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Abstract
We develop a prior probability model for temporal Poisson process intensities through structured mixtures of Erlang den-
sities with common scale parameter, mixing on the integer shape parameters. The mixture weights are constructed through
increments of a cumulative intensity function which is modeled nonparametrically with a gamma process prior. Such model
specification provides a novel extension of Erlang mixtures for density estimation to the intensity estimation setting. The
prior model structure supports general shapes for the point process intensity function, and it also enables effective handling
of the Poisson process likelihood normalizing term resulting in efficient posterior simulation. The Erlang mixture modeling
approach is further elaborated to develop an inference method for spatial Poisson processes. The methodology is examined
relative to existing Bayesian nonparametric modeling approaches, including empirical comparison with Gaussian process
prior based models, and is illustrated with synthetic and real data examples.

Keywords Bayesian nonparametrics · Erlang mixtures · Gamma process · Markov chain Monte Carlo · Non-homogeneous
Poisson process

1 Introduction

Poisson processes play a key role in both theory and appli-
cations of point processes. They form a widely used class
of stochastic models for point patterns that arise in biology,
ecology, engineering and finance among many other disci-
plines. The relatively tractable form of the non-homogeneous
Poisson process (NHPP) likelihood is one of the reasons for
the popularity of NHPPs in applications involving point pro-
cess data.

Theoretical background for the Poisson process can be
found, for example, in Kingman (1993) and Daley and Vere-
Jones (2003). Regarding Bayesian nonparametric modeling
and inference, prior probability models have been developed
for the NHPP mean measure (e.g., Lo 1982, 1992), and
mainly for the intensity function of NHPPs over time and/or
space.Modelingmethods for NHPP intensities include: mix-
tures of non-negative kernels with weighted gamma process
priors for the mixing measure (e.g., Lo and Weng 1989;
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Wolpert and Ickstadt 1998; Ishwaran and James 2004; Kang
et al. 2014); piecewise constant functions driven by Voronoi
tessellationswithMarkov randomfieldpriors (Heikkinen and
Arjas 1998, 1999); Gaussian process priors for logarithmic
or logit transformations of the intensity (e.g., Møller et al.
1998; Brix and Diggle 2001; Adams et al. 2009; Rodrigues
and Diggle 2012); and Dirichlet process mixtures for the
NHPP density, i.e., the intensity function normalized in the
observation window (e.g., Kottas 2006; Kottas and Sansó
2007; Taddy and Kottas 2012).

Here, we seek to develop a flexible and computation-
ally efficient model for NHPP intensity functions over time
or space. We focus on temporal intensities to motivate the
modeling approach and to detail the methodological devel-
opment, and then extend the model for spatial NHPPs. The
NHPP intensity over time is represented as a weighted com-
bination of Erlang densities indexed by their integer shape
parameters and with a common scale parameter. Thus, dif-
ferent from existing mixture representations, the proposed
mixture model is more structured with each Erlang density
identified by the corresponding mixture weight. The non-
negative mixture weights are defined through increments of
a cumulative intensity on R

+. Under certain conditions, the
Erlang mixture intensity model can approximate in a point-
wise sense general intensities onR+ (seeSect. 2.1).Agamma
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process prior is assigned to the primary model component,
that is, the cumulative intensity that defines the mixture
weights. Mixture weights driven by a gamma process prior
result in flexible intensity function shapes, and, at the same
time, ready prior-to-posterior updating given the observed
point pattern. Indeed, a key feature of the model is that it
can be implemented with an efficient Markov chain Monte
Carlo (MCMC) algorithm that does not require approxima-
tions, complex computational methods, or restrictive prior
modeling assumptions in order to handle the NHPP likeli-
hood normalizing term. The intensity model is extended to
the two-dimensional setting through products of Erlang den-
sities for themixture components,with theweights built from
a measure modeled again with a gamma process prior. The
extension to spatial NHPPs retains the appealing aspect of
computationally efficient MCMC posterior simulation.

The paper is organized as follows. Section 2 presents the
modeling and inference methodology for NHPP intensities
over time. The modeling approach for temporal NHPPs is
illustrated through synthetic and real data in Sect. 3. Section 4
develops the model for spatial NHPP intensities, including
two data examples. Finally, Sect. 5 concludes with a discus-
sion of the modeling approach relative to existing Bayesian
nonparametric models, as well as of possible extensions of
the methodology.

2 Methodology for temporal Poisson
processes

The mixture model for NHPP intensities is developed in
Sect. 2.1, including discussion of model properties and the-
oretical justification. Sections 2.2 and 2.3 present a prior
specification approach and the posterior simulation method,
respectively.

2.1 Themixture modeling approach

A NHPP on R
+ can be defined through its intensity func-

tion, λ(t), for t ∈ R
+, a non-negative and locally integrable

function such that: (a) for any bounded B ⊂ R
+, the num-

ber of events in B, N (B), is Poisson distributed with mean
�(B) = ∫

B λ(u) du; and (b) given N (B) = n, the times
ti , for i = 1, . . . , n, that form the point pattern in B arise
independently and identically distributed (i.i.d.) according
to density λ(t)/�(B). Consequently, the likelihood for the
NHPP intensity function, based on the point pattern {0 <

t1 < · · · < tn < T } observed in time window (0, T ), is
proportional to exp(− ∫ T

0 λ(u) du)
∏n

i=1 λ(ti ).
Our modeling target is the intensity function, λ(t). We

denote by ga(· | α, β) the gamma density (or distribution,
depending on the context) with mean α/β. The proposed
intensity model involves a structured mixture of Erlang den-

sities, ga(t | j, θ−1), mixing on the integer shape parameters,
j , with a common scale parameter θ . The non-negative mix-
ture weights are defined through increments of a cumulative
intensity function, H , on R

+, which is assigned a gamma
process prior. More specifically,

λ(t) ≡ λ(t | H , θ) =
J∑

j=1

ω j ga(t | j, θ−1), t ∈ R
+

ω j = H( jθ) − H(( j − 1)θ), H ∼ G(H0, c0),

(1)

where G(H0, c0) is a gamma process specified through H0,
a (parametric) cumulative intensity function, and c0, a pos-
itive scalar parameter (Kalbfleisch 1978). For any t ∈ R

+,
E(H(t)) = H0(t) and Var(H(t)) = H0(t)/c0, and thus H0

plays the role of the centering cumulative intensity, whereas
c0 is a precision parameter. As an independent increments
process, the G(H0, c0) prior for H implies that, given θ , the
mixture weights are independent ga(ω j | c0 ω0 j (θ), c0) dis-
tributed, whereω0 j (θ) = H0( jθ)−H0(( j−1)θ). As shown
in Sect. 2.3, this is a key property of the prior model with
respect to implementation of posterior inference.

The model in (1) is motivated by Erlang mixtures for den-
sity estimation, under which a density g onR+ is represented
as g(t) ≡ gJ ,θ (t) = ∑J

j=1 p j ga(t | j, θ−1), for t ∈ R
+.

Here, p j = G( jθ) − G(( j − 1)θ), where G is a distri-
bution function on R

+; the last weight can be defined as
pJ = 1 − G((J − 1)θ) to ensure that (p1, . . . , pJ ) is a
probability vector. Erlang mixtures can approximate general
densities on the positive real line, in particular, as θ → 0
and J → ∞, gJ ,θ converges pointwise to the density of dis-
tribution function G that defines the mixture weights. This
convergence property can be obtained from more general
results from the probability literature that studies Erlangmix-
tures as extensions of Bernstein polynomials to the positive
real line (e.g., Butzer 1954); a convergence proof specifically
for the distribution function of gJ ,θ can be found in Lee and
Lin (2010). Density estimation on compact sets via Bernstein
polynomials has been explored in the Bayesian nonpara-
metrics literature following the work of Petrone (1999a, b).
Regarding Bayesian nonparametric modeling with Erlang
mixtures, we are only aware of Xiao et al. (2021) where
renewal process inter-arrival distributions are modeled with
mixtures of Erlang distributions, using a Dirichlet process
prior (Ferguson 1973) for distribution function G. Venturini
et al. (2008) study a parametric Erlang mixture model for
density estimation on R

+, working with a Dirichlet prior
distribution for the mixture weights.

Therefore, themodeling approach in (1) exploits the struc-
ture of theErlangmixture densitymodel to develop a prior for
NHPP intensities, using the density/distribution function and
intensity/cumulative intensity function connection to define
the prior model for the mixture weights. In this context, the
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gamma process prior for cumulative intensity H is the nat-
ural analogue to the Dirichlet process prior for distribution
function G; recall that the Dirichlet process can be defined
through normalization of a gamma process (e.g., Ghosal and
van der Vaart 2017). To our knowledge, this is a novel con-
struction for NHPP intensities that has not been explored for
intensity estimation in either the classical or Bayesian non-
parametrics literature. The following lemma, which can be
obtained applying Theorem 2 from Butzer (1954), provides
theoretical motivation and support for the mixture model.

Lemma Let h be the intensity function of a NHPP on R
+,

with cumulative intensity function H(t) = ∫ t
0 h(u) du, such

that H(t) = O(tm), as t → ∞, for some m > 0. Con-
sider the mixture intensity model λJ ,θ (t) = ∑J

j=1{H( jθ)−
H(( j − 1)θ)} ga(t | j, θ−1), for t ∈ R

+. Then, as θ → 0
and J → ∞, λJ ,θ (t) converges to h(t) at every point t where
h(t) = dH(t)/dt.

The form of the prior model for the intensity in (1)
allows ready expressions for other NHPP functionals. For
instance, the total intensity over the observation timewindow
(0, T ) is given by

∫ T
0 λ(u) du = ∑J

j=1 ω j K j,θ (T ), where

K j,θ (T ) = ∫ T
0 ga(u | j, θ−1) du is the j-th Erlang distri-

bution function at T . In the context of the MCMC posterior
simulationmethod, this form enables efficient handling of the
NHPP likelihood normalizing constant.Moreover, theNHPP
density on interval (0, T ) can be expressed as a mixture of
truncated Erlang densities. More specifically,

f (t) = λ(t)
∫ T
0 λ(u) du

=
J∑

j=1

ω∗
j k(t | j, θ), t ∈ (0, T ), (2)

whereω∗
j = ω j K j,θ (T )/{∑J

r=1 ωr Kr ,θ (T )}, and k(t | j, θ)

is the j-th Erlang density truncated on (0, T ).
Regarding the role of the different model parameters, we

reiterate that (1) corresponds to a structured mixture. The
Erlang densities, ga(t | j, θ−1), play the role of basis func-
tions in the representation for the intensity. In this respect,
of primary importance is the flexibility of the nonparamet-
ric prior for the cumulative intensity function H that defines
the mixture weights. In particular, the gamma process prior
provides realizations for H with general shapes that can con-
centrate on different time intervals, thus favoring different
subsets of the Erlang basis densities through the correspond-
ing ω j . Here, the key parameter is the precision parameter
c0, which controls the variability of the gamma process prior
around H0, and thus the effective mixture weights. As an
illustration, Fig. 1 shows prior realizations for the weights
ω j (and the resulting intensity function) for different values
of c0, keeping all other model parameters the same. Note that
as c0 decreases, so does the number of practically non-zero
weights.

The prior mean for H is taken to be H0(t) = t/b, i.e.,
the cumulative intensity (hazard) of an exponential distribu-
tion with scale parameter b > 0. Although it is possible to
use more general centering functions, such as the Weibull
H0(t) = (t/b)a , the exponential form is sufficiently flexible
in practice, as demonstrated with the synthetic data examples
of Sect. 3. Based on the role of H in the intensity mixture
model, we typically anticipate realizations for H that are dif-
ferent from the centering function H0, and thus, as discussed
above, the more important gamma process parameter is c0.
Moreover, the exponential form for H0 allows for an ana-
lytical result for the prior expectation of the Erlang mixture
intensity model. Under H0(t) = t/b, the prior expectation
for the weights is given by E(ω j | θ, b) = θ/b. Therefore,
conditional on all model hyperparameters, the expectation of
λ(t) over the gamma process prior can be written as

E(λ(t) | b, θ) = θ

b

J∑

j=1

ga(t | j, θ−1)

= exp(−(t/θ))

b

J−1∑

m=0

(t/θ)m

m! , t ∈ R
+,

which converges to b−1, as J → ∞, for any t ∈ R
+ (and

regardless of the value of θ and c0). In practice, the prior
mean for the intensity function is essentially constant at b−1

for t ∈ (0, Jθ), which, as discussed below, is roughly the
effective support of the NHPP intensity. This result is useful
for prior specification as it distinguishes the role of b from
that of parameters θ and c0.

Also key are the two remaining model parameters, the
number of Erlang basis densities J , and their common scale
parameter θ . Parameters θ and J interact to control both
the effective support and shape of NHPP intensities arising
under (1). Regarding intensity shapes, as the lemma suggests,
smaller values of θ and larger values of J generally result in
more variable, typically multimodal intensities. Moreover,
the representation for λ(t) in (1) utilizes Erlang basis densi-
ties with increasing means jθ , and thus (0, Jθ) can be used
as a proxy for the effective support of the NHPP intensity.
Of course, the mean underestimates the effective support,
a more accurate guess can be obtained using, say, the 95%
percentile of the last Erlang density component. For an illus-
tration, Fig. 2 plots five prior intensity realizations under
three combinations of (θ, J ) values, with c0 = 0.01 and
b = 0.01 in all cases. Also plotted are the prior mean and
95% interval bands for the intensity, based on 1000 realiza-
tions from the prior model. The left panel corresponds to the
largest value for Jθ and, consequently, to thewidest effective
support interval. The value of Jθ is the same for the middle
and right panels, resulting in similar effective support. How-
ever, the intensities in themiddle panel show larger variability
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Fig. 1 Prior realizations for the mixture weights (top panels) and the corresponding intensity function (bottom panels) for three different values of
the gamma process precision parameter, c0 = 0.05, 1, 10. In all cases, J = 50, θ = 0.4, and H0(t) = t/2

in their shapes, as expected since the value of J is increased
and the value of θ decreased relative to the ones in the right
panel.

2.2 Prior specification

To complete the full Bayesian model, we place prior distri-
butions on the parameters c0 and b of the gamma process
prior for H , and on the scale parameter θ of the Erlang basis
densities. A generic approach to specify these hyperpriors
can be obtained using the observation time window (0, T ) as
the effective support of the NHPP intensity.

We work with exponential prior distributions for parame-
ters c0 and b. Using the prior mean for the intensity function,
which as discussed in Sect. 2.1 is roughly constant at b−1

within the time interval of interest, the total intensity in (0, T )

can be approximated by T /b. Therefore, taking the size n of
the observed point pattern, as a proxy for the total intensity in
(0, T ), we can use T /n to specify themean of the exponential
prior distribution for b. Given its role in the gamma process
prior, we anticipate that small values of c0 will be important
to allow prior variability around H0, as well as sparsity in the
mixture weights. Experience from prior simulations, such
as the ones shown in Fig. 1, is useful to guide the range of

“small” values. Note that the pattern observed in Fig. 1 is not
affected by the length of the observation window. In general,
a value around 10 can be viewed as a conservative guess at a
high percentile for c0. For the data examples of Sect. 3, we
assigned an exponential prior with mean 10 to c0, observing
substantial learning for this key model hyperparameter with
its posterior distribution supported by values (much) smaller
than 1.

Also given the key role of parameter θ in controlling the
intensity shapes, we recommend favoring sufficiently small
values in the prior for θ , especially if prior information sug-
gests a non-standard intensity shape. Recall that θ , along
with J , control the effective support of the intensity, and
thus “small” values for θ should be assessed relative to the
length of the observation window. Again, prior simulation,
as in Fig. 2, is a useful tool. A practical approach to spec-
ify the prior range of θ values involves reducing the Erlang
mixture model to the first component. The corresponding
(exponential) density has mean θ , and we thus use (0, T )

as the effective prior range for θ . Because T is a fairly
large upper bound, and since we wish to favor smaller θ

values, rather than an exponential prior, we use a Lomax
prior, p(θ) ∝ (1 + d−1

θ θ)−3, with shape parameter equal to
2 (thus implying infinite variance), and median dθ (

√
2− 1).
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Fig. 2 Prior mean (black line), prior 95% interval bands (shaded
area), and five individual prior realizations for the intensity under the
Erlang mixture model in (1) with (θ, J ) = (0.4, 50) (left panel),

(θ, J ) = (0.2, 50) (middle panel), and (θ, J ) = (1, 10) (right panel).
In all cases, the gamma process prior is specified with c0 = 0.01 and
H0(t) = t/0.01

The value of the scale parameter, dθ , is specified such that
Pr(0 < θ < T ) ≈ 0.999. This simple strategy is effective in
practice in identifying a plausible range of θ values. For the
synthetic data examples of Sect. 3, for which T = 20, we
assigned a Lomax prior with scale parameter dθ = 1 to θ ,
obtaining overall moderate prior-to-posterior learning for θ .

Finally, we work with fixed J , the value of which can
be specified exploiting the role of θ and J in controlling
the support of the NHPP intensity. In particular, J can be
set equal to the integer part of T /θ∗, where θ∗ is the prior
median for θ . More conservatively, this value can be used
as a lower bound for values of J to be studied in a sensi-
tivity analysis, especially for applications where one expects
non-standard shapes for the intensity function. In practice,
we recommend conducting prior sensitivity analysis for all
model parameters, as well as plotting prior realizations and
prior uncertainty bands for the intensity function to graphi-
cally explore the implications of different prior choices.

The number of Erlang basis densities is the only model
parameter which is not assigned a hyperprior. Placing a
prior on J complicates significantly the posterior simulation
method, as it necessitates use of variable-dimension MCMC
techniques, while offering relatively little from a practical
point of view. The key observation is again that the Erlang
densities play the role of basis functions rather than of kernel
densities in traditional (less structured) finite mixture mod-
els. Also key is the nonparametric nature of the prior for
function H that defines the mixture weights which select
the Erlang densities to be used in the representation of the
intensity. This model feature effectively guards against over-
fitting if one conservatively chooses a larger value for J than
may be necessary. In this respect, the flexibility afforded by
random parameters c0 and θ is particularly useful. Overall,
we have found that fixing J strikes a good balance between

computational tractability and model flexibility in terms of
the resulting inferences.

2.3 Posterior simulation

Denote as before by {0 < t1 < · · · < tn < T } the point
pattern observed in time window (0, T ). Under the Erlang
mixture model of Sect. 2.1, the NHPP likelihood is propor-
tional to

exp

(

−
∫ T

0
λ(u) du

) n∏

i=1

λ(ti )

= exp

⎛

⎝−
J∑

j=1

ω j K j,θ (T )

⎞

⎠
n∏

i=1

⎧
⎨

⎩

J∑

j=1

ω j ga(ti | j, θ−1)

⎫
⎬

⎭

=
J∏

j=1

exp(−ω j K j,θ (T ))

n∏

i=1

⎧
⎨

⎩

⎛

⎝
J∑

r=1

ωr

⎞

⎠
J∑

j=1

(
ω j

∑J
r=1 ωr

)

ga(ti | j, θ−1)

⎫
⎬

⎭
,

where K j,θ (T ) = ∫ T
0 ga(u | j, θ−1) du is the j-th Erlang

distribution function at T .
For the posterior simulation approach, we augment the

likelihood with auxiliary variables γ = {γi : i = 1, . . . , n},
where γi identifies the Erlang basis density to which time
event ti is assigned. Then, the augmented, hierarchical model
for the data can be expressed as follows:

{t1, . . . , tn} | γ ,ω, θ ∼
J∏

j=1

exp(−ω j K j,θ (T ))

n∏

i=1

{(
J∑

r=1

ωr

)

ga(ti | γi , θ
−1)

}
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γi | ω
i .i .d.∼

J∑

j=1

(
ω j

∑J
r=1 ωr

)

δ j (γi ), i = 1, . . . , n

θ, c0, b,ω ∼ p(θ) p(c0) p(b)
J∏

j=1

ga(ω j | c0 ω0 j (θ), c0),

(3)

where ω = {ω j : j = 1, . . . , J }, and p(θ), p(c0), and
p(b) denote the priors for θ , c0, and b. Recall that, under
the exponential distribution form for H0 = t/b, we have
ω0 j (θ) = θ/b.

We utilize Gibbs sampling to explore the posterior distri-
bution. The sampler involves ready updates for the auxiliary
variables γi , and, importantly, also for the mixture weights
ω j . More specifically, the posterior full conditional for each
γi is a discrete distribution on {1, . . . , J } such that Pr(γi =
j | θ,ω, data) ∝ ω j ga(ti | j, θ−1), for j = 1, . . . , J .
Denote by N j = |{ti : γi = j}|, for j = 1, . . . , J , that is,

N j is the number of time points assigned to the j-th Erlang
basis density. The posterior full conditional distribution for
ω is derived as follows:

p(ω | θ, c0, b, γ , data)

∝
⎧
⎨

⎩

J∏

j=1

exp(−ω j K j,θ (T ))

⎫
⎬

⎭

(
J∑

r=1

ωr

)n

×
⎧
⎨

⎩

J∏

j=1

ω
N j
j

(
J∑

r=1

ωr

)−N j
⎫
⎬

⎭
⎧
⎨

⎩

J∏

j=1

ga(ω j | c0 ω0 j (θ), c0)

⎫
⎬

⎭

∝
J∏

j=1

exp(−ω j K j,θ (T )) ω
N j
j ga(ω j | c0 ω0 j (θ), c0)

=
J∏

j=1

ga(ω j | N j + c0 ω0 j (θ), K j,θ (T ) + c0),

where we have used the fact that
∑J

j=1 N j = n. Therefore,
given the other parameters and the data, the mixture weights
are independent, and each ω j follows a gamma posterior
full conditional distribution. This is a practically important
feature of the model in terms of convenient updates for the
mixture weights, and with respect to efficiency of the poste-
rior simulation algorithm as it pertains to this key component
of the model parameter vector.

Finally, each of the remaining parameters, c0, b, and θ ,
is updated with a Metropolis–Hastings (M–H) step, using a
log-normal proposal distribution in each case.

2.4 Model extensions to incorporate marks

Here, we discuss how the Erlang mixture prior for NHPP
intensities can be embedded in semiparametric models for
point patterns that include additional information on marks.

Consider the setting where, associated with each observed
time event ti , marks yi ≡ yti are recorded (marks are only
observed when an event is observed). Without loss of gener-
ality, we assume that marks are continuous variables taking
values in mark space M ⊆ R

d , for d ≥ 1. As discussed
in Taddy and Kottas (2012), a nonparametric prior for the
intensity of the temporal process, T , can be combined with a
mark distribution to construct a semiparametric model for
marked NHPPs. In particular, consider a generic marked
NHPP {(t, yt ) : t ∈ T , yt ∈ M}, that is: the temporal
process T is a NHPP on R

+ with intensity function λ; and,
conditional on T , the marks { yt : t ∈ T } are mutually inde-
pendent. Now, assume that, conditional on T , the marks have
density mt that depends only on t (i.e., it does not depend
on any earlier time t ′ < t). Then, by the “marking” theo-
rem (e.g., Kingman 1993), we have that the marked NHPP
is a NHPP on the extended space R

+ × M with intensity
λ∗(t, yt ) = λ(t)mt ( yt ). Therefore, the likelihood for the
observed marked point pattern {(ti , yi ) : i = 1, . . . , n} can
be written as exp

(
− ∫ T

0 λ(u) du
) ∏n

i=1 λ(ti )
∏n

i=1 mti ( yi )

(the integral
∫ T
0

∫
M λ∗(u, z) dudz in the normalizing term

reduces to
∫ T
0 λ(u) du, since mt is a density). Hence, the

MCMC method of Sect. 2.3 can be extended for marked
NHPP models built from the Erlang mixture prior for inten-
sity λ, and any time-dependent model for the mark density
mt .

3 Data examples

To empirically investigate inference under the proposed
model, we present three synthetic data examples correspond-
ing to decreasing, increasing, and bimodal intensities. We
also consider the coal-mining disasters data set, which is
commonly used to illustrate NHPP intensity estimation.

We used the approach of Sect. 2.2 to specify the priors for
c0, b and θ , and the value for J . In particular, we used the
exponential prior for c0 with mean 10 for all data examples.
For the three synthetic data sets (for which T = 20), we used
the Lomax prior for θ with shape parameter equal to 2 and
scale parameter equal to 1. Prior sensitivity analysis results
for the synthetic data example of Sect. 3.3 are provided in
the Supplementary Material. Overall, results from prior sen-
sitivity analysis (also conducted for all other data examples)
suggest that the prior specification approach of Sect. 2.2 is
effective as a general strategy. Moreover, more dispersed pri-
ors for parameters c0, b and θ have little to no effect on the
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Fig. 3 Synthetic data from
temporal NHPP with decreasing
intensity. The top left panel
shows the posterior mean
estimate (dashed-dotted line)
and posterior 95% interval
bands (shaded area) for the
intensity function. The true
intensity is denoted by the solid
line. The point pattern is plotted
in the bottom left panel. The
three plots on the right panels
display histograms of the
posterior samples for the model
hyperparameters, along with the
corresponding prior densities
(dashed lines)
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posterior distribution for these parameters and essentially no
effect on posterior estimates for the NHPP intensity function,
even for point patterns with relatively small size, such as the
one (n = 112) for the data example of Sect. 3.3.

The Supplement provides also computational details
about the MCMC posterior simulation algorithm, including
study of the effect of the number of basis densities (J ) and
the size of the point pattern (n) on effective sample size and
computing time.

3.1 Decreasing intensity synthetic point pattern

The first synthetic data set involves 491 time points gener-
ated in time window (0, 20) from a NHPP with intensity
function β−1α(β−1t)α−1, where (α, β) = (0.5, 8 × 10−5).
This form corresponds to the hazard function of a Weibull
distribution with shape parameter less than 1, thus resulting
in a decreasing intensity function.

The Erlang mixture model was applied with J = 50, and
an exponential prior for b with mean 0.04. The model cap-
tures the decreasing pattern of the data generating intensity
function; see Fig. 3. We note that there is significant prior-
to-posterior learning in the intensity function estimation; the
prior intensity mean is roughly constant at value about 25

with prior uncertainty bands that cover almost the entire top
left panel in Fig. 3. Prior uncertainty bands were similarly
wide for all other data examples.

3.2 Increasing intensity synthetic point pattern

We consider again the form β−1α(β−1t)α−1 for the NHPP
intensity function, but here with (α, β) = (6, 7) such that the
intensity is increasing. A point pattern comprising 565 points
was generated in time window (0, 20). The Erlang mixture
model was applied with J = 50, and an exponential prior
for b with mean 0.035. Figure 4 reports inference results.
This example demonstrates the model’s capacity to effec-
tively recover increasing intensity shapes over the bounded
observation window, even though the Erlang basis densities
are ultimately decreasing.

3.3 Bimodal intensity synthetic point pattern

The data examples in Sects. 3.1 and 3.2 illustrate the model’s
capacity to uncover monotonic intensity shapes, associated
with a parametric distribution different from the Erlang
distribution that forms the basis of the mixture intensity
model. Here, we consider a point pattern generated from
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Fig. 4 Synthetic data from
temporal NHPP with increasing
intensity. The top left panel
shows the posterior mean
estimate (dashed-dotted line)
and posterior 95% interval
bands (shaded area) for the
intensity function. The true
intensity is denoted by the solid
line. The point pattern is plotted
in the bottom left panel. The
three plots on the right panels
display histograms of the
posterior samples for the model
hyperparameters, along with the
corresponding prior densities
(dashed lines)
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a NHPP with a more complex intensity function, λ(t) =
50We(t | 3.5, 5) + 60We(t | 6.5, 15), where We(t | α, β)

denotes theWeibull densitywith shape parameterα andmean
β 
(1 + 1/α). This specification results in a bimodal inten-
sity within the observation window (0, 20)where a synthetic
point pattern of 112 time points is generated; see Fig. 5.

We used an exponential prior for b with mean 0.179.
Anticipating an underlying intensity with less standard shape
than in the earlier examples, we compare inference results
under J = 50 and J = 100; see Fig. 5. The posterior point
and interval estimates capture effectively the bimodal inten-
sity shape, especially if one takes into account the relatively
small size of the point pattern. (In particular, the histogram
of the simulated random time points indicates that they do
not provide an entirely accurate depiction of the underly-
ing NHPP density shape.) The estimates are somewhat more
accurate under J = 100. The estimates for the mixture
weights (left column of Fig. 5) indicate the subsets of the
Erlang basis densities that are utilized under the two differ-
ent values for J . The posterior mean of θ was 0.366 under
J = 50, and 0.258 under J = 100, that is, as expected, infer-
ence for θ adjusts to different values of J such that (0, Jθ)

provides roughly the effective support of the intensity.

3.4 Coal-mining disasters data

Our real data example involves the “coal-mining disasters”
data (e.g., Andrews andHerzberg 1985, p. 53–56), a standard
dataset used in the literature to testNHPP intensity estimation
methods. The point pattern comprises the times (in days)
of n = 191 explosions of fire-damp or coal-dust in mines
resulting in 10 or more casualties from the accident. The
observation window consists of 40,550 days, from March
15, 1851 to March 22, 1962.

We fit the Erlang mixture model with J = 50, using a
Lomax prior for θ with shape parameter 2 and scale param-
eter 2000, such that Pr(0 < θ < 40,550) ≈ 0.998, and an
exponential prior for b with mean 213. We also implemented
themodelwith J = 130, obtaining essentially the same infer-
ence results for the NHPP functionals with the ones reported
in Fig. 6.

The estimates for the point process intensity and density
functions (Fig. 6, top row) suggest that themodel successfully
captures the multimodal intensity shape suggested by the
data. The estimates for the mixture weights (Fig. 6, bottom
left panel) indicate the Erlang basis densities that are more
influential to the model fit.
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Fig. 5 Synthetic data from temporal NHPP with bimodal intensity.
Inference results are reported under J = 50 (top row) and J = 100 (bot-
tom row). The left column plots the posterior means (circles) and 90%
interval estimates (bars) of the weights for the Erlang basis densities.
Themiddle column displays the posteriormean estimate (dashed-dotted
line) and posterior 95% interval bands (shaded area) for theNHPP inten-

sity function. The true intensity is denoted by the solid line. The bars on
the horizontal axis indicate the point pattern. The right column plots the
posterior mean estimate (dashed-dotted line) and posterior 95% interval
bands (shaded area) for the NHPP density function on the observation
window. The histogram corresponds to the simulated times that com-
prise the point pattern

The bottom right panel of Fig. 6 reports results from
graphical model checking, using the “time-rescaling” the-
orem (e.g., Daley and Vere-Jones 2003). If the point pattern
{0 = t0 < t1 < · · · < tn < T } is a realization from a NHPP
with cumulative intensity function �(t) = ∫ t

0 λ(u)du, then
the transformed point pattern {�(ti ) : i = 1, . . . , n} is a
realization from a unit rate homogeneous Poisson process.
Therefore, ifwe further transform toUi = 1−exp{−(�(ti )−
�(ti−1))}, where �(0) ≡ 0, then the {Ui : i = 1, . . . , n} are
independent uniform(0, 1) random variables. Hence, graphi-
cal model checking can be based on quantile–quantile (Q–Q)
plots to assess agreement of the estimated Ui with the uni-
form distribution on the unit interval. Under the Bayesian
inference framework, we can obtain a posterior sample for
the Ui for each posterior realization for the NHPP intensity,
and we can thus plot posterior point and interval estimates
for the Q–Q graph. These estimates suggest that the NHPP
model with the Erlang mixture intensity provides a good fit
for the coal-mining disasters data.

4 Modeling for spatial Poisson process
intensities

In Sect. 4.1, we extend the modeling framework to spatial
NHPPs with intensities defined on R

+ × R
+. The resulting

inference method is illustrated with synthetic and real data
examples in Sect. 4.2 and 4.3, respectively.

4.1 The Erlangmixture model for spatial NHPPs

A spatial NHPP is again characterized by its intensity func-
tion, λ(s), for s = (s1, s2) ∈ R

+ × R
+. The NHPP

intensity is a non-negative and locally integrable function
such that: (a) for any bounded B ⊂ R

+ × R
+, the num-

ber of points in B, N (B), follows a Poisson distribution with
mean

∫
B λ(u) du; and (b) given N (B) = n, the random loca-

tions si = (si1, si2), for i = 1, . . . , n, that form the spatial
point pattern in B are i.i.d. with density λ(s)/{∫B λ(u) du}.
Therefore, the structure of the likelihood for the intensity
function is similar to the temporal NHPP case. In particular,
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Fig. 6 Coal-mining disasters data. The top left panel shows the poste-
rior mean estimate (dashed-dotted line) and 95% interval bands (shaded
area) for the intensity function. The bars at the bottom indicate the
observed point pattern. The top right panel plots the posterior mean
(dashed-dotted line) and 95% interval bands (shaded area) for theNHPP

density, overlaid on the histogram of the accident times. The bottom left
panel presents the posterior means (circles) and 90% interval estimates
(bars) of the mixture weights. The bottom right panel plots the poste-
riormean and 95% interval bands for the time-rescalingmodel checking
Q–Q plot

for spatial point pattern, {s1, . . . , sn}, observed in bounded
region D ⊂ R

+ × R
+, the likelihood is proportional to

exp{− ∫
D λ(u) du} ∏n

i=1 λ(si ). As is typically the case in
standard applications involving spatial NHPPs, we consider
a regular, rectangular domain for the observation region D,
which can therefore be taken without loss of generality to be
the unit square.

Extending the Erlang mixture model in (1), we build the
basis representation for the spatialNHPP intensity fromprod-
ucts of Erlang densities, {ga(s1 | j1, θ

−1
1 ) ga(s2 | j2, θ

−1
2 ) :

j1, j2 = 1, . . . , J }. Mixing is again with respect to the
shape parameters ( j1, j2), and the basis densities share a
pair of scale parameters (θ1, θ2). Therefore, the model can
be expressed as

λ(s1, s2) =
J∑

j1=1

J∑

j2=1

ω j1 j2 ga(s1 | j1, θ
−1
1 ) ga(s2 | j2, θ

−1
2 ),

(s1, s2) ∈ R
+ × R

+.
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Again, a key model feature is the prior for the mixture
weights. Here, the basis density indexed by ( j1, j2) is asso-
ciated with rectangle A j1 j2 = [( j1 − 1)θ1, j1θ1) × [( j2 −
1)θ2, j2θ2). The corresponding weight is defined through
a random measure H supported on R

+ × R
+, such that

ω j1 j2 = H(A j1 j2). This construction extends the one for
the weights of the temporal NHPP model. We again place
a gamma process prior, G(H0, c0), on H , where c0 is the
precision parameter and H0 is the centering measure on
R

+ × R
+. As a natural extension of the exponential cumu-

lative hazard used in Sect. 2.1 for the gamma process prior
mean, we specify H0 to be proportional to area. In particu-
lar, H0(A j1 j2) = |A j1 j2 |/b = θ1θ2/b, where b > 0. Using
the independent increments property of the gamma process,
and under the specific choice of H0, the prior for the mixture
weights is given by

ω j1 j2 | θ1, θ2, c0, b
i .i .d.∼ ga(ω j1 j2 | c0 θ1 θ2 b

−1, c0),

j1, j2 = 1, . . . , J ,

which, as before, is a practically important feature of the
model construction as it pertains to MCMC posterior simu-
lation.

To complete the full Bayesian model, we place priors on
the common scale parameters for the basis densities, (θ1, θ2),
and on the gamma process prior hyperparameters c0 and b.
The role played by these model parameters is directly anal-
ogous to the one of the corresponding parameters for the
temporal NHPP model, as detailed in Sect. 2.1. Therefore,
we apply similar arguments to the ones in Sect. 2.2 to spec-
ify the model hyperpriors. More specifically, we work with
(independent) Lomax prior distributions for scale parameters
θ1 and θ2, where the shape parameter of the Lomax prior is
set equal to 2 and the scale parameter is specified such that
Pr(0 < θ1 < 1)Pr(0 < θ2 < 1) ≈ 0.999. Recall that the
observation region is taken to be the unit square; in general,
for a square observation region, this approach implies the
same Lomax prior for θ1 and θ2. The gamma process preci-
sion parameter c0 is assigned an exponential prior with mean
10. The result of Section 2.1 for the prior mean of the NHPP
intensity can be extended to show that E(λ(s1, s2) | b, θ1, θ2)
converges to b−1, as J → ∞, for any (s1, s2) ∈ R

+ × R
+,

and for any (θ1, θ2) (and c0). The prior mean for the spatial
NHPP intensity is practically constant at b−1 within its effec-
tive support given roughly by (0, Jθ1) × (0, Jθ2). Hence,
taking the size of the observed spatial point pattern as a proxy
for the total intensity, b is assigned an exponential prior dis-
tribution with mean 1/n. Finally, the choice of the value for
J can be guided from the approximate effective support for
the intensity, which is controlled by J along with θ1 and
θ2. Analogously to the approach discussed in Sect. 2.2, the
value of J (or perhaps a lower bound for J ) can be specified

through the integer part of 1/θ∗, where θ∗ is the median of
the common Lomax prior for θ1 and θ2.

The posterior simulation method for the spatial NHPP
model is developed through a straightforward extension of
the approach detailed in Sect. 2.3. We work again with the
augmented model that involves latent variables {γ i : i =
1, . . . , n}, where γ i = (γi1, γi2) identifies the basis density
to which observed point location (si1, si2) is assigned. The
spatial NHPP model retains the practically relevant feature
of efficient updates for the mixture weights, which, given
the other model parameters and the data, have independent
gamma posterior full conditional distributions. Details of the
MCMC posterior simulation algorithm are provided in the
Supplementary Material.

4.2 Synthetic data example

Here, we illustrate the spatial NHPP model using synthetic
data based on a bimodal intensity function built from a
two-component mixture of bivariate logit-normal densities.
Denote by BLN(μ, �) the bivariate logit-normal density
arising from the logistic transformation of a bivariate nor-
mal with mean vector μ and covariance matrix �. A spatial
point pattern of size 528 was generated over the unit square
from a NHPP with intensity λ(s1, s2) = 150BLN((s1, s2) |
μ1, �) + 350BLN((s1, s2) | μ2, �), where μ1 = (−1, 1),
μ2 = (1,−1), and� = (σ11, σ12, σ21, σ22) = (0.3, 0.1, 0.1,
0.3). The intensity function and the generated spatial point
pattern are shown in the top left panel of Fig. 7.

The Erlang mixture model was applied setting J = 70
and using the hyperpriors for θ1, θ2, c0 and b discussed
in Sect. 4.1. Figure 7 reports inference results. The pos-
terior mean intensity estimate successfully captures the
shape of the underlying intensity function. The structure
of the Erlang mixture model enables ready inference for
the marginal NHPP intensities associated with the two-
dimensional NHPP. Although such inference is generally
not of direct interest for spatial NHPPs, in the context of
a synthetic data example it provides an additional means to
check the model fit. The marginal intensity estimates effec-
tively retrieve the bimodality of the true marginal intensity
functions; the slight discrepancy at the second mode can be
explained by inspection of the generated data for which the
second mode clusters are located slightly to the left of the
theoretical mode. Finally, we note the substantial prior-to-
posterior learning for all model hyperparameters.

4.3 Real data illustration

Ourfinal data example involves a spatial point pattern that has
been previously used to illustrate NHPP intensity estimation
methods (e.g.,Diggle 2014;Kottas andSansó2007).Thedata
set involves the locations of 514 maple trees in a 19.6 acre
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Fig. 7 Synthetic data example from spatial NHPP. The top row pan-
els show contour plots of the true intensity, and of the posterior mean
and interquartile range estimates. The points in each panel indicate the
observed point pattern. The first two panels at the bottom row show the
marginal intensity estimates—posterior mean (dashed line) and 95%

uncertainty bands (shaded area)—alongwith the true function (red solid
line) and corresponding point pattern (bars at the bottom of each panel).
The bottom right panel displays histograms of posterior samples for the
model hyperparameters along with the corresponding prior densities
(dashed lines). (Color figure online)

square plot in Lansing Woods, Clinton County, Michigan,
USA; the maple trees point pattern is included in the left
column panels of Fig. 8.

To apply the spatial Erlang mixture model, we specified
the hyperpriors for θ1, θ2, c0 andb following the approachdis-
cussed in Sect. 4.1, and set J = 70.Aswith the synthetic data
example, the posterior distributions for model hyperparam-
eters are substantially concentrated relative to their priors;
see the bottom right panel of Fig. 8. The estimates for the
spatial intensity of maple tree locations reported in Fig. 8
demonstrate the model’s capacity to uncover non-standard,
multimodal intensity surfaces.

5 Discussion

We have proposed a Bayesian nonparametric modeling
approach for Poisson processes over time or space. The
approach is based on a mixture representation of the point
process intensity through Erlang basis densities, which are

fully specified save for a scale parameter shared by all
of them. The weights assigned to the Erlang densities are
defined through increments of a random measure (a ran-
dom cumulative intensity function in the temporal NHPP
case) which is modeled with a gamma process prior. A key
feature of the methodology is that it offers a good balance
between model flexibility and computational efficiency in
implementation of posterior inference. Such inference has
been illustrated with synthetic and real data for both tempo-
ral and spatial Poisson process intensities.

To discuss our contribution in the context ofBayesian non-
parametric modeling methods for NHPPs (briefly reviewed
in the Introduction), note that the main approaches can be
grouped into two broad categories: placing the prior model
on the NHPP intensity function; or, assigning separate priors
to the total intensity and the NHPP density (both defined over
the observation window).

In terms of applications, especially for spatial point pat-
terns, the most commonly explored class of models falling
in the former category involves Gaussian process (GP) pri-
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Fig. 8 Maple trees data. The top row panels show the posterior mean
estimate for the intensity function in the form of contour and perspec-
tive plots. The bottom left panel displays the corresponding posterior
interquartile range contour plot. The bottom right panel plots histograms

of posterior samples for the model hyperparameters along with the cor-
responding prior densities (dashed lines). The points in the left column
plots indicate the locations of the 514 maple trees

ors for logarithmic (or logit) transformations of the NHPP
intensity (e.g., Møller et al. 1998; Adams et al. 2009). The
NHPP likelihood normalizing term renders full posterior
inference under GP-based models particularly challenging.
This challenge has been bypassed using approximations of
the stochastic integral that defines the likelihood normaliz-
ing term (Brix and Diggle 2001; Brix andMøller 2001), data
augmentation techniques (Adams et al. 2009), and differ-

ent types of approximations of the NHPP likelihood along
with integrated nested Laplace approximation for approxi-
mate Bayesian inference (Illian et al. 2012; Simpson et al.
2016). In contrast, the Erlang mixture model can be read-
ily implemented with MCMC algorithms that do not involve
approximations to the NHPP likelihood or complex com-
putational techniques. The Supplementary Material includes
comparison of the proposed model with two GP-based mod-
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els: the sigmoidal Gaussian Cox process (SGCP) model
(Adams et al. 2009) for temporal NHPPs; and the log-
Gaussian Cox process (LGCP) model for spatial NHPPs, as
implemented in theR packagelgcp (Taylor et al. 2013). The
results, based on the synthetic data considered in Sects. 3.3
and 4.2, suggest that the Erlang mixture model is substan-
tially more computationally efficient than the SGCP model,
as well as less sensitive to model/prior specification than
LGCP models for which the choice of the GP covariance
function can have a large effect on the intensity surface esti-
mates.

Since it involves a mixture formulation for the NHPP
intensity, the proposed modeling approach is closer in spirit
to methods based on Dirichlet process mixture priors for
the NHPP density (e.g., Kottas and Sansó 2007; Taddy and
Kottas 2012). Both types of approaches build posterior simu-
lation from standard MCMC techniques for mixture models,
using latent variables that configure the observed points to
themixture components.Models that build from density esti-
mation with Dirichlet process mixtures benefit from the wide
availability of related posterior simulation methods (e.g., the
number of mixture components in the NHPP density rep-
resentation does not need to be specified), and from the
various extensions of the Dirichlet process for dependent
distributions that can be explored to develop flexible models
for hierarchically related point processes (e.g., Taddy 2010;
Kottas et al. 2012; Xiao et al. 2015; Rodriguez et al. 2017).
However, by construction, this approach is restricted to mod-
eling the NHPP intensity only on the observation window, in
fact, with a separate prior for the NHPP density and for the
total intensity over the observation window. The Erlang mix-
ture model overcomes this limitation. For instance, in the
temporal case, the prior model supports the intensity on R+,
and the priors for the total intensity and the NHPP density
over (0, T ) [given in Eq. (2)] are compatible with the prior
for the NHPP intensity.

The proposed model admits a parsimonious representa-
tion for the NHPP intensity with the Erlang basis densities
defined through a single parameter, the common scale param-
eter θ . Such intensity representations offer a nonparametric
Bayesian modeling perspective for point processes that may
be attractive in other contexts and for different types of
applications. For instance, Zhao and Kottas (2021) study
representations for the intensity through weighted combi-
nations of structured beta densities (with different priors for
the mixture weights), which are particularly well suited to
flexible and efficient inference for spatial NHPP intensities
over irregular domains.

Finally, we note that the Erlang mixture prior model is
useful as a building block toward Bayesian nonparametric
inference for point processes that can be represented as hier-
archically structured, clustered NHPPs. Current research is
exploring fully nonparametric modeling for a key example,

the Hawkes process (Hawkes 1971), using the Erlang mix-
ture prior for the Hawkes process immigrant (background)
intensity function.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10064-
0.
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