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Abstract
We study Hamiltonian Monte Carlo (HMC) samplers based on splitting the Hamiltonian H as H0(θ, p)+U1(θ), where H0 is
quadratic and U1 small. We show that, in general, such samplers suffer from stepsize stability restrictions similar to those of
algorithms based on the standard leapfrog integrator. The restrictions may be circumvented by preconditioning the dynamics.
Numerical experiments show that, when the H0(θ, p) + U1(θ) splitting is combined with preconditioning, it is possible to
construct samplers far more efficient than standard leapfrog HMC.

Keywords Markov chain Monte Carlo · Hamiltonian dynamics · Bayesian analysis · Splitting integrators

1 Introduction

In this paper we study Hamiltonian Monte Carlo (HMC)
algorithms (Neal 2011) that are not based on the standard
kinetic/potential splitting of the Hamiltonian.

The computational cost of HMC samplers mostly orig-
inates from the numerical integrations that have to be
performed to get the proposals. If the target distribution has
density proportional to exp(−U (θ)), θ ∈ R

d , the differential
system to be integrated is given by the Hamilton’s equa-
tions corresponding to the Hamiltonian function H(θ, p) =
(1/2)pT M−1 p + U (θ), where p ∼ N (0, M) is the aux-
iliary momentum variable and M is the symmetric, positive
definitemassmatrix chosen by the user. In amechanical anal-
ogy, H is the (total) energy, while T (p) = (1/2)pT M−1 p
and U (θ) are respectively the kinetic and potential ener-
gies. The Störmer/leapfrog/Verlet integrator is the method
of choice to carry out those integrations and is based on the
idea of splitting (Blanes and Casas 2017), i.e. the evolution
of (θ, p) under H is simulated by the separate evolutions
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under T (p) and U (θ) (kinetic/potential splitting). However
H(θ, p) = T (p) + U (θ) is not the only splitting that has
been considered in the literature. In some applications one
may write H(θ, p) = H0(θ, p) + U1(θ), with H0(θ, p) =
T (p) +U0(θ),U (θ) = U0(θ) +U1(θ) and replace the evo-
lution under H by the evolutions under H0 and U1 (Neal
2011). The paper (Shahbaba et al. 2014) investigated this
possibility; two algorithms were formulated referred to there
as “Leapfrog with a partial analytic solution” and “Nested
leapfrog”. Both suggested algorithms were shown to outper-
form, in four logistic regression problems, HMC based on
the standard leapfrog integrator.

In this article we reexamine H(θ, p) = H0(θ, p) +
U1(θ) splittings, in particular in the case where the equa-
tions for H0 can be integrated analytically (partial analytic
solution) because U0(θ) is a quadratic function (so that
∝ exp(−U0(θ)) is a Gaussian distribution). When U1 is
slowly varying, the splitting H = H0 + U1 is appealing
because, to quote (Shahbaba et al. 2014), “only the slowly-
varying part of the energy needs to be handled numerically
and this can be done with a larger stepsize (and hence fewer
steps) than would be necessary for a direct simulation of the
dynamics”.

Our contributions are as follows:

1. In Section 3we show, bymeans of a counterexample, that
it is not necessarily true that, when H0 is handled analyt-
ically andU1 is small, the integration may be carried out
with stepsizes substantially larger than those required by
standard leapfrog. For integrators based on the H0 +U1
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splitting, the stepsize may suffer from important stability
restrictions, regardless of the size of U1.

2. In Section 4 we show that, by combining the H0 + U1

splitting with the idea of preconditioning the dynamics,
that goes back at least to (Bennett 1975), it is possible to
bypass the stepsize limitations mentioned in the preced-
ing item.

3. We present an integrator (that we call RKR) for the H0 +
U1 splitting that provides an alternative to the integrator
tested in (Shahbaba et al. 2014) (that we call KRK).

4. Numerical experiments in the final Section 5, using the
test problems in (Shahbaba et al. 2014), show that the
advantages of moving from standard leapfrog HMC to
the H0+U1 splitting (without preconditioning) are much
smaller than the advantages of using preconditioning
while keeping the standard kinetic/potential splitting.
The best performance is obtained when the H0 + U1

splitting is combined with the preconditioning of the
dynamics. In particular the RKR integration technique
with preconditioning decreases the computational cost
by more than an order of magnitude in all test problems
and all observables considered.

There are two appendices. In the first, we illustrate the use
of the Bernstein-von Mises theorem (see e.g. section 10.2 in
(van der Vaart 1998)) to justify the soundness of the H0+U1

splitting. The second is devoted to presenting a methodology
to discriminate between different integrators of the precon-
ditioned dynamics for the H0 + U1 splitting; in particular
we provide analyses that support the advantages of the RKR
technique over its KRK counterpart observed in the experi-
ments.

2 Preliminaries

2.1 HamiltonianMonte Carlo

HMC is based on the observation that (Neal 2011; Sanz-
Serna 2014), for each fixed T > 0, the exact solution map
(flow) (θ(T ), p(T )) = ϕT (θ(0), p(0)) of the Hamiltonian
system of differential equations in R2d

dθ

dt
= ∂H

∂ p
= M−1 p,

dp

dt
= −∂H

∂θ
= −∇U (θ), (1)

exactly preserves the density ∝ exp(−H(θ, p)) = exp(−T
(p) −U (θ)) whose θ -marginal is the target ∝ exp(−U (θ)),
θ ∈ R

d . In HMC, (1) is integrated numerically over an inter-
val 0 ≤ t ≤ T taking as initial condition the current state
(θ, p) of the Markov chain; the numerical solution at t = T
provides the proposal (θ ′, p′) that is accepted with probabil-
ity

a = min

{
1, e−

(
H(θ ′,p′)−H(θ,p)

)}
. (2)

This formula for the acceptance probability assumes that the
numerical integration has been carried out with an integrator
that is both symplectic (or at least volume preserving) and
reversible. The difference H(θ ′, p′) − H(θ, p) in (2) is the
energy error in the integration; it would vanish leading to
a = 1 if the integration were exact.

2.2 Splitting

Splitting is the most common approach to derive symplectic
integrators for Hamiltonian systems (Blanes andCasas 2017;
Sanz-Serna andCalvo1994).TheHamiltonianH of the prob-
lem is decomposed in partial Hamiltonians as H = H1 + H2

in such a way that the Hamiltonian systems with Hamilto-
nian functions H1 and H2 may both be integrated in closed
form. When Strang splitting is used, if ϕ

[H1]
t , ϕ

[H2]
t denote

the maps (flows) in R
2d that advance the exact solution of

the partial Hamiltonians over a time-interval of length t , the
recipe

ψε = ϕ
[H1]
ε/2 ◦ ϕ[H2]

ε ◦ ϕ
[H1]
ε/2 , (3)

defines the map that advances the numerical solution a
timestep of length ε > 0. The numerical integration to get a
proposal may then be carried out up to time T = εL with the
L-fold composition �T = (ψε)

L . Regardless of the choice
of H1 and H2, (3) is a symplectic, time reversible integra-
tor of second order of accuracy (Bou-Rabee and Sanz-Serna
2018).

2.3 Kinetic/potential splitting

The splitting H = H1 + H2, H1 = T , H2 = U gives
rise, via (3), to the commonest integrator in HMC: the
Störmer/leapfrog/velocity Verlet algorithm. The differential
equations for the partial Hamiltonians T , U and the corre-
sponding solution flows are

d

dt

(
θ

p

)
=

(
0

−∇U (θ)

)
	⇒ ϕ

[U ]
ε (θ, p) = (θ, p − ε∇U (θ)),

d

dt

(
θ

p

)
=

(
M−1 p

0

)
	⇒ ϕ

[T ]
ε (θ, p) = (θ + εM−1 p, p).

As a mnemonic, we shall use the word kick to refer to the
map ϕ

[U ]
ε (θ, p) (the system is kicked so that the momentum

p varies without changing θ ). The word drift will refer to the
map ϕ

[T ]
ε (θ, p) (θ drifts with constant velocity). Thus one

timestep of the velocity Verlet algorithm reads (kick-drift-
kick).

ψ [K DK ]
ε = ϕ

[U ]
ε/2 ◦ ϕ[T ]

ε ◦ ϕ
[U ]
ε/2 .
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There is of course a position Verlet algorithm obtained by
interchanging the roles of T and U . One timestep is given
by a sequence drift-kick-drift (DKD). Generally the velocity
Verlet (KDK) version is preferred (see (Bou-Rabee and Sanz-
Serna 2018) for a discussion) and we shall not be concerned
hereafter with the position variant.

With any integrator of the Hamiltonian equations, the
length εL = T of the time interval for the integration to
get a proposal has to be determined to ensure that the pro-
posal is sufficiently far from the current step of the Markov
chain, so that the correlation between successive samples is
not too high and the phase space is well explored (Hoffman
and Gelman 2014; Bou-Rabee and Sanz-Serna 2017). For
fixed T , smaller stepsizes ε lead to fewer rejections but also
to larger computational cost per integration and it is known
that HMC is most efficient when the empirical acceptance
rate is around approximately 65% (Beskos et al. 2013).

Algorithm 1 describes the computation to advance a sin-
gle step of theMarkov chain with HMCbased on the velocity
Verlet (KDK) integrator. In the absence of additional infor-
mation, it is standard practice to choose M = I , the identity
matrix. For later reference, we draw attention to the random-
ization of the timestep ε. As is well known, without such a
randomization, HMC may not be ergodic (Neal 2011); this
will happen for instance when the equations of motion (1)
have periodic solutions and εL coincides with the period of
the solution.

Algorithm 1 KDK Verlet
Input: θ,U , H , M, ε̄, L
1: Draw ξ ∼ N (0, M), ε ∼ ε̄ × U[0.8,1] � Randomise ε

2: θ ′, p ← θ, ξ � Refresh momentum
3: for i = {1, . . . , L} do � Do velocity Verlet integration
4: p ← p − ε

2∇U (θ ′)
5: θ ′ ← θ ′ + εM−1 p
6: p ← p − ε

2∇U (θ ′)
7: end for
8: a ← min

{
1, exp(H(θ, ξ) − H(θ ′, p))

}
9: Draw γ ∼ B(a) � γ Bernoulli-distributed with mean a
10: θ ← γ θ ′ + (1 − γ )θ � Accept proposal with probability a

2.4 Alternative splittings of the Hamiltonian

Splitting H(θ, p) in its kinetic and potential parts as in Verlet
is not the only meaningful possibility. In many applications,
U (θ)may be written asU0(θ)+U1(θ) in such a way that the
equations ofmotion for theHamiltonian function H0(θ, p) =
(1/2)pT M−1 p+U0(θ)may be integrated in closed form and
then one may split H as

H = H0 +U1, (4)

as discussed in e.g. (Neal 2011; Shahbaba et al. 2014).
In this paper we focus on the important particular case

where (see Section 5 and Appendix A)

U0(θ) = 1

2
(θ − θ∗)TJ (θ − θ∗), (5)

for some fixed θ∗ ∈ R
d and a constant symmetric, positive

definite matrix J . Restricting for the time being attention to
the case where the mass matrix M is the identity (the only
situation considered in (Shahbaba et al. 2014)), the equations
of motion and solution flow for the Hamiltonian

H0(θ, p) = 1

2
pT p +U0(θ) (6)

are

d

dt

(
θ

p

)
=

(
0 I

−J 0

)(
θ − θ∗

p

)
,

ϕ
[H0]
t (θ, p) = exp

(
t

(
0 I

−J 0

))(
θ − θ∗

p

)
+

(
θ∗
0

)
.(7)

If we write J = ZT DZ , with Z orthogonal and D diagonal
with positive diagonal elements, then the exponential map in
Eq. (7) is

exp

(
t

(
0 I

−J 0

))
=

(
ZT 0
0 ZT

)
et


(
Z 0
0 Z

)
,

et
 =
(

cos(t
√
D) D−1/2 sin(t

√
D)

−D1/2 sin(t
√
D) cos(t

√
D)

)
. (8)

In view of the expression for exp(t
), we will refer to the
flow of H0 as a rotation.

Choosing in (3)U1 and H0 for the roles of H1 and H2 (or
viceversa) gives rise to the integrators

ψ [K RK ]
ε = ϕ

[U1]
ε/2 ◦ ϕ[H0]

ε ◦ ϕ
[U1]
ε/2 ,

ψ [RK R]
ε = ϕ

[H0]
ε/2 ◦ ϕ[U1]

ε ◦ ϕ
[H0]
ε/2 , (9)

where one advances the solution over a single timestep by
using a kick-rotate-kick (KRK) or rotate-kick-rotate (RKR)
pattern (of course the kicks are based on the potential function
U1). The HMC algorithm with the KRK map in (9) is shown
in Algorithm 2, where the prefix Uncond, to be discussed
later, indicates that themassmatrix being used isM = I . The
algorithm for the RKR sequence in (9) is a slight reordering
of a few lines of code and is not shown. Algorithm 2 (but not
its RKR counterpart) was tested in (Shahbaba et al. 2014).1

1 It is perhaps of interest to mention that in Algorithm 2 the stepsize ε is
randomized for the same reasons as in Algorithm 1. If only the stepsize
used in theU1-kicks is randomized,while the stepsize in exp(ε
) is kept
constant, then one still risks losing ergodicity when εL coincides with
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Algorithm 2 UncondKRK
Input: θ, Z ,
,U ,J , H , ε̄, L
1: Draw ξ ∼ N (0, I ), ε ∼ ε̄ × U[0.8,1]
2: Compute eε


3: θ ′, p ← θ, ξ

4: for i = {1, . . . , L} do � Do KRK integration
5: p ← p − ε

2

(∇U (θ ′) − J (θ ′ − θ∗)
)

6: θ ′, p ← Z(θ ′ − θ∗), Zp

7: θ ′, p ← eε


(
θ ′
p

)

8: θ ′, p ← ZT θ ′ + θ∗, ZT p
9: p ← p − ε

2

(∇U (θ ′) − J (θ ′ − θ∗)
)

10: end for
11: a ← min

{
1, exp(H(θ, ξ) − H(θ ′, p))

}
12: Draw γ ∼ B(a)

13: θ ← γ θ ′ + (1 − γ )θ

Since the numerical integration in Algorithm 2 would be
exact if U1 vanished (leading to acceptance of all propos-
als), the algorithm is appealing in cases where U1 is “small”
with respect to H0. In some applications, a decomposition
U = U0 +U1 with small U1 may suggest itself. For a “gen-
eral” U one may always define U0 by choosing θ∗ to be
one of the modes of the target ∝ exp(−U (θ)) and J the
Hessian of U evaluated at θ�; in this case the success of the
splitting hinges on how well U may be approximated by its
second-order Taylor expansionU0 around θ�. In that setting,
θ∗ would typically have to be found numerically byminimiz-
ingU . Also Z and Dwould typically be derived by numerical
approximation, thus leading to computational overheads for
Algorithm 2 not present in Algorithm 1. However, as pointed
out in (Shahbaba et al. 2014), the cost of computing θ�, Z
and D before the sampling begins is, for the test problems to
be considered in this paper, negligible when compared with
the cost of obtaining the samples.

2.5 Nesting

When a decomposition U = U0 + U1, with U1 small, is
available but theHamiltonian systemwithHamiltonian H0 =
T + U0 cannot be integrated in closed form, one may still
construct schemes based on the recipe (3). One step of the
integrator is defined as

ϕ
[U1]
ε/2 ◦

(
ϕ

[U0]
ε/2k ◦ ϕ

[T ]
ε/k ◦ ϕ

[U0]
ε/2k

)k ◦ ϕ
[U1]
ε/2 , (10)

where k is a suitably large integer. Here the (untractable)
exact flow of H0 is numerically approximated byKDKVerlet
using k substeps of length ε/k. In this way, kicks with the
small U1 are performed with a stepsize ε/2 and kicks with
the large U0 benefit from the smaller stepsize ε/(2k). This

one of the periods present in the solution. This prevents precalculation,
prior to the randomization of ε, of the rotation matrix exp(ε
).

idea has been successfully used in Bayesian applications in
(Shahbaba et al. 2014), where it is called “nestedVerlet”. The
smallU1 is obtained summing over data points that contribute
little to the loglikelihood and the contributions from the most
significant data are included in U0.

Integrators similar to (10) have a long history inmolecular
dynamics, where they are known as multiple timestep algo-
rithms (Tuckerman et al. 1992; Leimkuhler and Matthews
2015; Grubmüller et al. 1991).

3 Shortcomings of the unconditioned KRK
and RKR samplers

As we observed above, Algorithm 2 is appealing whenU1 is
a small perturbation of the quadratic Hamiltonian H0. In par-
ticular, one would expect that since the numerical integration
inAlgorithm 2 is exact whenU1 vanishes, then this algorithm
may be operated with stepsizes ε chosen solely in terms of
the size ofU1, independently of H0. If that were the case one
would expect that Algorithm 2may work well with large ε in
situations where Algorithm 1 requires ε small and therefore
much computational effort. Unfortunately those expectations
are not well founded, as we shall show next by means of an
example.

We study the model Hamiltonian with θ, p ∈ R
2 given by

H(θ, p) = H0(θ, p) +U1(θ),

H0 = 1

2
pT p + 1

2
θT

(
σ−2
1 0
0 σ−2

2

)
θ, U1 = κ

2
θT θ.

(11)

The model is restricted to R
2 just for notational conve-

nience; the extension toRd is straightforward. The quadratic
Hamiltonian H0 is rather general—any Hamiltonian system
with quadratic Hamiltonian (1/2)pT M−1 p + (1/2)θT Wθ

may be brought with a change of variables to a system
with Hamiltonian of the form (1/2)pT p+ (1/2)θT Dθ , with
M,W symmetric, positive definite matrices and D diago-
nal and positive definite (Blanes et al. 2014; Bou-Rabee
and Sanz-Serna 2018). In (11), σ1 and σ2 are the standard
deviations of the bivariate Gaussian distribution with density
∝ exp(−U0(θ)) (i.e of the target in the unperturbed situa-
tionU1 = 0). We choose the labels of the scalar components
θ1 and θ2 of θ to ensure σ1 ≤ σ2 so that, for the proba-
bility density ∝ exp(−U0(θ)), θ1 is more constrained than
θ2. In addition, we assume that κ is small with respect to
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σ−2
1 and σ−2

2 , so that in (11) U1 is a small perturbation of
H0. The Hamiltonian equations of motion for θi , given by
d
dt θi = pi , d

dt pi = −ω2
i θi , with ωi = (σ−2

i + κ)1/2 ≈ σ−1
i ,

yield d2

dt2
θi + ω2

i θi = 0. Thus the dynamics of θ1 and θ2
correspond to two uncoupled harmonic oscillators; the com-
ponent θi , i = 1, 2, oscillates with an angular frequency ωi

(or with a period 2π/ωi ).

We note, regardless of the integrator being used, the cor-
relation between the proposal and the current state of the
Markov chain will be large if the integration is carried out
over a time interval T = εL much smaller than the periods
2π/ωi of the harmonic oscillators (Neal 2011; Bou-Rabee
and Sanz-Serna 2017). Since 2π/ω2 is the longest of the two
periods, L has then to be chosen

L ≥ C

εω2
≈ Cσ2

ε
, (12)

where C denotes a constant of moderate size. For instance,
for the choice C = π/2, the proposal for θ2 is uncorrelated
at stationarity with the current state of the Markov chain as
discussed in e.g. (Bou-Rabee and Sanz-Serna 2017).

For the KDK Verlet integrator, it is well known that, for
stability reasons (Neal 2011; Bou-Rabee and Sanz-Serna
2018), the integration has to be operated with a stepsize
ε < 2/max(ω1, ω2), leading to a stability limit

ε ≈ 2σ1; (13)

integrations with larger ε will lead to extremely inaccurate
numerical solutions. This stability restriction originates from
θ1, the component with greater precision in the Gaussian
distribution∝ exp(−U0). Combining (13) with (12) we con-
clude that, for Verlet, the number of timesteps L has to be
chosen larger than a moderate multiple of σ2/σ1. Therefore
when σ1 � σ2 the computational cost of the Verlet integra-
tor will necessarily be very large. Note that the inefficiency
arises when the sizes of σ1 and σ2 are widely different; the
first sets an upper bound for the stepsize and the second a
lower bound on the length εL of the integration interval.
Small or large values of σ1 and σ2 are not dangerous per se
if σ2/σ1 is moderate.

We now turn to the KRK integrator in (9). For the i-th
scalar component of (θ, p), a timestep of the KRK integrator
reads

(
θi
pi

)
←

(
1 0

−εκ/2 1

)(
cos(ε/σi ) σi sin(ε/σi )

−σ−1
i sin(ε/σi ) cos(ε/σi )

)
(

1 0
−εκ/2 1

)(
θi
pi

)

or

(
θi
pi

)
←

(
cos(ε/σi ) − (εσiκ/2) sin(ε/σi ) σi sin(ε/σi )

(ε2σiκ
2/4) sin(ε/σi ) − σ−1

i sin(ε/σi ) + εκ cos(ε/σi )) cos(ε/σi ) − (εσiκ/2) sin(ε/σi )

)(
θi
pi

)
.

Stability is equivalent to |cos(ε/σi )− (εσiκ/2) sin(ε/σi )|
< 1, which, for κ > 0, gives 2 cot((ε/(2σi )) > εκσi . From
here it is easily seen that stability in the i-th component is
lost for ε/σi ≈ π for arbitrarily small κ > 0. Thus the KRK
stability limit is

ε ≈ πσ1. (14)

While this is less restrictive than (13), we see that stability
imposes an upper bound for ε in terms of σ1, just as for
Verlet. From (12), the KRK integrator, just like Verlet, will
have a large computational cost when σ1 � σ2. This is in
spite of the fact that the integrator would be exact for κ = 0,
regardless of the values of σ1, σ2.

For the RKR integrator a similar analysis shows that the
stability limit is also given by (14); therefore that integrator
suffers from the same shortcomings as KRK.

We also note that, since as k increases the nested integrator
(10) approximates the KRK integrator, the counterexample
above may be used to show that the nested integrator has to
be operated with a stepsize ε that is limited by the smallest
standard deviations present in U0, as is the case for Verlet,
KRK and RKR. For the stability of (10) and related multiple
timestep techniques, the reader is referred to (García-Archilla
et al. 1998) and its references. The nested integrator will not
be considered further in this paper.

4 Preconditioning

As pointed out above, without additional information on the
target, it is standard to set M = I . When U = U0 + U1,
with U0 as in (5), it is useful to consider a preconditioned
Hamiltonian with M = J :

H [precond](θ, p) = 1

2
pTJ −1 p +U (θ)

= 1

2
pTJ −1 p + 1

2
(θ − θ∗)TJ (θ − θ∗) +U1(θ). (15)
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Preconditioning is motivated by the observation that the
equations of motion for the Hamiltonian

H [precond]
0 (θ, p) = 1

2
pTJ −1 p + 1

2
(θ − θ∗)TJ (θ − θ∗),

given by d
dt θ = J −1 p, d

dt p = −J (θ − θ�), yield d2

dt2
(θ −

θ�) + (θ − θ�) = 0. Thus we now have d uncoupled scalar
harmonic oscillators (one for each scalar component θi −θ�

i )
sharing a common oscillation frequencyω = 1.2 This is to be
compared with the situation for (6), where, as we have seen
in the model (11), the frequencies are the reciprocals 1/σi of
the standard deviations of the distribution ∝ exp(−U0(θ)).
Since, aswe saw inSection 3, it is the differences in size of the
frequencies of the harmonic oscillators that cause the ineffi-
ciency of the integrators, choosing the mass matrix to ensure
that all oscillators have the same frequency is of clear interest.
We call unconditioned those Hamiltonians/integrators where
themassmatrix is chosen as the identity agnostically without
specializing it to the problem.

For reasons explained in (Beskos et al. 2011) it is bet-
ter, when J has widely different eigenvalues, to numerically
integrate the preconditioned equations ofmotion after rewrit-
ing them with the variable v = M−1 p = J −1 p replacing
p. The differential equations and solution flows of the sub-
problems are then given by

d

dt

(
θ

v

)
=

(
0

−J −1∇θU1(θ)

)

	⇒ ϕ
[U1]
t (θ, v) =

(
θ

v − tJ −1∇θU1(θ)

)
,

and

d

dt

(
θ

v

)
=

(
0 I

−I 0

) (
(θ − θ∗)

v

)

	⇒ ϕ
[H [precond]

0 ]
t (θ, v)

=
(

cos(t) sin(t)
− sin(t) cos(t)

) (
(θ − θ∗)

v

)
+

(
θ∗
0

)
.

Since J is a symmetric, positive definite matrix, it admits a
Cholesky factorisation J = BBT . The inversion of J in the
kickmay thus be performed efficiently usingCholesky-based
solvers from standard linear algebra libraries. It also means
it is easy to draw from the distribution of v ∼ B−TN (0, I ).

Composing the exact maps ϕ
[.]
ε using Strang’s recipe (3)

then gives a numerical one-step mapψ
[.]
ε in either an RKR or

2 The fact that the frequency is ofmoderate size is irrelevant; the value of
the frequencymay be arbitrarily varied by rescaling t .What is important
is that all frequencies coincide.

KRK form. The preconditioned KRK (PrecondKRK) algo-
rithm is shown in Algorithm 3; the RKR version is similar
and will not be given.

Algorithm 3 PrecondKRK
Input: θ, B−T , ε̄,U ,J , θ∗, L, H
1: Draw ξ ∼ B−TN (0, I ), ε ∼ ε̄ × U[0.8,1]
2: θ ′, v ← θ, ξ

3: for i = {1, . . . , L} do
4: v ← v − ε

2

(
J−1∇θU (θ ′) − (θ ′ − θ∗)

)
5: θ ′ ← (θ ′ − θ∗)
6: θ ′, v ← θ ′ cos(ε) + v sin(ε), v cos(ε) − θ ′ sin(ε)
7: θ ′ ← θ ′ + θ∗
8: v ← v − ε

2

(
J−1∇θU (θ ′) − (θ ′ − θ∗)

)
9: end for
10: a ← min

{
1, exp(H(θ, ξ) − H(θ ′, v))

}
11: Draw γ ∼ B(a)

12: θ ← γ θ ′ + (1 − γ )θ

Of course it is also possible to use the KDK Verlet Algo-
rithm 1 with preconditioning (M = J ) (and v replacing p).
The resulting algorithm may be seen in Algorithm 4.

Algorithm 4 PrecondVerlet
Input: θ, B−T , ε̄,U ,J , θ∗, L, H
1: Draw ξ ∼ B−TN (0, I ), ε ∼ ε̄ × U[0.8,1]
2: θ ′, v ← θ, ξ

3: for i = {1, . . . , L} do
4: v ← v − ε

2J
−1∇θU (θ ′)

5: θ ′ ← θ ′ + εv

6: v ← v − ε
2J

−1∇θU (θ ′)
7: end for
8: a ← min

{
1, exp(H(θ, ξ) − H(θ ′, v))

}
9: Draw γ ∼ B(a)

10: θ ← γ θ ′ + (1 − γ )θ

Applying these algorithms to the model problem (11), an
analysis parallel to that carried out in Section 3 shows that
the decorrelation condition (12) becomes, independently of
σ1 and σ2

L � C/ε

and the stability limits in (13) and (14) are now replaced, also
independently of the values of σ1 and σ2, by

ε ≈ 2, ε ≈ π,

for Algorithm 4 and Algorithm 3 respectively. The stability
limit for the PrecondRKR algorithm coincides with that of
the PrecondKRK method. (See also Appendix B.)

The idea of preconditioning is extremely old; to our best
knowledge it goes back to (Bennett 1975). The algorithm
in (Girolami and Calderhead 2011) may be regarded as a
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θ -dependent preconditioning. For preconditioning in infinite
dimensional problems see (Beskos et al. 2011).

5 Numerical results

In this section we test the following algorithms:

• Unconditioned Verlet: Algorithm 1 with M = I .
• Unconditioned KRK: Algorithm 2.
• Preconditioned Verlet: Algorithm 4.
• Preconditioned KRK: Algorithm 3.
• Preconditioned RKR: similar to Algorithm 3 using a

rotate-kick-rotate pattern instead of kick-rotate-kick.

The first two algorithms were compared in (Shahbaba et al.
2014) and in fact we shall use the exact same logistic
regression test problems used in that reference. If x are the
prediction variables and y ∈ {0, 1}, the likelihood for the test
problems is (̃x = [

1, xT
]T

, θ = [
α, βT

]T
)

L(θ; x, y)=
n∏

i=1

(
1 + exp(−θT x̃i )

)−y (
1 + exp(θT x̃i )

)y−1
.

(16)

For the preconditioned integrators, we setU0 as in (5) with
θ∗ given by the maximum a posteriori (MAP) estimation and
J the Hessian at θ∗.

For the two unconditioned integrators, we run the values
of L and ε chosen in (Shahbaba et al. 2014) (this choice is
labelled as A in the tables). Since in many cases the auto-
correlation for the unconditioned methods is extremely large
with those parameter values (see Fig. 1), we also present
results for these methods with a principled choice of T and ε

(labelled as B in the tables). We take T = εL = π/(2ωmin),
where ωmin is the minimum eigenvalue of

√
D given in Eq.

(8). In the case where the perturbation U1 is absent, this
choice of T would decorrelate the least constrained com-
ponent of θ . We then set ε as large as possible to ensure
an acceptance rate above 65% (Beskos et al. 2013)— the
stepsizes in the choice B are slightly smaller than the values
used in (Shahbaba et al. 2014), and the durations T are, for
every dataset, larger. We are able thus to attain greater decor-
relation, although at greater cost. For the preconditioned
methods, we set T = π/2, since this gives samples with
0 correlation in the case U1 = 0, and then set the timestep
ε as large as possible whilst ensuring the acceptance rate is
above 65%.

In every experiment we start the chain from the (numeri-
cally calculated) MAP estimate θ� of θ and acquire Ns =
5 × 104 samples. The autocorrelation times reported are
calculated using the emcee function integrated_time

(a) (b)

(c) (d)

Fig. 1 Autocorrelation function plots for the slowest moving component associated to the IAC τmax for each dataset. For the unconditionedmethods,
we show the principled choice B (solid line) and the choice A from (Shahbaba et al. 2014) (dotted). The values of ε and T are as given in the tables
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with the default value c = 5 (Foreman-Mackey et al. 2013).
We also estimated autocorrelation times using alternative
methods (Geyer 1992; Neal 1993; Sokal 1997; Thompson
2010); the results obtained do not differ significantly from
those reported in the tables.

Finally, note that values of ε̄ quoted in the tables are the
maximum timestep that the algorithms operatewith, since the
randomisation follows ε ∼ ε̄ ×U[0.8,1]. All code is available
from the github repository https://github.com/lshaw8317/
SplitHMCRevisited.

5.1 Simulated data

We generate simulated data according to the same proce-
dure and parameter values described in (Shahbaba et al.
2014). The first step is to generate x ∼ N (0, σ 2) with

σ 2 = diag
{
σ 2
j : j = 1 . . . , d − 1

}
, where

σ 2
j =

⎧⎪⎨
⎪⎩
25 j ≤ 5

1 5 < j ≤ 10

0.04 j > 10

.

Then, we generate the true parameters θ̂ = [α, βT ]T with
α ∼ N (0, γ 2) and the vector β ∈ R

d−1 with independent
components following β j ∼ N (0, γ 2), j = 1, . . . , d − 1,
with γ 2 = 1. Augmenting the data x̃i = [1, xTi ]T , from
a given sample xi , yi is then generated as a Bernoulli ran-
dom variable yi ∼ B((1+exp(−θ̂T x̃i ))−1). In concreteness,
a simulated data set {xi , yi }ni=1 with n = 104 samples is
generated, xi ∈ R

d−1 with d − 1 = 100. The sampled
parameters θ ∈ R

d are assumed to have a prior N (0, �)

with � = diag {25 : j = 1 . . . , d}.
Results are given in Table 1. The second column gives the

number L of timesteps per proposal and the third the compu-
tational time s (in milliseconds) required to generate a single
sample. The next columns give, for three observables, the
products τ × s, with τ the integrated autocorrelation (IAC)
time. These products measure the computational time to gen-

erate one independent sample. The notation τ� refers to the
observable f (θ) = log(L(θ; x, y)) where L is the likeli-
hood in (16), and τθ2 refers to f (θ) = θT θ . The degree of
correlation measured by τ� is important in optimising the
cost-accuracy ratio of predictions of y, while τθ2 is relevant
to estimating parameters of the distribution of θ (Andrieu
et al. 2003; Gelman et al. 2015). Following (Shahbaba et al.
2014), we also examine themaximum IAC over all the Carte-
sian components of θ , since we set the time T in order
to decorrelate the slowest-moving/least constrained compo-
nent. Finally the last column provides the observed rate of
acceptance.

Comparing the values of τ × s in the first four rows of the
table shows the advantage, emphasized in (Shahbaba et al.
2014), of the H0 +U1 (4) over the kinetic/potential splitting:
Unconditioned KRK operates with smaller values of L than
Unconditioned Verlet and the values of τ × s are smaller for
UnconditionedKRK than for unconditionedVerlet. However
when comparing the results for Unconditioned Verlet A or B
with those for Preconditioned Verlet, it is apparent that the
advantage of using the Hessian J to splitU = U0 +U1 with
M = I is much smaller than the advantage of usingJ to pre-
condition the integration while keeping the kinetic/potential
splitting.

The best performance is observed for the Preconditioned
KRK and RKR algorithms that avail themselves of the Hes-
sian both to precondition and to use rotation instead of drift.
Preconditioned RKR is clearly better than its KRK coun-
terpart (see Appendix B). For this problem, as shown in
Appendix A,U1 is in fact small and therefore the restrictions
of the stepsize for the KRK integration are due to the stability
reasons outlined in Section 3. In fact, for the unconditioned
algorithms, the stepsize ε̄K RK = 0.03 is not substantially
larger than ε̄Verlet = 0.015, in agreement with the analysis
presented in that section.

The need to use large values of L in the unconditioned
integration stems, as discussed above, from the coexistence
of large differences between the frequencies of the harmonic

Table 1 SimData: For methods labelled A, parameters from (Shah-
baba et al. 2014): T = 0.3, ε̄Verlet = 0.015, ε̄UK RK = 0.03. For
the unconditioned methods labelled B, T = π/2ωmin = 0.6, and

ε̄Verlet = 0.015, ε̄UK RK = 0.03. For the preconditioned methods,
T = π/2, and ε̄Verlet = T /3 ≈ 0.52; the other preconditioned meth-
ods operate with ε̄Precon = T ≈ 1.57

L s [ms] τ� × s τθ2 × s τmax × s AP

UncondVerlet A 20 4.70 3.5 × s = 16.5 11.4 × s = 53.6 7.0 × s = 32.9 0.69

UncondVerlet B 40 8.49 3.7 × s = 31.4 2.6 × s = 22.1 2.0 × s = 17.0 0.68

UncondKRK A 10 3.04 3.4 × s = 10.3 11.1 × s = 33.8 6.6 × s = 20.1 0.76

UncondKRK B 20 5.27 3.9 × s = 20.5 3.3 × s = 17.4 3.0 × s = 15.8 0.69

PrecondVerlet 3 1.60 2.5 × s = 4.0 2.3 × s = 3.7 2.3 × s = 3.7 0.79

PrecondKRK 1 1.22 2.8 × s = 3.4 3.4 × s = 4.2 3.5 × s = 4.3 0.75

PrecondRKR 1 0.99 1.6 × s = 1.6 2.1 × s = 2.1 2.1 × s = 2.1 0.87
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Table 2 StatLog: For methods labelled A, parameters are from (Shah-
baba et al. 2014): T = 1.6, ε̄Verlet = 0.08, ε̄UK RK = 0.114. For
the unconditioned methods labelled B, T = π/2ωmin = 3.26, and

ε̄Verlet = 0.08, ε̄UK RK = 0.114. For the preconditioned methods,
T = π/2, and ε̄Verlet = T /3; the other preconditioned methods oper-
ate with ε̄Precon = T /2

L s [ms] τ� × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.99 5.5 × s = 11.0 5.8 × s = 11.6 9.8 × s = 19.5 0.69

UncondVerlet B 40 3.34 7.6 × s = 25.4 2.5 × s = 8.3 2.6 × s = 8.7 0.64

UncondKRK A 14 1.73 6.2 × s = 10.7 5.7 × s = 9.9 9.5 × s = 16.5 0.72

UncondKRK B 28 2.79 8.7 × s = 24.3 2.9 × s = 8.1 2.9 × s = 8.1 0.65

PrecondVerlet 3 0.64 2.5 × s = 1.6 2.6 × s = 1.7 2.7 × s = 1.7 0.88

PrecondKRK 2 0.60 2.9 × s = 1.7 3.2 × s = 1.9 3.3 × s = 2.0 0.88

PrecondRKR 2 0.53 2.3 × s = 1.2 2.5 × s = 1.3 2.7 × s = 1.4 0.94

Table 3 CTG: For runs labelled A, parameters are from (Shahbaba et al. 2014): T = 1.6, ε̄Verlet = 0.08, ε̄UK RK = 0.123. For the unconditioned
runs labelled B, T = π/2ωmin = 7.85, and ε̄Verlet = 0.08, ε̄UK RK = 0.118. For the preconditioned methods, T = π/2, and ε̄ = T /2

L s [ms] τ� × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.06 5.9 × s = 6.2 20.1 × s = 21.2 80.3 × s = 84.8 0.69

UncondVerlet B 98 4.28 6.1 × s = 26.1 5.1 × s = 21.8 36.0 × s = 154.2 0.64

UncondKRK A 13 0.95 6.5 × s = 6.2 17.9 × s = 17.0 53.0 × s = 50.3 0.77

UncondKRK B 66 3.89 6.1 × s = 23.7 5.1 × s = 19.8 37.2 × s = 144.6 0.65

PrecondVerlet 2 0.36 2.6 × s = 0.9 2.1 × s = 0.7 2.6 × s = 0.9 0.76

PrecondKRK 2 0.41 1.8 × s = 0.7 1.8 × s = 0.7 2.4 × s = 1.0 0.90

PrecondRKR 2 0.35 1.9 × s = 0.7 1.7 × s = 0.6 2.1 × s = 0.7 0.93

Table 4 Chess: For runs labelled A, parameters are from (Shahbaba et al. 2014): T = 1.8, ε̄Verlet = 0.09, ε̄UK RK = 0.2. For runs labelled B,
T = π/2ωmin = 5.71, and ε̄Verlet = 0.087, ε̄UK RK = 0.142. For the preconditioned methods, T = π/2, and ε̄ = T /2

L s [ms] τ� × s τθ2 × s τmax × s AP

UncondVerlet A 20 1.52 12.2 × s = 18.5 18.9 × s = 28.6 42.3 × s = 64.1 0.62

UncondVerlet B 65 4.20 3.6 × s = 15.1 1.5 × s = 6.3 19.9 × s = 83.6 0.68

UncondKRK A 9 0.90 13.3 × s = 11.9 21.3 × s = 19.1 37.7 × s = 33.8 0.72

UncondKRK B 40 3.31 4.1 × s = 13.6 1.9 × s = 6.3 22.1 × s = 73.1 0.64

PrecondVerlet 2 0.46 2.6 × s = 1.2 3.1 × s = 1.4 5.2 × s = 2.4 0.63

PrecondKRK 2 0.50 1.6 × s = 0.8 2.5 × s = 1.2 4.6 × s = 2.3 0.81

PrecondRKR 2 0.44 1.6 × s = 0.7 2.2 × s = 1.0 3.8 × s = 1.7 0.85

oscillators. In this problem the minimum and maximum fre-
quencies are ωmin = 2.6, ωmax = 105.0.

5.2 Real data

The three real datasets considered in (Shahbaba et al. 2014),
StatLog, CTG and Chess, are also examined, see Tables 2–4.
For the StatLog and CTG datasets with the unconditioned
Hamiltonian, KRK does not really provide an improvement
on Verlet. In all three datasets, the preconditioned integrators
clearly outperform the unconditioned counterparts. Of the
three preconditioned algorithms Verlet is the worst and RKR
the best.
StatLog
Here, n = 4435, d − 1 = 36. The frequencies are ωmin =
0.5, ωmax = 22.8.

CTG
Here, n = 2126, d − 1 = 21. The frequencies are ωmin =
0.2, ωmax = 23.9.
Chess
Here, n = 3196, d − 1 = 36. The frequencies are ωmin =
0.3, ωmax = 22.3.
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Appendix A: Bernstein-vonMises theorem

From the Bernstein-vonMises theorem (see e.g. section 10.2
in (van der Vaart 1998)), as the size of the dataset n increases
unboundedly, the posterior distribution π(θ | x, y) becomes
dominated by the likelihood and is asymptotically Gaussian;
more precisely N (θ̂ , n−1IF (θ̂)−1), where θ̂ represents the
true value andIF denotes the Fisher informationmatrix. This
observation shows that, at least for n large, approximating the
potential∝ exp(−U (θ)) by aGaussian∝ exp(−U0(θ))with
mean θ∗ as in Section 5.1 is meaningful.

An illustration of the Bernstein-vonMises theorem is pro-
vided in Figure 2 that corresponds to the simulated data
problem described in Section 5.1. As the number of data
points increases from 27 = 128 to 214 = 32, 768, the scaled
values ω j/

√
n where ω2

j are the eigenvalues of the numeri-
cally calculated HessianJ (θ∗) that we use inU0 converge to
the square roots of the eigenvalues of the Monte Carlo esti-
mation of the Fisher information matrix IF (θ̂) calculated
using the true parameter values and the randomly generated
xi .

A further illustration is provided in Fig. 3 where again the
number of data points increases from 27 = 128 to 214 =
32, 768. The following parameter values are used:

• The preconditioned algorithms, where solutions of the
Hamiltonian H0 are periodic with period 2π , have T =
π/2. For the KRK and RKR splittings we take two
timesteps per proposal, i.e. L = 2 and for the precon-
ditioned Verlet, L = 3.

• For theunconditioned algorithmswe setT = (π/2)/ωmin.
i.e. a quarter of the largest period present in the solutions
of H0. Both Verlet and UncondKRK are operated with
L = 30 timesteps per proposal.

Note that since, as n varies the value of L for each algo-
rithm remains constant, the number of evaluations of ∇U1

(for methods with rotations) or ∇U (for the Verlet integra-
tor) remains constant. The figure shows that, as n increases,
the acceptance rate for the methods Unconditioned KRK,
Preconditioned KRK, and Preconditioned RKR based on
the splitting (4) approaches 100%. These methods are exact

when U1 = 0 and exp(−U ) coincides with the Gaussian
exp(−U0) and therefore have smaller energy errors/larger
acceptance rates as n increases.On the other hand the integra-
tors based on the kinetic/potential splitting are not exactwhen
the potentialU is quadratic, and, correspondingly,we see that
the acceptance rate does not approach 100% as n ↑ ∞.

Appendix B: Integrating the preconditioned
Hamilton equations

KRK and RKR are two possible reversible, symplectic inte-
grators for the equations of motion corresponding to the
preconditioned Hamiltonian (15), but many others are of
course possible. In this Appendix we present a methodol-
ogy to choose between different integrators. The material
parallels an approach suggested in (Blanes et al. 2014) to
choose between integrators for the kinetic/potential splitting;
an approach that has been followed by a number of authors
(see (Blanes et al. 2021) for an extensive list of references).
The methodology is based on using a Gaussian model distri-
bution to discriminate between alternative algorithms, but, as
shown in (Calvo et al. 2021), is very successful in predicting
which algorithms will performwell for general distributions.

To study the preconditioned H0 + U1 splitting, we select
the model one-dimensional problem

H(θ, p) = 1

2
(p2 + θ2) + 1

2
κθ2. (17)

We assume that κ > −1 so that the potential energy
(1/2)θ2 + (κ/2)θ2 is positive definite. The application of
one step (of length ε) of an integrator for this problem in all
practical contexts takes the linear form

(
θn+1

pn+1

)
= Mκ,ε

(
θn
pn

)
, Mκ,ε =

[
Aκ,ε Bκ,ε

Cκ,ε Dκ,ε

]
. (18)

From Eq. (18), it is clear that an integration leg of length
T = εL (with initial condition θ(0) = θ0, p(0) = p0) is
given by

(
θL
pL

)
= ML

κ,ε

(
θ0
p0

)
.

We now apply two restrictions to the integration matrix in
Eq. (18). Reversibility imposes that Aκ,ε = Dκ,ε ; symplec-
ticity (in one dimension equivalent to volume-preservation)
implies that (Blanes et al. 2014)

det(Mκ,ε) = A2
κ,ε − Bκ,εCκ,ε = 1. (19)
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Fig. 2 The ordered rotation
frequencies (ω j = √

λ j , with λ j
an eigenvalue of J ) scaled by√
n as the number of data points

n increases converge to the
square roots of the eigenvalues
of the (estimated) Fisher
information matrix

Fig. 3 As n varies the
algorithms are run with a fixed
number L of timesteps per
proposal. For methods using
rotations the acceptance rate
approaches 100% as n ↑ ∞

The eigenvalues of the matrix Mκ,ε are then

λ = Aκ,ε ±
√
A2

κ,ε − 1,

which shows that there are three cases:

1. |Aκ,ε | > 1. For one of the eigenvalues, |λ| > 1 and so
the integration is unstable.

2. |Aκ,ε | < 1. The integration is stable as both eigenvalues
have magnitude 1.

3. |Aκ,ε | = 1. The symplectic condition Eq. (19) necessar-
ily implies Bκ,εCκ,ε = 0, which gives two sub-cases:

(a) |Bκ,ε | + |Cκ,ε | = 0. The matrix Mκ,ε = ±I and the
integration is stable.

(b) |Bκ,ε | + |Cκ,ε | �= 0. Then, if Bκ,ε �= 0,

ML
κ,ε =

[
AL L AL−1B
0 AL

]

and the integration is (weakly) unstable. Similarly
there is weak instability if instead Cκ,ε �= 0

Thus for stable integration, one may find ηκ,ε such that
Aκ,ε = cos(ηκ,ε) ∈ [−1, 1]; in addition we define χκ,ε =
Bκ,ε/ sin(ηκ,ε) for sin(ηκ,ε) �= 0 and let χκ,ε be arbitrary if
sin(ηκ,ε) = 0. In this way, for the model problem, all stable,
symplectic integrations have a propagationmatrix of the form

Mκ,ε =
[

cos(ηκ,ε) χκ,ε sin(ηκ,ε)

−χ−1
κ,ε sin(ηκ,ε) cos(ηκ,ε)

]
. (20)

We now state a lemma analogue of Proposition 4.3 in
(Blanes et al. 2014).

Lemma 1 Denote A = cos(Lηκ,ε), B = χκ,ε sin(Lηκ,ε),C
= −χ−1

κ,ε sin(Lηκ,ε). Given the initial conditions θ0, p0, and
integrating the dynamics of the Hamiltonian of the model
problemEq. (17) using the integrator inEq. (20) for L steps to
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give new values of θL , pL , the energy error may be expressed
as:

� ≡ H(θL , pL) − H(θ0, p0)

= 1

2
(C + (1 + κ)B)

(
Cθ20 + 2Aθ0 p0 + Bp20

)
. (21)

Proof Applying the symplectic condition Eq. (19), the
energy error � ≡ H(θL , pL) − H(θ0, p0) then follows

2� = p2L + (1 + κ)θ2L − p20 − (1 + κ)θ20

= (Cθ0 + Ap0)
2 + (1 + κ) (Bp0 + Aθ0)

2

− p20 − (1 + κ)θ20

= (C2 + (A2 − 1)(1 + κ))θ20

+ 2A(C+(1+κ)B)θ0 p0+(A2−1+(1 + κ)B2)p20

= (C + (1 + κ)B)
(
Cθ20 + 2Aθ0 p0 + Bp20

)
.

��
Theorem 1 With the notation of the lemma, assume that the
initial conditions θ0 ∼ N (0, 1/(1 + κ)), p0 ∼ N (0, 1) are
(independently) distributed according to their stationary dis-
tributions corresponding to the Hamiltonian for the model
problem Eq. (17). Then the expected energy error follows

E[�] = sin2(Lηκ,ε)ρ(ε, κ) ≤ ρ(ε, κ),

where ρ is given by

ρ(ε, κ) = 1

2

(√
1 + κχκ,ε − 1√

1 + κχκ,ε

)2

=
(
Cκ,ε + (1 + κ)Bκ,ε

)2
2(1 + κ)(1 − A2

κ,ε)
. (22)

Proof Since E[θ0 p0] = E[θ0]E[p0] = 0 and E[p20] =
1,E[θ20 ] = 1/(1 + κ), the expectation of Eq. (21) is

E[�] = 1

2
(C + (1 + κ)B)

(
C

1 + κ
+ B

)

= 1

2

(
C√
1 + κ

+ √
1 + κB

)2

.

Substituting the expressions for B,C from the definitions in
the theorem above into the last display and dropping the sub-
scripts to give χ = χκ,ε , s = sin(Lηκ,ε) and c = cos(Lηκ,ε)

gives

E[�] = 1

2
s2

(
1

(1 + κ)χ2 + (1 + κ)χ2 − 2

)

= sin2(Lηκ,ε)ρ(ε, κ).

��
Since ηκ,ε and χκ,ε depend on the integrator Eq. (20),

the ρ function also depends on the integrator. Note that ρ

does not change with L . For the model problem, integra-
tors with smaller ρ lead to smaller averaged energy errors at
stationarity of the chain and therefore to smaller empirical
rejection rates. By diagonalization it is easily shown as in
(Blanes et al. 2014) that the same is true for all Gaussian
targets∝ exp(−U (θ)),U = U0+U1. This suggests that, all
other things being equal, integrators with smaller ρ should
be preferred (see a full discussion in (Calvo et al. 2021)).

KRK vs. RKR

For the KRK integration, we find (similarly to Section 3) that
a stable integration requires−1 < cos(ε)−εκ sin(ε)/2 < 1,
so that, the stability limit for κ > 0 is

ε <
2 cot(ε/2)

κ
. (23)

Note that ε < π for any value of κ > 0. For −1 < κ < 0,
the stability limit is ε < π . Application of the formula Eq.
(22) gives the ρ function of the integrator as

ρ[K RK ](ε, κ) = κ2 csc(ε)(−4ε cos(ε) + (4 + κε2) sin(ε))2

8(1 + κ)(4κε cos(ε) + (4 − κ2ε2) sin(ε))
.

For κ = 0, ρ vanishes as expected because then the integra-
tion is exact.

Similarly, for RKR, stable integration requires −1 <

cos(ε)−εκ sin(ε)/2 < 1, so that, the stability limit for κ > 0
of RKR is the samewe found in (23). Again for−1 < κ < 0,
the stability limit is ε < π , as for KRK.

Application of the formula Eq. (22) gives the ρ function
of the RKR integrator as

ρ[RK R](ε, κ) = κ2 csc(ε)(κε cos(ε) + 2 sin(ε) − (2 + κ)ε)2

2(1 + κ)(4κε cos(ε) + (4 − κ2ε2) sin(ε))
.

The following result implies that for all Gaussian prob-
lems, at stationarity, RKR always leads to smaller energy
errors/higher acceptance rates than KRK.

Theorem 2 For each choice of κ > −1, κ �= 0, and ε > 0
leading to a stable KRK or RKR integration

ρ[RK R](ε, κ) < ρ[K RK ](ε, κ).

Proof From the expressions for ρ given above, we have to
show that

4(κε cos(ε) + 2 sin(ε) − (2 + κ)ε)2

< (−4ε cos(ε) + (4 + κε2) sin(ε))2.
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It is therefore sufficient to show that

2(κε cos(ε) + 2 sin(ε) − (2 + κ)ε)

< −4ε cos(ε) + (4 + κε2) sin(ε) (24)

and

4ε cos(ε) − (4 + κε2) sin(ε)

< 2(κε cos(ε) + 2 sin(ε) − (2 + κ)ε). (25)

The inequality (24) may be rearranged as

2κε
(
cos(ε) − 1

)
< 4ε

(
1 − cos(ε)

) + κε2 sin(ε),

or

−4κε sin2(ε/2) < 8ε sin2(ε/2) + 2κε2 sin(ε/2) cos(ε/2).

Since for stable runs ε < π , so that sin2(ε/2) > 0, the last
display is equivalent to

−4κ < 8 + 2κε cot(ε/2)

or

−4 < κ
(
ε cot(ε/2) + 2

)
.

For 0 < ε < π , ε cot(ε/2) + 2 takes values between 4 and
2 and therefore the last inequality certainly holds for each
κ > −1.

The inequality (25) may be similarly rearranged as

κε
(
2 − ε cot(ε/2)

)
< 4

(
2 − ε cot(ε/2)

)
cot(ε/2)

)
.

Since, for 0 < ε < π , 2 − ε cot(ε/2) > 0, we conclude that
(25) is equivalent to

κε < 4 cot(ε/2),

a relation that, according to (23), holds for stable integrations
with κ > 0 and is trivially satisfied for κ < 0, ε ∈ (0, π). ��

Multistage splittings

In addition to the Strang formula (3) one may consider more
sophisticated schemes

ψε = ϕ[H1]
a1ε ◦ ϕ

[H2]
b1ε

◦ ϕ[H1]
a2ε ◦ · · ·ϕ[H1]

am−1ε
◦ ϕ

[H2]
bm−1ε

◦ ϕ[H1]
amε (26)

where
∑

a j = ∑
b j = 1. These integrators are always

symplectic and in addition are time reversible if they are
palindromic i.e. ai = am−i+1, i = 1, . . . ,m, bi = bm−i , i =
1, . . . ,m − 1. In the case of the kinetic/potential splitting of

H , integrators of the form (26) when used for HMC sampling
may provide very large improvements on leapfrog/Verlet (see
(Calvo et al. 2021; Blanes et al. 2021) and their references).
For the preconditioned H0 + U1 splitting in this paper, we
have investigated extensively the existence of formulas of
the format (26) that improve on the RKR integrator based
on the Strang recipe (3). We proceeded in a way parallel to
that followed in (Blanes et al. 2014). For fixed m, m = 3
or m = 4, and a suitable range of values of κ and ε, we
choose the values of ai and bi so as to minimize the function
ρ in Theorem 1, thus minimizing the expected energy error
at stationarity in the integration of the model problem. The
outcome of our investigation was that, while we succeeded
in finding formulas that improve on the Preconditioned RKR
integrator, the improvements were minor and did not warrant
the replacement of RKR by more sophisticated formulas.
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