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Abstract
In this work we explore a new framework for approximate Bayesian inference in large datasets based on stochastic control.
We advocate stochastic control as a finite time and low variance alternative to popular steady-state methods such as stochastic
gradient Langevin dynamics. Furthermore, we discuss and adapt the existing theoretical guarantees of this framework and
establish connections to already existing VI routines in SDE-based models.
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1 Introduction

Steering a stochastic flow from one distribution to another
across the space of probability measures is a well-studied
problem initially proposed in Schrödinger (1932). There has
been recent interest in the machine learning community in
these methods for generative modelling, sampling, dataset
imputation and optimal transport (Wang et al. 2021; De Bor-
toli et al. 2021; Huang et al. 2021; Bernton et al. 2019; Vargas
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et al. 2021;Chen et al. 2022;Cuturi 2013;Maoutsa andOpper
2021; Reich 2019).

We consider a particular instance of the Schrödinger
bridge problem (SBP), known as the Schrödinger–Föllmer
process (SFP). In machine learning, this process has been
proposed for sampling and generative modelling (Huang
et al. 2021; Tzen and Raginsky 2019b) and in molecular
dynamics for rare event simulation and importance sampling
(Hartmann and Schütte 2012; Hartmann et al. 2017); here we
apply it to Bayesian inference. We show that a control-based
formulation of the SFP has deep-rooted connections to vari-
ational inference and is particularly well suited to Bayesian
inference in high dimensions. This capability arises from the
SFP’s characterisation as an optimisation problem and its
parametrisation through neural networks (Tzen and Ragin-
sky 2019b). Finally, due to the variational characterisation
that these methods possess, many low-variance estimators
(Richter et al. 2020; Nüsken and Richter 2021; Roeder et al.
2017; Xu et al. 2021) are applicable to the SFP formulation
we consider.

We reformulate the Bayesian inference problem by con-
structing a stochastic process �t which at a fixed time t = 1
will generate samples from a pre-specified posterior p(θ |X),
i.e. Law�1 = p(θ |X), with dataset X = {xi }N

i=1, and where
the model is given by:

θ ∼ p(θ),

xi |θ ∼ p(xi |θ). iid (1)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-022-10172-5&domain=pdf
http://orcid.org/0000-0002-2714-3357


3 Page 2 of 22 Statistics and Computing (2023) 33 :3

Here the prior p(θ) and the likelihood p(xi |θ) are user-
specified. Our target is π1(θ) = p(X|θ)p(θ)

Z , where Z =∫ ∏
i p(xi |θ)p(θ)dθ . This formulation is reminiscent of the

setup proposed in the previous works (Grenander and Miller
1994; Roberts and Tweedie 1996; Girolami and Calderhead
2011; Welling and Teh 2011) and covers many Bayesian
machine-learning models, but our formulation has an impor-
tant difference. SGLD relies on a diffusion that reaches the
posterior as its equilibrium state when time approaches infin-
ity. In contrast, our dynamics are controlled and the posterior
is reached in finite time (bounded time). The benefit of this
property is elegantly illustrated in Sect. 3.2 of Huang et al.
(2021) where they rigorously demonstrate that even under an
Euler approximation the proposed approach reaches a Gaus-
sian target at time t =1 whilst SGLD does not.
Contributions The main contributions of this work can be
detailed as follows:

• In thisworkwe scale and apply the theoretical framework
proposed in (Dai Pra 1991; Tzen and Raginsky 2019a) to
sample from posteriors in large scale Bayesian machine
learning tasks such as Bayesian Deep learning. We study
the robustness of the predictions under this framework as
well as evaluate their uncertainty quantification.

• More precisely we propose an amortised parametrisation
that allows scalingmodels with local and global variables
to large datasets.

• We explore and provide further theoretical backing
(Sect. 2.2) to the “sticking the landing” estimator pro-
vided by Xu et al. (2021).

• Overall we empirically demonstrate that the stochas-
tic control framework offers a promising direction in
Bayesian machine learning, striking the balance between
theoretical/asymptotic guarantees found inMCMCmeth-
ods (Hastings 1970;Duane et al. 1987;Neal 2011;Brooks
et al. 2011) and more practical approaches such as vari-
ational inference (Blei et al. 2003).

1.1 Notation

Throughout the paper we consider path measures (denoted
as Q or S) on the space of continuous functions � =
C([0, 1],Rd). Random processes associated with such path
measures Q are denoted as � and their time-marginal dis-
tributions as Qt = (�t )#Q (which are just pushforward
measures). Given two marginal distributions π0 and π1 we
writeD(π0, π1) = {Q : Q0 = π0,Q1 = π1} for the set of all
path measures with given marginal distributions at the initial
and final times. We denote by Qu,π the path measure of the
following Stochastic Differential Equation (SDE):

d�t = u(t,�t )dt + √
γ dBt , �0 ∼ π (2)

(we drop the dependence on γ since it is fixed) and we write
Wγ = Q0,δ0 for the Wiener measure. We will write dQ

dS for
the Radon-Nikodym derivative (RND) of Q w.r.t. S.

1.2 Schrödinger–Föllmer processes

Definition 1 (Schrödinger-Bridge Process) Given a refer-
ence process S and two measures π0 and π1 the Schrödinger
bridge distribution is given by

Q∗ = arg inf
Q∈D(π0,π1)

DKL
(
Q
∣
∣
∣
∣S
)
, (3)

where S acts as a “prior”.
It is known (Léonard2013) that ifS = Qu,π ,Q∗ is induced

by an SDE with a modified drift:

d�t = u∗(t,�t )dt + √
γ dBt , �0 ∼ π0, (4)

i.e. Q∗ = Qu∗,π0 . Solution of this SDE is called the
Schrödinger-Bridge Process (SBP).

Definition 2 (Schrödinger–Föllmer Process) The SFP is an
SBP where π0 = δ0 and the reference process S = Wγ is
the Wiener measure.

The SFP differs from the general SBP in that, rather than
constraining the initial distribution to δ0, the SBP considers
any initial distribution π0. The SBP also involves general Itô
SDEs associatedwithQu,π as the dynamical prior, compared
to the SFP which restricts attention to Wiener processes as
priors.

The advantage of considering this more limited version
of the SBP is that it admits a closed-form characterisation
of the solution to the Schrödinger system (Léonard 2013;
Wang et al. 2021; Pavon et al. 2018) which allows for an
unconstrained formulation of the problem. For accessible
introductions to the SBP we suggest (Pavon et al. 2018; Var-
gas et al. 2021). Now we will consider instances of the SBP
and the SFP where π1 = p(θ |X).

1.2.1 Analytic solutions and the heat semigroup

Prior work (Pavon 1989; Dai Pra 1991; Tzen and Ragin-
sky 2019b; Huang et al. 2021) has explored the properties
of SFPs via a closed form formulation of the Föllmer drift
expressed in terms of expectations over Gaussian random
variables known as the heat semigroup. The seminal works
(Pavon 1989; Dai Pra 1991; Tzen and Raginsky 2019b) high-
light how this formulation of the Föllmer drift characterises
an exact sampling scheme for a target distribution and how
it could potentially be used in practice. The recent work by
Huang et al. (2021) builds on Tzen andRaginsky (2019b) and
explores estimating the optimal drift in practice via the heat
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Fig. 1 Predictive posterior contour plots on the banana dataset (Diethe
2015). Test accuracies: 0.8928 ± 0.0056, 0.8913 ± 0.0105, 0.8800 ±
0.0063 and test ECEs: 0.0229 ± 0.0062, 0.0253 ± 0.0042, 0.0267 ±

0.0083 for N-SFS, SGLD, and SGD respectively. We observe that N-
SFS obtains the highest test accuracy whilst preserving the lowest ECE

semigroup formulation using a Monte Carlo approximation.
Our work aims to take the next step and scale the estimation
of the Föllmer drift to high dimensional cases (Graves 2011;
Hoffman et al. 2013). In order to do this we must move away
from the heat semigroup and instead consider the dual for-
mulation of the Föllmer drift in terms of a stochastic control
problem (Tzen and Raginsky 2019b).

In the setting when π0 = δ0 we can express the optimal
SBP drift as follows

u∗(t, x) = ∇x lnE�∼S

[
dπ1

dS1
(�1)

∣
∣
∣�t = x

]

(5)

Definition 3 The Euclidean heat semigroup Qγ
t , t ≥ 0,

acts on bounded measurable functions f : Rd → R as
Qγ

t f (x) = ∫
Rd f

(
x + √

t z
)N(z|0, γ I)d z = Ez∼N(0,γ I)[

f
(
x + √

t z
)]

.

In the SFP case where S = Wγ , the optimal drift from Eq.5
can be written in terms of the heat semigroup, u∗(t, x) =
∇x ln Qγ

1−t

[
dπ1

dN(0,γ I) (x)
]
. Note that an SDE with the heat

semigroup induced drift

d�t = ∇�t ln Qγ
1−t

[
dπ1

dN(0, γ I)
(�t )

]

dt + √
γ dBt (6)

satisfies Law�1 = π1, that is, at t = 1 these processes are
distributed according to our target distribution of interest π1.

1.2.2 Schrödinger–Föllmer samplers

Huang et al. (2021) carried out preliminary work on empiri-
cally exploring the success of using the heat semigroup for-
mulation of SFPs in combination with the Euler-Mayurama
(EM) discretisation to sample from target distributions in a
method they call Schrödinger–Föllmer samplers (SFS).More
precisely the SFS approach proposes estimating the Föllmer
drift via:

û∗(t, x) =
1
S

∑S
s=1 zs f (x + √

1 − t zs)√
1−t
S

∑S
s=1 f (x + √

1 − t zs)
, (7)

where zs ∼ N(0, γ I) and f = dπ1
dN(0,γ I) . Whilst this estima-

tor enjoys sound theoretical properties (Huang et al. 2021) it
falls short in practice for the following reasons:

• The term f involves the product of PDFs evaluated at
samples rather than a log product and is thus often very
unstable numerically. In Appendix 1 we provide a more
stable implementation of Eq.7 exploiting the logsumexp
trick and properties of the Lebesgue integral.

• In it’s current form the estimator does not admit low
variance estimators (e.g. Variatonal Inference), being a
Monte Carlo estimator it is prone to high variance.

• Both empirically and theoretically we found the com-
putational running time of the above approach to be
considerably slower than the other methods we com-
pare to. At test time SFS has a computational complexity
of O(T S# f (d)) where T = �t−1, S is the number of
Monte Carlo samples and # f (d) is the cost of evaluating
the RND f which at best is linear in d. Meanwhile our
proposed approach enjoys a cost of O(T #uφ (d)) where
#uφ (d) is the forward pass through a neural network
approximating the Föllmer drift.

In practice we found this implementation to be too numer-
ically unstable and unable to produce reasonable results even
in low dimensional examples in order to carry out a fair com-
parison we reformulated Eq.7 stably, the stable formulation
and its derivation can be found in Appendix 1.

In this work build on Huang et al. (2021) by consider-
ing a formulation of the Schrödinger–Föllmer process that is
suitable for the high dimensional settings arising in Bayesian
ML.Ourworkwill focus on a dual formulation of the optimal
drift that is closer to variational inference and thus admits the
scalable and flexible parametrisations used in ML.
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Fig. 2 Comparison betweenMC-SFS andN-SFS under similar compu-
tational constraints. Target distribution is theGaussian posterior induced
by a Bayesian linear regression model, we plot the error of the first and
second posterior predictive moments between the true posterior predic-

tive and the listed approximations. We found increasing the number of
steps in SGLD drove the errors closer to 0 however when increasing
the dimensions this threshold also increased notably. This illustrates the
advantages of having a target at a finite time rather than at equilibrium

Algorithm 1 Optimization of N-SFS with Stochastic Mini-batches.

1: Input: data set X ={xi }N
i=1, initialized drift NN uφ , parameter dimension d, # of iterations M , batch size B, # of EM discretization steps k, #

of MC samples S , diffusion coefficient γ .
2: Initialise: �t ← 1

k , t j ← j�t for all j = 0, . . . , k
3: for i = 1, . . . , M do
4: Initialize �s

0 ← 0 ∈ Rd for all s = 1, . . . , S

5: {�sφ
j }k

j=1 ← Euler-Maruyama(uφ,�s
0,�t) for all s = 1, . . . , S

6: Sample xr1 , . . . , xrB ∼ X

7: g ← ∇φ

(
1
S

S∑

s=1

k∑

j=0

(

||uφ(�
sφ
j , t j )||2�t − ln

(
p(�

sφ
k )

N(�
sφ
k |0,γ Id )

)

+ N
B

B∑

j=1
ln p(xr j |�sφ

k )

))

8: φ ← Gradient Step(φ, g)

9: end for
10: Return: uφ

2 Stochastic control formulation

In this section, we introduce a particular formulation of the
Schrödinger–Föllmer process in the context of the Bayesian
inference problem in Eq.1. In its most general setting of sam-
pling from a target distribution, this formulation was known
to Dai Pra (1991). Tzen and Raginsky (2019b) study the
theoretical properties of this approach in the context of gen-
erative models (Kingma et al. 2021; Goodfellow et al. 2014),
finally Opper (2019) applies this formulation to time series
modelling. In contrast our focus is on the estimation of a
Bayesian posterior for a broader class of models than Tzen
and Raginsky explore.

Corollary 1 Define

FDET(u, θ) = 1

2γ

∫ 1

0
‖u(t, θ t )‖2dt − ln

p(X|θ1)p(θ1)

N(θ1|0, γ Id)

J (u) = E�∼Qu,δ0 [FDET(u,�)]

Then the minimiser (with U being the set of admissible
controls1)

u∗ =arg min
u∈U

J (u) (8)

1 Under appropriate conditions on the model in Eq.1, U can be taken to
be the set of C1-vector fields with linear growth in space, see Nüsken
and Richter (2021).
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satisfies Qγ,u∗,δ0
1 = p(X|θ)p(θ)

Z dθ .
Moreover, u∗ solves the SFP with π1 = p(θ |X).

The objective inEq.8 can be estimated using anSDEdiscreti-
sation, such as the EMmethod. Since the driftu∗ isMarkov, it
can be parametrised by a flexible function estimator such as a
neural network, as inTzen andRaginsky (2019b). In addition,
unbiased estimators for the gradient of objective in (8) can be
formed by subsampling the data. In this work we will refer to
the above formulation of the SFP as the Neural Schrödinger–
Föllmer sampler (N-SFS) when we parametrise the drift with
a neural network and implement unbiased mini-batched esti-
mators for this objective (Appendix 1). This formulation of
SFPs has been previously studied in the context of gener-
ative modelling / marginal likelihood estimation (Tzen and
Raginsky 2019b), while we focus on Bayesian inference.

We note that recent concurrent work (Zhang et al. 2022) 2

proposes an algorithm akin to ours based on Dai Pra (1991);
Tzen and Raginsky (2019b), however their focus is on esti-
mating the normalising constant of unnormalised densities,
while ours is on Bayesian ML tasks such as Bayesian regres-
sion, classification andLVMs, thus ourwork leads to different
insights and algorithmic motivations.

2.1 Theoretical guarantees for neural SFS

While the focus in Tzen and Raginsky (2019b) is in pro-
viding guarantees for generative models of the form x ∼
qφ(x|Z1) , dZt = uφ(Zt , t)dt + √

γ dBt , Z0 = 0, their
results extend to our setting as they explore approximating
the Föllmer drift for a generic target π1.

Theorem4 inTzen andRaginsky (restated asTheorem2 in
Appendix 1) motivates using neural networks to parametrise
the drift in Eq.8 as it provides a guarantee regarding the
expressivity of a network parametrised drift via an upper
bound on the target distribution error in terms of the size of
the network.

Wewill now proceed to highlight how this error is affected
by the EM discretisation:

Corollary 2 Given the network v from Theorem 2 it follows
that the Euler-Maruyama discretisation of (2) with u = v

induces an approximate target π̂v
1 that satisfies

DKL(π1||π̂v
1 ) ≤

(
ε1/2 + O(

√
�t)

)2
. (9)

This result provides a bound of the error in terms of the depth
�t−1 of the stochastic flow (Chen et al. 2022; Zhang et al.
2021) and the size of the network that we parametrise the
drift with. Under the view that NN parametrised SDEs can

2 This work was made public on arxiv within a month of our arxiv
pre-print release.

be interpreted as ResNets (Li et al. 2020) we find that this
result illustrates that increasing the ResNets’ depth will lead
to more accurate results.

2.2 Sticking the landing and low variance estimators

AswithVI (Richter et al. 2020; Roeder et al. 2017), the gradi-
ent of the objective in this study admits several low variance
estimators (Nüsken and Richter 2021; Xu et al. 2021). In this
section we formally recap what it means for an estimator to
“stick the landing” and we prove that the estimator proposed
in Xu et al. satisfies said property.

The full objective being minimised in our approach is
(where expectations are taken over � ∼ Qu,δ0 ):

J (u) = E[FDET(u,�)]
= E[F(u,�)]

=E

[
1

2γ

∫ 1

0
||ut (�t )||2dt + 1√

γ

∫ 1

0
ut (�t )

�dBt

−ln
(p(X|�1)p(�1)

N(�1|0, γ Id)

)]

, (10)

noticing that in previous formulations we have omitted the
Itô integral as it has zero expectation (but the integral appears
naturally through Girsanov’s theorem). We call the estima-
tor calculated by taking gradients of the above objective
the relative-entropy estimator. The estimator proposed in Xu
et al. (2021) (Sticking the landing estimator) is given by:

JSTL(u) = E[FSTL(u,�)]

=E

[
1

2γ

∫ 1

0
||ut (�t )||2dt+ 1√

γ

∫ 1

0
u⊥

t (�t )
�dBt

−ln
(p(X|�1)p(�1)

N(�1|0, γ Id)

)]

, (11)

where ⊥ means that the gradient is stopped/detached as in
Xu et al. (2021); Roeder et al. (2017).

We study perturbations of F around u∗ by considering
u∗ + εφ, with φ arbitrary, and ε small. More precisely, we
set out to compute (where dependence on θ is dropped):

d

dε
F(u∗ + εφ)

∣
∣
∣
ε=0

, (12)

through which we define the definition of “sticking the land-
ing”:

Definition 4 We say that an estimator “sticks the landing”
when

d

dε
F(u∗ + εφ)

∣
∣
∣
ε=0

= 0, (13)

almost surely, for all smooth and bounded perturbations φ.
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Notice that by construction, u∗ is a global minimiser of J ,
and hence all directional derivatives vanish,

d

dε
J (u∗ + εφ)

∣
∣
∣
ε=0

= d

dε
E[F(u∗ + εφ,�)]

∣
∣
∣
ε=0

= 0. (14)

Definition 4 additionally demands that this quantity is zero
almost surely, and not just on average. Consequently, “stick-
ing the landing”-estimators will have zero-variance at u∗.

Remark 1 The relative-entropy stochastic control estimator
does not stick the landing.

Proof SeeNüsken andRichter (2021), Theorem5.3.1, clause

3, Eq. 133 clearly indicates d
dεF(u∗ + εφ)

∣
∣
∣
ε=0

�= 0. ��

We can now go ahead and prove that the estimator pro-
posed by Xu et al. (2021) does indeed stick the landing.

Theorem 1 The STL estimator proposed in (Xu et al. 2021)
satisfies

d

dε
F(u∗ + εφ)

∣
∣
∣
ε=0

= 0, (15)

almost surely, for all smooth and bounded perturbations φ.

The proof for the above result can be found in Appendix 1,
and combines results from Nüsken and Richter (2021).

2.3 Structured SVI in models with local and global
variables

Algorithm 1 produces unbiased estimates of the gradient3

as demonstrated in Appendix 1 only under the assumption
that the parameters are global, that is when there is not a
local parameter for each data point. In the setting where we
have local and global variables we can no longer do mini-
batch updates as in Algorithm 1 since the energy term in
the objective does not decouple as a sum over the datapoints
(Hoffman et al. 2013;Hoffman andBlei 2015). In this section
we discuss said limitation and propose a reasonable heuristic
to overcome it.

We consider the general setting where our model has
global and local variables �, {θ i } satisfying θ i ⊥⊥ θ j |�
(Hoffman et al. 2013). This case is particularly challenging
as the local variables scale with the size of the dataset and
so will the state space. This is a fundamental setting as many
hierachical latent variable models in machine learning admit
such dependancy structure, such as Topic models (Pritchard
andM., S., and P., D. 2000; Blei et al. 2003); Bayesian factor

3 Gradients are computed automatically via reverse mode differenti-
ation (Bartholomew-Biggs et al. 2000; Giles 2008) using the pytorch
library (Paszke et al. 2019).

analysis (Amari et al. 1996; Bishop 1999; Klami et al. 2013;
Daxberger et al. 2019); Variational GPRegression (Hensman
et al. 2013); and others.

Remark 2 The heat semigroup does not preserve conditional
independence structure in the drift, i.e. the optimal drift
does not decouple and thus depends on the full state-space
(Appendix 1).

Remark 2 tells us that the drift is not structured in a way
that admits scalable sampling approaches such as stochastic
variational inference (SVI) (Hoffman et al. 2013). Addition-
ally this also highlights that themethodbyHuang et al. (2021)
does not scale tomodels like this as the dimension of the state
space will be linear in the size of the dataset.

In a similar fashion to Hoffman and Blei (2015), who
focussed on structured SVI, we suggest parametrising the
drift via [ut ]θ i=uθ i (t, θ i ,�, xi ); this way the dimension of
the drift depends only on the respective local variables and
the global variable�. While the Föllmer drift does not admit
this particular decoupling we can show that this drift is flexi-
ble enough to represent fairly general distributions, thus it is
expected to have the capacity to reach the target distribution.
Via this parametrisation we can sample in the same fashion
as SVI and maintain unbiased gradient estimates.

Remark 3 An SDE parametrised with a decoupled drift
[ut ]θ i = uθ i (t, θ i ,�, xi ) can reach transition densities
which do not factor (See Appendix 1 for proof).

It is important to highlight that whilst the parametrisation
in Remark 3 may be flexible, it may not satisfy the previous
theory developed for the Föllmer drift and SBPs, thus an
interesting direction would be in recasting the SBP such that
the optimal drift is decoupled. However, we found in practice
that the decoupled and amortised drift worked very well,
outperforming SGLD and the non-decoupled N-SFS.

3 Connections between SBPs and variational
inference in latent diffusionmodels

In this section, we highlight the connection between the
objective in Eq.8 to variational inference in models with an
SDE as the latent object, as studied in Tzen and Ragin-
sky (2019a). We first start by making the connection in a
simpler case – when the prior of our Bayesian model is
given by a Gaussian distribution with variance γ , that is
p(θ) = N(θ |0, γ Id).

Observation 1 When p(θ) = N(θ |0, γ Id), it follows that the
N-SFP objective in Eq.8 corresponds to the negative ELBO
of the model:

d�t = √
γ dBt , �0 ∼ δ0,

xi ∼ p(xi |�1). (16)
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Fig. 3 Visual comparison on step function data. We can see how the N-SFS based fits have the best generalisation while SGD and SGLD interpolate
the noise

Table 1 a9a Dataset Method Accuracy ECE Log likelihood

N-SFS 0.8498 ± 0.0002 0.0099 ± 0.0010 −0.3407 ± 0.0004

SGLD 0.8515 ± 0.0010 0.0010 ± 0.0020 −0.3247 ± 0.0002

While the above observation highlights a specific connection
between N-SFP and traditional VBI (Variational Bayesian
Inference), it is limited to Bayesian models that are specified
with Gaussian priors. In Lemma 1 of Appendix 1 we extend
this result to more general priors and reference process via
exploiting the general recursive nature of Bayesian updates
(Khan and Rue 2021). In short, we can view the objective in
Eq.8 as an instance of variational Bayesian inference with
an SDE prior. Note that this provides a succinct connec-
tion between variational inference and maximum entropy in
path space (Léonard 2012). In more detail, this observation
establishes an explicit connection between the ELBO of an
SDE-based generative model where the SDE is latent and the
SBP/stochastic-control objectives we explore in this work.

Note that Lemma 1 induces a new two stage algorithm in
whichwefirst estimate a prior reference process as inEq.B10
and then we optimise the ELBO for the model in Eq.B11.
This raises the question as to what effect the dynamical prior
can have within SBP-based frameworks. In practice we do
not explore this formulation as the Föllmer drift of the prior
may not be available in closed form and thus may require
resorting to additional approximations.

4 Experimental results

We ran experiments on Bayesian NN regression, classifi-
cation, logistic regression and ICA (Amari et al. 1996),
reporting accuracies, log joints (Welling and Teh 2011;
Izmailov et al. 2021) and expected calibration error (ECE)
(Guo et al. 2017). For details on exact experimental setups
please see Appendix 1. Across experiments we compare to
SGLD as it has been shown to be a competitive baseline in
Bayesian deep learning (Izmailov et al. 2021). Notice that
we do not compare to more standard MCMC methodolo-

Table 2 Step function dataset

Method MSE Log Likelihood

N-SFS 0.0028 ± 0.0010 −63.048 ± 8.2760

SGLD 0.1774 ± 0.1280 −1389.581 ± 834.9680

Table 3 MEG dataset Method Log likelihood

N-SFS −5.1110 ± 0.1288

SGLD −4.9360 ± 0.0423

gies (Duane et al. 1987; Neal 2011; Doucet et al. 2001) as
they do not scale well to very high dimensional tasks such
as Bayesian DL (Izmailov et al. 2021) which are central to
our experiments. However, Huang et al. (2021) contrasts the
performance of the heat semigroup SFS sampler with more
traditionalMCMC samplers in 2D toy examples, finding SFS
to be competitive. 4

4.1 Bayesian linear regression and comparison
with MC-SFS

In this section we explore a bayesian linear regression model
with a prior on the regression weights. As this model has a
Gaussian closed form for the posterior predictive distribution
we report the error of the MC-SFS and N-SFS posterior pre-
dictive mean and variance with respect to the true posterior
predictive moments as is seen in Fig. 2. The datasets where
generated by sampling the inputs randomly from a spherical

4 Supporting code at https://anonymous.4open.science/r/Controlled
FollmerDrift-23F6/README.md.
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Gaussian distribution and transforming them via:

yi = 1�xi + 1

we then estimated the posterior of the model:

θ ∼ N(0, σ 2
θ I),

yi |xi , θ ∼ N(yi |θ�(xi ⊕ 1), σ 2
y I),

Wherewe use x⊕1 to denote adding an extra dimensionwith
a 1 to the vector x. We carried out this experiment increasing
the dimension of x from 25 to 211.We observe that theN-SFS
based approaches have overall a notably smaller posterior
predictive error to the MC-SFS approach. Finally we note
the STL method is more concentrated in its predictions than
the naive N-SFS approach, whilst having similar errors.

4.2 Bayesian logistic regression/independent
component analysis—a9a/MEG datasets

Following Welling and Teh (2011) we explore a logistic
regression model on the a9a dataset. Results can be found in
Table 1which show thatN-SFS achieves a test accuracy, ECE
and log likelihood comparable to SGLD. We then explore
the performance of our approach on the Bayesian variant of
ICA studied in Welling and Teh (2011) on the MEG-Dataset
(Vigario 1997). We can observe (Table 3) that here N-SFS
also achieves results comparable to SGLD.

4.3 Bayesian deep learning

In these tasks we use models of the form

θ ∼ N(0, σ 2
θ I),

yi |xi , θ ∼ p( yi | fθ (xi )),

where fθ is a neural network. In these settings we are
interested in using the posterior predictive distribution
p( y∗|x∗, X)=∫ p( y∗| fθ (x∗))d P(θ |X) to make robust pre-
dictions. Across the image experiments we use the LeNet5
(LeCunet al. 1998) architecture. Futureworks should explore
recent architectures for images such as VGG-16 (Simonyan
and Zisserman 2014) and ResNet32 (He et al. 2016).
Non-linear regression—step function We fit a 2-hidden-layer
neural network with a total of 14876 parameters on a toy step
function dataset. We can see in Fig. 3 how both the SGD and
SGLD fits interpolate the noise, whilst N-SFS has straight
lines, thus both achieving a better test error and having well-
calibrated error bars. We believe it is a great milestone to see
how an overparameterised neural network is able to achieve
such well calibrated predictions.
Digits classification—LeNet5 We train the standard LeNet5
(LeCun et al. 1998) architecture (with 44426 parameters)

on the MNIST dataset (LeCun and Cortes 2010). At test
time we evaluate the methods on the MNIST test set aug-
mented by random rotations of up to 30◦ (Ferianc et al.
2021). Table 4 shows how N-SFS has the highest accuracy
whilst obtaining the lowest calibration error among the con-
sidered methods, highlighting that our approach has the most
well-calibrated and accurate predictions when considering a
slightly perturbed test set. We highlight that LeNet5 falls
into an interesting regime as the number of parameters is
considerably less than the size of the training set, and thus
we can argue it is not in the overparameterised regime. This
regime (Belkin et al. 2019) has been shown to be challenging
in achieving good generalisation errors, thus we believe the
predictive and calibrated accuracy achieved by N-SFS is a
strong milestone.

Additionally we provide results on the regular MNIST
test set. We can observe that N-SFS maintains a high test
accuracy and at the same time preserves a low ECE score.
We believe the reason SGD and SGLD obtain slightly better
ECE performances is that the MNIST test set has very little
variation to the MNIST training set, and thus all results seem
well calibrated. We can see this observation confirmed by
how the distribution of ECE scores changes dramatically on
the RotatedMNIST set, a similar argument to that developed
in Ferianc et al. (2021).We note that across both experiments
SGLD achieves a slightly better log likelihood which comes
at the cost of lower predictive performance and less calibrated
predictions.
Image classification—CIFAR10 We fit a variation of the
LeNet5 (Appendix 1) architecture with 62006 parameters
on the CIFAR10 dataset (Krizhevsky et al. 2009). We note
that the predictive test accuracies and log-likelihoods of N-
SFSstl, SGLDandSGDare comparable.However,we can see
that N-SFSstl has an ECE an order of magnitude smaller. We
notice that the STL estimator made a significant difference
on CIFAR10, making the training faster and more stable.

4.4 Hyperspectral image unmixing

To assess our method’s performance visually, we use it to
sample fromHyperspectralUnmixingModels (Bioucas-Dias
et al. 2012). Hyperspectral images are high spectral resolu-
tion but low spatial resolution images typically taken of vast
areas via satellites. High spectral resolution provides much
more information about the materials present in each pixel.
However, due to the low spatial resolution, each pixel of
an image can correspond to a 50m2 area, containing several
materials. Such pixels will therefore have mixed and unin-
formative spectra. The task of Hyperspectral Unmixing is to
determine the presence of given materials in each pixel.
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Table 4 Test set results on
MNIST, Rotated MNIST and
CIFAR10. The Log-likelihood
column is the mean posterior
predictive and is thus not
estimated for SGD

Dataset Method Accuracy ECE Log Likelihood

MNIST N-SFS 0.9889 ± 0.0013 0.0080 ± 0.0013 −0.0883 ± 0.0076

N-SFSstl 0.9885 ± 0.0014 0.0092 ± 0.0017 −0.0629 ± 0.0057

SGLD 0.9837 ± 0.0007 0.0061 ± 0.0012 −0.0516 ± 0.0026

SGD 0.9884 ± 0.0007 0.0034 ± 0.0009 –

Rotated-MNIST N-SFS 0.9479 ± 0.0043 0.0077 ± 0.0012 −0.3890 ± 0.0374

N-SFSstl 0.9461 ± 0.0039 0.0057 ± 0.0012 −0.2960 ± 0.0336

SGLD 0.9247 ± 0.0035 0.0141 ± 0.0018 −0.2439 ± 0.0118

SGD 0.9404 ± 0.0031 0.0284 ± 0.0021 –

CIFAR10 N-SFS 0.6156 ± 0.0021 0.0520 ± 0.0110 −1.3628 ± 0.0262

N-SFSstl 0.6264 ± 0.0286 0.0568 ± 0.0069 −1.2305 ± 0.0710

SGLD 0.6232 ± 0.0186 0.1493 ± 0.0170 −1.2740 ± 0.0854

SGD 0.6229 ± 0.0124 0.0626 ± 0.0163 –

Fig. 4 False-color composites
with channels given by the
unmixed matrices A obtained
via SGLD, N-SFS and N-SFS
with a decoupled drift. Speckles
illustrate mode collapse

We use the Indian Pines image,5 denoted as Y , which
has a spatial resolution of P = 145 × 145 = 21025
pixels and a spectral resolution of B = 200 bands, i.e.
Y = [ y1, . . . , yP ] ∈ [0, 1]B×P . R = 3 materials have
been chosen automatically using the Pixel Purity Index

5 Taken from http://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote\_Sensing\_Scenes

and the collection of their spectra will be denoted as
M = [m1,m2,m3] ∈ [0, 1]B×3. The task of Hyperspectral
Unmixing is to determine for each pixel p a vector a p ∈ �R

in the probability simplex, where [A]p,i = ap,i represents
the fraction of the i-th material in pixel p. To determine the
presence of each material, we use the Normal Compositional
Model (Eches et al. 2010) as it is a challengingmodel to sam-

123

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote\protect \LY1\textunderscore Sensing\protect \LY1\textunderscore Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote\protect \LY1\textunderscore Sensing\protect \LY1\textunderscore Scenes


3 Page 10 of 22 Statistics and Computing (2023) 33 :3

Fig. 5 N-SFS performance on a
gaussian mixture posterior
distribution with several modes.
Outer modes are only detected
when the posterior does not
contain the interior modes
indicating exploration failure of
N-SFS

ple from. Specifically, it has parameters (�,�) = (σ 2, A)

and is defined by:

p
(
σ 2
)

= 1[0,1]
(
σ 2
)

, p (A) =
P∏

p=1

1�R

(
a p
)
,

p
(
Y |A, σ 2

)
=

P∏

p=1

N
(
yp; Ma p; ||a p||2σ 2 I

)
,

First note that this model follows the structured model set-
ting discussed in Sect. 2.2—it has one global parameter σ 2

and a local parameter a p for each pixel. Finally, while all the
parameters are constrained to lie on the probability simplices,
this sampling problem can be cast into an unconstrained sam-
pling problem via Lagrange transformations as in Hsieh et al.
(2018).TheNormalCompositionalModelEches et al. (2010)
is primarily of interest to us because the unusual noise scal-
ing in the likelihood can produce several modes in each pixel,
making it especially easy for sampling algorithms to get stuck
in modes.

We compared three approaches for this problem: 1) SGLD
2) N-SFS 3) N-SFS with decoupled drift, where the decou-
pled drift is defined as:

ut (σ
2, A)=[u0(t, σ

2), u1(t, σ
2, a1), . . . , u P (t, σ 2, aP)].

Unmixing results are shown in Fig. 4. We stress that to run
SGLD successfully we had to tune the approach heavily —
we used separate step sizes (which acts as a preconditioning)
and step size schedules for parameters σ 2 and A, only with
one combination of which we managed to get decent unmix-
ing results.Without the amortised drift,N-SFS struggledwith
multiple modes in certain patches of the image, however,
decoupling the drift resulted in almost perfect unmixing.
With a slight deviation from the optimal step size sched-
ule, SGLD fails to explore modes and produces speckly
images. In contrast, the only tunable parameter for N-SFS

was γ , which was giving similar results for all tried values.
Further sensitivity results for SGLD/N-SFS are provided in
Appendix 1.

4.5 Analysis of N-SFS training dynamics

In addition to the experiments above, we investigate our
method’s performance in a synthetic multi-modal scenario.
Here, N-SFS is used to fit a Gaussian Mixture posterior dis-
tribution that has modes aligned on the x-axis, as shown in
figure 5. In one case, there are 4modes – 2 innermodes (those
closer to 0) and 2 outer modes (those further away from 0).
We notice that in the presence of the 2 inner modes N-SFS is
unable to discover the outer modes. In contrast, when consid-
ering a posterior with only the 2 outer modes, the distribution
is fit correctly. This phenomenon could be explained by
previously indicated connections between stochastic control
and agent-based learning via the Hamilton–Jacobi–Bellman
equationPowell et al. (2019) and the exploration-exploitation
tradeoff. More concretely, the optimisation objective (8)
implies the following training dynamics – random samples
are generated from a diffusion (a Brownian motion to begin
with) which is then refined to produce more samples in areas
where previous samples had high posterior density. This
implies that after some modes are discovered, the diffusion
will be adjusted to fit them, i.e. the algorithm immediately
starts exploiting the detected modes. Other modes will only
be discovered if some random sample accidentally hits them,
which is very unlikely if the modes are far away. This indi-
cates that the algorithm could be improved by incorporating
exploration techniques found in agent-based learning litera-
ture.

Given the behaviour of N-SFS on this multi-modal exam-
ple, it is then natural to ask if it happens in Bayesian
Deep Learning applications. To examine this, we look at the
marginal distributions of a pair of weights of a BayesianNeu-
ral Network for MNIST classification given by the samples
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Fig. 6 Distribution of log posterior values of samples from N-SFS and SGLD (left) and marginal distribution of a pair of weights in a neural
network obtained from samples of N-SFS and SGLD (right)

of N-SFS and SGLD given in Fig. 6. Note that compared
to SGLD, N-SFS samples from a dramatically wider dis-
tribution, while maintaining a comparable predictive log
likelihood score, and therefore does not suffer from the lack
of exploration.

5 Discussion and future directions

Overall we achieve predictive performance competitive to
SGLD across a variety of tasks whilst obtaining better cal-
ibrated predictions as measured by the ECE metric. We
hypothesise that the gain in performance is due to the flex-
ible and low variance VI parametrisation of the proposed
approach. We would like to highlight that these results were
achieved with minimal tuning and simple NN architectures.
We find that the decoupled and amortised drift we propose
achieves very strong results making our approach tractable to
Bayesian models with local and global structure. Addition-
ally we notice that the architecture used in the drift network
can influence results, thus future work in this area should
develop the drift architectures further.

A key advantage of our approach is that at training time
the objective effectively minimises an ELBO styled objec-
tive parameterised via a ResNet. This allows us to monitor
training using the traditional techniques from deep learning,
without the challenges arising from mixing times and cor-
relation of samples found in traditional MCMC methods;
once N-SFS is trained, generating samples at test time is a
fast forward pass through a ResNet that does not require re-
training. Finally, as we demonstrated, our approach allows
the learned sampler to be amortised (Zhang et al. 2018)which
not only allows the drift to be more tractably parameterised
but also creates the prospects of meta learning the posterior
(Edwards and Storkey 2016; Yoon et al. 2018; Gordon et al.
2018; Gordon 2018). We believe that this work motivates
how stochastic control paves a new exciting and promising
direction in Bayesian ML/DL.
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Appendix AMain results

A.1 Posterior drift

Corollary 1 The minimiser

u∗ = arg min
u∈U

E�∼Qu,δ0

[
1

2γ

∫ 1

0
‖u(t,�t )‖2dt

− ln

(
p(X|�1)p(�1)

N(�1|0, γ Id)

)]

(A1)

satisfies Law�u∗
1 = p(X|θ)p(θ)

Z .

Proof This follows directly after substituting the Radon-
Nikodym derivative between the Gaussian distribution and
the posterior into Theorem 1 in Tzen and Raginsky (2019b)
or Theorem 3.1 in Dai Pra (1991). ��
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A.2 EM-Discretisation result

First we would like to introduce the following auxiliary the-
orem from Tzen and Raginsky (2019b):

Theorem 2 (Tzen and Raginsky 2019b) Given the standard
regularity assumptions presented for f = dπ1

dN(0,γ I) in Tzen
and Raginsky (2019b), let L = max{Lip( f ),Lip(∇ f )} and
assume that there exists a constant c ∈ (0, 1] such that f ≥ c.

Then for any ε ∈
(
0, 16 L2

c2

)
there exists a neural net v : Rd ×

[0, 1] → Rd with size polynomial in 1/ε, d, L, c, 1/c, γ ,
such that the activation function of each neuron follows the
regularity assumptions in Tzen and Raginsky (2019b) (e.g.
ReLU,Sigmoid,Softplus) and

DKL(π1||πv
1 ) ≤ ε, (A2)

where πv
1 = Law(�v

1) is the terminal distribution of the
diffusion process

d�v
t = v(�v

t ,
√
1 − t)dt + √

γ dBt , t ∈ [0, 1]. (A3)

We can nowproceed to prove the direct corollary of the above
theorem when using the EM scheme for simulation.

Corollary 2 Given the network v from Theorem 2 it follows
that the Euler-Mayurama discretisation X̂v

t of Xv
t has a KL-

divergence to the target distribution π1 of:

DKL(π1||π̂v
1 ) ≤

(
ε1/2 + O(

√
�t)

)2
(A4)

Proof Consider the path-wise KL-divergence between the
exact Schrödinger–Föllmer process and its EM-discretised
neural approximation:

DKL(Pu∗ ||Pv̂) = 1

2γ

∫ 1

0
E�∼Qu∗,δ0

∥
∥u∗(�t , t)

−v̂(�t ,
√
1 − t)

∥
∥
∥
2

dt . (A5)

Defining d(x, y) :=
√

1
2γ

∫ 1
0 E�∼Qu∗,δ0

∥
∥x(�t , t) − ŷ(�t , t)

∥
∥2 dt ,

it is clear that d(x, y) satisfies the triangle inequality as it is
the L2(Qγ,u∗,δ0) metric between drifts, thus applying the tri-
angle inequality at the drift level we have that (for simplicitly
letting γ = 1):

d(u∗, v̂) ≤
(∫ 1

0
E

[
||u∗

t − v√
1−t ||2

]
dt

) 1
2

+
(∫ 1

0
E

∣
∣
∣|v√

1−t − v̂√
1−t ||2

]
dt

) 1
2

.

FromTzen andRaginsky (2019b) we can bound the first term
resulting in:

d(u∗, v̂) ≤ ε1/2 +
(∫ 1

0
E

[
||v√

1−t − v̂√
1−t ||2

]
dt

) 1
2

Now remembering that theEMdrift is given by v̂√
1−t (�t ) =

v(�̂t ,
√
1 − �t�t/�t�), we can use that v is L’-Lipschitz in

both arguments, thus:

d(u∗, v̂) ≤ ε1/2 +
(

L ′2
∫ 1

0
E

[(∥∥
∥�t − �̂t

∥
∥
∥+ �t

)2]

dt

) 1
2

≤ ε1/2 +
(

2L ′2
(

E

[∫ 1

0

∥
∥
∥�t − �̂t

∥
∥
∥
2

dt

]

+ �t2
)) 1

2

≤ ε1/2 +
(

2L ′2
(

E

[

max
0≤t≤1

∥
∥
∥�t − �̂t

∥
∥
∥
2
]

+ �t2
)) 1

2

,

which, using the strong convergence of the EM approxima-
tion (Gyöngy and Krylov 1996), implies:

E

[

max
0≤t≤1

∥
∥
∥�t − �̂t

∥
∥
∥
2
]

≤ CL ′�t, (A6)

thus:

d(u∗, v̂) ≤ ε1/2 + L ′√2
(√

CL ′�t + �t
)

.

Squaringboth sides and applying thedata processing inequal-
ity completes the proof. ��

Appendix B Connections to VI

We first start by making the connection in a simpler case –
when the prior of our Bayesian model is given by a Gaussian
distribution with variance γ , that is p(θ) = N(θ |0, γ Id).

Observation 1 When p(θ) = N(θ |0, γ Id), it follows that the
N-SFP objective in Eq.8 corresponds to the negative ELBO
of the model:

d�t = √
γ dBt , �0 ∼ δ0,

xi ∼ p(xi |�1). (B7)

Proof Substituting p(θ) into Eq.8 yields

u∗ = arg min
u∈U

E�∼Q0,δ0

[
1

2γ

∫ 1

0
‖u(t,�t )‖2 dt − ln p(X|�1)

]

.

(B8)

Then, from (Boué and Dupuis 1998; Tzen and Raginsky
2019a; Tzen and Raginsky 2019b) we know that the term
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E

[∫ 1
0 ‖ut‖2 dt − ln p(X|�1)

]
is the negative ELBO of the

model specified in Eq.B7. ��
While the above observation highlights a specific con-

nection between N-SFP and traditional VBI (Variational
Bayesian Inference), it is limited to Bayesian models that are
specified with Gaussian priors. To extend the result, we take
inspiration from the recursive nature of Bayesian updates in
the following result.

Lemma 1 The SBP infQ∈D(δ0, p(θ |X)) DKL
(
Q
∣
∣
∣
∣S
)

with ref-
erence process S described by

�0 ∼ δ0 (B9)

d�t =∇ ln Qγ
1−t

[
p(�t )

N(�t |0, γ Id)

]

+√
γ dBt , (B10)

corresponds to maximising the ELBO of the model:

�0 ∼ δ0,

d�t =∇ ln Qγ
1−t

[
p(�t )

N(�t |0, γ Id)

]

+√
γ dBt , ,

xi ∼ p(xi |�1). (B11)

Proof For brevity let u0(t, θ) = ∇ ln Qγ
1−t

[
p(θ)

N(θ |0,γ Id )

]
.

First notice that the time-one marginals of S are given by
the Bayesian prior:

(�1)#S = p(θ)dθ

Now from Léonard (2012); Pavon et al. (2018) we know
that the Schrödinger system is given by:

φ0(θ0)

∫
p(θ0, 0, θ1, 1)φ̂1(θ1)dθ1 = δ0(θ0), (B12)

φ̂1(θ1)

∫
p(θ0, 0, θ1, 1)φ0(θ0)dθ0 = p(θ1|X), (B13)

where Eq.B12 can be given a rigorous meaning in weak
form (that is, by integrating against suitable test functions).
Notice φ0 = δ0 and thus it follows that

φ̂1(θ) = p(θ |X)

p(0, 0, θ , 1)
= p(θ |X)

p(θ)
= p(X|θ)

Z . (B14)

By Pavon (1989); Dai Pra (1991); Pavon et al. (2018) the
optimal drift is given by:

u∗(t, θ) = γ∇ lnE[p(X|�1)|�t = θ ], (B15)

where the expectation is takenwith respect to the reference
process S. Now if we let v(θ , t) = − lnE[p(X|�1)|�t =
θ ] be our value function then via the linearisation of the

Hamilton–Bellman–Jacobi Equation through Fleming’s log-
arithmic transform (Kappen 2005; Thijssen and Kappen
2015; Tzen and Raginsky 2019b) it follows that said value
function satisfies:

v(θ , t) = min
u∈U E

[
1

2γ

∫ 1

t

∥
∥
∥u(t,�t ) − u0(t,�t )

∥
∥
∥
2

dt − ln p(X|�1)

∣
∣
∣�t = θ

]
, (B16)

and thus u∗(t, θ) = γ∇ lnE[p(X|�1)|�t = θ ] is a min-
imiser to:

u∗ = arg min
u∈U

E

[
1

2γ

∫ 1

0

∥
∥
∥u(t,�t ) − u0(t,�t )

∥
∥
∥
2

dt − ln p(X|�1)] . (B17)

��

Appendix C Stochastic variational inference

For a Bayesian model having the structure specified by (1)
the objective in (8) can be written as follows:

E�∼Qu,δ0

[
1

2γ

∫ 1

0
‖u(t,�t )‖2 dt − ln

p(X|�1)p(�1)

N(�1|0, γ Id)

]

= E

[
1

2γ

∫ 1

0
‖u(t,�t )‖2 dt − ln

p(�1)

N(�1|0, γ Id)

]

+
N∑

i=1

E [ln p(xi |�1)] , (C18)

where the last term can be written as:

N∑

i=1

E [ln p(xi |�1)] = N

B
Exki ∼D

[
B∑

i=1

E
[
ln p(xki |�1)

]
]

(C19)

That is, it is possible to obtain an unbiased estimate of the
objective (and its gradients) by subsampling the data with
random batches of size B and using the scaling N

B . A version
of the algorithm with Euler-Maruyama discretization of the
SDE is given in Algorithm 1.

Appendix D Decoupled drift results

First let us consider the setting where the local variables are
fully independent, that is, θ i ⊥⊥ θ j .

Remark 4 Theheat semigrouppreserves fully factored (mean-
field) distributions thus the Föllmer drift is decoupled.
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In this setting we can parametrise the dimensions of the
drift which correspond to local variables in a decoupledman-
ner, [ut ]θ i = uθ i (t, θ i , xi ). This amortised parametrisation
(Kingma and Welling 2013) allows us to carry out gradient
estimates using a mini-batch (Hoffman et al. 2013) rather
than hold the whole state space in memory.

Remark 2 The heat semigroup does not preserve conditional
independence structure in the drift. That is, the optimal drift
does not decouple and as a result depends on the full state
space.

Proof Consider the following distribution:

N(x |z, 0)N(y|z, 0)N(z|0, 1) (D20)

We want to estimate:

E

[N(X + x |Z + z, 1)N(Y + y|Z + z, 1)N(Z + z|1, 0)
N(X + x |0, 1)N(Y + y|0, 1)N(Z + z|0, 1)

]

,

(D21)

where X , Y , Z ∼ N(0,
√
1 − t). From

E

[N(X + x |Z + z, 1)N(Y + y|Z + z, 1)

N(X + x |0, 1)N(Y + y|0, 1)
]

(D22)

we can easily see that the above no longer has conditional
independence structure and thus when taking its logarithmic
derivative the drift does not decouple. ��

Remark 3 An SDE parametrised with a decoupled drift
[ut ]θ i = u(t, θ i ,�, xi ) can reach transition densities which
do not factor.

Proof Consider the linear time-homogeneous SDE:

d�t = A�t dt + γ dW t , �0 = 0, (D23)

where:

[A]i j = δi j + iδ1 j , (D24)

then this SDE admits a closed form solution:

�t = γ

∫ t

0
exp (A(t − s)) dW s, (D25)

which is a Gauss-Markov process with 0 mean and covari-
ance matrix:

�(t) = γ 2
∫ t

0
exp (A(t − s)) exp (A(t − s))� ds (D26)

We can carry out the matrix exponential through the
eigendecomposition of A, for simplicity let us consider the
3-dimensional case:

exp (A(t − s)) = SeD(t−s)S−1 =
⎛

⎝
0 1 1
1 0 2
0 0 2

⎞

⎠

⎛

⎝
et−s 0 0
0 et−s 0
0 0 e3(t−s)

⎞

⎠

⎛

⎝
0 1 −1
1 0 −1/2
0 0 1/2

⎞

⎠ (D27)

From this we see that:

exp (A(t − s)) exp (A(t − s))�

= SeD(t−s)S−1(SeD(t−s)S−1)� (D28)

= SeD(t−s)S−1S−�eD(t−s)S� (D29)

= 1

4
SeD(t−s)

⎛

⎝
8 2 −2
2 5 −1

−2 −1 1

⎞

⎠ eD(t−s)S� (D30)

= 1

4
S

⎛

⎝
8e2(t−s) 2e2(t−s) −2e4(t−s)

2e2(t−s) 5e2(t−s) −e4(t−s)

−2e4(t−s) −e4(t−s) e6(t−s)

⎞

⎠ S� (D31)

Integrating wrt to s yields:

∫
exp (A(t − s)) exp (A(t − s))� ds = 1

4
S

⎛

⎝
4 1 − 1

2
1 5

2 − 1
4− 1

2 − 1
4

1
6

⎞

⎠ S�

(D32)

= 1

24

⎛

⎝
13 2 −1
2 16 −2

−1 −2 4

⎞

⎠ . (D33)

The covariance matrix is dense at all times and thus the
density Law(�t ) = N(μ(t),�(t)) does not factor (is a fully
joint distribution). This example motivates that even with the
decoupled drift we can reach coupled distributions. ��

Appendix E Low variance estimators and
sticking the landing

Theorem 1 The STL estimator proposed in (Xu et al. 2021)
satisfies

d

dε
F(u∗ + εφ)

∣
∣
∣
ε=0

= 0, (E34)

almost surely, for all smooth and bounded perturbations φ.

Proof Let us decompose F in the following way:

F(u) = F0(u) + F1(u) (E35)
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where (denoting the terminal cost with g):

F0(u) = 1

2γ

∫ 1

0
‖u(t,�t )‖2 dt + g(�1) (E36)

F1(u) = 1√
γ

∫ 1

0
u⊥(t,�t )

�dBt (E37)

Denoting �u ∼ Qu,δ0 , from Nüsken and Richter (2021),
Theorem 5.3.1, Eq. 133 it follows that:

d

dε
F0(u∗ + εφ)

∣
∣
∣
∣
ε=0

= − 1√
γ

∫ 1

0
At · (∇u∗

t )(�
u∗
t ) dBt ,

(E38)

almost surely, where At is defined as

Aφ
t = d�u∗+εφ

t

dε

∣
∣
∣
∣
ε=0

(E39)

and satisfies:

dAφ
t = φt (�

u∗
t ) dt + (∇u∗)�(�u∗

t )Aφ
t dt, Aφ

0 = 0.
(E40)

Similarly via the chain rule it follows that:

d

dε
F1(u∗ + εφ)

∣
∣
∣
∣
ε=0

= d

dε

(
1√
γ

∫ 1

0
u∗

t (�
u∗+εφ
t )�dBt

) ∣∣
∣
∣
ε=0

= 1√
γ

∫ 1

0
Aφ

t · (∇u∗
t )(�

u∗
t )dBt (E41)

almost surely, combining these results we can see that
d
dεF(u∗ + εφ)

∣
∣
∣
ε=0

= 0 almost surely as required. ��

Appendix F Stabilising MC-SFS implementa-
tion

We found the estimators proposed in Huang et al. (2021)
(Eqs. 2.20 or 2.21, and Algorithm 2 in Huang et al. (2021))
to be very numerically unstable. Even in two dimensions the
montecarlo estimator of the drift evaluated to nans and infs
onmore than 50%of the generated samples. This is due to the
RND f of Eq.7 often evaluating to either 0 due to underflow
or a very small number resulting in Eq.7 becoming very large
and unstable.

In order to alleviate this we propose the a novel modified
logsmexp reformulation of Eq.7:

Lemma 2 (Stable MC-SFS) The MC-SFS estimator

û∗(t, x) = Ez∼P̂ [zs f (x + √
1 − t z)]

Ez∼P̂ [√1 − t f (x + √
1 − t z)] , (F42)

Where P̂ is the empirical measure:

P̂ = 1

S

S∑

s=1

δzs (F43)

Can be re-expresssed as:

û∗(t, x) = exp

(

logsumexp
s

g+
x (zs) − logsumexp

s
lnZs

)

(F44)

− exp

(

logsumexp
s

g−
x (z) − logsumexp

s
lnZs

)

(F45)

where:

g+
x (zs) =

{
ln zs f (x + √

1 − t zs) if zs > 0

0 otherwise
(F46)

g−
x (zs) =

{
ln zs f (x + √

1 − t zs) if zs < 0

0 otherwise
(F47)

and lnZs = ln
√
1 − t + ln f (x + √

1 − t zs)

Proof Firstly notice that the logsumexp formula cannot be
applied to the numerator as the terms zs f (x + √

1 − t zs) in
the numerator can take on negative values and thus we cannot
take the log.

In order to take log the note that EP̂ [ f ] is a Lebesgue–
Stieltjes integral and thus by construction we can decompose
it into positive and negative parts:

û∗
t (x) = Ez∼P̂ [(zs f (x + √

1 − t z))]
Ez∼P̂ [√1 − t f (x + √

1 − t z)]

= Ez∼P̂ [(zs f (x + √
1 − t z))+]

Ez∼P̂ [√1 − t f (x + √
1 − t z)]

− Ez∼P̂ [(zs f (x + √
1 − t z))−]

Ez∼P̂ [√1 − t f (x + √
1 − t z)] (F48)

123



3 Page 16 of 22 Statistics and Computing (2023) 33 :3

wlog consider the first term:

Ez∼P̂ [(zs f (x + √
1 − t z))+]

Ez∼P̂ [√1 − t f (x + √
1 − t z)]

= exp
(
lnEz∼P̂ [(zs f (x + √

1 − t z))+]
− ln Ez∼P̂ [√1 − t f (x + √

1 − t z)]
)

(F49)

and similarly for the second, at this point we can trivially
apply the log sum exp formula to each of the exponents sep-
arately as their integrands are positive. ��

For efficient implementation we first separate the samples
into positive and negative and then proceed to compute each
of the g+ and g− terms separately which avoids evaluating
any ln 0 terms. We found this formula to have no numerical
instabilities in our experiments ranging up to high dimen-
sional cases d = 212 without issue.

Appendix G Sensitivity of hyperparameters
to hypespectral unmixing results

While we were able to find step size schedules for SGLD
that would work well for the Hyperspectral image data, it
is important to note that it was due to heavy tuning and a
stroke of luck. As shown in 5 there are four parameters to
adjust for the step size scheduling of SGLD and the resulting
performance is very sensitive to all of them. To illustrate
this, we fixed the parameters associated to σ 2 as given in 5,
and varied the others. The resulting samples are provided in
figure 7.

In contrast, N-SFS has only one tunable parameter, which
impacts the results much less, as shown in figures 8 and 9.

Appendix H Experimental details and further
results

H.1Method hyperparameters

In Table 5 we show the experimental configuration of the tri-
alled algorithms across all datasets. For the selected values of
γ we ran a small grid searchγ ∈ {0.52, 0.22, 0.12, 0.052, 0.012}
and selected the γ with best training set results.

H.2 Step function dataset

Here we describe in detail how the step function dataset was
generated:

y(x) = 1x≥0 + ε, ε ∼ N(0, 0.1) (H50)

Where:

• σy = 0.1
• Ntrain = 100, Ntest = 100
• xtrain ∈ (−3.5, 3.5)
• xtest ∈ (−10, 10)

H.3 Föllmer drift architecture

Across all experiments (with the exception of the MNIST
dataset) we used the same architecture to parametrise the
Föllmer drift:

1 class SimpleForwardNetBN(torch.nn.
Module):

2

3 def __init__(self , input_dim=1, width
=20):

4 super(SimpleForwardNetBN , self).
__init__ ()

5

6 self.input_dim = input_dim
7

8 self.nn = torch.nn.Sequential(
9 torch.nn.Linear(input_dim + 1, width),

10 torch.nn.BatchNorm1d(width , affine=
False),

11 torch.nn.Softplus (),
12 torch.nn.Linear(width , width),
13 torch.nn.BatchNorm1d(width , affine=

False),
14 torch.nn.Softplus (),
15 torch.nn.Linear(width , width),
16 torch.nn.BatchNorm1d(width , affine=

False),
17 torch.nn.Softplus (),
18 torch.nn.Linear(width , width),
19 torch.nn.BatchNorm1d(width , affine=

False),
20 torch.nn.Softplus (),
21 torch.nn.Linear(width , input_dim)
22 )
23

24 self.nn[-1]. weight.data.fill_ (0.0)
25 self.nn[-1].bias.data.fill_ (0.0)

Listing 1 Simple architecture for drift.

Note theweights and biases of the final layer are initialised
to 0 in order to start the process at a Brownian motion match-
ing the SBP prior.

For the MNIST dataset we used the score network pro-
posed in Chen et al. (2021). We aimed in using this same
architecture for the CIFAR10 experiments however we were
unable to train it stably.

For Hyperspectral Unmixing dataset we used this archi-
tecture for N-SFS with full drift, but had to devise a different
architecture for decoupled drifts, as shown below.

1 class ResNetScoreNetwork(torch.nn.
Module):

2
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Fig. 7 SGLD sensitivity to step size scheduling

Fig. 8 N-SFS sensitivity to γ

Fig. 9 Decoupled N-SFS sensitivity to γ
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3 def __init__(self , input_dim: int ,
final_zero=False):

4 super().__init__ ()
5 res_block_initial_widths = [300, 300,

300]
6 res_block_final_widths = [300, 300,

300]
7 res_block_inner_layers = [300, 300,

300]
8

9 self.input_dim = input_dim
10

11 self.temb_dim = 128
12

13 # ResBlock Sequence
14 res_layers = []
15 initial_dim = input_dim
16 for initial , final in zip(

res_block_initial_widths ,
res_block_final_widths):

17 res_layers.append(ResBlock(initial_dim ,
initial , final ,

res_block_inner_layers , torch.nn.
Softplus ()))

18 initial_dim = initial + final
19 self.res_sequence = torch.nn.Sequential

(* res_layers)
20

21 # Time FCBlock
22 self.time_block = torch.nn.Sequential(

torch.nn.Linear(self.temb_dim , self
.temb_dim * 2), torch.nn.Softplus ()
)

23

24 # Final_block
25 self.final_block = torch.nn.Sequential(

torch.nn.Linear(self.temb_dim * 2 +
initial_dim , input_dim))

Listing 2 Score Network architecture for drift.

1 class DecoupledDrift(AbstractDrift):
2

3 def __init__(self , global_dim=1,
local_dim=1, data_dim=1, width =20):

4 super(DecoupledDrift , self).__init__ ()
5

6 self.global_dim = global_dim
7 self.local_dim = local_dim
8 self.data_dim = data_dim
9

10 self.nn = torch.nn.Sequential(
11 torch.nn.Linear(global_dim + local_dim

+ data_dim + 1, width), torch.nn.
BatchNorm1d(width , affine=False),
torch.nn.Softplus (),

12 torch.nn.Linear(width , width), torch.nn
.BatchNorm1d(width , affine=False),
torch.nn.Softplus (),

13 torch.nn.Linear(width , width), torch.nn
.BatchNorm1d(width , affine=False),
torch.nn.Softplus (),

14 torch.nn.Linear(width , width), torch.nn
.BatchNorm1d(width , affine=False),
torch.nn.Softplus (),

15 torch.nn.Linear(width , local_dim)

16 )
17

18 self.nn[-1]. weight.data.fill_ (0.0)
19 self.nn[-1].bias.data.fill_ (0.0)

Listing 3 Decoupled Drift network for local parameters

H.4 BNN architectures

For the step function dataset we used the following architec-
ture:

1 class DNN_StepFunction(torch.nn.Module)
:

2

3 def __init__(self , input_dim=1,
output_dim =1):

4 super(DNN , self).__init__ ()
5

6 self.output_dim = output_dim
7 self.input_dim = input_dim
8

9 self.nn = torch.nn.Sequential(
10 torch.nn.Linear(input_dim , 100),
11 torch.nn.ReLU(),
12 torch.nn.Linear (100, 100),
13 torch.nn.ReLU(),
14 torch.nn.Linear (100, output_dim)
15 )

Listing 4 Architecture for step function dataset.

For LeNet5 the architecture used was:

1 class LeNet5(torch.nn.Module):
2

3 def __init__(self , n_classes):
4 super(LeNet5 , self).__init__ ()
5

6 self.feature_extractor = torch.nn.
Sequential(

7 torch.nn.Conv2d(
8 in_channels=1, out_channels =6,
9 kernel_size=5, stride=1

10 ),
11 torch.nn.Tanh(),
12 torch.nn.AvgPool2d(kernel_size =2),
13 torch.nn.Conv2d(
14 in_channels=6, out_channels =16,
15 kernel_size=5, stride=1
16 ),
17 torch.nn.Tanh(),
18 torch.nn.AvgPool2d(kernel_size =2),
19 )
20

21 self.classifier = torch.nn.Sequential(
22 torch.nn.Linear(in_features =256,

out_features =120),
23 torch.nn.Tanh(),
24 torch.nn.Linear(in_features =120,

out_features =84),
25 torch.nn.Tanh(),
26 torch.nn.Linear(in_features =84,

out_features=n_classes),
27 )
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Table 6 Specification of
Bayesian models

Model Hyperparameters Values

Step Function Prior N(0, σ 2
θ I)

Likelihood N( yi | fθ (xi ), σ
2
y I)

σθ 1

σy 0.1

MNIST Prior N(0, σ 2
θ I)

Likelihood Cat( fθ (xi ))

σθ 1

CIFAR10 Prior N(0, σ 2
θ I)

Likelihood Cat( fθ (xi ))

σθ 1

Hyperspectral Unmixing Prior p(σ 2) = 1[0,1](σ 2), p(ap) = 1�R (a p)

Likelihood N(Ma p; ||a p||2σ 2 I )

Log Reg Prior Laplace(0, σθ , )

Likelihood Bern(Sigmoidθ )

σθ 1

ICA Prior N(0, σ 2
θ I)

Likelihood
∏

i
1

4 cosh2(
θ�

i x
2 )

σθ 1

Listing 5 Architecture for MNIST.

The same layer structure as in LeNet5 was used for the
CIFAR10 dataset,and with a difference in the number of
channels and size of filters. Exact details can be found in
the code repository.

H.5 Likelihood and prior hyperparameters

In Table 6 we describe the hyperparameters of each Bayesian
model as well as their priors and likelihood.
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