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Abstract
We investigate the performance of a class of particle filters (PFs) that can automatically tune their computational complexity
by evaluating online certain predictive statistics which are invariant for a broad class of state-space models. To be specific, we
propose a family of block-adaptive PFs based on the methodology of Elvira et al. (IEEE Trans Signal Process 65(7):1781–
1794, 2017). In this class of algorithms, the number of Monte Carlo samples (known as particles) is adjusted periodically, and
we prove that the theoretical error bounds of the PF actually adapt to the updates in the number of particles. The evaluation
of the predictive statistics that lies at the core of the methodology is done by generating fictitious observations, i.e., particles
in the observation space. We study, both analytically and numerically, the impact of the number K of these particles on the
performance of the algorithm. In particular, we prove that if the predictive statistics with K fictitious observations converged
exactly, then the particle approximation of the filtering distribution would match the first K elements in a series of moments
of the true filter. This result can be understood as a converse to some convergence theorems for PFs. From this analysis, we
deduce an alternative predictive statistic that can be computed (for some models) without sampling any fictitious observations
at all. Finally, we conduct an extensive simulation study that illustrates the theoretical results and provides further insights
into the complexity, performance and behavior of the new class of algorithms.
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1 Introduction

In science and engineering, there are many problems that
are studied by way of dynamic probabilistic models. Some
of these models describe mathematically the evolution of
hidden states and their relations with observations, which
are sequentially acquired. In many of these problems, the
objective is to estimate sequentially the posterior probability
distribution of the hidden model states. A methodology that
has gained considerable popularity in the last two and a half
decades is particle filtering (also known as sequential Monte
Carlo) (Gordon et al. 1993; Liu et al. 1998; Doucet et al.
2001;Djurić et al. 2003;Künsch 2013). This is aMonteCarlo
methodology that approximates the distributions of interest
by means of random (weighted) samples.

Arguably, a key parameter of particle filters (PFs) is the
number of generated Monte Carlos samples (usually termed
particles). A larger number of particles improves the approx-
imation of the filter but also increases the computational
complexity. However, it is impossible to know a priori the
appropriate number of particles to achieve a prescribed accu-
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racy in the estimated parameters and distributions. So a
question of great practical interest is how to determine the
necessary number of particles to achieve a prescribed perfor-
mance and, in particular, how to determine it automatically
and in real time.

1.1 Particle filtering with time-varying number of
particles

Until the publication of Elvira et al. (2017), not many papers
had considered the selection/adaptation of the number of par-
ticles in a systematic and rigorous manner. In Elvira et al.
(2017), a methodology was introduced to address this prob-
lem with the goal of adapting the number of particles in real
time. The method is based on a rigorous mathematical anal-
ysis and we discuss it in more detail in Sect. 1.2.

Other efforts toward the same goal include the use of a
Kullback–Leibler divergence-based approximation error by
Fox (2003), where the divergence was defined between the
distribution of the PF and a discrete approximation of the
true distribution computed on a predefined grid. The ideas in
Fox (2003) were further explored by Soto (2005). A heuris-
tic approach based on the effective sample size was proposed
by Straka and Šimandl (2006), while Cornebise (2009, Chap-
ter 4) pursued similar ideas with a scheme that regenerated
particles until a certain performance criterionwasmet. A dis-
advantage of using the effective sample size is that once a PF
loses track of the hidden state, the effective sample size does
not provide information for adjusting the number of parti-
cles. See other issues related to the effective sample size in
Elvira et al. (2018).

A method for selecting the number of particles based on
the particle approximation of the variance of the particle esti-
mators was reported by Lee and Whiteley (2018), where the
Feynman–Kac framework of Del Moral (2004) was used for
the analysis. While well principled, this technique cannot be
implemented online. Bhadra and Ionides (2016) suggested
an autoregressive model for the variance of the estimators
produced by the PF was employed, but the resulting method
works offline as well. In a group of papers on alive PFs,
the number of particles is adaptive and based on sampling
schemes that ensure a predefined number of particles to have
non-zero weights (LeGland and Oudjane 2005; Jasra et al.
2013; Moral et al. 2015). In Martino et al. (2017), a fixed
number of particles is adaptively allocated to several can-
didate models according to their performances. In Hu et al.
(2008), particle sets of the same size are generated until an
estimation criterion for their acceptance is met.

1.2 Some background

In Elvira et al. (2017), we introduced a methodology for
assessing the convergence of PFs that works online and

can be applied to a very broad class of state-space models
and versions of the PF. The method is based on simulat-
ing fictitious observations from one-step-ahead predictive
distributions approximated by the PF and comparing them
with actual observations that are available at each time step.
In the case of one-dimensional observations, a statistic is
constructed that simply represents the number of fictitious
observations which are smaller than the actual observation.
It is proved in Elvira et al. (2017) that, as the PF converges,
the predictive statistics become uniform on a discrete sup-
port and independent over time. From that realization, we
proposed an algorithm for statistically testing the uniformity
of the predictive statistic and, based on the test, update the
number of particles in the PF.

The same type of predictive statistic has been used as a
tool for evaluating ensemble forecasts in weather predic-
tion, under the name of rank statistic—see, e.g., Anderson
(1996), Hamill (2001) and Bröcker (2018). Recently, Talts
et al. (2018) have also used the same statistic to validate both
models and inferential methods in a Bayesian framework.
The scheme in the latter paper is similar to the methodology
we proposed in Elvira et al. (2017) for Bayesian inference in
state-space models.

1.3 Contributions

In this paper, we propose a general block-adaptive PF where
the number of particles is updated periodically, everyW dis-
crete time steps. It is a rather general scheme that provides
a common framework for the procedures described in Elvira
et al. (2017) and enables us to introduce different versions of
the algorithm and to extend the analysis of the methodology.

In particular, we first tackle the problem of whether the
updates in the number of particles carried out at the end of
each block of length W translate into changes to the theoret-
ical error bounds for the Monte Carlo estimators. While this
is the kind of performance that one would like to have (e.g.,
we want to see smaller errors when we increase the number
of particles), what the standard arguments for proving the
convergence of the PF1 yield directly are error bounds that
depend on theminimum of the number of particles over time.
Here, we use the approach of Del Moral (2004) to prove that,
assuming that the state sequence is Markov and mixing, the
approximation errors at the end of each block are bounded
by the sum of two terms: one that depends on the number of
particles in the current block and another one that decreases
exponentially with the block length W .

Next, we turn our attention to the analysis of the impact
of the number of fictitious observations, K , used by the algo-

1 Either by induction as in Crisan (2001), Bain and Crisan (2008) or
using the contraction properties of Markov kernels as in Del Moral
(2004), Künsch (2005).
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rithm to compute the predictive statistics. We first prove that
if the predictive statistics with K fictitious observations are
uniformly distributed, then the particle approximation of the
filtering distribution match at least the first K elements in a
series of moments that characterize the true filter completely.
Let us remark that this result is (close to) a converse to Theo-
rem 2 in Elvira et al. (2017): the latter says that when the PF
converges, the predictive statistics become uniform, while
the new result says that if the predictive statistics with K fic-
titious observations become uniform, then the PF necessarily
converges tomatch at least K moments of the true filter. From
this analysis, we deduce an alternative predictive statistic that
can be computed (for some models) without sampling any
fictitious observations at all and establish its connection with
the original one.

Finally, we conduct an extensive simulation study that
illustrates the theoretical results and provides further insights
into the complexity, performance and behavior of the new
class of algorithms. We show, for example, that choosing
larger values of K leads to more accurate filters with a
higher computational cost, while a smaller K yields a faster
filter using less particles (but yielding rougher errors). We
also illustrate how the approximation errors change with the
number of particles (as predicted by the theory) or how the
adaptive PF stabilizes around the same number of particles no
matter the initial condition (i.e., whether started with many
or few particles). Our simulations also show that the new pre-
dictive statistic (without fictitious observations) is effective
but sensitive to prediction errors and hence it leads to higher
computational loads.

1.4 Organization of the paper

In the next section, we briefly describe particle filtering as a
sequential Monte Carlo methodology, then we introduce our
notation and a general block-adaptive PF that updates the
number of particles periodically and admits different imple-
mentations. InSect. 3,wepresent our convergence analysis of
block-adaptive PFs. In Sect. 4, we provide a detailed analysis
of the number of generated fictitious particles and introduce
a new predictive statistic that does not require generation of
fictitious particles. In the last two sections, we present results
of numerical experiments and our conclusions, respectively.

2 Background

2.1 State-spacemodels and particle filtering

We investigate Markov state-space models described by the
triplet of probability distributions

X0 ∼ p(x0), (2.1)

Xt ∼ p(xt |xt−1), (2.2)

Y t ∼ p(yt |xt ), (2.3)

where

– t ∈ N denotes discrete time;
– Xt is the system state at time t , i.e., a dx ×1-dimensional

random vector taking values in a state space X ⊆ R
dx ,

– p(x0) is the a priori probability density function (pdf) of
the state,

– p(xt |xt−1) is the conditional density of Xt given Xt−1 =
xt−1;

– Y t is a dy × 1-dimensional observation vector at time
t , where Y t ∈ Y ⊆ R

dy and is assumed conditionally
independent of all the other observations given Xt ,

– p(yt |xt ) is the conditional pdf of Y t given Xt = xt . It is
often referred to as the likelihood of xt , when it is viewed
as a function of xt for some fixed yt .

Based on the model (2.1)–(2.3), we aim at estimating the
sequence of posterior probability distributions p(xt |y1:t ), t =
1, 2, . . ., recursively. Many schemes addressing this task rely
on the decomposition

p(xt |y1:t ) ∝ p(yt |xt )
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1,

that relates the so-called filtering pdf at time t , p(xt |y1:t ), to
the filtering density at time t − 1, p(xt−1|y1:t−1).

Let us denote the filtering and the predictive posterior
probability measures as

πt (dxt ) := p(xt |y1:t )dxt ,
ξt (dxt ) := p(xt |y1:t−1)dxt . (2.4)

The measure πt does not provide any further characteriza-
tion of the probability distribution compared to the density
p(xt |y1:t ), however, Monte Carlo methods (including PFs)
yield an approximation of πt , rather than the pdf p(xt |y1:t ).
Another function that plays a central role in the methods
investigated in this paper is the predictive pdf of the obser-
vations, p(yt |y1;t−1). We denote the associated probability
measure as

μt (dyt ) := p(yt |y1:t−1)dyt .

It is well known that the predictive pdf is instrumental for
model inference (Andrieu et al. 2010; Djurić and Míguez
2010; Chopin et al. 2012; Crisan and Miguez 2018).

The goal of particle filtering algorithms is to estimate
sequentially the probability measures {πt }t≥1 as the obser-
vations {yt }t≥1 are collected. The basic method for accom-
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plishing this is known as the bootstrap filter (BF) introduced
by Gordon et al. (1993) (see also Doucet et al. 2000).

At time t = 0, the algorithm applies standardMonte Carlo
to approximate the prior probability distribution, i.e., we gen-
erate M i.i.d. samples x(m)

0 , m = 1, . . . , M , from the pdf

p(x0). The samples x(m)
0 are often termed particles. Assume

that the particles can be propagated over time, in such a way
that we obtain a Monte Carlo approximation of the filtering
distribution at time t − 1 given by the particle set {x(m)

t−1}Mm=1.
At time t , the BF generates an estimate of πt recursively, by
taking three steps:

1. Draw new particles x̄(m)
t , m = 1, . . . , M , from the condi-

tional pdf’s, p(xt |x(m)
t−1). Note at at this step we essentially

simulate the model dynamics by propagating the particles
one step forward.

2. Compute normalized importance weights of the particles,
denoted

w
(m)
t ∝ p(yt |x̄(m)

t ), m = 1, . . . , M .

These weights are proportional to the likelihood and they
satisfy

∑M
m=1 w

(m)
t = 1.

3. Resample the particles M times with replacement using
the weights {w(m)

t }Mm=1 as probabilities (Li et al. 2015).
This yields the new (and non-weighted) particle set
{x(m)

t }Mm=1.

From the particles and theirweights, one can compute esti-
mates of several probability measures and pdfs. The filtering
measure πt can be approximated as

πM
t (dx) =

M∑
m=1

w
(m)
t δx̄(m)

t
(dx),

where δx̄(m)
t

represents the Dirac delta measure located at

x̄(m)
t ∈ X . Moreover, at time t , once Y1:t−1 = y1:t−1 are

available but Y t = yt has not been observed yet, the pre-
dictive pdfs of Xt , denoted p̃t (xt ) := p(xt |y1:t−1), and Y t ,
denoted pt (yt ) := p(yt |y1:t−1), can be approximated as

p̃Mt (xt ) := 1

M

M∑
m=1

p(xt |x(m)
t−1), xt ∈ X , and (2.5)

pMt (yt ) := 1

M

M∑
m=1

p(yt |x̄(m)
t ), yt ∈ Y . (2.6)

A key parameter in the standard BF is the number of par-
ticles M , which determines both the computational cost of
the algorithm and also the accuracy of any estimators com-
puted using the particles and weights (DelMoral, 2004; Bain

and Crisan, 2008). While M is fixed in conventional particle
filtering methods, the focus of this paper is on algorithms
where M can be updated sequentially (Elvira et al., 2017).

2.2 Block-adaptive selection of the number of
particles

A generic block-adaptive method for selecting the number of
particles is summarized in Table 1. Hereafter, we assume that
the observations are one-dimensional (and hence we denote
them as yt instead of yt ) unless explicitly indicated. The
methods to be described can be adapted to systems with mul-
tidimensional observations in a number of ways—see Elvira
et al. (2017, Section IV-E) for a discussion on this topic. Also
note that we implement the algorithm based on the standard
BF, but it is straightforward to extend the methodology to
other PFs.

The block-adaptive method proceeds as follows. In Step
1(a) of Table 1, the filter is initialized with M0 particles. The
particle filter works at each time step in a standard manner
with the current number of particles, as described inStep 2(a).
The first modification with respect to (w.r.t.) the BF comes
in Step 2(b), where K fictitious observations {ỹ(k)

t }Kk=1 are
simulated from the (approximate) predictive distribution of
the observations pMt (yt ) (see Elvira et al. 2017, Section IV-A
for additional details).Assume that the fictitious observations
are ordered, i.e., ỹ(1)

t < ỹ(2)
t < · · · < ỹ(K )

t , and let yt be the
actual observation at time t . The statistic AK ,Mn ,t is a r.v.
constructed as

AK ,Mn ,t :=

⎧⎪⎨
⎪⎩
0, if yt < ỹ(1)

t ,

j, if ỹ( j)
t < yt < ỹ( j+1)

t , with 1 ≤ j < K ,

K , if ỹ(K )
t < yt .

Therefore, AK ,Mn ,t yields a non-negative integer (from 0
to K ) that indicates how many fictitious observations are
smaller than the actual observation yt . We use AK ,Mn ,t to
denote the r.v., while aK ,Mn ,t indicates a specific realization
of it. The algorithm works with windows of varying sizeWn .
At the end of the nth window (Step 2(c)), the sequence

Sn = {aK ,Mn ,t−Wn+1, aK ,Mn ,t−Wn+2, . . .

. . . , aK ,Mn ,t−2, aK ,Mn ,t−1, aK ,Mn ,t } (2.7)

is collected and processed for assessing the convergence
of the filter. The number of particles is adapted (increased,
decreased, or kept constant) based on the assessment.

When we assume that

– the fictitious observations {ỹ(k)
t }Kk=1 are independently

drawn from the same pdf as the actual observation yt ,
i.e., the predictive pdf p(yt |y1:t−1), and
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Table 1 General BF with block-adaptive number of particles, Mn

1. [Initialization]

(a) Draw independent samples x(m)
0 from the prior p(x0) and assign uniform weights, i.e.,

x(m)
0 ∼ p(x0), m = 1, . . . , M0, and

w
(m)
0 = 1

M0
, m = 1, . . . , M0.

(b) Set n = 0 (block counter) and choose W0 > 0 (size of the first block).

2. [For t = 1, 2, . . .]

(a) Bootstrap particle filter:

– Sample x̄(m)
t ∼ p(xt |x(m)

t−1), m = 1, . . . , Mn .

– Compute normalized weights, w̄(m)
t ∝ p(yt |x̄(m)

t ), m = 1, . . . , Mn .

(b) Fictitious observations:

– Draw ỹ(k)
t ∼ pMt (yt ), k = 1, . . . , K .

– Compute aK ,Mn ,t , i.e., the position of the actual observation yt within the set of ordered fictitious observations {ỹ(k)
t }Kk=1.

(c)Assessment of convergence: If t = ∑n
j=0 Wj − 1 (end of the nth block) then:

– Analyze the subsequence

Sn = {aK ,Mn ,t , aK ,Mn ,t−1, . . . , aK ,Mn ,t−Wn+1} with some specific algorithm from Sect. 2.3.

– Set n = n + 1.

– Select the number of particles Mn > 0.

– Select the block size Wn > 0.

– Resample Mn particles with replacement, from the weighted set {x̄(m)
t , w

(m)
t }Mn−1

m=1 , to obtain {x(m)
t }Mn

m=1.

Else:

– Resample Mn particles with replacement, from the weighted set {x̄(m)
t , w

(m)
t }Mn

m=1, to obtain {x(m)
t }Mn

m=1.

– the statistic AK ,M,t becomes independent of M , i.e.,
AK ,M,t = AK ,t is exact as well,

it is relatively straightforward to prove the two propositions
below (Elvira et al. 2017).

Proposition 1 If yt , ỹ
(1)
t , . . . , ỹ(K )

t are i.i.d. samples from
a common continuous (but otherwise arbitrary) probability
distribution, then the pmf of the random variable (r.v.) AK ,t

is

QK (n) = 1

K + 1
, n = 0, . . . , K . (2.8)

Proposition 2 If the r.v.’s yt , ỹ
(1)
t , . . . , ỹ(K )

t are i.i.d. with
common pdf pt (y), then the r.v.’s in the sequence {AK ,t }t≥1

are independent.

In practical terms, Propositions 1 and 2 suggest that when
the approximation errors in the PF are small, i.e., pMt (dyt ) ≈
pt (dyt ), we can expect the statistics in the sequenceSn of Eq.
(2.7) to be (nearly) independent and uniformly distributed.
Therefore, testing whether the variates

aK ,Mn ,t−Wn+1, aK ,Mn ,t−Wn+2, . . . , aK ,Mn ,t−1, aK ,Mn ,t ,

are independent and/or uniform is an indirect manner of
assessing the convergence of the PF. The key advantage of

this approach is that Propositions 1 and 2donot depend on the
specific choice of the transition density p(xt |xt−1) and the
likelihood p(yt |xt ), and therefore the statistics can be applied
to a very general class of state-spacemodels. A detailed anal-
ysis of the approximation errors in the statistic AK ,M,t and
its pmf QK ,M,t (n) is provided in Elvira et al. (2017). In par-
ticular, it is proved that limM→∞ QK ,M,t = QK (n) almost
surely (a.s.) for every t .

2.3 Summary of algorithms for adapting the
number of particles

The general block-adaptive framework of Table 1 allows for
developing different algorithms.Herewe outline two specific
procedures that differ in the implementation of step 2(c) of
Table 1—specifically, in the analysis of the subsequence of
statistics denoted as Sn = aK ,Mn ,t−Wn+1:t . The first scheme
tests whether the samples in Sn have a uniform distribution,
while the second scheme assesses the correlation among the
elements of Sn .

2.3.1 Algorithm 1: Uniformity of AK,M,t

This is the scheme originally proposed in Elvira et al. (2017),
and it exploits Proposition 1. Under the null hypothesis of
perfect convergence of the PF (i.e., pMt (dyt ) = pt (dyt )), the
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r.v.’s AK ,M,t are statistically uniform. Therefore, the algo-
rithm tests if the variates in the subset Sn are i.i.d. uniform
draws from the set {0, . . . , K }. In Elvira et al. (2017), this
is done by performing the Pearson’s χ2 test on the set Sn of
Eq. (2.7).

To be specific, let Mmin and Mmax be the minimum and
maximum number of particles, respectively, to be admitted
by the PF. Further, let there be two threshold values 0 <

p� < ph < 1. At the end of the nth block, i.e., at time
t = ∑n

j=0 Wj − 1, the Pearson’s χ2 test is run on Sn and it
outputs a p value which we denote as p∗

K ,n . The p value is
compared against the thresholds p� and ph . In particular,

– if p∗
K ,n ≤ p�, then Mn is increased w.r.t. Mn−1 by setting

Mn = min{cMn−1, Mmax}, where c > 1 is a constant set
by the user;

– if p∗
K ,n ≥ ph , thenMn is decreasedw.r.t.Mn−1 by setting

Mn = max{c−1Mn−1, Mmin};
– otherwise, the algorithm sets Mn = Mn−1.

Intuitively, when the Pearson test yields a small p value this
is interpreted as “poor performance” of the PF and the num-
ber of particles is increased. If the p value is large, this is
interpreted as “good performance” and the computational
effort is relaxed (by decreasing Mn). If the p value is inter-
preted as “average” (i.e., between the thresholds) then the
computational effort is neither increased nor decreased. In
the numerical examples in Elvira et al. (2017), the number of
particles is increased or decreased by a factor of c = 2, while
keeping the number Mn always between Mmin and Mmax.

2.3.2 Algorithm 2: Correlation of AK .M,t

Under the same null hypothesis of perfect convergence of
the PF, the variates in Sn are i.i.d. (Proposition 2). Since
independence implies absence of correlation, we can test if
the samples of St are correlated, e.g., using the scheme in
Elvira et al. (2016). Note that in estimating the autocorrela-
tion of AK ,M,t , longer windows (larger values of Wn) may
be needed to improve accuracy. However, larger block-sizes
imply a loss of responsiveness in the adaptation of Mn .

The algorithm proposed in Elvira et al. (2016) follows the
same general scheme described in the previous Sect. 2.3.1. At
the end of the nth block (time t = ∑n

j=0 Wj −1), a Pearson’s
correlation coefficient rn is computedwith the statistics in the
set Sn , and a statistical test using the Student’s t-distribution
is performed in order to obtain the p value p∗

K ,n . This p value
is used in the same way as in Sect. 2.3.1 in order to increase,
decrease or maintain the number of particles Mn .

3 Error bounds for block-adaptive particle
filters

We present an analysis of the class of block-adaptive filters
outlined in Table 1, with either fixed (Wn = W for all n)
or adaptive (Wn updated together with Mn) block size from
a viewpoint that was ignored in Elvira et al. (2017). To be
specific, we prove that at the end of the nth window,2 the
error bounds for the estimators that are computed using the
weighted particle set {w(m)

t , x̄(m)
tn }Mn

m=1 can be written as a
function of the current number of particles Mn—provided
that the optimal filter πt satisfies a stability condition (Del
Moral, 2004). If one were to rely directly on classical conver-
gence results for algorithms with fixed Mn = M (see, e.g.,
Del Moral and Guionnet 2001; Crisan and Doucet 2002; Del
Moral 2004; Künsch 2005; Míguez et al. 2013), the error
bound at time tn would be characterized as a function of the
minimum of the number of particles employed up to that
time, namely

Mmin
n := min

0≤ j≤n
M j .

The current number of particles, Mn , can be considerably
larger than Mmin

n and, as a consequence, the error bound can
be remarkably smaller.

3.1 Notation

For notational clarity and conciseness, let

κt (dxt |xt−1) := p(xt |xt−1)dxt

denote the Markov kernel that governs the dynamics of the
state sequence {xt }t>0 and write

gytt (xt ) := p(yt |xt )

to indicate the conditional pdf of the observations.
We analyze the algorithm outlined in Table 1, which is

essentially a BF with Mn particles in the nth time window,∑n−1
j=0 Wj ≤ t <

∑n
j=1 Wj , whereWj is the length of the j th

window. As pointed out, the theoretical results we introduce
are valid both for variable window lengths as well as for
fixed Wn = W . Our analysis also holds independently of
the update rule for Mn , as long as only positive values are
permitted. Specifically, we assume that there is a positive
lower bound M such that Mn ≥ M for every n ≥ 0. In
practice, we usually have a finite upper bound M ≥ Mn as
well (but this plays no role in the analysis).

2 Specifically, at time tn = ∑n
j=0 Wj − 1.
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For any integrable real function f : X → R and a proba-
bility measure α, we use the shorthand notation

( f , α) =
∫

f (x)α(dx)

for integrals with respect to α. If α has a pdf a(x), we also
denote ( f , a) := ( f , α) when convenient. Intuitively, we
aim at proving that the bounds for the approximation errors
|( f , πMn

t ) − ( f , πt )|, where

( f , πMn
t ) =

∫
f (x)πMn

t (dx) =
Mn∑
m=1

w
(m)
t f (x̄(m)

t ),

effectively change when the number of particles Mn is
updated. Since the measures π

Mn
t are random, the approx-

imation errors ( f , πMn
t ) − ( f , πt ) are real r.v.’s, and we can

assess their L p norms. We recall that for a real r.v. Z with
probability measure α, the L p norm of Z , with p ≥ 1, is

‖Z‖p := (
E

[|Z |p]) 1
p =

(∫
|z|pα(dz)

) 1
p

,

where E[·] denotes the expected value w.r.t. the distribution
of the r.v.

3.2 Error bounds

We show hereafter that by the end of the nth block of obser-
vations, the approximation error

‖( f , πMn
tn ) − ( f , πtn )‖p, where tn =

n∑
j=0

Wj − 1,

and f is a bounded real function, can be upper bounded by
a function that depends on the current number of particles
Mn and “forgets” past errors exponentially fast. This is true
under certain regularity assumptions that we detail below.

Let us introduce the prediction-update (PU) operators Ψt

that generate the sequence of filtering probability measures
πt given a prior measure π0, the sequence of kernels κt and
the likelihoods gytt .

Definition 1 LetB(X ) denote the Borel σ -algebra of subsets
of X and let P(X ) be the set of probability measures on the
space (X ,B(X )).We construct the sequence of PU operators
Ψt : P(X ) → P(X ), t ≥ 1, that satisfy

( f , Ψt (α)) =
(
f gytt , κtα

)
(gt , κtα)

, t = 1, 2, . . . , (3.1)

for any α ∈ P(X ) and any integrable real function f , where
κtα(dxt ) = ∫

κt (dxt |x′)α(dx′) is the result of applying the
Markov kernel κt to the probability measure α.3

It is not hard to see that Definition 1 implies that πt =
Ψt (πt−1). In order to represent the evolution of the sequence
of filtering measures over several time steps, we introduce
the composition of operators

Ψt |t−r (α) := (Ψt ◦ Ψt−1 ◦ · · · ◦ Ψt−r+1) (α). (3.2)

It is apparent that πt = Ψt |t−r (πt−r ). The composition oper-
atorΨt |t−r is most useful for representing the filters obtained
after r consecutive steps when we start from different prob-
ability measures at time t − r , i.e., for comparing Ψt |t−r (α)

and Ψt |t−r (β) for α, β ∈ P(X ).
In our analysis, we assume that the kernels κt (dxt |xt−1)

satisfy amixing assumption (DelMoral 2004; Künsch 2005).
While this can be stated in various ways, we follow the
approach in Del Moral (2004), which relies on the composi-
tion of kernels to mix sufficiently over several time steps.

Assumption 1 (Mixing kernel) Let us write

κt |t−m = κt ◦ κt−1 ◦ · · · ◦ κt−m+1 (3.3)

for the composition of m consecutive Markov kernels. For
every S ∈ B(X ) and integer m ≥ 1, there exists a constant
εm > 0, independent of t and S, such that

inf
xt−m ,x′

t−m∈X
κt |t−m(S|xt−m)

κt |t−m(S|x′
t−m)

> εm .

Assumption 1 implies that the sequence of optimal filters
generated by the operators Ψt , t ≥ 1, is stable (Del Moral
and Guionnet, 2001). To be specific, it can be proved (Del
Moral and Guionnet, 2001; Del Moral, 2004) that

lim
r→∞ sup

α,β∈P(X )

∣∣( f , Ψt |t−r (α)
) − (

f , Ψt |t−r (β)
)∣∣ = 0

exponentially fast. The intuitivemeaning is that such sequences
“forget” their initial condition over time. It also implies that
approximation errors are also forgotten over timewhen prop-
agated through the operators Ψt , a fact that is often exploited
in the analysis of PFs.

The strongest assumption in our analysis is that the
sequence of likelihoods is uniformly bounded away from
zero (as well as upper bounded), as specified below.

Assumption 2 (Bounds) There exists a constant γ > 0 such
that

0 < γ < gytt (x) ≤ 1 (3.4)

3 Note that if α = πt−1, then κtπt−1(dxt ) = p(xt |y1:t−1)dxt .
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for every t ≥ 1 and every x ∈ X .

Assumption 2 depends not only on the form of the likeli-
hood gytt (x) = p(yt |xt ) but also on the specific sequence of
observations y1, y2, . . . While it may appear restrictive, this
is rather typical in the analysis of PFs (see Del Moral 2004;
Künsch 2005; Gupta et al. 2015; Crisan and Miguez 2017)
and is expected to hold naturally when the state space X is
compact (as well as in other typical scenarios4). Also note
that any bounded likelihood function can be normalized to
guarantee gytt ≤ 1.

The error bounds for estimator ( f , πMn
tn ) are made precise

by the following statement.

Theorem 1 Let tn = ∑n
j=0 Wj − 1 and let πMn

tn be the par-
ticle approximation of the filtering measure πtn produced by
the block-adaptive BF in Table 1. If Assumption 1 (mixing
kernel) and Assumption 2 (bounds) hold, then for any p ≥ 1,

sup
| f |≤1

∥∥∥( f , πMn
tn ) − ( f , πtn )

∥∥∥
p

<
mC

γ 2m−1ε3m
√
Mn

+2
(
1 − γm−1ε2m

)�Wn
m �

γmεm
sup

| f |≤1

∥∥∥( f , πMn−1
tn−1

) − ( f , πtn−1)

∥∥∥
p
,

where sup| f |<1 denotes the supremum over all real functions
f : X �→ R with ‖ f ‖∞ ≤ 1. The real constants C < ∞,
γ > 0 and εm > 0, as well as the integer m ≥ 1, are
independent of n, Mn and Wn.

See Appendix A for a proof.
Theorem 1 states that the error bound at the end of the

current (nth) block depends on the error at the end of the pre-
vious ((n − 1)th) block plus an additional term that depends
on the number of particles,Mn , usedwithin the current block.
Moreover, the block sizeWn can be chosen in such a way that
the “inherited error” due to, e.g., a lower number of particles
Mn−1 in the (n − 1)th block can be forgotten when a suffi-
ciently large window length Wn is selected in the nth block.

4 For example, suppose that the observations are collected by sen-
sors with limited sensitivity. To see this, consider a sensor located
at s that measures the power transmitted by an object located at x.
Assuming free space, the received power (in dB’s) can be modeled as
y = 10 log10

(
P0‖s − x‖−2 + η

) + z, where z ∼ N (0, σ 2) is Gaussian
noise, P0 is the transmitted power, and the parameter η > 0 determines
the sensitivity of the sensor. The likelihood function is

gy(x) ∝ exp

{
− 1

2σ 2

(
y − 10 log10

(
P0‖s − x‖−2 + η

))2}
.

As a consequence, when ‖s − x‖ → ∞ the sensor observes
y = 10 log10(η) + z independently of the target position x
and, in particular, for fixed s we have lim‖x‖→∞ gy(x) ∝
exp

{
− 1

2σ 2

(
y − 10 log10 η

)2}
> 0. Intuitively, the sensor cannot “see”

targets which are too far away.

This is due to the stability property of the PU operator Ψt

(which is guaranteed under Assumption 1). In particular,

lim
Wn→∞ sup

| f |≤1

∥∥∥( f , πMn
tn ) − ( f , πtn )

∥∥∥
p

<
mC

γmε2m
√
Mn

.

4 Analysis of the number of fictitious
observations, K

The performance analysis of Elvira et al. (2017) establishes
the main results needed for a principled, online adaptation of
the number of particles M , but leaves a number of questions
unanswered. One of them, whether the error bounds of the
particle estimators change as we update the number of parti-
cles online, has been addressed in Sect. 3. Two other major
questions are

(i) whether the statistics AK ,Mn ,t becoming uniform is suf-
ficient for the particle approximations pMn

t and π
Mn
t to

converge toward pt and πt , respectively (the analysis in
Elvira et al. (2017) only shows that this is necessary), and

(ii) how the choice of the number of fictitious observations
K affects the performance of the adaptive algorithm (i.e.,
the approximation error of either pMn

t or π
Mn
t ).

We tackle these two issues in this section. To be precise,
we prove that if the statistics AK ,Mn ,t are uniform r.v.’s for
every K ∈ N, then the approximate predictive pdf pMn

t (y)
becomes equal to the actual density pt (y) almost everywhere.
This result serves as a converse for Theorem 2 in Elvira et al.
(2017)—which states that pMn

t (y)
Mn→∞−→ pt (y) implies that

the statistics AK ,Mn ,t become uniform r.v.’s. Intuitively, the
new result ensures that if the AK ,M,t ’s are well-behaved then
so are the particle approximations pMn

t . Our analysis also
provides insight into the choice of K < ∞. Specifically,
it yields a quantitative interpretation of how pMn

t becomes
closer to pt when AK ,Mn ,t is uniform for larger and larger
K .

As a by-product of this analysis, we identify an alterna-
tive statistic Bt (and its particle estimator BMn ,t ) that can
be used for assessing the performance of the particle filter
without generating fictitious observations. This alternative
statistic admits an interpretation as the limit of the sequence
K−1AK ,Mn ,t when K → ∞ and, therefore, it inherits the key
theoretical properties of the statistics AK ,Mn ,t .

4.1 A converse theorem

Let us consider the true predictive density pt (y) and an
approximation, computed via particle filtering or otherwise,
that we denote as p̂t (y). In this subsection, we drop the num-
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ber of particles Mn in the notation because the results to be
presented are valid without regard for the type of approxi-
mation of the predictive distribution of the observations, that
is, it is not important if it is approximated by a Monte Carlo-
based method or is obtained via an analytical approach. The
analysis in this section relies to a large extent on the properties
of the cumulative distribution functions (cdf’s) associated to
pt (y) and p̂t (y), which we denote as

Ft (a) = (1(−∞,a), pt ), and

F̂t (a) = (1(−∞,a), p̂t ),

respectively, where

1A(y) =
{
1, if y ∈ A
0, otherwise

denotes the set-indicator function.
The statistic ÂK ,t is computed by generating K i.i.d. fic-

titious observations from p̂t , denoted y(1)
t , . . . , y(K )

t , and
then computing the relative position of the actual observation
yt (distributed according to pt ) within the ordered fictitious
observations. From Proposition 1, we know that if pt = p̂t
then ÂK ,t is uniform for every K ∈ N. Here, we pose the
reverse question: if ÂK ,t is uniform for every K ∈ N, can we
claim that pt = p̂t? Moreover, if only some statistic ÂK ,t is
uniform (i.e., for some finite K ∈ N), can we expect p̂t to be
close to pt in some quantitative well-defined sense?

Our analysis relies on two basic results in probability the-
ory.

Lemma 1 Let Y be a continuous real r.v. on a probability
space (Ω,F ,P) and let p denote a pdf, with cdf F(·) =
(1(−∞,·), p). The r.v. F(Y ) has uniform distribution U(0, 1)
if, and only if, Y is distributed according to p.

Proof The inversion theorem (see, e.g., Theorem 2.1 in
Martino et al. 2018) guarantees that if Y ∼ p then the
r.v. F(Y ) is U(0, 1). For the reverse implication, assume
F(Y ) ∼ U(0, 1), which implies that P(F(Y ) < a) = a
for any a ∈ [0, 1]. As a consequence,

P(Y < a) = P(F(Y ) < F(a)) = F(a),

hence Y ∼ p. ��
Lemma 2 Let p denote a pdf with associated cdf F(·) =
(1(−∞,·), p). For every n ∈ N, we have (Fn, p) = 1

n+1 .

Proof Let Y be a r.v. with pdf p; from Lemma 1 we have
F(Y ) ∼ U(0, 1), hence

(Fn, p) = E
[
F(Y )n

] = E[Un],

where U ∼ U(0, 1). It is straightforward to verify that
E[Un] = 1

n+1 . ��

Using the basic lemmas above, we establish the key result
that relates the approximate cdf F̂t to the true functions Ft
and pt .

Theorem 2 Assume the observation Yt is a continuous r.v.
with a pdf pt and cdf Ft . Let the pdf p̂t and its associated cdf
F̂t (·) = (1(−∞,·), p̂t ) be estimates of pt and Ft , respectively.
If the r.v. ÂK ,t constructed from p̂t is uniform then

(F̂n
t , pt ) = 1

n + 1
, ∀n ∈ {0, 1, . . . , K }. (4.1)

Proof See Appendix B. ��
Remark 1 Let Yt be the actual observation with pdf pt . Given
the actual cdf Ft and its estimate F̂t , we can construct the r.v.’s
Bt = Ft (Yt ) and B̂t = F̂t (Yt ). From Lemma 2, we readily
obtain

E[Bn
t ] = (Fn

t , pt ) = 1

n + 1
for every n ≥ 0.

However, Theorem 2 guarantees that if ÂK ,t is uniform, then

E[B̂n
t ] = (F̂n

t , pt ) = 1

n + 1
for n = 0, . . . , K .

Therefore, if the statistic ÂK ,t is uniform, the r.v.’s Bt =
Ft (Yt ) and B̂t = F̂t (Yt ) share their first K moments. This is
a quantitative characterization of the similarity between Ft
and F̂t . In particular, if ÂK ,t is uniform for every K ∈ N,
we have E[B̂n

t ] = E[Bn
t ] = 1

n+1 for every n ∈ N and, as a

consequence, F̂t = Ft and p̂t (y) = pt (y) almost everywhere
in the observation space.

4.2 Assessment without fictitious observations: the
statistic Bt

If Yt is a continuous r.v. with pdf pt , then the sequence of
statistics Bt = Ft (Yt ), t ∈ N, is i.i.d. with a common dis-
tribution U(0, 1).5 From Remark 1, it is apparent that we
can use the particle filter to compute estimators B̂t ≡ BMn

t
over a window of observations (i.e., for tn−1 < t ≤ tn) and
then use the estimates to assess the performance of the filter.
Two straightforward approaches to performing this assess-
ment are:

– testing for uniformity in (0,1) of the estimatesbMn
tn−1+1, . . . ,

bMn
tn or

5 The fact that every Bt is uniform is a consequence of Lemma 1.
Independence can be proved by the same argument as in Proposition 3
of Elvira et al. (2017).
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– evaluating the sample moments 1
Wn

∑tn
t=tn−1+1

(
bMn
t

)m
,

which should be close to 1
m+1 , according to Theorem 2,

when the particle filter is “performing well.”

Since the approximate cdf of Yt computed via the particle
filter FMn

t (a) = (1(−∞,a), p
Mn
t ) is an integral w.r.t. pMn

t and
BMn
t = FMn

t (Yt ), it follows that the estimates BMn
t = bMn

t
can be computedwithO(Mn) operations, without generating
any fictitious observations, as

bMn
t = (1(−∞,yt ), p

Mn
t ) = 1

Mn

Mn∑
m=1

∫ yt

−∞
gyt (x̄mt )dy.

Note, however, that calculating the bMn
t ’s from the observa-

tion yt demands the ability to integrate the conditional pdf of
the observations gyt (x̄t ) = p(y|x̄t ). This is a straightforward
numerical task when the observation noise is additive and
Gaussian, but it may not be possible for other models.

Provided it can be computed, the statistic BMn
t converges

to the actual r.v. Bt when Mn → ∞ under the basic
assumptions in Elvira et al. (2017), reproduced below for
convenience (and restricted to the case of scalar observa-
tions).

(L) For each t ≥ 1, the function gt is positive and bounded,
i.e., gyt (x) > 0 for any (y, x) ∈ Y × X and ‖gt‖∞ =
sup(y,x)∈Y×X |gyt (x)| < ∞.

(D) For each t ≥ 1, the function gyt (x) is Lipschitz-
continuous w.r.t. y.

(C) For any 0 < β < 1 and any p ≥ 4, the sequence of
intervals

CM :=
⎡
⎣−M

β
p

2
,+M

β
p

2

⎤
⎦ ⊂ R

satisfies the inequality μt (CM ) ≤ bM−η for some con-
stants b > 0 and η > 0 independent of M (yet possibly
dependent on β and p), where CM = R\CM is the com-
plement of CM .

To be specific, we have the following result.

Proposition 3 Let Yt be a r.v. with pdf pt (yt ), and let the
observations y1:t−1 be fixed. If the Assumptions (L), (D) and
(C) hold, then there exists a sequence of non-negative r.v.’s
{εMn

t }Mn∈N such that limMn→∞ ε
Mn
t = 0 a.s. and

Bt − ε
Mn
t ≤ BMn ,t ≤ Bt + ε

Mn
t . (4.2)

In particular, limMn→∞ BMn ,t = Bt a.s. and the distribution
of BMn

t converges to U(0, 1) when Mn → ∞.

Proof Recall that Bt = (1(−∞,Yt ), pt ) and B
Mn
t = (1(−∞,Yt ),

pMn
t ). Therefore, Proposition 3 is a straightforward conse-

quence of Theorem 1 in Elvira et al. (2017), provided that
Assumptions (L), (D), and (C) hold. ��

Finally, we note the strong connection between the statis-
tics BMn

t and AK ,Mn ,t . Recall AK ,Mn ,t represents the number
of fictitious observations that are smaller than yt , while B

Mn
t

represents the probability
∫ Yt
−∞ pMn

t (y)dy. Intuitively, when
K → ∞, the empirical rate of observations smaller than
yt should converge to the probability of a fictitious observa-
tion being smaller than Yt . More precisely, we can state the
proposition below.

Proposition 4 If Yt ∼ pt is a continuous r.v., then

lim
K→∞

AK ,Mn ,t

K
= BMn

t .

Proof Recall that BMn
t = (1(−∞,Yt ), p

Mn
t ) ≤ 1. It is pos-

sible to estimate this integral by drawing K samples ỹ(k)
t

from μM
t and building the standard Monte Carlo estimator

1
K

∑K
k=1 1(−∞,yt )(ỹ

(k)
t ) = AK ,Mn ,t

K . Note that this estimator
is unbiased, i.e., according to the strong lawof large numbers,

lim
K→∞

AK ,Mn ,t

K
≡ lim

K→∞
1

K

K∑
k=1

1(−∞,yt )(ỹ
(k)
t ) = BMn

t .

��

5 Numerical experiments

In the first experiment, we show the relation between the
correlation coefficient of AK ,M,t and theMSEof an estimator
obtained from the particle approximation in a nonlinear state-
space model. Then, we complement the results of Sect. 4.1,
showing numerically some properties of AK ,M,t for different
values of K andM , and their connection to the statistic BM,t .
Third,we illustrate numerically the convergence of the block-
adaptive BF.

5.1 Assessing convergence from the correlation of
AK,M,t.

Consider the stochastic growth model (see, e.g., Djurić and
Míguez 2010),

xt = xt−1

2
+ 25xt−1

1 + x2t−1

+ 8 cos(φt) + ut , (5.1)

yt = x2t
20

+ vt , (5.2)

123



Statistics and Computing (2021) 31 :81 Page 11 of 18 81

100 101 102 103 104

M (number of particles)

0

50

100

150
M

SE
Model 1
Model 2

(a) MSE in the estimate of the posterior mean.
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(b) Algorithm 1 of Section 2.3. We show the p-value of the
Pearson’s χ2 test for assessing the uniformity of the statistic
AK,M,t.
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(c) Algorithm 2 of Section 2.3. The computed Pearson’s
correlation coefficient r as a function of M .

Fig. 1 Stochastic growth model: MSE, p value of the Pearson’s χ2, and
Pearson’s correlation coefficient r

where φ = 0.4, and ut and vt are independent Gaussian r.v.’s
with zero mean, and variance σ 2

u and σ 2
v , respectively. At this

point, we define two models:

– Model 1: σu = 1 and σv = 0.5,
– Model 2: σu = 2 and σv = 0.1.

In this example, we ran the BF for T = 5, 000 time steps,
always with a fixed number of particles M . We tested dif-
ferent values, namely M ∈ {2, 22, 23, . . . , 212}. In order to
assess the behavior of AK ,M,t , we set K = 7 fictitious obser-
vations.

Figure 1a shows the mean squared error (MSE) of the
estimate of the posterior mean for each value of M , which
obviously decreases as M increases. Figure 1b displays the p
value of the Pearson’s χ2 test for assessing the uniformity of
AK ,M,t (in the domain AK ,M,t ∈ {0, . . . , K+1}) inwindows
of lengthW = 20 (Algorithm 1 of Sect. 2.3; see more details
in Elvira et al. 2017). Clearly, increasing the number of par-
ticles also increases the p value, i.e., the distribution of the

statistic becomes closer to the uniform distribution. Figure 1c
is related to Algorithm 2 of Sect. 2.3.2. We show the sample
Pearson’s correlation coefficient r , using the whole sequence
of statistics {aK ,M,t }Tt=1, computed with a lag τ = 1. All
results are averaged over 200 independent runs.

We observe that when we increase M , the correlation
between consecutive statistics decreases. It is interesting to
note that the curve of the correlation coefficient r has a very
similar shape to the MSE curve and, hence, can be used as a
proxy. While r can be easily computed, the MSE is always
unknown. This shows the utility of Algorithm 2.

It can be seen that both algorithms can identify a mal-
functioning of the filter when the number of particles is
insufficient.We note that Algorithm 2works better forModel
1 than for Model 2 because the autocorrelation of the statis-
tics ismore sensitive for detecting themalfunctioning for low
M . However, Algorithm 1 works better for Model 2 because
the p value of the uniformity test is always smaller than in
Model 1, i.e., it is more discriminative. Therefore, there is no
clear superiority of one algorithm over the other.

5.2 Effect of the choice of the number of fictitious
observations K

In this experiment, we evaluate the effect of the value K
in the performance of the uniformity test of the statistic
AK ,M,t . We use the same model parameters as in the pre-
vious example. First, we fix the number of particles M =
{2, 4, 16, 64, 256, 1024, 4096} for each runduring theT time
steps (i.e., no adaptation is performed). Then, with W = 15
and K ∈ {2, 3, 5, 7, 10, 20}, we compute the p value of the
Pearson’s χ2 test for assessing the uniformity of the statis-
tic AK ,M,t . In Table 2, we show the average of the p value
over 1000 independent runs for all combinations of K and
M . We can see that the misbehavior of the filter with a low
number of particles M can be detected regardless the number
of fictitious observations K . For a larger K , in general the p
value decreases but it does not make a significant difference,
which confirms our hypotheses in Sect. 4: (a) the framework
is robust to the selection of K ; (b) increasing K increases
the detection power of the algorithms; (c) for reasonable val-
ues of K , when the filter misbehaves, the assessment of the
uniformity of AK ,M,t detects the misbehavior (and when the
filter works well, there are not false alarms with large K );
and (d) a small K can be selected, which implies a low extra
computational complexity of the proposed methodology.

In a second experiment, we implement Algorithm 1
described in Sect. 2.3 on the samemodel, now using T = 104

as the length of the time series. We set the algorithms
parameters as p� = 0.2, ph = 0.6, W ∈ {50, 200},
and an initial number of particles M0 = {16, 1024}. In
Table 3, we show the resulting number of particles aver-
aged over the last 50 windows of the adaptive algorithm
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Table 2 (Ex. of Section 5.2) p value of the uniformity test for different values of K and M , averaged over 1000 independent runs

M / K 2 3 5 7 10 20

2 0.0006547 5.571e−06 1.891e−08 2.466e−10 7.979e−13 0

4 0.0358 0.009322 0.001157 0.0003728 4.382e−05 1.473e−07

16 0.3775 0.3153 0.2684 0.2396 0.2293 0.1996

64 0.4681 0.4354 0.4288 0.4285 0.4256 0.4117

256 0.5511 0.5495 0.5667 0.5801 0.5759 0.5781

1024 0.5793 0.578 0.5738 0.5863 0.5845 0.6074

4096 0.5472 0.5686 0.5778 0.5913 0.5949 0.593

For each run, the number of particles M is fixed

Table 3 (Ex. of Section 5.2) Averaged number of particles in the last 50 windows with T = 104, averaged over 100 independent runs for different
values of the window size W ∈ {50, 200} and initial number of particles M0 = {16, 128, 1024}
T M0 W K

2 3 5 7 9 10 11 15 20

2 × 104 16 50 153.47 207.93 231.86 251.93 247.18 248.27 251.18 258.31 272.79

2 × 104 128 50 151.82 204.25 231.2 252.19 246.66 248.01 255.4 255.1 279.91

2 × 104 1024 50 152.38 209.92 231.68 248.69 251.2 246.17 254.79 251.57 267.49

2 × 104 16 200 303.02 371.48 417.23 414.44 434.48 434.94 433.03 440.29 438.54

2 × 104 128 200 304.23 382.7 399.5 418.79 421.21 438.79 436.32 437.64 439.61

2 × 104 1024 200 301.2 366.35 400.22 432.99 447.4 434.83 431.76 444.38 445.81

implemented for each value of fictitious observations, K ∈
{2, 3, 5, 7, 9, 10, 11, 15, 20}. The results are also averaged
over 100 independent runs. Figure 2 shows the same results
of the averaged number of particles as a function of K .We see
again that the selected number of particles does not depend
much on K , as observed in the previous experiment. We also
see that the window length does have an effect, requiring a
higher number of particles when W is larger. The reason is
that a larger W implies that more realizations of the statistic
are observed, so in cases where the filter is tracking but with
some non-negligible errors, it is more likely that the statisti-
cal test rejects the null hypothesis whenever more evidence
is accumulated.

Figures 3 and 4 show the averaged number of particles
(over 100 independent runs) as a function of time. In Fig. 3,
each subplot is obtained by fixing M0 ∈ {16, 128, 1024} and
each line represents the evolution of the number of particles
for each K ∈ {2, 3, 5, 7, 9, 15, 20}. We see that for most val-
ues K , the averaged number of particles is very similar. It is
interesting to note that at some stages, the required number
of particles is larger, and this is better detected with slightly
larger values of K . In Fig. 4, we show the same informa-
tion, but now each subplot is obtained by fixing K ∈ {5, 9},
and each line represents the evolution of the number of par-
ticles for each initialization M0 ∈ {16, 128, 1024}. We note
that regardless the initial number of particles, after around

2 4 6 8 10 12 14 16 18 20
K

0

50

100

150

200

250

300

350

400

av
er

ag
ed

 M

M0=16 (W = 50)
M0=128 (W = 50)

M0=1024 (W = 50)
M0=16 (W = 200)

M0=128 (W = 200)
M0=1024 (W = 200)

Fig. 2 Number of particles averaged over the last 50 windows of the
adaptive algorithm implemented as a function of the number fictitious
observations K ∈ {2, 3, 5, 7, 10, 20, }. Each curve represents different
values of the window sizeW ∈ {50, 200} and initial number of particles
M0 = {16, 128, 1024}

3, 000 time steps, the averaged number of particles is the
same.

5.3 The three-dimensional Lorenz system

Table 4 shows results of the Lorenz example described in
Elvira et al. (2017, Section V-A) with fixed number of par-
ticles M . We show the MSE in the approximation of the
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(b)M0 = 128
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(c) M0 = 16

Fig. 3 Averaged number of particles as a function of time for a fixed
number of initial number of particles M0 = {16, 128, 1024}

posteriormean, averaged over 200 runs.Again r is the sample
Pearson’s correlation coefficient, using the whole sequence
of statistics {aK ,M,t }Tt=1 with a lag τ = 1, and p val is the p
value of the Pearson’s χ2 test for assessing the uniformity of
the same set. Similar conclusions as in the previous example
can be obtained.
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(a) K = 5
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(b)K = 9

Fig. 4 Averaged number of particles as a function of time for a fixed
number of fictitious observations K = {5, 9}

5.4 Behavior of AK,M,t and its relation with BM,t

In Fig. 5, we show the histograms of AK ,M,t and BM,t for the
stochastic growth model described in (5.1) and (5.2). We set
K ∈ {3, 5, 7, 10, 20, 50, 100, 1000, 5000}. The BF is with
fixed M = 214. When K grows, the pmf seems to converge
to the pdf of BM,t .

In Table, 5 we show the averaged absolute error (distance)
between the realizations of r.v.’s AK ,M,t/K and BM,t for the
stochastic growth model with fixed M = 214. The results
are averaged over T = 100 time steps in 100 independent
runs. It is clear that when K grows, the deviation between
both r.v.’s, which take values in (0, 1), decreases. Thus, for
K = 5000, the difference is on average 0.43%.

5.5 Forgetting property in the block-adaptive
bootstrap particle filter

In this section, we assess the approximation errors when the
block-adaptive BF increases the number of particles. To that
end, we run two specific state-spacemodelswhere, in the first
half of time steps, the number of particles is set to M1 while,
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Table 4 Lorenz Model: Δ = 10−3, Tobs = 200Δ, σ 2 = 0.5

Fixed M 8 16 32 64 128 256 512 1024 2048 4096 8192 16,384

MSE 105.63 75.56 40.19 15.69 5.90 2.90 1.77 1.55 1.53 1.52 1.52 1.52

R̂(1) 0.6927 0.4939 0.2595 0.1132 0.0463 0.0273 0.0210 0.0190 0.0195 0.0151 0.0151 0.0192

p value 0.0393 0.1276 0.2923 0.4279 0.4823 0.5016 0.5117 0.5106 0.4998 0.5141 0.5040 0.5181

Algorithm details:W = 20, K = 7. MSE in the approximation of the posterior mean, the averaged R̂(1), and the averaged p value of the Pearson’s
chi-square test on the uniformity on St
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Fig. 5 (Ex. of Section 5.5) Histograms of the r.v. AK ,M,t and BM,t in the stochastic growth model with fixed M = 214. The histograms accumulate
T = 100 time steps in 100 independent runs

in the second half, the number of particles is M2 > M1.
We then compute the MSE of predicted observations (in the
last quarter of the time steps), and we compare it with the
standard BF with M2 particles used from the beginning.

Table 6 shows theMSE of a BF run on the linear Gaussian
model described by

xt = axt−1 + ut , (5.3)

yt = xt + vt , (5.4)

with T = 1000, σu = √
0.5, σv = 1, and a = 0.9. We

simulate one example with M1 = 100 and M2 = 1000 (left
side of the table), and another one with M1 = 1000 and
M2 = 10,000 (right side of the table). In both cases, we are
able to show that the BF achieves in the last quarter of time
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Table 5 (Ex. of Section 5.5) Averaged absolute error (distance) between the realizations of the r.v.’s AK ,M,t and BM,t for the stochastic growth
model M = 214

K 2 3 5 7 10 20 50 100 1000 5000

∣∣BM,t − AM,K ,t
K

∣∣ 0.2254 0.1836 0.1409 0.1183 0.0987 0.0696 0.0435 0.0305 0.0097 0.0043

The results are averaged over T = 100 time steps in 100 independent runs

Table 6 Linear Gaussian Model: T = 1000, σx = √
0.5, σy = 1, a = 0.9

M1 100 1000 100 1000 10,000 1000
M2 1000 10,000

MSE (last T /4) 8.901̇0−3 9.021̇0−4 8.991̇0−4 9.021̇0−4 8.931̇0−5 8.691̇0−5

M1 particles for t ∈ {1, . . . , T
2 } and M2 particles for t ∈ { T2 + 1, . . . , T }

Table 7 Stochastic growth
model: T = 1000, σx = 1,
σy = 0.1, φ = 0.4

M1 50 1000 50 200 4000 200 1000 20,000 1000

M2 1000 4000 20,000

MSE (last T /4) 16.69 1.493 1.564 4.815 1.386 1.374 1.494 1.348 1.335

M1 particles for t ∈ {1, . . . , T
2 } and M2 particles for t ∈ { T2 + 1, . . . , T }

steps (from t = 750 to t = T = 1000) the same MSE as if
the largest number of particles was set at the very beginning.

Table 7 presents analogous results for the stochastic
growth model described in the first experiment, with T =
1000, σx = 1, σ 2

y = 0.1, and φ = 0.4. Now we simu-
late the BF with the following pairs of number of particles
(M1, M2) ∈ {(50, 1000), (200, 4000), (1000, 20,000)}. We
arrive at the same conclusions.

6 Summary and conclusions

In this paper, we have provided new methodological, theo-
retical and numerical results on the performance of particle
filtering algorithms with an adaptive number of particles.
We have looked into a class of PFs that update the number
of particles periodically, at the end of observations blocks
of a prescribed length. Decisions on whether to increase or
decrease the computational effort are automatically made
based on predictive statistics which are computed by gener-
ating fictitious observations, i.e., particles in the observation
space. For this type of algorithms, we have proved that:

(a) The error bounds for the adaptive PF depend on the cur-
rent number of particles (say, Mn) and the dependence
on former values (say Mn−1, Mn−2, . . . ) decays expo-
nentially with the block length. This result holds under
standard assumptions on the Markov kernel of the state-
space model (as discussed in Del Moral (2004), Künsch
(2005) and others). This result, which does not follow
from classical convergence theorems for Monte Carlo

filters, implies that one can effectively tune the perfor-
mance of the PF by adapting the computational effort.

(b) Convergence of the predictive statistics used for making
decisions on the adaptation of the computational effort
implies convergence of the PF itself. To be specific, we
have proved that if the predictive statistics computed
with K fictitious observations attain a uniform distribu-
tion then the true filtering distribution and its particle
approximation have K common moments. This result
can be understood as a converse to the convergence the-
orem introduced in Elvira et al. (2017). It guarantees that
assessing the convergence of the PF using the proposed
predictive statistics is a sound approach (the “more uni-
form” the predictive statistics, the better the PF general
performance).

In addition to the theoretical analysis, we have carried out
an extensive computer simulation study. On one hand, the
numerical results have corroborated the theoretical results,
e.g., by showing how increasing the number of particles
directly improves the performance (andpast errors are forgot-
ten), or how increasing the number of fictitious observations
K (or the block size) leads to a higher computational effort
and more accurate estimators. We have also shown that the
proposed block-adaptive algorithms are stable w.r.t. the ini-
tial number of particles.

Overall, the proposed class of algorithms is easy to imple-
ment and can be used with different versions of the PF. It also
enables the automatic, online tuning of the computational
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complexity without time-consuming (and often unreliable)
trial-and-error procedures.
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A Proof of Theorem 1

The argument of the proof relies on the following lemma:

Lemma 3 If Assumptions 1 and 2 hold, the composition of
r ≥ 1 consecutive PU operators satisfies the inequality

sup
| f |≤1

∣∣( f , Ψt |t−r (α)
) − (

f , Ψt |t−r (β)
)∣∣

≤ 2
(
1 − ε2mγm−1

)� r
m �

γmεm
sup

| f̃ |≤1

∣∣∣( f̃ , α) − ( f̃ , β)

∣∣∣

for any probability measures α, β ∈ P(X ).

The proof of Lemma 3 follows immediately from Proposi-
tions 4.3.3 and 4.3.7 in Del Moral (2004). This is now a
classical result that has been exploited for many particle-
based algorithms (see, e.g., Gupta et al. (2015) or Crisan and
Miguez (2017)).

Recall that tn = ∑n
j0 Wj is the last time instant of the

nth block of observations. For any bounded real test function
f : X �→ R, the approximation error ( f , πMn

tn ) − ( f , πtn )

can be written in terms of one-step-ahead differences using
the “telescope” decomposition

( f , πMn
tn ) − ( f , πtn ) =

Wn−2∑
k=0

Dk(Mn)

+D(Mn, Mn−1) + E(Mn−1), (A.1)

where

Dk(Mn) :=
(
f , Ψtn |tn−k

(
π
Mn
tn−k

))

−
(
f , Ψtn |tn−k

(
Ψtn−k

(
π
Mn
tn−k−1

)))

are the local (one step) differences in the nth window,

D(Mn, Mn−1) =
(
f , Ψtn |tn−Wn+1

(
π
Mn
tn−Wn+1

))

−
(
f , Ψtn |tn−Wn+1

(
Ψtn−Wn+1

(
π
Mn−1
tn−Wn

)))

is the one-step difference between the last time instant of
window n − 1 and the first time instant of window n, and

E(Mn−1) =
(
f , Ψtn |tn−Wn

(
π
Mn−1
tn−Wn

))

− (
f , Ψtn |tn−Wn

(
πtn−Wn

))

is the approximation error inherited from window n − 1.
Using Lemma 3 and writing tn−1 = tn −Wn for conciseness,
we readily find that for any test function f , with ‖ f ‖∞ ≤ 1,
the different terms on the rhs of (A.1) can be upper bounded
as

|Dk(Mn)|

≤ 2
(
1 − ε2mγm−1

)� k
m �

γmεm

× sup
| f̃ |≤1

∣∣∣( f̃ , πMn
tn−k) −

(
f̃ , Ψtn−k

(
π
Mn
tn−k−1

))∣∣∣ , (A.2)

|D(Mn, Mn−1)| ≤ 2
(
1 − ε2mγm−1

)�Wn−1
m �

γmεm

× sup
| f̃ |≤1

∣∣∣( f̃ , πMn
tn−1+1) −

(
f̃ , Ψtn−1+1

(
π
Mn−1
tn−1

))∣∣∣ ,(A.3)

and

|E(Mn−1)| ≤ 2
(
1 − ε2mγm−1

)�Wn
m �

γmεm

× sup
| f̃ |≤1

∣∣∣( f̃ , πMn−1
tn−1

) −
(
f̃ , πMn−1

tn−1

)∣∣∣ . (A.4)

Moreover, the measures π
Mn
tn−k are importance sampling

approximations of Ψtn−k

(
π
Mn
tn−k−1

)
, for k = 0, . . . ,Wn − 2.

As a consequence, it can easily be shown that that there is a
constant 0 < c < ∞, independent of Mn , tn and k, such that

∥∥∥( f , πMn
tn−k) −

(
f , Ψtn−k

(
π
Mn
tn−k−1

))∥∥∥
p

≤ ‖ f ‖∞c√
Mn

(A.5)

for any bounded test function f and any p > 1. The same

result also holds for π
Mn
tn−1+1 and Ψtn−1+1

(
π
Mn−1
tn−1

)
, namely,

∥∥∥( f , πMn
tn−1+1) −

(
f , Ψtn−1+1

(
π
Mn−1
tn−1

))∥∥∥
p

≤ ‖ f ‖∞c√
Mn

.

(A.6)
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Finally, if we apply Minkowsky’s inequality in Eq. (A.1)
and then combine the bounds (A.2) and (A.3) with (A.5) and
(A.6), respectively, we obtain, for any p ≥ 1

sup
| f |≤1

∣∣∣( f , πMn
tn ) − ( f , πtn )

∣∣∣
p

≤
Wn−1∑
k=0

2c
(
1 − ε2mγm−1

)� k
m �

γmεm
√
Mn

+2
(
1 − ε2mγm−1

)� Wn
m �

γmεm
sup

| f |≤1

∥∥∥
(
f , πMn−1

tn−1

)
− (

f , πtn−1

)∥∥∥
p
.(A.7)

The proof is complete by pointing out that, taking Wn →
∞ in the sum

∑Wn−1
k=0 (·) on the rhs of (A.7), we arrive at

Wn−1∑
k=0

2c
(
1 − ε2mγm−1

)� k
m �

γmεm
√
Mn

≤ mC

ε3mγ 2m−1
√
Mn

, (A.8)

where C = 2c. ��

B Proof of Theorem 2

First, we express the pmf Q̂K ,t of the r.v. ÂK ,t as a function
of the predictive pdf of the observations. Specifically, we
note that Q̂K ,t (n) is the probability that exactly n fictitious
observations are smaller than the actual yt . Hence, ∀n ∈
{0, . . . , K },

Q̂K ,t (n) =
∫ ∞

−∞
P( ÂK ,t = n|yt = z)pt (z)dz

=
∫ ∞

−∞

(
K

n

)
F̂t (z)

n
(
1 − F̂t (z)

)K−n
pt (z)dz

=
(
K

n

) ∫ ∞

−∞
F̂t (z)

n

(
K−n∑
i=0

(
K − n

i

)
(−1)i F̂t (z)

i

)
pt (z)dz

=
(
K

n

) K−n∑
i=0

∫ ∞

−∞

(
K − n

i

)
(−1)i F̂t (z)

n+i pt (z)dz,

(B.1)

where F̂t (z) is the approximation of the cdf of the predictive
observation evaluated at z. Note that, as a consequence, F̂t (z)
is also the probability of a single fictitious observation being
smaller than z.

Recall that we want to prove that (4.1) when ÂK ,t is uni-
form (and, as a consequence, Q̂K ,t (n) = 1

K+1 for every
n ∈ {0, . . . , K }). We apply an induction argument in n. The
case for n = K is obvious by rewriting (B.1) as

Q̂K ,t (K ) =
∫ ∞

−∞
F̂t (z)

K pt (z)dz = (F̂ K
t , pt ),

hence (F̂ K
t , pt ) = 1

K+1 . Next, we assume that for a spe-
cific n ∈ {1, . . . , K }, the identity (4.1) holds for all i ∈
{n, . . . , K } and then aim at proving that it also holds for
n − 1. Let us write the pmf of (B.1) at n − 1 as

Q̂K ,t (n − 1)

=
(

K

n − 1

) K−n+1∑
i=0

∫ ∞

−∞

(
K − n + 1

i

)
(−1)i F̂t (z)

n+i−1 pt (z)dz

=
(

K

n − 1

) [
K−n+1∑
i=1

(
K − n + 1

i

)
(−1)i

n + i
+

∫ ∞

−∞
F̂t (z)

n−1 pt (z)dz

]

=
(

K

n − 1

)
1

n

(
K−n+1∑
i=0

(
K − n + 1

i

)
(−1)i

n

n + i
− 1

)

+
(

K

n − 1

) ∫ ∞

−∞
F̂t (z)

n−1 pt (z)dz

=
(

K

n − 1

) [
1

n

(
1( K+1

K−n+1

) − 1

)
+

∫ ∞

−∞
F̂t (z)

n−1 pt (z)dz

]
,

(B.2)

where the second identity is obtained replacing all the integrals (except
the one corresponding to n − 1) using the induction hypothesis; for the
third equality, we split the series between the terms i > 0 and the term
i = 1, and in the fourth equation, we substitute the series using identity
(1.41) in Gould (1972). Once again, since ÂK ,t is uniform, we have
Q̂K ,t (n − 1) = 1

K+1 , hence we rewrite (B.2) as

1

K + 1
=

(
K

n − 1

)
1

n

(
1( K+1

K−n+1

) − 1

)

+
(

K

n − 1

) ∫ ∞

−∞
F̂t (z)

n−1 pt (z)dz,

where precisely,
∫ ∞
−∞ F̂t (z)n−1 pt (z)dz = (F̂n−1

t , pt ). If we simply
solve for the latter integral and simplify, we arrive at

(F̂n−1
t , pt ) = 1( K

n−1

)
(

1

K + 1
−

(
K

n − 1

)
1

n

(
1( K+1

K−n+1

) − 1

) )

= (n − 1)!(K − n + 1)!
K !

1

K + 1
− 1

n

(
(K − n + 1)!n!

(K + 1)! − 1

)

= (n − 1)!(K − n + 1)!
(K + 1)! − (K − n + 1)!(n − 1)!

(K + 1)! + 1

n

= 1

n
. (B.3)
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