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Abstract
We propose to accelerate Hamiltonian and Lagrangian Monte Carlo algorithms by coupling them with Gaussian processes
for emulation of the log unnormalised posterior distribution. We provide proofs of detailed balance with respect to the
exact posterior distribution for these algorithms, and validate the correctness of the samplers’ implementation by Geweke
consistency tests. We implement these algorithms in a delayed acceptance (DA) framework, and investigate whether the DA
scheme can offer computational gains over the standard algorithms. A comparative evaluation study is carried out to assess
the performance of the methods on a series of models described by differential equations, including a real-world application
of a 1D fluid-dynamics model of the pulmonary blood circulation. The aim is to identify the algorithm which gives the best
trade-off between accuracy and computational efficiency, to be used in nonlinear DE models, which are computationally
onerous due to repeated numerical integrations in a Bayesian analysis. Results showed no advantage of the DA scheme over
the standard algorithms with respect to several efficiency measures based on the effective sample size for most methods
and DE models considered. These gradient-driven algorithms register a high acceptance rate, thus the number of expensive
forward model evaluations is not significantly reduced by the first emulator-based stage of DA. Additionally, the Lagrangian
Dynamical Monte Carlo and Riemann Manifold Hamiltonian Monte Carlo tended to register the highest efficiency (in terms
of effective sample size normalised by the number of forward model evaluations), followed by the Hamiltonian Monte Carlo,
and the No U-turn sampler tended to be the least efficient.

Keywords Parameter estimation · Uncertainty quantification · MCMC · Emulation · Gaussian processes · Differential
equations

1 Introduction

Parameter estimation and uncertainty quantification (UQ)
in systems of nonlinear ordinary and partial differential
equations (ODEs/PDEs) is a topical research area with the
emergence of complex mathematical models expressed via
ODEs or PDEs. Such models are heavily used throughout
all science and engineering fields to understand the under-
lying mechanisms behind a process (e.g. biological systems
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(Wilkinson 2007), or physiology (Mirams et al. 2016)). Sta-
tistical inference allows estimation of the unknown model
parameters from the data in a robust and coherent man-
ner within a Bayesian or frequentist framework. This is
however a challenging task to accomplish since nonlinear
ODE/PDE models that faithfully capture real-world pro-
cesses of interest are analytically intractable and can only be
solved using numerical integration. While this may not be a
problem if the numerical integration is performed only a few
times, it quickly becomes a major hindrance if incorporated
within an adaptive parameter estimation procedure requiring
thousands of ODE/PDE evaluations, incurring high compu-
tational costs. In addition, non-identifiable parameters due
to model formulation or insufficient amount of data, and any
strong parameter correlations further complicate the statisti-
cal analysis. Bayesian methods can be employed to provide
posterior probability distributions over parameters; Markov
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Chain Monte Carlo (MCMC) algorithms are generally used
to sample from the posterior distribution.

Finding efficient algorithms that return high effective
sample sizes (ESS) in a reasonable time frame is challeng-
ing, especially if there are strong correlations between the
parameters, which would retard the convergence of standard
MCMC algorithms, such as Metropolis–Hastings (M–H)
(Turner et al. 2013). The implication of using standard
MCMC algorithms on such problems is that a small step size
is needed to obtain a reasonable acceptance rate,which in turn
means that low ESS (or high auto-correlation) is obtained.
This problem can be alleviated by using more advanced
MCMC algorithms, such as the HMC algorithm (Neal 2011).
HMC introduces an auxiliary variable and makes use of
the gradient of the posterior distribution for more informed
moves in parameter space. However, while it has been shown
on numerous occasions that the HMC algorithm outperforms
random-walk algorithms in terms of efficiency (e.g. in Ch. 5
in Brooks et al. 2011 or in Sengupta et al. 2016), it has rarely
been applied to nonlinear ODE or PDE models, with four
noticeable exceptions Kramer et al. (2014), Lê et al. (2016),
Bui-Thanh and Girolami (2014), Sengupta et al. (2016).

Themajor drawback of applyingHMC toODE/PDEmod-
els over the M–H algorithm is related to the large number of
model evaluations before a proposal is made. In HMC, tra-
jectories are simulated, and throughout each trajectory, the
ODE/PDEs are evaluated multiple times (for calculating the
likelihood and its gradient) until a proposal is made, unlike
the M–H algorithm, which requires one single ODE/PDE
evaluation for a proposal to be made. To reduce the com-
putational burden, several approaches have been proposed
in the literature. In a special class of ODE models (steady
state data models), Kramer et al. (2014) make use of a
special property of steady state data to obtain output sen-
sitivities (i.e. derivatives of the model output with respect to
the unknown parameters) required in the Hamiltonian equa-
tions, through analytical calculations. However, the approach
in Kramer et al. (2014) cannot be applied to dynamic time
data ODE/PDEmodels for which the output sensitivities can
only be obtained via numerical integration. Sengupta et al.
(2016) compare the performance in terms of computational
speed and accuracy of three methods for calculating the like-
lihood gradients: finite differences,1 forward sensitivities2

and the adjoint method,3 and the latter was shown to be
superior (specific details of these methods can also be found
in Sengupta et al. (2014)). Similarly, Bui-Thanh and Giro-
lami (2014) apply the adjoint method in a PDE system to

1 d f (x)
dx = f (x+h)− f (x)

h , where h > 0 is a small constant
2 The ODE system is augmented to include the gradient of the states
with respect to the parameters (called the sensitivity derivative equation)
3 Avoids solving the sensitivity derivative equation by the use of a linear
adjoint equation, which is easier to numerically integrate

compute the first-, second- and third-order derivatives of the
likelihood as part of theRiemannManifoldHMC (RMHMC)
algorithm. The approaches taken in Sengupta et al. (2016)
and Bui-Thanh and Girolami (2014) can nevertheless still be
too computationally expensive for large class problems. The
study in Chen et al. (2014) introduces stochastic-gradient
HMC, which sub-samples the data and uses stochastic gradi-
ents as a replacement to full-data gradients in theHamiltonian
equations. Data sub-sampling introduces noise, which gets
propagated to the Hamiltonian differential equations, thus
the convergence to the posterior distribution depends on
stochastic differential equations, which may reduce explo-
ration efficiency and accuracy (Betancourt 2015).

Another approach proposed to speed up HMC involves
the replacement of the expensive likelihood (or posterior
distribution) with computationally cheaper surrogate models
(Rasmussen 2003; Zhang et al. 2017), i.e. HMC is coupled
with statistical emulation of the unnormalised posterior dis-
tribution. For this method, two routes can be taken: drawing
samples from the approximate posterior distribution defined
by the surrogate model (‘emulator’), or drawing samples
from a distribution that asymptotically converges to the true
posterior distribution (‘simulator’). The first route, taken in
multiple studies (Peirlinck et al. 2019; Schiavazzi et al. 2016;
Paun et al. 2019; Costabal et al. 2019; Bliznyuk et al. 2008;
Dietzel and Reichert 2014; Fielding et al. 2011; Wilkin-
son 2014), samples from the surrogate posterior distribution,
resulting in substantial gains in computational efficiency
(since the expensive model is no longer used), however accu-
racy is sacrificed.

Methods that correct for the bias and ensure asymptotic
exactness use the surrogate for the proposal only (see studies
in Rasmussen 2003; Zhang et al. 2017; Paun and Husmeier
2020), or incrementally refine the surrogatemodel asMCMC
proceeds (Zhang et al. 2017). Other studies employ similar
approaches guaranteeing asymptotic convergence to the pos-
terior distribution (WuandLi 2016;Conrad et al. 2016, 2018;
Gong and Duan 2017), e.g. the study in Conrad et al. (2016)
uses forward simulations from the expensive model to con-
tinually refine a local approximation of the log unnormalised
posterior, however the algorithmdepends onvarious heuristic
parameters, which critically affect the computational effi-
ciency and may be difficult to tune in practice. The delayed
acceptance (DA) scheme (Christen and Fox 2005; Golightly
et al. 2015) is another exact method, and it does not depend
on any heuristically set terms. This method, employed in
Christen and Fox (2005), Golightly et al. (2015), Sherlock
et al. (2017), Higdon et al. (2011), Cui et al. (2011), Quiroz
et al. (2018), Banterle et al. (2019), Paun and Husmeier
(2020), is a two-stage acceptance procedure, with two sep-
arate acceptance/rejection decisions. The first decision is a
computationally fast pre-filter step based on the surrogate
model, which upon rejection of a proposed new parameter
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avoids carrying out the computationally expensive second
step based on the original model.

In the current study, we employ HMC in combination
with statistical emulation using Gaussian processes (GPs)
of the log unnormalised posterior distribution within the
GP-HMC algorithm, following ideas in Rasmussen (2003)
and Lan et al. (2016). Throughout the trajectory, HMC runs
at low computational costs in the emulated space, and the
Metropolis–Hastings acceptance/rejection step at the end of
the trajectory is based on the ratio of the true posterior dis-
tributions. This requires one single numerical integration of
the ODEs/PDEs throughout one HMC trajectory segment to
obtain one parameter proposal, which substantially reduces
the computational complexity. The algorithm is exact in the
sense of converging to the true posterior distribution asymp-
totically, assuming no discretisation errors are introduced
from the numerical integration of the ODEs/PDEs.4

Our methodological contributions are as follows. Firstly,
we generalise the GP-HMC algorithm (Rasmussen 2003)
to algorithms which advance HMC: No U-turn sampler
(NUTS) (Hoffman and Gelman 2014), RMHMC (Girolami
and Calderhead 2011), and Lagrangian Dynamical Monte
Carlo (LDMC) (Lan et al. 2015). This includes novel detailed
balance proofs with respect to the correct posterior distri-
bution, and we show how these subsume the proof of the
GP-HMC algorithm as a limiting case. Secondly, we extend
these algorithms by including DA, with formal detailed bal-
ance proofs, to investigate if the DA scheme brings any
computational gains over the standard algorithms. Thirdly,
we assess the computational efficiency of these emulation
algorithms on a series of complex nonlinear ODE/PDEmod-
els.

The present study extends our previous work (Paun and
Husmeier 2020) by providing a theoretical framework for the
emulation algorithms and by investigating the efficiency of
the DA scheme in the context of the emulation HMC algo-
rithms. Moreover, we extend the simulation study to provide
a broad benchmark set of ODE/PDE models that are repre-
sentative of the complexity of typical real-world applications,
allowing us to carry out a sound method evaluation.

2 Background

2.1 Bayesian inference in ODEs/PDEs

By denoting the solution (output) from the ODEs/PDEs as
m(θ), which is a function of the unknown parameters θ , we

4 Investigation of the discretisation errors is beyond the scope of this
paper.

assume Normal data likelihood:

p(y|θ , σ 2) =
(

1√
2πσ 2

)n

exp

(
−

∑n
i=1(yi − mi (θ))2

2σ 2

)

=
(

1√
2πσ 2

)n

exp

(
−S(θ)

2σ 2

)
,

(1)

where m(θ) = (m1(θ), . . . ,mn(θ)) is the vector of predic-
tions from the ODEs/PDEs, y = (y1, . . . , yn) is the vector
of measurements, n is the number of data points, S(θ) is the
residual sum-of-squares (RSS) value corresponding to the
parameter vector θ , and σ 2 is the noise variance.

We employ Bayesian methods to infer θ , which is done
via exploration of the posterior distribution: p(θ |y) =

p(y|θ)p(θ)∫
θ p(y|θ)p(θ)dθ

, where p(θ) is the prior distribution. The priors

for the ODE/PDE model parameters are given in Sect. 4.
The integral in the denominator is intractable for the com-

plex DE models considered, thus the posterior distribution
is approximated using numerical schemes based on MCMC
sampling: p(θ |y) ∝ p(y|θ)p(θ).

To accelerate the sampling procedure, we couple MCMC
with emulation using GPs. We emulate RSS, and the emu-
lated likelihood is defined as:

p̃(y|θ , σ 2) =
(

1√
2πσ 2

)n

exp

(
− S̃(θ)

2σ 2

)
, (2)

where S̃(θ) is theRSS value predicted by the emulator for the
particular θ . The emulated posterior distribution becomes:
p̃(θ |y) ∝ p̃(y|θ)p(θ).

In Sect. 2.2 we briefly review the HMC-type algorithms
utilised and in Sect. 2.3 we show how HMC can be cou-
pled with GPs as part of the GP-HMC algorithm (Rasmussen
2003). The methodological contribution of our paper is
described in Sect. 3.

2.2 Gradient-basedMCMC algorithms

2.2.1 HMC

HMC (Neal 2011) introduces an auxiliary variable, the
‘momentum’ with a mass matrix M (identity matrix), and
simulates Hamiltonian dynamics by using gradient infor-
mation from the log target density. An HMC trajectory
is simulated by numerically integrating the Hamiltonian
dynamics with the leapfrog integrator (Neal 2011) using a
small step size, ε > 0 and a number of leapfrog steps, L .
However, the numerical integration induces an error, and the
bias is corrected by a M–H accept/reject step. More details
can be found in the Supplement, Sect. 2.
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2.2.2 RMHMC

Riemann Manifold HMC (RMHMC) (Girolami and Calder-
head 2011) exploits the Riemannian geometry of the param-
eter space, and sets M based on the curvature of the
(approximate) target distribution at every step throughout the
trajectory.M is the metric tensor of the Riemann space and is
calculated based on the expected Fisher information matrix
plus the negative Hessian log prior:

Mi, j = Ey|θ
[
−∂2log p(y, θ)

∂θi∂θ j

]

= Ey|θ
[
−∂2log p(y|θ)

∂θi∂θ j

]
+

(
−∂2log p(θ)

∂θi∂θ j

)
.

(3)

An implicit integrator, the generalised leapfrog scheme, is
used for the numerical integration of theHamiltonian dynam-
ics, since reversibilitywith the leapfrog integrator is no longer
satisfied.

2.2.3 LDMC

LDMC (Lan et al. 2015) simulates Lagrangian dynamics
(instead of Hamiltonian dynamics), thus the ‘velocity’ vari-
ables replace the ‘momentum’ variables. This enables the
use of an explicit geometric integrator, which substantially
improves the computational efficiency of the costlyRMHMC
implicit integrator. The consequence is that the volume in
phase space is no longer preserved, and to ensure detailed
balance (Lan et al. 2015), the Jacobian transformation is
needed to adjust the M–H acceptance probability. In LDMC,
similarly to RMHMC, M is adjusted to the curvature of the
(approximate) posterior distribution at every step throughout
the trajectory.

2.2.4 NUTS

TheNoU-turn sampler (NUTS) (Hoffman andGelman2014)
chooses L recursively by moving in Euclidean parameter
space (i.e. M equals the identity matrix) until the leapfrog
trajectory starts to double back and retrace its steps. This
is achieved via a tree doubling process building a binary
tree, whose leaf nodes correspond to the position-momentum
states. The points collected along the trajectory are sam-
pled in a way that preserves detailed balance (Hoffman
and Gelman 2014). NUTS uses stochastic optimisation (the
primal-dual averaging algorithm) to tune ε in the burn-in
phase.

2.2.5 Bayesian optimisation for parameter tuning

In our work we employ Bayesian optimisation (Wang et al.
2013; Mockus et al. 1978) to automatically tune the step size
ε andnumber of steps L inHMC,RMHMCandLDMC. ε and
L are optimised bymaximising an objective function, which,
following Wang et al. (2013), we take to be the expected
squared jumping distance (ESJD) normalised by the number

of leapfrog steps,
E

ε,L
p(.)||θ (i+1) − θ (i)||2√

L
. The idea of emu-

lation and Bayesian optimisation (Shahriari et al. 2016) is
adopted, with optimisation of the Upper Confidence Bound
acquisition function (Wang et al. 2013).

2.3 HMC coupled with emulation using GPs

GP-HMC (Rasmussen 2003) combines the HMC algorithm
with GPs (briefly reviewed in the Supplement, Sect. 1), used
for statistical emulation of the log unnormalised posterior
distribution (Kennedy and O’Hagan 2001; Conti et al. 2009;
Conti and O’Hagan 2010a). The need for using the GP-HMC
algorithm over the plain HMC algorithm is illustrated in
Algorithm 1, which comparatively provides the total number
of model (ODE/PDE) evaluations incurred by the GP-HMC
and the plain HMC algorithms and shows the differences
between these two algorithms. Algorithm 1 is just a concep-
tual outline; the reader is referred to Algorithms S.1a, S.1b,
S.1c and S.1d in the Supplement for a detailed pseudocode.

Algorithm 1 Conceptual outline for Hamiltonian Monte
Carlo (HMC) in the left side column vs HMC coupled with
emulation usingGaussian processes (GP-HMC) algorithm in
the right side column.The total number ofmodel (ODE/PDE)
evaluations required for running each algorithm is: HMC –
SL(d + 1) vs GP-HMC – S

1: Define a d-dimensional vec-
tor θ with θk the kth element,
k = 1, . . . , d; S: number
of HMC samples; L: num-
ber of HMC trajectory steps;
p(y|θ): simulator data likeli-
hood (eq (1))

2: for i = 1 : S do
3: for j = 1 : L do
4: Solve PDEs to

get log p(y|θ j ) and
∂ log p(y|θ j )

∂θ
j
k

5: end for
6: Propose θ L

7: Solve ODEs/PDEs to get
log p(y|θ L ) and accept/reject
in a M-H step

8: end for

Define a d-dimensional vector
θ with θk the kth element, k =
1, . . . , d; S: number of HMC
samples; L: number of HMC
trajectory steps; p̃(y|θ): emu-
lator data likelihood (eq (2))
for i = 1 : S do

for j = 1 : L do
Use GPs to predict

log p̃(y|θ j ) and
∂ log p̃(y|θ j )

∂θ
j
k

end for
Propose θ L

Solve ODEs/PDEs to get
log p(y|θ L ) and accept/reject
in a M-H step
end for
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Algorithm 1 illustrates that HMC running in the original
log likelihood space requires many more expensive model
evaluations compared to HMC running in the emulated log
likelihood space. This is because the former requires the
numerical integration of the differential equations at every
leapfrog step throughout the Hamiltonian dynamics, while
the latter only requires one single numerical integration at
the end of the leapfrog trajectory per HMC sample. An
HMC trajectory typically has in the order of L = 100–
1000 steps, which if carried out in the original space would
require in the order of 100 × (d + 1) to 1000 × (d + 1) (d:
number of parameters) model evaluations per HMC sam-
ple, thus a reduction in the computational complexity by
about two to three orders of magnitude is obtained if the
emulator provides a faithful representation of the log like-
lihood. The GP-HMC algorithm is guaranteed to satisfy
detailed balance with respect to the correct posterior dis-
tribution, and in Sect. 4 of the Supplement we give the
proof.

The GP-HMC algorithm proceeds as follows:

– Initial design stage. Choose parameter values from a
spacefillingdesign in parameter space (e.g. aLatin hyper-
cube McKay et al. 1979 or a Sobol sequence Bratley and
Fox 1988), and perform an expensive model evaluation
for each parameter vector to obtain the true log likeli-
hood value. These training points are used to create a GP
emulator.

– Exploratory phase. ’Learn’ the form of the posterior dis-
tribution by running HMC in the space of the emulated
posterior distribution, with the proposed point at the end
of the HMC trajectory being subject to an M–H step
based on the true posterior distribution (see Sect. 4 of
the Supplement for more details on this). If the proposed
parameter vector is accepted, add it together with the
corresponding log likelihood value to the list of existing
training points for the emulator, which is subsequently
refined by maximisation of the log marginal likelihood
with respect to the covariance hyperparameters—see
Eq. 2 or 20 in the Supplement. Training points collected
in the initial design stage are gradually removed as they
tend to come from low posterior density regions and can
bias the inference results. Points in low probability den-
sity regions could encourage overfitting by driving the
GP lengthscale to small values due to large changes in
output space happening over small distances in input
space. Following Rasmussen (2003), we set the emulated
’potential energy’ of the HMC algorithm (see Sect. 2.2)
to

Ẽ(θ∗) = E( f (θ∗)|D) − √
var( f (θ∗)|D)

2σ 2

+n

2
log(2πσ 2) − log p(θ∗).

(4)

Here f (.) is the emulated RSS function, E( f (θ∗)|D)

is the GP posterior predictive mean given the train-
ing points D (see Eq. 4 or 12 in the Supplement)
and

√
var( f (θ∗)|D) is the GP posterior predictive stan-

dard deviation (see Eq. 5 or 13 in the Supplement) for
RSS at unseen parameter configurations θ∗ conditional
on the training points D. This drives the exploration
into regions of high posterior probability (low value
of E(.)) or high uncertainty (large value of

√
var(.)).

If
√
var(.)>3 along the HMC trajectory, the algorithm

steps into a region of high uncertainty, where the GP
needs to be further trained, thus the simulation is stopped
prematurely before reaching the end of the trajectory
and an expensive model evaluation is performed at this
point.

– Sampling phase. Draw parameter samples by running
HMC in the space of the emulated posterior distribution
defined by the emulator constructed in the exploratory
phase (the emulator is no longer refined at this stage).
Proposed points are accepted/rejected in a M–H step
according to the simulator (see Sect. 4 of the Supple-
ment for more details). If the rejection rate is too high
(e.g. above 35%), this indicates that the emulated poste-
rior distribution is not an accurate enough representation
of the original posterior distribution5 and an extension
of the exploratory phase is needed. We set the emulated
’potential energy’ in the HMC algorithm to Rasmussen
(2003):

Ẽ(θ∗) = E( f (θ∗)|D)

2σ 2 + n

2
log(2πσ 2) − log p(θ∗), (5)

where Eq. (5) gives the unnormalised log posterior prob-
ability.

We note that Eq. (4) is a modified version of (5) used in
the exploratory phase only to aid exploration by subtracting
a term dependent on the posterior predictive variance. The
effect of this term is to shift the trade-off between exploration
and exploitation towards exploration. A wider exploration
during the exploratory phase is advisable to facilitate a better
global coverage of the configuration space. This is a stan-
dard trick widely used in Bayesian optimization—see e.g.
Shahriari et al. (2016).
Delayed acceptance In several studies (Golightly et al. 2015;
Sherlock et al. 2017) it has beenhypothesized that the delayed

5 The accuracy of the emulator can be checked by diagnostics (Bastos
and O’Hagan 2009).
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Table 1 Table of abbreviations
for the methods used in this
study

Abbreviation Explanation

HMC Hamiltonian Monte Carlo

RMHMC Riemann Manifold HMC

LDMC Lagrangian dynamical Monte Carlo

NUTS No U-turn sampler

GP-x Combination of algorithm x (listed above) and Gaussian processes

DA-GP-x GP-x algorithm (x listed above) coupled with delayed acceptance

noDA-GP-x Standard (without delayed acceptance) GP-x algorithm (x listed above)

DA-GP-hybrid-x-y Hybrid algorithm between DA-GP-x and DA-GP-y (x, y listed above)

acceptance scheme could potentially speed up simulations.
This scheme is a two-stage acceptance procedure, with two
M–H acceptance/rejection steps. The first step is a compu-
tationally fast pre-filter step, in which proposed values are
accepted/rejected based on the emulator (first Eq. in (6)).
Detailed balance with respect to the true posterior distribu-
tion is ensured through the second M–H step, which invokes
the original posterior distribution for the acceptance/rejection
of the those samples accepted in the first step (second Eq. in
(6)).

α1(θ
∗|θ) = 1 ∧ p̃(θ∗|y)q(θ |θ∗)

p̃(θ |y)q(θ∗|θ)
,

α2(θ
∗|θ) = 1 ∧ p(θ∗|y)

p(θ |y)
p̃(θ |y)
p̃(θ∗|y) ,

(6)

where q(.) is the proposal density and a ∧ b = min{a, b}. If
a proposal move is rejected based on the emulator in the first
step, the computationally expensive second step will never
have to be carried out.

3 Methodological contribution

Our methodological contributions are as follows. Firstly,
we generalise Rasmussen’s GP-HMC algorithm (Rasmussen
2003) to more modern HMC variants, namely GP-NUTS,
GP-RMHMC and GP-LDMC (see abbreviations in Table 1),
include formal detailed balance proofs, and show how these
subsume the proof of the GP-HMC algorithm as a limit-
ing case. Secondly, we extend GP-HMC and its variations
by including DA, with formal detailed balance proofs for
the following algorithms: DA-GP-HMC, DA-GP-NUTS,
DA-GP-RMHMC and DA-GP-LDMC (see abbreviations in
Table 1). Thirdly, we assess the computational efficiency and
accuracy of all these emulation methods in simulation stud-
ies.

While HMC coupled with emulation has been proposed in
the literature before (Rasmussen 2003; Lan et al. 2016), our
study is the first to provide, collate and unify detailed balance

proofs in a theoretical framework for all algorithms listed in
Table 1. Section 4 in the Supplement offers detailed balance
proofs for HMC, RMHMC and LDMC, and we show how
the former two are limiting cases of the latter. The RMHMC
proofs (Sects. 4.3 and 4.4 in the Supplement) are a special
case of the LDMC proofs (Sects. 4.5 and 4.6 in the Sup-
plement), with the proposal probability ratio set to 1 (rather
than the Jacobian of the variable transformation). The HMC
proofs (Sects. 4.1 and 4.2 in the Supplement), are a more
specialised case even still, with a constant mass matrix. We
mention that Lan et al. (2015) prove detailed balance for the
vanilla LDMC algorithm, and our contribution is to extend
this proof to LDMCwith emulation (Sects. 4.5 and 4.6 in the
Supplement). Moreover, we extend the DA proof in Sherlock
et al. (2017) from random walk M–H to HMC. These proofs
set the basis for the more complex proof of NUTS coupled
with emulation (with and without DA, in Sects. 4.7 and 4.8
of the Supplement), which we regard as our main theoretical
contribution.

Throughout this work, ergodicity of the system defined
by the various MCMC samplers is assumed to hold. Ergod-
icity could be proven by adapting the proofs in Livingstone
et al. (2019), Banterle et al. (2019), Sherlock et al. (2017)
and Conrad et al. (2016) to the generalised scenario where
proposal moves are based on an emulated log likelihood, but
this is beyond the scope of the present paper.

3.1 Brief discussion on efficiency for all algorithms
proposed

The noDA-GP-NUTS algorithm (see abbreviations in
Table 1) requires evaluation of the differential equations
several times (equal to the number of tree doublings, i.e.
tree height) along the trajectory before making a proposal;
see the proof in Sect. 4.7 in the Supplement, in particular
Eq. (37), which shows that the simulator potential function
E(θ) needs evaluating for every tree doubling. In contrast,
DA-GP-NUTS only evaluates the ODEs/PDEs once at the
end of the trajectory, for the final proposed point (as do
all the other algorithms investigated: noDA-GP-HMC, DA-
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GP-HMC, noDA-GP-RMHMC, DA-GP-RMHMC, noDA-
GP-LDMC, DA-GP-LDMC—see abbreviations in Table 1).
This implies that the noDA-GP-NUTS requires amuch larger
number of forward evaluations (roughly one order of magni-
tude larger) than the DA-GP-NUTS. For this reason, we did
not implement this algorithm. We employ all the other algo-
rithms: noDA-GP-HMC (which is the standard GP-HMC),
DA-GP-HMC, DA-GP-NUTS, noDA-GP-RMHMC, DA-
GP-RMHMC, noDA-GP-LDMC, DA-GP-LDMC (Table 1)
on a number of ODE/PDE problems, presented in Sect. 4.

4 ODE/PDE test examples

This section describes the test examples on which we applied
the emulation methods under consideration.

4.1 Sinusoidal example

We introduce a linear ODE model, which is a sinusoidal toy
problem, defined via the expression

d2 f

dt2
+ B2 f = 0 ⇔ d f

dt
= z,

dz

dt
+ B2 f = 0. (7)

This ODE model has an analytical solution: f (t) =
A sin(B(t + C)), where A: amplitude, 2π

B : period, C : phase
shift are the unknown parameters, which are estimated from
the data. We only considered one period, t ∈ [0, 2π ], to
ensure unimodality of the likelihood. We simulated data at
50 equally spaced time points in the range [0, 2π ]. We set the
true parameter values as: A = 3, B = 1 and C = 0.05. We
added iid additive Gaussian noise to the clean data generated
using Eq. (7), and we set the variance of the noise σ 2 to 0.12
(signal-to-noise, SNR, set to 80). An illustration of the data
is given in panel (a) of Fig. 1.

The task in the assessment of the proposed sampling
schemes was to estimate the parameters A, B,C . The noise
variance was kept fixed at its true value, however this sim-
plification was relaxed for the next examples. We placed
a Gaussian prior distribution on the log of the parame-
ters to ensure positivity (log A ∼ N (log 4, 0.02), log B ∼
N (log 1, 0.01), logC ∼ N (log 0.05, 0.05)). These priors
were chosen to encourage unimodality of the posterior dis-
tribution.

4.2 FitzHugh–Nagumo

TheFitzHugh–Nagumomodel, developedbyFitzhugh (1961)
and Nagumo et al. (1962) to model the behaviour of spike
potentials in the giant axon of neurons, is defined as a non-
linear ODE model:

dV

dt
= γ

(
V − V 3

3
+ R

)
,

dR

dt
= 1

γ
(V − α + βR). (8)

The system describes the reciprocal dependency between
the voltage V across an axon membrane (characterising the
self-excitation of the axon membrane) and the recovery R,
acting as outwards currents (providing a feedback response).
This example is a widely used benchmark problem, with
the model having been used as a mathematical represen-
tation for cardiac dynamics (Göktepe and Kuhl 2009) and
neuro-degenerative diseases ( Brüggemeier et al. 2014). This
example deviates from the regular sinusoidal oscillations of
the first toy example, with Eq. (8) defining a highly nonlinear
likelihood surface (Ramsay et al. 2007) as the three param-
eters α, β, γ are varied. The FitzHugh–Nagumo model has
proven to be a very challenging problem for alternative infer-
ence methods, e.g. based on gradient matching (Campbell
and Steele 2012), thus making it an ideal test bed for our
inference procedure.

We followed Campbell and Steele (2012) and generated
data from the model with the following parameter values:
α = 0.2, β = 0.2, γ = 3, and initial values (V0, R0) =
(−1, 1). We used 100 time points equally spaced in the inter-
val [0, 20] ms. As in Campbell and Steele (2012), we added
iid additive Gaussian noise to the data, with the following
variances: σ 2

V = 0.25, σ 2
R = 0.16 (SNRV = 9, SNRR = 3).

A depiction of the data can be seen in panel (b) of Fig. 1.
In our estimation procedure we learnt five parameters:

α, β, γ, σ 2
V , σ 2

R from data from the two ‘species’ V and R.
Following the study in Chapter 8 of Lawrence et al. (2010),
we set a Gamma(2,1) prior for parameters α, β, γ , while for
the noise variances: σ 2

V , σ 2
R we chose a weakly informative

Inverse-Gamma(0.001, 0.001) prior.

4.3 Biochemical signalling pathway

The biochemical signalling pathwaymodel, characterised by
the nonlinear ODE system in Eq. (9), uses the Michaelis–
Menten kinetic law to describe the activation of a protein R
into its active form Rpp in the presence of an enzyme S, fol-
lowed by the degradation of the enzyme into its inactive form,
D (see panel (a) in Fig. 2 for a graphical representation).

dS

dt
= −k1S,

dD

dt
= k1S,

dR

dt
= − V1RS

Km1 + R
+ V2Rpp

Km2 + Rpp
,

dRpp

dt
= V1RS

Km1 + R
− V2Rpp

Km2 + Rpp
.

(9)

Cell signalling has been used in cancer modelling (Martin
2004) and modelling of neuro-degenerative diseases (Kim
and Choi 2010). The system of eqns in (9) depends on five
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Fig. 1 Panel a An example of noise-free data generated from the sinu-
soidal model using Eq. (7) (continuous black line). To this we added iid
additive Gaussian noise with variance 0.12 (red dots), and the noisy data
were used in the inference procedure. Panel bAn example of noise-free
data generated from the FitzHugh–Nagumo model using Eq. (8) (con-

tinuous black line). To these we added iid additive Gaussian noise with
variance 0.25—left signal and 0.16—right signal (red dots). Data from
the two signals were used for the inference procedure. (Color figure
online)

(a)

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

0.1

0.2

0.3

0.4

0.5

Fl
ow

 (m
l/

s)

0 0.02 0.04 0.06 0.08 0.1

Time (s)

10

11

12

13

14

15

16

17

18

19

20

Pr
es

su
re

 (m
m

Hg
)

(b)

Fig. 2 Panel a: Graphical representation of the protein signalling path-
way in Eq. (9). The model uses the Michaelis–Menten kinetic law to
describe the activation of a protein R into its active form Rpp in the
presence of an enzyme S, followed by the degradation of the enzyme
into its inactive form D. Figure adapted from Chapter 8 in Lawrence

et al. (2010). Panel b: Measured pulmonary blood flow (left) and pres-
sure (right) in the main pulmonary artery of a healthy mouse. The flow
data were used as inlet boundary conditions in the PDEs (10), while the
pressure data constituted the main signal used for inference

kinetic parameters: k1, V1, Km1 , V2, Km2 , which control how
fast the biochemical processes involving the five ‘species’
(S, D, R, Rpp) take place.

We followed the study in Chapter 8 of Lawrence et al.
(2010) and generated data from the model with the following
parameter values: k1 = 0.05, V1 = 0.2, Km1 = 0.1, V2 =
0.1, Km2 = 0.1, and initial values (S0, D0, R0, Rpp0) =
(1, 0, 1, 0). We used 20 data points within the interval
[0, 100] s, measured at time points {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 14, 18, 20, 25, 30, 40, 60, 80, 100}. We added iid addi-

tive Gaussian noise to the data, with the variance of 0.0004
(Lawrence et al. 2010) for all ‘species’ (SNRS = SNRD =
270, SNRR = SNRRpp = 130). A depiction of the data can be
seen in Fig. 3.

We estimated five parameters: k1, V1, Km1 , V2, Km2 from
data from the four ‘species’: S, D, R, Rpp . Following
Lawrence et al. (2010), we set aGamma(1,1) prior for param-
eters k1, V1, Km1 , V2, Km2 , while for the noise variances:
σ 2
S , σ 2

D, σ 2
R, σ 2

Rpp
we chose a weakly informative Inverse-

Gamma(0.001, 0.001) prior.
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Fig. 3 An example of noise-free
data generated from the
biochemical signalling pathway
model using Eq. (9) (continuous
black line). To these we added
iid additive Gaussian noise with
variance 0.0004 (Lawrence et al.
2010) for all four signals (red
dots). Data from all four signals
were used for the inference
procedure. (Color figure online)
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4.4 Real-world application: fluid-dynamics model of
the pulmonary blood circulation

One dimensional (1D) fluid-dynamics models are used to
model the pulmonary blood circulation (Qureshi et al. 2017,
2018), and enable the non-intrusive diagnostication of pul-
monary hypertension (high blood pressure in the pulmonary
system, i.e. the blood vessel network connected to the right
ventricle of the heart). If left untreated, pulmonary hyperten-
sion may lead to coronary artery disease, stroke and heart
failure. Currently, the diagnosis process requires knowl-
edge of the pulmonary blood pressure, which can only be
obtained invasively for patients using right-heart catheter-
isation (unlike for the systemic circulation, i.e. the blood
vessel network connected to the left ventricle of the heart, for
which a sphygmomanometer may be used non-invasively).
The ultimate goal is to combine magnetic resonance imaging
(MRI) with mathematical modelling and statistical inference
to develop a non-invasive alternative. The 1D fluid-dynamics
model (Qureshi et al. 2017, 2018) is described by a set of
nonlinear PDEs:

∂A

∂t
+ ∂q

∂x
= 0,

∂q

∂t
+ ∂

∂x

q2

A
+ A

ρ

∂ p

∂x
= −2πμr

δ

q

A
,

p = p0 + 4

3
s

(
1 −

√
A0

A

)
, (10)

where x (cm) and t (s) are the longitudinal spatial and tem-
poral coordinates, p (mmHg) is the blood pressure, q (ml/s)
is the blood flow rate, A (cm2) is the cross-sectional area.
A(x, t) = πr(x, t)2, where r(x, t) (cm) is the vessel radius.
Also, A0 is the unstressed vessel cross-sectional area, p0
(mmHg) is the transmural pressure, s (mmHg) is the arte-
rial network stiffness (kept constant across the network of

vessels), ρ = 1.055 g/ml is the blood density, μ = 0.049
g/(cms) is the viscosity and δ = √

μT /2πρ cm is the
boundary-layer thickness of the velocity profile. The bound-
ary conditions are specified as follows: As inlet boundary
conditions, an inlet flow at the main pulmonary artery (MPA)
was prescribed, which was measured with ultrasound—see
the left panel in Fig. 2b. At the vessel junctions, conserva-
tion of flow (qp = qd1 + qd2 ) and continuity of pressure
(pp = pd1 = pd2 ) were ensured; here p represents the
parent vessel, and d1 and d2 represent the daughter vessels.
As outflow boundary conditions, three-element Windkessel
models (two resistors R1 and R2, and a capacitor, C) were
attached at every terminal artery, and are of the form Z(ω) =
R1 + R2

1+iωCR2
	⇒ q(L, t) = 1

T

∫ T
0 p(L, t − τ)Z(τ )dτ ,

where Z(ω) is the impedance, ω is the angular frequency, T
is the length of the cardiac cycle, R1, R2 (mmHg s/ml) are
the two resistances, and C (ml/mmHg) is the capacitance.

The three Windkessel elements (R1, R2,C) vary across
the different terminal arteries. The nominal values for every
terminal vessel j were calculated first (R j

01, R
j
02,C

j
0 in

Eq. (11)), see Qureshi et al. (2018) for details, then global
scaling factors r1, r2, c for these estimates were introduced,
and they were kept constant across all terminal arteries:

R j
1 = (1 − 0.5r1)R

j
01, R j

2 = (1 − 0.5r2)R
j
02,

C j = (1 − 0.5c)C j
0 .

(11)

We used measured blood pressure (a time series consisting
of 512 temporal pressure points) in the MPA to infer the
various biophysical parameters: s, r1, r2, c. An example of
the pulmonary blood pressure time series in a healthy mouse
is given in the right panel of Fig. 2b.

The parameters lie within biologically plausible ranges,
as established by Qureshi et al. (2018): s ∈ [7 × 104, 5 ×
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105], r1 ∈ [−0.5, 1.92], r2 ∈ [−0.5, 1.0], c ∈ [−2.5, 1.5]).
We set a rescaled Beta(1, 1) prior for the parameters to
enforce that they lie within the prescribed ranges, while for
the noise variance σ 2 we chose aweakly informative Inverse-
Gamma(0.001, 0.001) prior.

5 Simulations

5.1 Software

Our statistical methods were implemented in Matlab
(Mathworks, Natick, MA) and simulations were run on a
RedHat Enterprise Linux 6 machine with Intel(R) Xeon(R)
CPU E5-2680 v2 2.80 GHz and 32 GB RAM.

We constructed the GP models using the GPstuff tool-
box (Vanhatalo et al. 2013) and the MCMC convergence
diagnostics (multivariate potential scale reduction factor,
MPSRF Brooks and Gelman 1998 and ESS Kass et al. 1998)
madeuse of functions from theMCMCtoolbox (Laine 2007).
To run the No U-turn sampler, Riemann Manifold HMC and
Lagrangian Dynamical MC, we used the Matlab implemen-
tations developed by the authors of the papers where these
algorithmswere proposed (Hoffman andGelman2014;Giro-
lami and Calderhead 2011; Lan et al. 2015).

For the numerical integration of the ODEs, we used the
ode15sMatlab solver for the FitzHugh–Nagumo model, and
the ode23Matlab solver for the biochemical signalling path-
way model. The PDEs of the 1D fluid-dynamics model
were numerically integrated using a two step Lax–Wendroff
scheme (Lax and Wendroff 1960) implemented in C++ by
Qureshi et al. (2018); Olufsen et al. (2000). We note that
for the two synthetic examples (FitzHugh–Nagumo and
biochemical pathway), we have used the same numerical
integrator for data generation and for inference. Given that
we do not allow for potential signal distortion caused by the
numerical integration, our inference results are therefore in
principle over-optimistic. However, since our dynamical sys-
tems have well-behaved (as opposed to chaotic) attractors (a
periodic limit cycle for the FitzHugh–Nagumo example and a
stable fixed point for the biochemical pathway example), the
effect of the numerical integration is practically negligible.

Our software implementation and data sets are avail-
able at https://github.com/LMihaelaP/Hamiltonian-Monte-
Carlo-with-emulation.git.

5.2 Method implementation details

5.2.1 GP kernel

For the GP emulator of RSS, we used a squared exponen-
tial kernel (see Sect. 4.2 in Rasmussen and Williams 2005),

which is infinitely differentiable,6 allowing to analytically
compute7 first-order derivatives of the GP posterior predic-
tivemean andvariance (Eqs. 4, 5, or 12, 13 in theSupplement)
needed in HMC, and second- and third-order derivatives of
the GP posterior predictive mean, needed in RMHMC and
LDMC. We note that differentiation is a linear operator, so
the derivative of a GP is again a GP for differentiable kernels;
see Sect. 9.4 in Rasmussen and Williams (2005).

5.2.2 GPmean

For the sinusoidal, FitzHugh–Nagumo and pulmonary mod-
els we used a zero mean GP prior, while for the biochemical
pathway model we used a second-order polynomial for the
mean basis functions (for reasons discussed in Sect. 6.3), i.e.
in 5D: h(x) = [1 x1 . . . x5 x21 . . . x25 x1x2 . . . x4x5]T.
Further relevant implementation details are offered in the
Supplement, Sect. 5.1.

5.2.3 Multiple GPs

For problems with multiple ‘species’ (biochemical path-
way and FitzHugh–Nagumo examples), we emulated the
RSS for every ‘species’ independently, thus Eq. (2) becomes

p̃(y|θ , σ 2) = ∏J
j=1

((
1√

2πσ 2
j

)n j

exp

(
− S̃ j (θ)

2σ 2
j

))
, where

J is the total number of ‘species’.

5.2.4 Data sets

For all three synthetic examples (sinusoidal, FitzHugh–
Nagumo and biochemical pathway) we generated 10 syn-
thetic data sets with different noise instantiations. For the
pulmonary example we had one single measured data set.

5.2.5 GP-HMC phases

Initial design stageAt the initial stage of the GP-HMC algo-
rithm (Rasmussen 2003), the number of training points can
be determined by quantifying the efficiency of the MCMC
sampler in the beginning of the exploratory phase (the accep-
tance rate of the sampler run using the initial emulator should
not be too low, e.g. below 20%). The Supplement, Sect. 5.3
offers more implementation details.
Exploratory phase In the exploratory phase of GP-HMC
(Rasmussen 2003) we tried to ensure that a minimum num-

6 For example, the Matèrn 3/2 or 5/2 kernels cannot be used for the
RMHMC and LDMC algorithms, as they are once or twice differen-
tiable, respectively.
7 We checked the analytical derivative against the numerical derivative;
a difference in Euclidean space below a small threshold, e.g. 0.1%, was
taken as an indication that the two were in agreement.
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ber of training points is stored (to boost computational
efficiency), while preserving a high enough emulator accu-
racy (as quantified by GP diagnostics (Bastos and O’Hagan
2009)), and a high acceptance rate in the sampling phase
(>65% (Neal 2011)). Initially 100×d (d: parameter dimen-
sionality) training points can be used, and if the acceptance
rate in the sampling phase is sub-optimal (<65%), the
exploratory phase can be extended. Generally this number
depends on the parameter dimensionality and the complex-
ity of the posterior distribution. For example, we found the
rule of thumb presented in a Bayesian optimisation context
(Jones et al. 1998), 10 × d, inadequate, providing a sub-
optimal emulator in an MCMC context.

The noise variance was kept fixed in the first part of the
exploratory phase to enable learning the parameters while
avoiding changes in curvature of the log likelihood induced
by varying the noise variance (last term of Eq. (1)). An
informed initial guess can be calculated based on the RSS
value obtained from fitting a nonlinear regression model to
the data. The acceptance rate in the exploratory phase of
the algorithm can then act as an objective metric to assess
the appropriateness of the σ 2 value. If the acceptance rate is
too low, e.g. <10%, σ 2 is too large, making the likelihood
in eqns (1) and (2) peaked and causing a large discrepancy
between the emulated and original likelihood. If the accep-
tance rate is too large, e.g. >90%, σ 2 should be reduced to
allow the sampler to focus on the area of interest and avoid
flattening out the likelihood landscape. The σ 2 value can be
sequentially altered by, e.g. 10%, and the exploratory phase
re-run with a monitoring of the acceptance rate.We note here
that we allow σ 2 to depend on the algorithmic implementa-
tion in the exploratory phase only, when the emulator is not a
faithful representation of the simulator. In the sampling phase
of the algorithm, σ 2 is drawn from the conditional posterior
distribution, conditional on the data and dependent on the
model. Further implementation details from the exploratory
phase of the algorithm are given in the Supplement, Sect. 5.3.
Sampling phase In the sampling phase of GP-HMC (Ras-
mussen 2003) we allowed for 100 samples as burn-in phase
(chosen to ensure that MPSRF ≤ 1.1 (Brooks and Gelman
1998)), and 2000 samples were subsequently drawn and used
for inference. Besides sampling the model parameters, we
also sampled the noise variance in a Gibbs step. Every algo-
rithm (DA-GP-HMC, noDA-GP-HMC,DA-GP-NUTS, DA-
GP-RMHMC, noDA-GP-RMHMC, DA-GP-LDMC, noDA-
GP-LDMC) was run 10 times from different random number
generator seeds and different starting values for the param-
eters, selected from the points collected in the exploratory
phase, to make it less likely that we start in a low probability
region. For each of the 10 simulations, we recorded ESS for
each parameter:

ESSi = N

1 + 2
∑∞

l=1 ρi
l

, i = 1, . . . , d (12)

where d: parameter dimensionality, and using Eq. (12), we
calculated the minimum, median and maximum ESS across
parameters as:

MinESS = min
i

(
ESSi

)
,

MedianESS = mediani
(
ESSi

)
,

MaxESS = max
i

(
ESSi

)
.

(13)

Details about the implementation of Bayesian Optimisation
for parameter tuning of the various algorithms can be found
in Sect. 5.4 of the Supplement, and details about required
parameter transformations are in Sect. 5.5 of the Supplement.

5.3 Setting themass matrix for RMHMC/LDMC

For second-order algorithms (RMHMC, LDMC) obtaining
themetric tensor is necessary. This is not trivial when emulat-
ing the objective function. Equation (3) shows what the mass
matrix can be set to to ensure that it is a proper metric tensor,
i.e. positive definite, and distances �θTM(θ)�θ between
probability distribution functions p(y, θ) and p(y, θ + �θ)

on the Riemann manifold do not depend on the parameter-
isation of the statistical model, i.e. they are invariant with
respect to nonlinear parameter transformations (see Sect. 3.2
in Calderhead 2012 and Sect. 5.4.2 inMurphy 2012 for more
details). Emulating the objective function (RSS) instead of
the model output results in information loss (Davies et al.
2019), and hence inability of calculating the expectation in
Eq. (3). More precisely, for the model defined in Eq. (1), we
may take the log to obtain

log p(y|θ , σ 2) =
(
−n

2
log(2πσ 2)

)
−

∑n
i=1(yi − mi (θ))2

2σ 2 ,

(14)

and the corresponding first- and second-order derivatives are:

∂ log p(y|θ , σ 2)

θ j
= 1

σ 2

n∑
i=1

(
(yi −mi (θ))

∂mi (θ)

∂θ j

)
, (15)

∂2 log p(y|θ , σ 2)

θkθ j
= 1

σ 2

n∑
i=1

(
−

(
∂mi (θ)

∂θk

∂mi (θ)

∂θ j

)

+(yi − mi (θ))
∂2mi (θ)

∂θk∂θ j

)
.

(16)
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By noting that E(y|θ) = m(θ) and taking the expectation
with respect to y|θ of the negative term in (16):

Ey|θ
(

−∂2 log p(y|θ , σ 2)

θkθ j

)
= 1

σ 2

n∑
i=1

(
∂mi (θ)

∂θk

∂mi (θ)

∂θ j

)
.

(17)

Given that we emulate the expression
∑n

i=1(yi −mi (θ))2,
we do not know the individual terms inside the sum, hence
taking the expectation of the expression in Eq. (16) is impos-
sible. Instead, we can set M to be the observed Fisher
Information matrix (the matrix of negative second-order
derivatives of the log likelihood), plus the negative Hessian
matrix of the log prior, i.e.

Mi, j = −∂2log p(y, θ)

∂θi∂θ j

= −∂2log p(y|θ)

∂θi∂θ j
+

(
−∂2log p(θ)

∂θi∂θ j

)
.

(18)

However, this matrix is not guaranteed to be positive def-
inite. In that case, we set M to be

Mi, j = λ

(
−∂2log p(y, θ)

∂θi∂θ j

)

+ (1 − λ)

(
∂log p(y, θ)

∂θi

∂log p(y, θ)

∂θ j

)
,

(19)

whereλ = 0 leads to the empirical Fisher informationmatrix,
which is semi-positive definite by construction. Thus the
form in Eq. (19) ensures that the mass matrix is at least semi-
positive definite for a small enough λ ∈ [0, 1]. This form
is motivated by the fact that the two terms are identical in
expectation over y|θ for a constant prior, and may lead to a
lower condition number of the mass matrix (hence numerical
stability) than setting λ exactly equal to 0.

We found that setting the metric tensor as per Eq. (19)
does not work for all parameter values tried by the sampler.
In some cases, parameter values throughout the trajectory
tend to take extreme, unrealistic values, subsequently lead-
ing to numerical instabilities in the ODE solver, which is
called for the end trajectory value. In that case, the approach
taken is akin to a Quasi-Newton method in optimisation
(Broyden 1972), i.e. if at any point throughout the trajec-
tory, the mass matrix is numerically unstable, the simulation
within the trajectory is stopped prematurely before reach-
ing the end. A new simulation is started from the beginning
of the trajectory and the HMC algorithm is used instead of
RMHMC or LDMC for that particular iteration. The result-
ing posterior samples will have been drawn using a hybrid
version of HMC and RMHMC or LDMC, and the proposed

algorithm is called hybrid-HMC-RMHMC or hybrid-HMC-
LDMC. This algorithm naturally satisfies detailed balance
since each sample is drawn using a valid sampler (either
HMC or RMHMC/LDMC).

5.4 Sampler consistency checks

To check the mathematical and coding correctness of the
samplers derived, we implemented the Geweke consistency
test (Geweke 2004), reviewed in the Supplement, Sect. 3.

6 Numerical results

For all test examples and emulation methods implemented in
our studywechecked forMCMCconvergence usingMPSRF,
and an MPSRF ≤ 1.1 was recorded for all simulations, thus
there was no evidence of lack of convergence.

6.1 Sinusoidal example

6.1.1 Geweke consistency test: mathematical and coding
correctness of the sampler

We checked the mathematical and coding correctness of the
samplers’ implementation using the Geweke consistency test
(Geweke 2004). This was done for the linear ODE sinusoidal
example to ensure no high computational costs attributed to a
large number of ODE numerical integrations were incurred.
In Fig. 1 of the Supplement we show QQ plots, i.e. quantiles
of the prior distribution against quantiles of the ensemble
of posterior distributions for all parameters (A, B,C) for
three of the algorithms: DA-GP-HMC (top panel), noDA-
GP-HMC (middle panel), DA-GP-NUTS (bottom panel), see
Table 1 for abbreviation explanations. The points lie on the
equality line, and we take this as evidence that the implemen-
tation of the three samplers is correct. We extrapolate this
conclusion to the other samplers: (no)DA-GP-RMHMC and
(no)DA-GP-LDMC since by looking at the proofs in Sect. 4
of the Supplement, we notice that they are a straightforward
extension of (no)DA-GP-HMC.

6.1.2 DA versus noDA

Next, we investigated whether the DA scheme offers any
gains in computational efficiency. To quantify efficiency, for
each of the 10 data sets, we calculated themedian ESS across
all parameters, as defined in Eq. (13), for all DA Hamilto-
nian/Lagrangian algorithms against their noDA alternative
(with the exception of NUTS, as justified in Sect. 3.1). Using
hypothesis testing, for the DA and noDA schemes, we tested
for mean equality of the median ESS values normalised by
the total number of MCMC samples N , and by the number

123



Statistics and Computing (2022) 32 :1 Page 13 of 25 1

Table 2 Accuracy in parameter and functional space for the sinusoidal
example For each of the emulation methods compared we show the
mean and standard deviation of the parameter posterior medians for 10
data sets, calculated using Eq. (22). The true parameter values are also
shown. R2 (Eq. (23)), as a measure of fit to the data is also displayed.

Legend: HMC—HamiltonianMonte Carlo, NUTS: No U-turn sampler,
RMHMC—Riemann Manifold Hamiltonian Monte Carlo, LDMC—
Lagrangian Dynamical Monte Carlo, DA—delayed acceptance, GP:
Gaussian process

Algorithm A B C R2

DA-GP-HMC 3.0337 (0.0659) 1.0013 (0.0052) 0.0507 (0.0036) 0.9725 (0.0040)

DA-GP-NUTS 3.0348 (0.0645) 1.0012 (0.0052) 0.0508 (0.0032) 0.9725 (0.0040)

DA-GP-RMHMC 3.0358 (0.0656) 1.0011 (0.0053) 0.0505 (0.0035) 0.9725 (0.0040)

DA-GP-LDMC 3.0348 (0.0650) 1.0014 (0.0052) 0.0506 (0.0035) 0.9725 (0.0040)

True value 3 1 0.05 –

of forward (ODE) evaluations:

H0 : μnoDA
ESS = μDA

ESS versus H1 : μnoDA
ESS = μDA

ESS. (20)

In Eq. (20), μnoDA
ESS is the mean ESS for the noDA method in

the sample of 10 medians from the 10 data sets, i.e.

μnoDA
ESS = 1

K

K∑
k=1

[ESS]noDAk , K = 10, (21)

where [ESS]noDAk is the median ESS across all parameters
(Eq. (13)) for the kth data set corresponding to the noDA
method. In contrast,μDA

ESS is themeanESS for theDAmethod
in the sample of 10 medians from 10 data sets. The distri-
bution of the 10 ESS values for the DA and noDA methods
is shown in Fig. 2(a) of the Supplement. The test revealed a
p-value > 0.05, hence we cannot reject the null hypothesis.
Given that our next goal was to compare the different algo-
rithms, we made the arbitrary choice of going ahead with the
DA algorithms.

6.1.3 Accuracy

We first compare the performance of the DA-GP-HMC,
DA-GP-NUTS, DA-GP-RMHMC and DA-GP-LDMC algo-
rithms (see Table 1 for abbreviation explanations) in terms
of accuracy in both parameter and functional space.
Parameter space Table 2 illustrates the mean of all ODE
parameter posterior medians (i.e. the mean of the K poste-
rior medians from the K data sets), and the corresponding
standard deviation, i.e.

θ̄ = 1

K

K∑
k=1

[θ]k,

σ (θ) =
√√√√ 1

K − 1

K∑
k=1

([θ]k − θ̄)2,

(22)

where [θ]k is the parameter posterior median vector for the
kth data set. More specifically, for each of the K data sets, we
find the parameter posterior median. We then take the mean
over all K posterior medians for every parameter, which is
compared to the true parameter value, as a measure of accu-
racy and to test for unbiasedness. For a large enough number
of data sets, K , this mean should be close to the true param-
eter value.

Setting K = 10, we observe that all four algorithms reg-
ister a very similar performance in terms of accuracy, and the
true value lies within the interval given by mean ± 2 std.
Functional space Next we examined the performance of the
algorithms in functional space, quantified using R2, which
indicates how good the fit between the data and the signal
generatedwith the posteriormedian, is. R2 is defined in terms
of RSS and the total sum-of-squares SStotal.

We can define R2, RSS and SStotal for each of the 10 data
sets, i.e. for the kth data set, k = 1, . . . K , K = 10:

R2
k = 1 − RSSk

SStotalk

,

RSSk =
n∑

i=1

(yi,k − mi ([θ]k))2 =
n∑

i=1

ε2i,k,

SStotalk =
n∑

i=1

(yi,k − ȳk)2, ȳk = 1

n

n∑
i=1

yi,k,

(23)

where n is the number of data points in a data set. Thus, R2

lies within [0,1], and the higher R2, the better the fit.
Table 2 shows the mean and standard deviation of R2 over

the 10 data sets. We notice that R2 is very high, with a mean
of ∼ 0.97 for all methods, suggesting that all algorithms
perform equally well in terms of predicting a signal which is
very similar to the data.
Parameter UQ We also quantified the uncertainty in the
parameter estimates for all methods. In Fig. 3 of the Sup-
plement we illustrate the marginal posterior densities for
the parameters A, B,C obtained with 1D kernel density
estimation from the posterior samples drawn with the four
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emulation methods (a randomly selected data set out of the
10 data sets was used). We also superimpose results obtained
using a long-runMCMCalgorithm (directMCMC, theAdap-
tive Metropolis (AM) algorithm Haario et al. 2001), that
draws samples directly from the asymptotically exact pos-
terior distribution. HMC running directly on the original
posterior distribution would incur too many forward evalua-
tions (see Sect. 2.3 for a discussion on this), hence in ourwork
we opt for a random-walk algorithm (AM). To obtain the
marginal posterior densities, we used the kernel smoothing
function estimate for univariate data with the optimal band-
width for normal densities (Bowman and Azzalini 1997).We
note that the marginal posterior densities are comparable,
backing up previous findings that all four emulation meth-
ods perform very similarly, and their performance is close to
that of the long-run MCMC sampler.

6.1.4 Efficiency

The next step in the analysis was to compare the different
methods in terms of efficiency, which we quantified using
min, median and max ESS (see Eq. (13)) normalised by
the total number of MCMC samples N and by the num-
ber of forward (model) evaluations.8,9 Results based on the
two efficiency measures are presented in Fig. 4, showing
the distribution of these quantities over 10 data sets. When
inspecting ESS/N (left panel), we observe great variability
between the distributions for the minESS/N , medianESS/N
and maxESS/N for the first-order methods (HMC and
NUTS), in contrast with the higher-order methods (RMHMC
and LDMC). In terms of minESS/N , RMHMC and LDMC
are clearly superior to HMC and NUTS, while in terms of
medianESS/N all methods are more comparable, and simi-
larly in terms ofmaxESS/N , with theHMCalgorithm having
moderate advantage. The same pattern is observed when
inspecting ESS normalised by the number of model evalua-
tions (right panel), which is expected, considering the high
acceptance rate (>95% across all methods), i.e. the number
of model evaluations is very close to N .

8 Given that the number of parameters for the sinusoidal example is
three, the min, median and max ESS correspond to the ESS for each
of the three parameters. For comparability with the other mathematical
models, we report the results in terms of the former three measures.
9 The number of model evaluations is representative of the sampling
phase, and excludes the number of samples used for the initial and
exploratory phases. The latter samples are the same across methods,
rendering their inclusion unnecessary for method comparison.
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Fig. 4 Efficiency in terms of ESS of the algorithms compared (1: DA-
GP-HMC, 2: DA-GP-NUTS, 3: DA-GP-RMHMC, 4: DA-GP-LDMC)
for the sinusoidal example. Min, median, max ESS were calculated
using Eq. (13). We show the distribution over 10 data sets. Leg-
end: HMC—Hamiltonian Monte Carlo, NUTS: No U-turn sampler,
RMHMC—Riemann Manifold Hamiltonian Monte Carlo, LDMC—
Lagrangian Dynamical Monte Carlo, DA—delayed acceptance, GP:
Gaussian process, ESS: effective sample size, N—number of total
MCMC samples, #forwardEval—number of forward simulations from
the ODE model. See Table 1 for further explanations of the abbrevia-
tions

6.2 FitzHugh–Nagumo

6.2.1 Hybrid algorithms for non-positive definite negative
Hessian matrix

For the FitzHugh–Nagumo model we encountered difficul-
ties with running the higher-order methods (RMHMC and
LDMC) due to the negative Hessian matrix of the log unnor-
malised posterior not being positive definite, as illustrated
in Fig. 5, where we display the regions in 2D parameter
space for which the negative Hessian matrix is not posi-
tive definite. As outlined in Sect. 5.3, for this example we
replaced the RMHMC or LDMC methods by the emulation
hybrid-HMC-RMHMC or hybrid-HMC-LDMC, and for the
RMHMC/LDMCcomponent of themethod,weusedEq. (19)
to set the metric tensor. The emulation hybrid-HMC-LDMC
algorithm registered a percentage of 25% (average over the
10 data sets) of HMC-drawn samples, and 75% of LDMC-
drawn samples out of the total number of MCMC samples.
Also, the emulation hybrid-HMC-RMHMC algorithm regis-
tered a percentage of 34% (average over the 10 data sets) of
HMC-drawn samples, and 66% of RMHMC-drawn samples
out of the total number ofMCMCsamples. For theFitzHugh–
Nagumo model, results in subsequent sections are shown for
the hybrid algorithms.
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6.2.2 DA versus noDA

The distribution of the ESS values for the DA and noDA
methods is shown inFig. 2(b) of the Supplement. The hypoth-
esis test investigating the effect of using the DA scheme
revealed a p-value > 0.05 (see Eq. (20)) for all efficiency
measures, thus, there is no difference in efficiency between
the DA and noDA algorithms. For consistency with the sinu-
soidal example, we took forward the DA algorithms.

6.2.3 Accuracy

Parameter space Table 3 illustrates the mean and standard
deviation of the posterior medians over 10 data sets (see
Eq. (22)) for the ODE parameters drawn with all emulation
methods, and of the noise variances, sampled with Gibbs
sampling.

All four emulation algorithms perform very similarly in
terms of accuracy, with the true values for the ODE param-
eters and the two noise variances being contained within the
interval given by mean ± 2 std.
Functional space Table 3 gives the the mean and standard
deviation of R2 (Eq. (23)) over 10 data sets for both ‘species’
obtained with every emulation algorithm. The methods per-
formvery similarly, and one of the signals appears to be better
learnt (mean R2 ∼ 0.9) than the other (mean R2 ∼ 0.7).
Parameter UQ Regarding UQ, all the methods are on a par,
as evident in Fig. 4 in the Supplement, showing the marginal
posterior densities for the ODE parameters and noise vari-
ances for one randomly selected data set out of the 10 data
sets, and their performance is close to that of a long-run
MCMC sampler (direct MCMC) drawing samples from the
asymptotically exact posterior distribution.

6.2.4 Efficiency

Results based on the min, median and max ESS (see Eq. (13)
normalised by the total number of MCMC samples N and
by the number of forward (model) evaluations are presented
in Fig. 6, which shows the distribution of these quanti-
ties over 10 data sets. When inspecting ESS/N (left panel),
we again note a much larger variability between the distri-
butions for the minESS/N , medianESS/N and maxESS/N
for the first-order methods (HMC and NUTS), unlike the
higher-order methods (hybrid-HMC-RMHMC and hybrid-
HMC-LDMC). Another observation is that NUTS tends to
perform systematically worst. In terms of minESS/N , HMC,
hybrid-HMC-RMHMC and hybrid-HMC-LDMC are com-
parable, while in terms of medianESS/N and maxESS/N ,
HMC seems to have an advantage. The same observations
can be made when inspecting ESS normalised by the num-
ber of model evaluations (right panel), which is expected, Ta
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Emulated Log Posterior
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Fig. 5 Displaying the positive definiteness of the negative Hessian
matrix for the emulated (top) and original (bottom) log unnormalised
posterior distribution of two of the parameters (the third parameter
is kept fixed at its true value) for the FitzHugh–Nagumo model. In

right column plots, blue stands for positive definite and yellow for
non-positive definite matrix. The red cross in the landscape of the
log unnormalised posterior distribution marks the true parameter value.
(Color figure online)

considering the high acceptance rate (>80% across all meth-
ods).

6.3 Biochemical pathway

6.3.1 A zero mean GP versus a quadratic mean GP

For the biochemical pathway example, we implemented both
a zero mean GP model, as well as a quadratic mean function
GPmodel for theRSS. The latter potentially places high prior
density values near the mode, where a parabola-shaped form
of the log unnormalised posterior distribution is expected.
The quadratic mean function fits this parabola, thus regions
far away from the mode are suppressed. Our findings are
that the zero mean model encouraged adding ’extreme’ RSS
values (high relative to the low RSS region) to the list of
training points as a consequence of stepping into a region of
high uncertainty of the emulator. Therefore, the zero mean
GP emulator is not a faithful representation of the simula-
tor, which leads to poor performance in the sampling phase,
as shown in Table 4. Table 4 displays quantitative metrics,
showing that the quadratic mean GP leads to better perfor-
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ESS/N
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Fig. 6 Efficiency in terms of ESS of the algorithms compared (1:
DA-GP-HMC, 2: DA-GP-NUTS, 3: DA-GP-hybrid-HMC-RMHMC,
4: DA-GP-hybrid-HMC-LDMC) for the FitzHugh–Nagumo example.
Min, median, max ESS are calculated using Eq. (13). We show the dis-
tribution over 10 data sets. Legend: HMC—Hamiltonian Monte Carlo,
NUTS: No U-turn sampler, RMHMC—Riemann Manifold Hamil-
tonian Monte Carlo, LDMC—Lagrangian Dynamical Monte Carlo,
DA—delayed acceptance, GP: Gaussian process, ESS: effective sample
size, N—number of total MCMC samples, #forwardEval—number of
forward simulations from the ODE model
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Table 4 Hamiltonian Monte
Carlo (HMC) results for two GP
models (zero mean vs. quadratic
mean GP) of the log
unnormalised posterior for the
biochemical signalling pathway
model in Eq. (9) The acceptance
rate and effective sample size
(ESS) normalised by the number
of HMC iterations N is the
median over 10 algorithm
initialisations for one data set

GP model Acceptance rate (%) ESS/N

Zero-mean GP 57 (0.24, 0.04, 0.02, 0.03, 0.06)

Quadratic mean GP 77 (0.55, 0.48, 0.24, 0.32, 0.42)

mance (in terms of acceptance rate and ESS) compared to
the zero mean GP model.

Additionally, in Fig. 8 of the Supplement we show param-
eter posterior samples collected in the sampling phase for one
randomly selected data set out of the 10 data sets. The top
two figures show posterior samples generated from the zero
mean GP log unnormalised posterior and two different chain
initialisations, while the bottom two figures show samples
drawn from the quadratic mean GP log unnormalised pos-
terior. The chain mixing based on the latter GP model is
better than the former, although for both models, periods of
chain stagnations are registered, an issue which we discuss
in Sect. 7.6. Consequently, in the next sections, results pro-
duced with a quadratic mean function GP prior model are
presented.

6.3.2 Hybrid algorithms for non-positive definite negative
Hessian matrix

Applying the higher-order methods (RMHMC and LDMC)
posed difficulties due to the negative Hessian matrix of the
log unnormalised posterior not always being positive defi-
nite, as illustrated for a 2D parameter space in Fig. 7 of the
Supplement. Similarly to the FitzHugh–Nagumo model, we
implemented the hybrid algorithms as described in Sect. 5.3.
Our findings revealed the following: for some data sets, the
hybrid algorithms returned samples drawn mostly with the
HMC algorithm, i.e. the percentage of HMC-drawn sam-
ples was 85–90%, while 10–15% of the samples were drawn
with RMHMC or LDMC, the reason being a high condi-
tion number (> 1015) of the mass matrix set using Eq. (19).
For other data sets, the Bayesian optimisation employed for
RMHMC or LDMC set the tuning parameters to very low
values (higher values would encourage the sampler to step
into regions where the matrix has high condition number),
leading to the sampler making tiny, ineffective moves, result-
ing in low ESS. These issues illustrate that the second-order
methods (RMHMC,LDMC) combinedwith emulation of the
log unnormalised posterior distribution effectively reduce to
the standard first-order HMC with emulation method due
to the sub-optimality of the mass matrix. However, it is

important to emphasize that our proposed hybrid algorithm
provides a safety net that enables the overall algorithm to
finish successfully by dynamically switching between first-
and second-order methods.

In light of these findings, the second-order methods were
excluded from the comparison, and subsequent results for
the biochemical pathway example are presented for HMC
and NUTS only.

6.3.3 DA versus noDA

The hypothesis testing comparing the mean of the dis-
tribution over 10 data sets of the normalised minimum,
median and maximum ESS (Eq. (13)) between the DA and
noDA scheme revealed a p-value > 0.05 for all measures,
except MaxESS/number of forward evaluations, for which
DA seems to have a slight advantage. The distribution of
these ESS values for the DA and noDA methods is shown in
Fig. 2(c) of the Supplement. For the purpose of comparing
the Hamiltonian Monte Carlo algorithms and to ensure con-
sistency with previous examples, we proceeded with the DA
algorithms.

6.3.4 Accuracy

Parameter space Table 5 illustrates the mean and standard
deviation of the posterior medians over 10 data sets (see
Eq. (22)) for the ODE parameters drawn with all emulation
methods, and of the noise variances, sampled with Gibbs
sampling.

The methods perform very similarly in terms of accuracy,
with the inferred values for the ODE parameters and the
‘species’ noise variances being contained within the inter-
val given by mean ± 2 std.
Functional space Table 5 shows the mean and standard devi-
ation of R2 (Eq. (23)) over 10 data sets of R2 for every
‘species’ obtained with every emulation method. A similar
performance of the methods is registered, with all methods
giving a very large R2 (mean of ∼ 0.99).
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Fig. 7 Efficiency in terms of ESS of the algorithms compared (1:
DA-GP-HMC, 2: DA-GP-NUTS) for the biochemical pathway exam-
ple. Min, median, max ESS were calculated using Eq. (13). We show
the distribution over 10 data sets. Legend: HMC—Hamiltonian Monte
Carlo, NUTS: NoU-turn sampler, DA—delayed acceptance, GP: Gaus-
sian process, ESS: effective sample size, N—number of total MCMC
samples, #forwardEval—number of forward simulations from the ODE
model. See Table 1 for further explanations of the abbreviations

Parameter UQ The two methods give overlapping marginal
posterior densities for the parameters, see Fig. 5 in the Sup-
plement.

6.3.5 Efficiency

Method comparison Figure 7 shows the distribution of min,
median and max ESS (see Eq. (13)) normalised by the total
number of MCMC samples N and by the number of forward
(model) evaluations over 10 data sets for HMC and NUTS.
In terms of normalised MinESS and MedianESS, the HMC
algorithm has a superior performance to NUTS, while a fair
degree of similarity in the performance with respect to nor-
malised MaxESS between the two algorithms is recorded.
Chain stagnation The simulation results in Figure 8 of the
Supplement show fairly long periods of rejections, after
which the sampler recovers, with good mixing exhibited.
This issue points to a mismatch between the emulator and
the simulator; a more thorough discussion on this is given in
Sect. 7.6.

6.4 Real-world application: 1D fluid-dynamics
model of the pulmonary blood circulation

6.4.1 DA versus noDA

For the particular data set available, we test for the equality
of mean normalised ESS of the distribution over all four
parameters between the DA and noDA schemes for all four
emulation algorithms. The hypothesis test reveals a p-value >
0.05 for all algorithms. These findings suggest no difference
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in efficiencybetween theDAandnoDAschemes. Similarly to
the previous examples, we took forward the DA algorithms.

6.4.2 Accuracy

Table 6 shows the posterior median and 95% credible inter-
val of the PDE parameters obtained from the posterior
samples generated with all the emulation methods (DA-GP-
HMC, DA-GP-NUTS, DA-GP-RMHMC, DA-GP-LDMC,
see Table 1 for abbreviation explanations) and with a long-
runMCMC sampler, and of the noise variance, sampled with
Gibbs sampling. These results are for one single measured
(real) data set, for which the ground truth parameter values
are unknown. In addition, in Fig. 6 of the Supplement we
plot the marginal posterior densities of the parameters. In
the absence of a gold standard, to test whether the emulation
approach gives any bias in the results, we also present results
obtained with a long-run MCMC sampler.

Table 6 and Fig. 6 of the Supplement suggest that all meth-
ods provide very similar results. The overlapping densities
for the different algorithms indicate that the methods provide
samples from approximately the same distribution. In the
absence of a proper gold standard, the agreement between the
predicted posterior probability distributions across all emu-
lation algorithms and the long-run (direct) MCMC, can be
taken as a proxy for accuracy. This statement is backed up
by a very high R2 value of 0.99 (see Table 6) registered by
all methods, indicating a very good fit to the measured data.

6.4.3 Efficiency

Figure 8 displays the distribution of ESS (Eq. (12)) nor-
malised by the total number of MCMC samples N and by
the number of forward (model) evaluations over all four
parameters for the single data set analysed.RMHMCappears
superior to all other algorithms when analysing ESS/N
(left panel) or ESS/#forwardEval (right panel). Additionally,
NUTS systematically performs more poorly than the other
algorithms. LDMC is clearly superior to HMC when look-
ing at the minimum or median ESS/N or ESS/#forwardEval,
and HMC is better when looking at the maximum ESS/N
or ESS/#forwardEval. The distribution of these quantities is
much more variable for HMC and NUTS than for RMHMC
and LDMC.

7 Discussion

We have contributed to the research field of accelerating
Hamiltonian/Lagrangian Monte Carlo algorithms by cou-
pling them with Gaussian processes for emulation of the
log unnormalised posterior distribution. We have provided
proofs of detailed balance with respect to the asymp- Ta
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Fig. 8 Efficiency in terms of ESS of the algorithms compared (1: DA-
GP-HMC, 2: DA-GP-NUTS, 3: DA-GP-RMHMC, 4: DA-GP-LDMC)
for the fluid-dynamics pulmonary example. ESS was calculated using
Eq. (12). We show the distribution of ESS over the four parameters for
one single data set. Legend: HMC—Hamiltonian Monte Carlo, NUTS:
NoU-turn sampler, RMHMC—RiemannManifold HamiltonianMonte
Carlo, LDMC—Lagrangian Dynamical Monte Carlo, DA—delayed
acceptance, GP: Gaussian process, ESS: effective sample size, N—
number of total MCMC samples, #forwardEval—number of forward
simulations from the PDE model. See Table 1 for further explanations
of the abbreviations

totically exact posterior distribution for these algorithms,
and validated the mathematical and coding correctness of
the samplers’ implementation by Geweke consistency tests
(Fig. 1 in the Supplement). Moreover, we have carried
out a comparative evaluation study to assess the perfor-
mance of the methods on a series of ODE/PDE models
(sinusoidal, FitzHugh–Nagumo, biochemical pathway and
fluid-dynamics pulmonarymodel).Wehave aimed to identify
the most computationally efficient and accurate parameter
inference and UQ tools to be applied to nonlinear ODE or
PDE models. Typically, these models incur onerous compu-
tational costs caused by repeated numerical integrations as
part of an iterative sampling scheme. In addition, we have
investigated whether the delayed acceptance scheme used
in conjunction with these emulation algorithms can further
offer computational gains over the standard algorithms.

7.1 A discussion on the algorithms compared

We have compared the following algorithms: noDA-GP-
HMC (i.e. standard GP-HMC), DA-GP-HMC, DA-GP-
NUTS, noDA-GP-RMHMC, DA-GP-RMHMC, noDA-GP-
LDMC and DA-GP-LDMC (see Table 1 for explanations of
the abbreviations). While the standard GP-HMC was origi-
nally proposed in Rasmussen (2003), all the other algorithms
are our contribution. The noDA-GP-NUTS algorithm was
not implemented in practice due to requiring a number of
expensive model evaluations roughly one order of magni-

tude higher than DA-GP-NUTS, see the proof in Sect. 4.7 of
the Supplement.

7.1.1 Hybrid algorithms for non-positive definite negative
Hessian matrix

As discussed in Sect. 5.3, due to emulating the log unnor-
malised posterior instead of the signals (i.e. the solutions of
the ODEs/PDEs), we could not use the expected Fisher infor-
mation matrix when setting the mass matrix in RMHMC
or LDMC. Instead we used the observed Fisher informa-
tion matrix. The resulting negative Hessian matrix of the
log unnormalised posterior distribution (which is the sum
of the observed Fisher information matrix and the matrix
of negative second-order derivatives of the log prior) is not
guaranteed to be positive definite. This was an issue for
the FitzHugh–Nagumo and biochemical pathway models
(see Fig. 5 in the main paper and Fig. 7 in the Supple-
ment), but not for the sinusoidal and pulmonary models.
For the former models, we adopted a form for the mass
matrix based on a combination of the observed and empirical
Fisher information matrix (Eq. (19)), ensuring at least pos-
itive semi-definiteness. The downside was that the matrix
can have a high condition number (> 1015). To overcome
this, we took a hybrid approach: if at any point throughout
the trajectory the matrix was numerically unstable, the sim-
ulation within the trajectory was stopped prematurely, and
HMCwas run instead of RMHMC/LDMC for that particular
iteration. The FitzHugh–Nagumo model in particular bene-
fited from this hybrid approach, as efficiency gain over the
HMC algorithm was achieved, with roughly two thirds of
samples being RMHMC-drawn and three quarters of sam-
ples being LDMC-drawn (while the rest of one third and
one quarter were HMC-drawn samples). In contrast, the bio-
chemical pathway model registered no efficiency gain over
HMC, as most samples were drawn with the latter.

7.2 Emulation of themodel output

To avoid the loss of information inherent in emulating the log
unnormalised posterior distribution (Davies et al. 2019) (see
Sect. 5.3 for specific equations and details), the multivari-
ate signal could be emulated instead, using e.g. ensembles of
single-output emulators (MS) (Conti andO’Hagan2010b), or
multivariate-output Gaussian processes (MO) (Álvarez et al.
2010; Moreno-Muñoz et al. 2018). However, emulating a
high-dimensional output brings computational challenges.
The computational costs for emulating a high-dimensional
complex output will increase significantly when compared
to emulating a one-dimensional function (Wilkinson 2014;
Davies et al. 2019). General methods based on marginalisa-
tion over covariance between outputs with an uninformative
prior, as done in Conti et al. (2009) and Conti and O’Hagan
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(2010a) does not take into account relevant information about
the data (e.g. periodicity of the time series). Additionally,
allowing for the particular dependence of a time series (e.g.
correlations, periodicity) requires a thorough exploration to
identify an appropriate emulation strategy, e.g. using ensem-
bles of independent GPs or multivariate-output GPs, sums or
products of different kernel functions, or different forms for
the mean function.

In light of the findings of this study, a new research
direction could be that of finding a trade-off between high
computational complexity (due to emulating a multivari-
ate output) and potential efficiency gains of a second-order
Hamiltonian/Lagrangian schemeguaranteeing a positive def-
inite Fisher information matrix.

7.3 Advantage of delayed acceptance

There is no evidence that the DA scheme brings any compu-
tational gains when coupled with Hamiltonian/Lagrangian
Monte Carlo algorithms. The efficiency of DA-GP-HMC,
noDA-GP-HMC, DA-GP-RMHMC, noDA-GP-RMHMC,
DA-GP-LDMC, noDA-GP-LDMC (see Table 1 for abbrevi-
ation explanations), as measured in terms of ESS normalised
by the total number of MCMC samples and by the number
of model (forward) evaluations, is comparable between the
DA and noDA algorithms, a conclusion drawn based on a
formal hypothesis test testing for equal sample means of the
normalised ESS.

While an MCMC with DA approach has been taken in
previous studies in the literature (Christen and Fox 2005;
Golightly et al. 2015; Sherlock et al. 2017; Higdon et al.
2011;Cui et al. 2011;Quiroz et al. 2018;Banterle et al. 2019),
to our best knowledge, our current study is the only one to
complement our previous study (Paun and Husmeier 2020),
and use DA in conjunction with Hamiltonian/Lagrangian
Monte Carlo algorithms. Other studies have compared stan-
dard random-walk MCMC algorithms to their DA version.
For example, Golightly et al. (2015) showed that the DA
scheme can lead to improvements in computational effi-
ciency in a particle MCMC algorithm applied to stochastic
kinetic models. Additionally, Banterle et al. (2019) and
Quiroz et al. (2018) showed that DA brings computational
advantages when applied to M–H algorithms on large data
sets, for which data sub-sampling is employed. However,
theseMCMC algorithms are based on a random-walk, which
is known to have a lower acceptance rate (and efficiency) than
the gradient-driven Hamiltonian Monte Carlo algorithms
(see Ch. 5 in Brooks et al. 2011 or Sengupta et al. 2016).
Therefore, the former algorithms provide more potential for
improvement with the DA scheme than the latter, i.e. if a
rejection is more likely, a higher number of computationally

expensive model evaluations are avoided by the first stage
employing the emulator.10

7.4 Accuracy

The accuracy in parameter and functional space proved to be
very similar between the different methods for all ODE/PDE
models considered, see Tables 2, 3 and 5 and 6. In addi-
tion, for the toy examples, we showed that the algorithms
were able to learn the true parameter values that generated
the data (Tables 2, 3 and 5). The marginal posterior densi-
ties constructed from the MCMC posterior samples showed
overlapping densities, indicating that the uncertainty quan-
tification was on a par for all methods (Figs. 3, 4, 5 and 6 in
the Supplement).

7.5 Efficiency

ESS normalised by the total number of MCMC samples In
terms of ESS/N (left panel in Figs. 4, 6, 7, 8), the per-
formance of DA-GP-NUTS was generally inferior to that
of the other algorithms (DA-GP-HMC, DA-GP-RMHMC,
DA-GP-LDMC, see Table 1 for abbreviation explanations).
A possible explanation is that for DA-GP-NUTS the tun-
ing of the step size and number of steps is performed in
the emulated log unnormalised posterior entirely, based on
samples accepted at the emulator stage, due to the con-
struction of the algorithm (see the proof in Sect. 4.7 of the
Supplement). In contrast, for the other three algorithms, the
tuning is performed based on samples accepted at the sim-
ulator stage, thus the simulator plays a role in the choice
of optimum tuning parameters, positively impacting effi-
ciency.

In terms of minESS/N , generally the RMHMC and
LDMC algorithms perform better than HMC, while in terms
of medianESS/N or maxESS/N no clear pattern is observed
(sometimes RMHMC and LDMC are better, other times
HMC is preferred). We also note a much larger discrep-
ancy between minESS/N and maxESS/N for HMC and
NUTS than RMHMC and LDMC, for which ESS/N varies
much less across parameters. This is a consequence of
the latter two algorithms using a mass matrix set via the
curvature of the log unnormalised posterior, while HMC
and NUTS use an identity matrix as the mass matrix,
and the optimum step size is restricted by the lowest
marginal variance. Thus, a first-order algorithm like HMC or
NUTS can be more inefficient (e.g. in terms of minESS/N )
for problems with large discrepancies between the low-
est and largest marginal variance. Generally, RMHMC and
LDMC perform similarly, an exception is the pulmonary

10 Provided the emulator is an accurate representation of the simulator.
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model, which registers better performance for RMHMC than
LDMC.
ESS normalised by the number of forward evaluations In
terms of ESS/#forwardEval (right panel in Figs. 4, 6, 7, 8), a
similar pattern as for ESS/N is observed, which is expected
given the high acceptance rate (>80%), meaning that the
number of model evaluations is close to the total number
of MCMC samples. This finding also helps explain why
we found no advantage of the DA scheme: generally most
proposals are accepted at the emulator (first) stage, and are
subsequently subject to the accept/reject decision at the sim-
ulator (second) stage.

The above interpretations for the FitzHugh–Nagumo
model apply to the emulationhybrid-RMHMC-HMC/hybrid-
LDMC-HMC instead of the standard emulation RMHMC/
LDMC.

7.6 Limitations and future improvements for the
biochemical pathway example

The biochemical pathway example was a hard problem to
emulate due to the high correlations manifested through
long ridges in the log unnormalised posterior landscape (see
Fig. 7 in the Supplement). While a quadratic mean GP prior
improved the acceptance rate, mixing and efficiency (see
Table 4 of the main paper and Fig. 8 of the Supplement), a
larger number of training points would have been needed for
an optimal coverage of the parameter space. However, this
would have resulted in high CPU times11 due to different
operations performed repeatedly (to compute the GP predic-
tive mean and up to its third-order derivatives) involving the
high-dimensional covariance matrix.

The consequence was a mismatch between the emulator
and the simulator in the tails of the target distribution: pro-
posals were accepted at the emulator stage, but rejected at
the simulator stage. The result was occasional chain stag-
nations, i.e. ’stickiness’, see Fig. 8 of the Supplement. The
use of a larger number of training points in conjunction
with sparse GPs (Titsias 2009; Hensman et al. 2015), which
optimally select a lower number of points retaining the
maximum information at reduced costs could overcome the
issues presented and constitutes future work. This strategy
could potentially be coupled with continuous refinement of
the emulator when the sampler steps into a region of high
uncertainty, similar to the study in Conrad et al. (2016), to
avoid deciding when to stop the exploratory phase, during
which the emulator is refined. It is worth mentioning that the
’stickiness’ problem is a notorious issue in pseudo-marginal

11 Care has to be taken to ensure that the computational times in
approaches employing the emulator remain lower than when the simu-
lator solely is used, else the entire purpose of emulation is defied.

MCMC (Drovandi et al. 2018; Murray and Graham 2016),
in which the estimator of the target distribution is inconsis-
tent with the true target distribution in the tails. This is a
similar issue in nature to that encountered with emulation
MCMC, thus, an interesting future direction would be an
interdisciplinary cross-breeding between emulation MCMC
and pseudo-marginal MCMC.

8 Conclusions

We have provided theoretical and empirical investigations
into Hamiltonian/Lagrangian Monte Carlo algorithms cou-
pled with Gaussian processes for emulation of the log
unnormalised posterior distribution. We have proved that
these emulation algorithms satisfy detailed balance with
respect to the exact posterior distribution. Additionally, we
have investigated whether the delayed acceptance scheme is
computationally advantageous over the standard algorithms.
We have carried out an empirical efficiency assessment of
the emulation methods on a series of ODE/PDE models,
including toy problems and a real-world application of com-
putational fluid-dynamics of the pulmonary blood circulation
model. We have aimed to identify the most computationally
efficient and accurate parameter inference and UQ tools to
be applied to nonlinear ODE or PDE models, which typi-
cally incur onerous computational costs due to the need for
repeated numerical integrations. Results showed no advan-
tage of the delayed acceptance scheme over the standard
algorithms with respect to efficiency measures based on the
effective sample size. Additionally, our methods estimated
the true parameter values well, with all methods perform-
ing similarly across the ODE/PDE models considered. The
Lagrangian Dynamical Monte Carlo and Riemann Mani-
fold Hamiltonian Monte Carlo tended to register the highest
efficiency (in terms of effective sample size normalised by
the number of forward model evaluations), followed by the
HamiltonianMonte Carlo, and the NoU-turn sampler tended
to be the least efficient.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10060-
4.
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