org/10.1080/00401706.1979.10489751
https://doi.org/10.1002/nme.392
https://doi.org/10.1002/nme.392
https://doi.org/10.1088/0266-5611/24/5/055012
https://doi.org/10.1088/0266-5611/24/5/055012
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1007/s11075-012-9687-2
https://doi.org/10.1023/A:1008939510946
https://doi.org/10.1016/j.cam.2010.05.016
https://doi.org/10.1016/j.cam.2010.05.016
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1007/BF01647331
https://doi.org/10.1007/978-3-642-99970-3
https://doi.org/10.1016/0898-1221(91)90023-W
https://doi.org/10.1016/0898-1221(91)90023-W
https://doi.org/10.1002/nme.1620191009
https://doi.org/10.1002/nme.1620191009
https://doi.org/10.4064/-30-1-287-298


108 Page 18 of 18 Statistics and Computing (2022) 32 :108

Saibaba, A.K., Alexanderian, A., Ipsen, I.C.F.: Randomized matrix-
free trace and log-determinant estimators. Numer. Math. 137(2),
353–395 (2017). https://doi.org/10.1007/s00211-017-0880-z

Seber, G., Lee, A.: Linear Regression Analysis. Wiley Series in Prob-
ability and Statistics, Wiley, New York (2012). https://doi.org/10.
1002/9780471722199

Stathopoulos, A., Laeuchli, J., Orginos, K.: Hierarchical probing for
estimating the trace of thematrix inverse on toroidal lattices. SIAM
J. Sci. Comput. 35(5), S299–S322 (2013). https://doi.org/10.1137/
120881452

Stewart, G.W.: Matrix Algorithms: Volume 1: Basic Decompo-
sitions. SIAM, Philadelphia (1998). https://doi.org/10.1137/1.
9781611971408

Storn, R., Price, K.: Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J.
Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:
1008202821328

Takahashi, K., Fagan, J., Chen, M.S.: Formation of a sparse bus
impedance matrix and its application to short circuit study. In: 8th
Power Industry Computer Application Conference Proceedings.
IEEE Power Engineering Society, pp 63–69 (1973)

Tang, J.M., Saad, Y.: A probing method for computing the diagonal
of a matrix inverse. Numer. Linear Algebra Appl. 19(3), 485–501
(2012). https://doi.org/10.1002/nla.779

Tipping, M.E.: Sparse Bayesian learning and the relevance vector
machine. J. Mach. Learn. Res. 1, 211–244 (2001). https://doi.org/
10.1162/15324430152748236

Ubaru, S., Saad, Y.: Fast methods for estimating the numerical rank
of large matrices. In: Proceedings of the 33rd International Con-
ference on Machine Learning—Volume 48. JMLR.org, ICML’16,
pp. 468–477 (2016)

Ubaru, S., Saad, Y.: Applications of trace estimation techniques. In:
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