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Abstract
We discuss estimating the probability that the sum of nonnegative independent and identically distributed random variables
falls below a given threshold, i.e., P(

∑N
i=1 Xi ≤ γ ), via importance sampling (IS). We are particularly interested in the rare

event regime when N is large and/or γ is small. The exponential twisting is a popular technique for similar problems that,
in most cases, compares favorably to other estimators. However, it has some limitations: (i) It assumes the knowledge of the
moment-generating function of Xi and (ii) sampling under the new IS PDF is not straightforward and might be expensive.
The aim of this work is to propose an alternative IS PDF that approximately yields, for certain classes of distributions
and in the rare event regime, at least the same performance as the exponential twisting technique and, at the same time,
does not introduce serious limitations. The first class includes distributions whose probability density functions (PDFs) are
asymptotically equivalent, as x → 0, to bx p, for p > −1 and b > 0. For this class of distributions, the Gamma IS PDF
with appropriately chosen parameters retrieves approximately, in the rare event regime corresponding to small values of γ

and/or large values of N , the same performance of the estimator based on the use of the exponential twisting technique. In
the second class, we consider the Log-normal setting, whose PDF at zero vanishes faster than any polynomial, and we show
numerically that a Gamma IS PDFwith optimized parameters clearly outperforms the exponential twisting IS PDF. Numerical
experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large
N and/or small γ .
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1 Introduction

Efficient estimation of rare event probabilities finds vari-
ous applications in the performance evaluation/prediction
of wireless communication systems operating over fading
channels (Simon and Alouini 2005). In particular, the left-
tail of the cumulative distribution function (CDF) of sums of
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nonnegative independent and identically distributed (i.i.d.)
random variables is an example of a rare event probability
that is of practical importance. More specifically, the outage
probability at the output of equal gain combining (EGC) and
maximumratio combining (MRC) receivers can be expressed
as the CDF of the sum of fading channel envelops (for EGC)
and fading channel gains (forMRC) (BenRached et al. 2016).

The accurate estimation of the left-tail of the CDF of sums
of random variables requires the use of variance reduction
techniques because the naiveMonte Carlo sampler is compu-
tationally expensive (Kroese et al. 2011; Rubino and Tuffin
2009; Asmussen and Glynn 2007). Moreover, the existing
closed-form approximations (Xiao et al. Aug. 2019; Zhu and
Cheng Oct. 2019; Ermolova Jul. 2008; Hu and Beaulieu Feb.
2005; Lopez-SalcedoMar. 2009;DaCosta andYacoub 2009;
Renzo et al. Apr. 2009) fail to be accurate when the tail of the
CDF is considered. The literature is rich in works in which
variance reduction techniques were developed to efficiently
estimate rare event probabilities corresponding to the left-
tail of the CDF of sums of random variables, see Asmussen
et al. (Sep. 2016), Ben Rached et al. (2016), Ben Rached
et al. (2018), Botev et al. (2019), Gulisashvili and Tankov
(Feb. 2016), Alouini et al. (2018) and Beaulieu and Luan
(2019) and the references therein. For instance, the authors in
Asmussen et al. (Sep. 2016) used exponential twisting,which
is a popular importance sampling (IS) technique, to propose
a logarithmically efficient estimator of the CDF of the sum
of i.i.d. Log-normal random variables. The logarithmic effi-
ciency is a popular property in rare event simulation used to
ensure estimators’ efficiency (Ben Rached et al. 2016). Let
α̂ be an unbiased estimator of α, i.e., E[α̂] = α. We say

that α̂ is logarithmically efficient if limα→0
log(E[α̂2])
log(α2)

= 1.

In Gulisashvili and Tankov (Feb. 2016), the CDF of the sum
of correlated Log-normal random variables was considered.
The authors developed an IS estimator based on shifting
the mean of the corresponding multivariate Gaussian dis-
tribution. Under mild assumptions, they proved that their
proposed estimator is logarithmically efficient. Based on
Gulisashvili and Tankov (Feb. 2016) and under the assump-
tion that the left-tail sum distribution is determined by only
one dominant component, the authors in Alouini et al. (2018)
combined IS with a control variate technique to construct
an estimator with the asymptotically vanishing relative error
property,which is themost desired property in thefield of rare
event simulations (Kroese et al. 2011). In Ben Rached et al.
(2016), two unified IS approaches were developed using the
hazard rate twisting concept (Juneja and Shahabuddin Apr.
2002; BenRached et al. 2016) to efficiently estimate the CDF
of sums of independent random variables. The first estimator
is shown to be logarithmically efficient, whereas the second
achieves the bounded relative error property for i.i.d. sums
of random variables and under the given assumption that was

shown to hold for most of the practical distributions used to
model the amplitude/power of fading channels. The bounded
relative error is a stronger criterion than the logarithmic effi-
ciency. We say that an unbiased estimator α̂ of α achieves
the bounded relative error property if var[α̂]

α2 is asymptotically
bounded when α goes to 0, see Ben Rached et al. (2016)

The efficiency of the above-mentioned estimators was
studied when the number of summand N was kept fixed.
More specifically, recall that the objective is to efficiently
estimate the probability that the sumof nonnegative i.i.d. ran-
domvariables falls belowagiven threshold, i.e.,P(

∑N
i=1 Xi ≤

γ ). A close look at the above-mentioned estimators shows
that the efficiency results were provedwhen the rarity param-
eter γ decreases, whereas N is kept fixed. However, in most
cases, the efficiency of the existing estimators is consider-
ably affected when N increases. This represents the main
motivation of the present work. We aim to introduce a highly
accurate estimator that efficiently estimates P(

∑N
i=1 Xi ≤

γ ) in the rare event regime when N is large and/or γ is
small.

It is well acknowledged that the exponential twisting
technique compares favorably, in most cases, to existing
estimators. It is the optimal IS probability density function
(PDF) in the sense that it minimizes the Kullback–Leibler
(KL) divergence with respect to the underlying PDF under
certain constraints (Ridder and Rubinstein 2007). However,
it has some limitations. First, it requires the knowledge of
the moment-generating function of Xi , i = 1, 2, · · · , N .
Second, sampling according to the new ISPDF is not straight-
forward and might be expensive. Moreover, the twisting
parameter is not available in a closed-form expression and
needs to be estimated numerically. Motivated by the above
limitations, we summarize the main contributions of the
present work as follows:

• We propose an alternative IS estimator that approxi-
mately yields, for certain classes of distributions and in
the rare event regime, at least the same efficiency as the
one given by the estimator based on exponential twist-
ing and at the same time does not introduce the above
limitations.

• The first class includes distributions whose PDFs vanish
at zero polynomially. For this class of distributions, the
Gamma IS PDF with appropriately chosen parameters
retrieves approximately, in the regime of rare events cor-
responding to small values of γ and/or large values of N ,
the same performances as the exponential twisting PDF.

• The above result does not apply to the Log-normal setting
as the correspondingPDFapproaches zero faster than any
polynomials. We show numerically that in this setting,
the Gamma IS PDF with optimized parameters achieves
a substantial amount of variance reduction compared to
the one given by exponential twisting.
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• Numerical comparisons with some of the existing esti-
mators validate that the proposed estimator can deliver
highly accurate estimates with low computational cost in
the rare event regime corresponding to large N and/or
small γ.

The paper is organized as follows. In Sect. 2, we define
the problem setting and motivate the work. In Sect. 3, we
introduce the exponential twisting approach and present its
limitations. The main contribution of this work is presented
in Sect. 4, where we show that the Gamma IS PDF with opti-
mized parameters retrieves approximately, for certain classes
of distributions and in the rare event regime, at least the same
performance as the exponential twisting technique. Finally,
numerical experiments are shown in Sect. 5 to compare the
proposed estimator with various existing estimators.

2 Problem setting andmotivation

Let X1, X2, · · · , XN be i.i.d. nonnegative random vari-
ables with common PDF fX (·) and CDF FX (·). Let x =
(x1, · · · , xN )t and hX(x) = ∏N

i=1 fX (xi ) be the joint PDF
of the random vector (X1, · · · , XN )t . We consider the esti-
mation of

α(γ, N ) = PhX

(
N∑

i=1

Xi ≤ γ

)

, (1)

where PhX(·) is the probability under which the random
vector X = (X1, · · · , XN )t is distributed according to
hX(·), i.e., for any Borel measurable set A in R

N , we have
PhX (X ∈ A) = ∫

A hX(x)dx. As an application, the quantity
of interest α(γ, N ) could represent the outage probability at
the output of EGC and MRC wireless receivers operating
over fading channels. In fact, the instantaneous signal-to-
noise ratio (SNR) at EGCorMRCdiversity receivers is given
as follows (Ben Rached et al. 2016)

γend = Es

N0
√
N 1−p+q

(
N∑

i=1

Rp
i

)q

, (2)

where N is the number of diversity branches, Es
N0

is the SNR
per symbol at the transmitter, Ri , i = 1, 2, ..., N , is the fading
channel envelope, and

(p, q) =
{

(1, 2) EGC,

(2, 1) MRC.
(3)

The outage probability is defined as the probability that the
SNR falls below a given threshold. Using (2), it can be easily
shown that the outage probability at the output of EGC and

MRC receivers can be expressed as the CDF of the sum of
fading channel envelops (for EGC) and fading channel gains
(for MRC) and hence can be expressed as in (1).

We focus on the estimation of α(γ, N ) when N is large
and/or γ is small. Before delving into the core of the paper,
we illustrate via a simple example that the efficiency of an
IS estimator, that performs well when γ decreases and N is
not sufficiently large, can deteriorate when we increase the
values of N . We first write the quantity of interest as

PhX

(
N∑

i=1

Xi ≤ γ

)

= PhX

(
N∑

i=1

Xi ≤ γ, Xi ≤ γ ∀i
)

= Phw

(
N∑

i=1

wi ≤ 1

)

(FX (γ ))N

= Ehw

[
(FX (γ ))N1

(
∑N

i=1 wi≤1)

]

= Ehw

[
α̂(γ, N )

]
, (4)

where wi is equal in distribution to Xi
γ

conditional on
the event {Xi ≤ γ }, i = 1, 2, . · · · , N , and hw(w) =
∏N

i=1 fw(wi ) with fw(·) is the PDF of wi , i.e., the condi-
tional PDF of Xi

γ
given the event { Xi

γ
≤ 1}, and is given

by fw(w) = γ fX (γw)
FX (γ )

1(w<γ ). Note that Ehw [·] denotes the
expectation under hw(·). The estimator is then given by esti-
mating the right-hand side term of (4) by the naive Monte
Carlo method

α̂M (γ, N ) = 1

M

M∑

k=1

(FX (γ ))N1
(
∑N

i=1 w
(k)
i ≤1)

,

where (w
(k)
1 , · · · , w

(k)
N ) , k = 1, · · · , M , are independent

realizations sampled according to hw(·). Note that this esti-
mator can be understood as applying ISwith ISPDFbeing the
truncation of the underlyingPDFover the hypercube [0, γ ]N .
It canbe easily proved that for fixed N , this estimator achieves
the desired bounded relative error propertywith respect to the
rarity parameter γ for distributions that satisfy fw(x) ∼ bx p

as x approaches zero and for p > −1 and b > 0, see Ben
Rached et al. (2018). This property means that the squared
coefficient of variation, defined as the ratio between the vari-
ance of an estimator and its squared mean, remains bounded
as γ → 0, see Kroese et al. (2011). More precisely, when
this property holds, the number of required samples to meet a
fixed accuracy requirement remains bounded independently
of how small α(γ, N ) is. The question now is what happens
when N is large.

Using the Chernoff bound, we obtain for all η > 0

Phw (

N∑

i=1

wi ≤ 1) ≤ exp
(
η + N log

(
E fw [exp(−ηw)])) ,
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where E fw [·] denotes the expectation under fw(·). The
squared coefficient of variation of α̂(γ, N ) in (4) is given
by

SCV(α̂(γ, N ))

= varhw [α̂(γ, N )]
α2(γ, N )

= Phw (
∑N

i=1 wi ≤ 1)(1 − Phw (
∑N

i=1 wi ≤ 1))
(
Phw (

∑N
i=1 wi ≤ 1)

)2

= 1 − Phw (
∑N

i=1 wi ≤ 1)

Phw (
∑N

i=1 wi ≤ 1)

In particular, when η = 1, the squared coefficient of varia-
tion (which is asymptotically equal to 1/Phw (

∑N
i=1 wi ≤

1) in the regime of rare events) is lower bounded by
exp

(−1 − N log
(
E fw [exp(−w)])). This shows that the

squared coefficient of variation increases at least exponen-
tially, which proves that the efficiency of the estimator
deteriorates when N is large.

3 Exponential twisting

In this section, we review the popular exponential twisting
IS approach and enumerate its limitations in estimating the
quantity of interest. When applicable, it is well acknowl-
edged that the exponential twisting technique is expected
to produce a substantial amount of variance reduction and
to compare favorably, in most cases, to other estimators
(Asmussen et al. Sep. 2016). For distributions with light right
tails and under the i.i.d. assumption, the estimator based on
exponential twisting can be proved, under some regularity
assumptions, to be logarithmically efficient when the proba-
bility of interest is either PhX(

∑N
i=1 Xi > γ ) and γ → +∞

or PhX(
∑N

i=1 Xi > γ N ) and N → +∞ (Asmussen and
Glynn 2007). In the left-tail setting, which is the region
of interest in the present work, the exponential twisting
was shown in Asmussen et al. (Sep. 2016) to achieve the
logarithmic efficiency property in the case of i.i.d. Log-
normal random variables when the probability of interest is
PhX(

∑N
i=1 Xi < Nγ ) and either N → +∞ or γ → 0.

In Ridder and Rubinstein (2007), the exponential twist-
ing technique was also shown to be optimal in the sense
that it minimizes the KL divergence with respect to the
underlying PDF under the constraint that the rare set {x ∈
R

N+ , such that
∑N

i=1 xi ≤ γ } is no longer rare. The IS PDF
is selected to be the solution of the following optimization
problem, see Ridder and Rubinstein (2007),

inf
h∗
X≥0

∫

h∗
X(x) log

(
h∗
X(x)

hX(x)

)

dx

s.t
∫

h∗
X(x)dx = 1 (5)

Eh∗
X

[
N∑

i=1

Xi

]

= γ

h∗
X(x) ≥ 0, xi ≥ 0 for all i ∈ 1, 2, · · · , N .

The solution of this problem is given as (see Ridder and
Rubinstein (2007) for a more general setting)

h∗
X(x) =

hX(x) exp
(
θ∗ ∑N

i=1 xi
)

EhX

[
exp

(
θ∗ ∑N

i=1 Xi

)] , x ∈ R
N+ (6)

and θ∗ solves

EhX

[∑N
i=1 Xi exp

(
θ∗ ∑N

i=1 Xi

)]

EhX

[
exp

(
θ∗ ∑N

i=1 Xi

)] = γ.

Hence, bywriting h∗
X(x) = ∏N

i=1 f ∗
X(xi ), we clearly observe

that the optimal density is given by exponentially twisting
each univariate PDF fX (·)

f ∗
X (x) = fX (x) exp(θ∗x)

M(θ∗)
, x ≥ 0,

withM(θ) = E fX [exp(θX)] and the optimal twisting param-
eter θ∗ satisfies

M
′
(θ∗)

M(θ∗)
= γ

N
.

Since the left-tail of sums of random variables is considered
in this work, we have that θ∗ → −∞ as γ → 0 and/or
N → +∞ (Asmussen et al. Sep. 2016). Using the exponen-
tial twisting technique, the IS estimator of α(γ, N ) using M
i.i.d. samples of X from h∗

X(·) is given as follows

α̂exp,M (γ, N ) = 1

M

M∑

k=1

1
(
∑M

i=1 X
(k)
i ≤γ )

(M(θ∗))N

× exp

(

−θ∗
N∑

i=1

X (k)
i

)

Observe, however, that the exponential twisting technique
has some restrictive limitations. The main one is that sam-
pling according to f ∗

X (·) is not straightforward.Onegenerally
needs the use of an acceptance–rejection technique, the com-
plexity of which can be dramatic when the probability of
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acceptance is relatively small. In such a case, the compu-
tational complexity of the algorithm can be huge and even
worse than the naive Monte Carlo method. There are other
less critical drawbacks. First, computations are much sim-
pler if the moment-generating function M(θ) is known in
closed form. Such a requirement does not hold in general.
Also, the twisting parameter θ∗ does not have, in general,
a closed-form expression, and hence, it should be approxi-
mated numerically.

4 Gamma family as IS PDF

The objective of this paper is to propose an alternative IS PDF
that approximately yields, for certain classes of distributions
that include most of the common distributions and in the rare
event regime corresponding to large N and/or smallγ , at least
the same performance as the exponential twisting technique
and at the same time does not introduce serious limitations.
We distinguish three scenarios depending on how the PDF
fX (·) approaches zero.

4.1 fX(x) ∼ b as x goes to 0 and b > 0 is a constant

Recall that the exponential twisting IS PDF satisfies

f ∗
X (x) ∝ fX (x) exp(θ∗x), x ≥ 0,

with θ∗ → −∞ as γ → 0 and/or N → +∞. Therefore, as
f (x) ∼ b and b > 0, and by letting M̃(θ) = − 1

θ
, we instead

consider the following IS PDF

f̃ X (x) = exp(θx)

M̃(θ)
, x ≥ 0.

We choose θ to be equal to θ̃ such that M̃
′
(θ̃)

M̃(θ̃)
= γ

N . Through

simple computation, we obtain θ̃ = − N
γ
. To conclude, when

f (x) ∼ b and b > 0, we propose an IS PDF given by the
exponential distribution with rate N

γ
.

4.2 fX(x) = xpg(x)with g(x) ∼ b as x goes to 0,
p > −1, and b > 0 is a constant

Using the same methodology as in Sect. 4.1, the IS PDF that
we consider is

f̃ X (x) = x p exp(θx)

M̃(θ)
, x ≥ 0. (7)

Therefore, the new PDF corresponds to the Gamma PDF
with shape parameter p + 1 and scale parameter −1/θ . The
normalizing constant is M̃(θ) = �(p+1)

(−θ)p+1 . Hence, the value θ

is chosen to be equal to θ̃ such that M̃
′
(θ̃)

M̃(θ̃)
= γ

N and is given

by

θ̃ = −N

γ
(p + 1). (8)

Using the Gamma IS PDF in (7), the proposed IS estima-
tor of α(γ, N ) using M i.i.d. samples of X from h̃X(x) =∏N

i=1 f̃ X (xi ) is

α̂is,M (γ, N ) = 1

M

M∑

k=1

1
(
∑N

i=1 X
(k)
i ≤γ )

N∏

i=1

fX (X (k)
i )

f̃ X (X (k)
i )

= 1

M

M∑

k=1

1
(
∑N

i=1 X
(k)
i ≤γ )

(M̃(θ̃))N

×
N∏

i=1

fX (X (k)
i ) exp

(
−θ̃X (k)

i

)

(X (k)
i )p

In Table 1, we provide a non-exhaustive list of distribu-
tions that belong to Sect. 4.2. (Note that distributions in Sect.
4.2 include those in Sect. 4.1.) These distributions are among
themost used distributions tomodel the amplitudes and pow-
ers of wireless communications fading channels.

Remark 1 It is worth mentioning that for distributions sat-
isfying fX (x) = x pg(x) with g(x) ∼ b as x goes to 0,
p > −1, and b > 0 is a constant, the proposed approach
with the Gamma IS PDF in (7) with parameters p and θ̃

in (8) achieves approximately, as γ decreases to 0 and/or
N increases, the same performance as the one given by the
exponential twisting without introducing serious limitations.
Let A1 and A2 be the second moments of the proposed and
the exponential twisting estimators, respectively. Then, the
ratio between A1 and A2 has the following expression

A1
A2

=
Eh̃x

[

1
(
∑N

i=1 Xi≤γ )

∏N
i=1

f 2X (Xi )

f̃ 2X (Xi )

]

Eh∗
x

[

1
(
∑N

i=1 Xi≤γ )

∏N
i=1

f 2X (Xi )

( f ∗X (Xi ))
2

]

=
(M̃(θ̃))2NEh̃x

[

1
(
∑N

i=1 Xi≤γ )

∏N
i=1 g

2(Xi ) exp
(
−2θ̃

∑N
i=1 Xi

)]

(M(θ∗))2NEh∗
x

[

1
(
∑N

i=1 Xi≤γ )
exp

(
−2θ∗ ∑N

i=1 Xi
)]

=
(M̃(θ̃))NEhx

[

1
(
∑N

i=1 Xi≤γ )

∏N
i=1 g(Xi ) exp

(
−θ̃

∑N
i=1 Xi

)]

(M(θ∗))NEhx

[

1
(
∑N

i=1 Xi≤γ )
exp

(
−θ∗ ∑N

i=1 Xi
)]

=
(M̃(θ̃))N

∫

(
∑N

i=1 xi≤γ )

∏N
i=1 g(xi ) fX (xi ) exp

(
−θ̃

∑N
i=1 xi

)
dx1 · · · dxN

(M(θ∗))N
∫

(
∑N

i=1 xi≤γ )

∏N
i=1 fX (xi ) exp

(
−θ∗ ∑N

i=1 xi
)
dx1 · · · dxN

.

(9)

First observe that M(θ) = ∫ ∞
0 exp(θx)x pg(x)dx is well

approximated by bM̃(θ) = b
∫ ∞
0 exp(θx)x pdx for suffi-

ciently small negative values of θ . Moreover, recall that θ∗

123



79 Page 6 of 13 Statistics and Computing (2021) 31 :79

Table 1 Some PDF asymptotics around zero

Distribution PDF Proportional to
as x → 0

Exponential k exp(−kx) 1

k > 0

Gamma 1
βk�(k)

xk−1 exp(− x
β
) xk−1

k, β > 0

Weibull k
λ
( x

λ
)k−1 exp(−( x

λ
)k) xk−1

k, λ > 0

Nakagami-m 2mm

�(m)	m x2m−1 exp(−m
	
x2) x2m−1

m, 	 > 0

Generalized Gamma p/ad

�(d/p) x
d−1 exp(−( xa )p) xd−1

a, d, p > 0

Rice x
σ 2 exp(− x2+ν2

2σ 2 )I0((
xν
σ 2 )) x

σ > 0, ν ≥ 0 > 0

Gamma–Gamma 2(km)
k+m
2

�(k)�(m)	
( x

	
)
k+m
2 −1Kk−m

(

2
√

kmx
	

)

xk−1

	 > 0,m > k > 0,m − k /∈ N

κ − μ distribution 2μ(1+κ)
μ+1
2 xμ

	
μ+1
2 κ

μ−1
2 exp(μκ)

exp(− (1+κ)μx2

	
)Iμ−1

(

2μ
√

κ(κ+1)
	

x

)

x2μ−1

κ, μ > 0

Functions Iξ (·), and Kξ (·) are, respectively, the modified Bessel functions of the first kind and order ξ and the second kind and order ξ (Gradshteyn
and Ryzhik 2007)

and θ̃ go to −∞ as either γ → 0 or N → ∞, and that

θ∗ and θ̃ satisfy M ′(θ∗)
M(θ∗) = γ

N and M̃ ′(θ̃ )

M̃(θ̃)
= γ

N , respectively.

Thus, as γ → 0 and/or N → ∞, we obtain that θ∗ is well
approximated by θ̃ , and hence M(θ∗) is well approximated
by bM̃(θ̃). Finally, using the latter two approximations and
the fact that g(x) ∼ b as x goes to 0,weconclude from(9) that
A1 is approximately equal to A2 when γ goes to 0. For large
values of N , the same conclusion can be deduced by observ-
ing that E f ∗

X
[Xi ] = E f̃ X

[Xi ] = γ
N , i = 1, 2, · · · , N . Thus,

the random variables X1, X2, · · · , XN take, when sampled
according to the IS PDFs, sufficiently small values when N
is sufficiently large.

4.3 The Log-normal case

Distributions that do not approach 0 polynomially are much
more difficult to handle and need to be tackled on a case-
by-case basis. In this work, we consider the case of the sum
of i.i.d. standard Log-normal random variables. The density
decreases to 0 at a faster rate than any polynomials, and thus,
the Gamma distribution with fixed shape parameter will not
recover the results given by the use of the exponential twist-

ing technique. Note that in Asmussen et al. (Sep. 2016), the
exponential twisting technique was applied to the sum of
i.i.d. standard Log-normals by i) providing an unbiased esti-
mator of the moment-generating function, ii) approximating
the value of θ , and iii) using acceptance–rejection to sample
from the IS PDF.

The main difficulty is that the PDF of the Log-normal dis-
tribution does not have a Taylor expansion at x = 0. The
first estimator we propose is based on truncating the support
[0,+∞] and only working on [a,+∞] with a = δγ /N .
This allows the use of a Taylor expansion at x = a. This
procedure, however, introduces a bias that needs to be con-
trolled. We show numerically that this estimator exhibits
better performances than the one based on exponential twist-
ing. Moreover, we observe that, in the regime of rare events,
the proposed estimator achieves approximately the same per-
formances as the Gamma IS PDFwith shape parameter equal
to 2. This is the main motivation behind introducing a sec-
ond estimatorwhose ISPDF is aGammaPDFwith optimized
parameters. The numerical results show that the second esti-
mator achieves substantial variance reduction with respect to
the first estimator.

123



Statistics and Computing (2021) 31 :79 Page 7 of 13 79

4.3.1 Biased estimator

We rewrite the quantity of interest as

PhX

(
N∑

i=1

Xi ≤ γ

)

≈
(

1 − FX (
δγ

N
)

)N

× PhX

(
N∑

i=1

Xi ≤ γ

∣
∣
∣Xi >

δγ

N
,∀i

)

,

(10)

where δ is a fixed value belonging to [0, 1). The first factor
on the right-hand side has a known closed-form expression.
Let f̄ X (·) be the PDF of Xi |{Xi >

δγ
N }, i = 1, 2, · · · , N ,

whose expression is given as follows:

f̄ X (x) = 1

x
√
2π

exp
(
− (log(x))2

2

)

P(Xi >
δγ
N )

, x ≥ δγ

N
.

Next, we write the second factor on the right-hand side of
(10) as follows:

PhX

(
N∑

i=1

Xi ≤ γ

∣
∣
∣Xi >

δγ

N
,∀i

)

= Ph̄X

(
N∑

i=1

Xi ≤ γ

)

,

with h̄X(x) = ∏N
i=1 f̄ X (xi ). The exponential twisting IS

PDF is then given by

f̄ ∗
X (x) ∝ f̄ X (x) exp(θx), x ≥ δγ

N
.

Now, by using the Taylor expansion of f̄ X (·) at the point
x = δγ /N , we write

f̄ X (x) = f̄ X (
δγ

N
) + (x − δγ

N
) f̄

′
X (

δγ

N
)

+ (x − δγ
N )2

2
f̄

′′
X (ξx,δ,N ),

where ξx,δ,N is between δγ
N and x . Hence, the approximate

exponential twisting IS PDF is given by

f̃ X (x) = f̄ X exp(θx) + (x − δγ
N ) f̄

′
X exp(θx)

M̃(θ)
, x ≥ δγ

N
,

(11)

with the notation f̄ X = f̄ X (
δγ
N ) and f̄

′
X = f̄

′
X (

δγ
N ). We

assume that δγ
N is strictly less than exp(−1) to ensure that

f̄
′
X > 0. This assumption is not restrictive, as we are inter-

ested in the rare event regime corresponding to N large and/or
γ small. Through a simple computation, we get

M̃(θ) = −exp (θδγ /N )

θ
f̄ X + exp (θδγ /N )

θ2
f̄

′
X .

The value of θ that solves M̃
′
(θ)

M̃(θ)
= γ

N is given by

θ = −
f̄ X − c f̄

′
X +

√
( f̄ X − c f̄

′
X )2 + 8 f̄ X f̄

′
Xc

2c f̄X
,

with c = γ
N (1 − δ). The remaining part is to sample from

f̃ X (·). To do this, we write

f̃ X (x) = − f̄ X exp(θδγ /N )

M̃X (θ)θ
f̃1(x) + f̄

′
X exp(θδγ /N )

M̃X (θ)θ2
f̃2(x),

where f̃1(x) = − θ exp(θx)
exp(θδγ /N )

and f̃2(x) = θ2(x−δγ /N ) exp(θx)
exp(θδγ /N )

are two valid PDFs for x > δγ/N .
The question that remains is related to controlling the bias

through a proper choice of the parameter δ. Let α1(γ, N ) =
(
1 − FX (

δγ
N )

)N
PhX

(∑N
i=1 Xi ≤ γ

∣
∣
∣Xi >

δγ
N ,∀i

)
. Then,

the global relative error can be upper bounded as follows:

∣
∣
∣
∣
α(γ, N ) − α̂1,is,M

α(γ, N )

∣
∣
∣
∣ ≤α(γ, N ) − α1(γ, N )

α(γ, N )

+
∣
∣
∣
∣
α1(γ, N ) − α̂1,is,M

α1(γ, N )

∣
∣
∣
∣ , (12)

where α̂1,is,M is the IS estimator of α1(γ, N ) based on M
i.i.d. realizations sampled according to h̃X(x) = ∏N

i=1 f̃ X (xi )
where the PDF f̃ X (·) is given in (11)

α̂1,is,M (γ, N ) = 1

M

M∑

k=1

(

1 − FX (
δγ

N
)

)N

1
(
∑N

i=1 X
(k)
i ≤γ )

×
N∏

i=1

f̄ X (X (k)
i )

f̃ X (X (k)
i )

.

Theparameter δ is then chosen to control the bias term in (12),
that is the first term on the right-hand side of (12). The second
term on the right-hand side is the statistical relative error
of estimating α1(γ, N ) by α̂1,is,M . From the central limit
theorem (CLT), this error term is approximately proportional
to the coefficient of variation of α̂1,is,M .

To achieve a global relative error of order ε, it is sufficient
to bound the two error terms, i.e., the statistical relative error
and the relative bias, by ε/2. Hence, the value of δ is selected
such that the following inequality holds

0 ≤ α(γ, N ) − α1(γ, N )

α(γ, N )
≤ ε/2. (13)

The following lemma provides the relation between δ and ε

such that (13) is fulfilled.

123



79 Page 8 of 13 Statistics and Computing (2021) 31 :79

Lemma 1 The following expression of δ(ε, N , γ )

δ(ε, N , γ ) = N

γ
exp

(

�−1
(

ε

2N

(�(log(γ /N )))N

(�(log(γ )))N−1

))

,

(14)

where �(·) is the CDF of the standard normal distribution,
ensures that (13) holds.

Proof We first write that

α(γ, N ) − α1(γ, N )

= PhX

(

{
N∑

i=1

Xi ≤ γ } ∩ ∪N
i=1{Xi ≤ δγ /N }

)

≤ PhX(∪N
i=1{Xi ≤ δγ /N } ∩ ∩N

i=1{Xi ≤ γ })

≤
N∑

i=1

PhX

({Xi ≤ δγ /N } ∩ ∩ j �=i {X j ≤ γ })

= NPhX (X1 ≤ δγ /N , X2 ≤ γ, · · · , XN ≤ γ )

= N�(log(δγ /N )) (�(log(γ )))N−1 . (15)

On the other hand, we have

α(γ, N ) ≥ (�(log(γ /N )))N .

Therefore, we get

α(γ, N ) − α1(γ, N )

α(γ, N )
≤ N

�(log(δγ /N )) (�(log(γ )))N−1

(�(log(γ /N )))N
.

By equating the right-hand side of the above inequality with
ε/2, we obtain

δ(ε, N , γ ) = N

γ
exp

(

�−1
(

ε

2N

(�(log(γ /N )))N

(�(log(γ )))N−1

))

,

and hence, the proof is concluded. ��

4.3.2 The Gamma family as an IS PDF

When we consider a sufficiently small value of δ in the
above analysis, we observe from the expression of the IS
PDF in (11) that the proposed estimator with the IS PDF
in (11) achieves approximately the same performance as the
Gamma IS PDF with shape parameter equal to 2. This sug-
gests investigating whether the Gamma family can achieve
further variance reduction with respect to the approach in
the previous subsection. Note that the advantage of using the
Gamma family as IS PDFs compared to the approach in the
previous subsection is that the estimator is unbiased. Recall

that the Gamma PDF is given by

f̃ X (x) = xk−1 exp(−x/θ)

�(k)θk
, x > 0, (16)

where θ > 0 and k > 0 are the scale and shape parameters.
The value of θ is chosen to be equal to θ = γ

Nk to ensure
that the expected value of each of the Xi ’s, i = 1, 2, · · · , N ,
under the PDF f̃ X (·) is equal to γ

N . The likelihood ratio is
then given by

L(x1, x2, · · · , xN )

= (�(k)θk)N exp(
∑N

i=1 xi
θ

− 1
2

∑N
i=1 (log(xi ))2)

∏N
i=1 x

k
i (

√
2π)N

.

The second moment of the IS estimator is bounded by

Eh̃X

[
L2(X1, X2, · · · , XN )1

(
∑N

i−1 Xi≤γ )

]

≤ (
�(k)θk√

2π
)2N exp(

2γ

θ
)

× Eh̃X

[

exp(−
N∑

i=1

(log(xi ))
2 − 2k

N∑

i=1

log(xi ))

]

≤ (
�(k)( γ

Nk )
k

√
2π

)2N exp(2kN + k2N ).

The last upper bound is found by maximizing the func-
tion x → −(log(x))2 − 2k log(x) for x > 0. Next,
using Stirling’s formula for the gamma function �(k) =√
2πkk− 1

2 exp(−k)(1 + O( 1k )), we get

Eh̃X

[
L2(X1, X2, · · · , XN )1

(
∑N

i−1 Xi≤γ )

]

� Ck−N
( γ

N

)2Nk
exp(k2N )

= C exp(N (k2 − 2k log(N/γ ) − log(k)))

whereC is a constant. Next, the value of k is chosen such that
it minimizes the above right-hand side term. The solution of
this minimization problem is given as follows:

k∗ = 1

2

(

log(
N

γ
) +

√

(log(
N

γ
))2 + 2

)

. (17)

Note that when N is large and/or γ is small, the value of k∗
satisfies k∗ ∼ log( N

γ
).
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5 Numerical results

In this section, we show some selected numerical results
to compare the performance of the proposed estimators
compared to some of the existing estimators. We consider
three scenarios depending on the distribution of Xi , i =
1, 2, · · · , N : theWeibull, the Gamma–Gamma, and the Log-
normal distributions. Note that the proposed approach is not
restricted to these three distributions (see Table I for a non-
exhaustive list of distributions that can be handled).

We recall that the squared coefficient of variation of an
unbiased estimator α̂(γ, N ) of α(γ, N ) has the following
expression

SCV(α̂(γ, N )) = var
[
α̂(γ, N )

]

α2(γ, N )
. (18)

Note that, from the CLT, the number of required samples to
meet ε statistical relative error with 95% confidence is equal
to (1.96)2SCV(α̂(γ, N ))/ε2. Therefore, when we compare
two estimators, the one with the smaller squared coefficient
of variation exhibits better performance than the other.

5.1 Weibull case

In this section, we assume that Xi , i = 1, 2, · · · , N , are dis-
tributed according to the Weibull distribution whose PDF is
given in Table I. The comparison is made with respect to the
second IS approach of Ben Rached et al. (2016) that is based
on using the hazard rate twisting (HRT). In Figs. 1 and 2, we
plot the squared coefficient of variations given by the HRT
technique and the proposed approach for two different values
of the shape parameter: k = 1.5 and k = 0.5, respectively.
The value of α(γ, N ) ranges approximately from 10−20 to
10−6 (respectively, from 10−16 to 10−6) using the system’s
parameters of Fig. 1 (respectively, of Fig. 2). These figures
show that the proposed approach clearly outperforms the
one based on HRT. For instance, when k = 1.5, λ = 1,
γ = 0.5, and N = 12, the proposed approach is approxi-
mately 270 times more efficient than the one based on HRT.
More specifically, to meet the same accuracy, the number of
samples needed by the approach based on HRT should be
approximately 270 times the number of samples needed by
the proposed approach.

In the next experiment, we aim to compare the proposed
approach with the HRT one when N is fixed and γ decreases.
In Fig. 3, we compare the efficiency of both approaches in
terms of squared coefficient of variations plotted as a func-
tion of γ for two scenarios depending on the value of N
(N = 8 and N = 10). In this case, the value of α(γ, N )

ranges approximately from 10−16 to 10−6 for N = 8 and
from 10−22 to 10−8 for N = 10. We observe a clear out-
performance of the proposed approach compared to the one
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Fig. 1 Squared coefficient of variation as a function of N where Xi are
i.i.d. Weibull random variables with rate λ = 1, k = 1.5, and γ = 0.5
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Fig. 2 Squared coefficient of variation as a function of N where Xi are
i.i.d. Weibull random variables with rate λ = 1, k = 0.5, and γ = 0.01

based on using HRT for both values of N . While the HRT
approach was proved in Ben Rached et al. (2016) to achieve
the bounded relative error property with respect to γ and for
a fixed value of N , it is clear from Fig. 3 that the asymp-
totic bound increases substantially with respect to N , and
hence, the performance of the HRT approach is dramatically
affected by increasing N . On the other hand, we observe that
increasing the value of N has a minor effect on the efficiency
of the proposed approach, i.e., the squared coefficient of vari-
ation is approximately unchanged for both values of N and
for the considered range of γ .

This numerical observation suggests to conclude that the
proposed approach satisfies the bounded relative error prop-
erty with an asymptotic bound that increases with a very
slow rate, compared to the one given by the HRT approach,
as we increase N . For illustration, the proposed approach
is approximately 18 (respectively, 64) times more efficient
than the HRT one when N = 8 (respectively, N = 10)
and γ = 0.2. Note that the previous observations are valid
independently of the value of α(γ, N ) (see Fig. 3, where the
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Fig. 3 Squared coefficient of variation as a function of γ where Xi are
i.i.d. Weibull random variables with rate λ = 1, k = 1.5
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Fig. 4 Squared coefficient of variation as a function of N where Xi are
i.i.d. Gamma–Gamma random variables with m = 4, k = 1.7, 	 = 1,
and γ = 0.5

squared coefficient of variation is approximately constant for
a fixed value of N and for the considered range of γ ). This
experiment and the numerical results in Figs. 1 and 2 vali-
date the ability of the proposed approach to deliver a very
accurate and efficient estimate of α(γ, N ) when N increases
and/or γ decreases.

5.2 Gamma–Gamma case

The Gamma–Gamma distribution is used for various chal-
lenging applications inwireless communications. For instance,
it exhibited a good fit to experimental data and was used
to model wireless radio-frequency channels (Shankar Feb.
2004) and to model atmospheric turbulences in free-space
optical communication systems (Hajji and Bouanani 2017).
The PDF of Xi is given in Table 1.

In Fig. 4, we compare the proposed approach with the
one in Ben Issaid et al. (2017) by plotting the corresponding
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Fig. 5 Squared coefficient of variation as a function of N where Xi
are i.i.d. standard Log-normal random variables with γ = 0.5, and
ε = 0.05

squared coefficient of variations as a function of N and for
a fixed value of γ . Note that in Ben Issaid et al. (2017),
the proposed IS PDF is simply another Gamma–Gamma
PDF with shifted mean. We call this method the IS-based
mean-shifted approach. The range of the quantity of interest
α(γ, N ) is approximately from 10−18 to 10−5. We observe
that the proposed estimator outperforms the one in Ben Issaid
et al. (2017). Also, we observe that the outperformance of the
proposed estimator compared to the one based onmean shift-
ing increases as we increase N . Moreover, we should note
here that the cost per sample (in terms of CPU time) of the
approach in Ben Issaid et al. (2017) is twice the cost of the
proposed approach. This is because a Gamma–Gamma ran-
dom variable is generated by the product of two independent
Gamma random variables, see Chatzidiamantis et al. (2009).
For illustration, we observe from Fig. 4 that when N = 12,
the proposed approach is approximately 2.5 times (five times
if we include the computing time in the comparison) more
efficient than the one of Ben Issaid et al. (2017).

5.3 Log-normal case

The Log-normal distribution can be used to model sev-
eral types of attenuation including shadowing (Tjhung et al.
1997), and weak-to-moderate turbulence channels in free-
space optical communications (Ansari et al. 2014). The
standard Log-normal PDF (the associated Gaussian random
variable has zero mean and unit variance) is given by

fX (x) = 1

x
√
2π

exp

(

− (log(x))2

2

)

, x > 0.

Figure 5 shows the squared coefficient of variation given
by the exponential twisting (Asmussen et al. Sep. 2016), and
the two proposed approaches, i.e., the one based on the biased
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estimator and the other based on using the Gamma distribu-
tion as an ISPDF.Thevalue ofα(γ, N ) ranges approximately
from 10−20 to 10−2. For the considered range of N , we
observe that out of these three approaches, it is the one using
the Gamma distribution as an IS PDF that outperforms the
others. When N = 9, it is approximately 30 times more effi-
cient than the one based on exponential twisting. In addition
to the efficiency in terms of number of samples, it is worth
recalling that the exponential twisting technique developed
in Asmussen et al. (Sep. 2016) is computationally expen-
sive in terms of computing time compared to the proposed
approaches. Moreover, Fig. 5 also shows that the approach
based on the biased estimator achieves better performances
than the one based on exponential twisting. It is important to
mention here that, for the comparison to be fair, the required
number of samples of the biased estimator should be multi-
plied by 4. This follows from the error analysis in (12), in
which the statistical relative error should be bounded by ε/2,
where ε is the required global relative error.

In Fig. 6, we plot the squared coefficient of variations
given by the three approaches as a function of γ and for two
different values of N (N = 8 and N = 10). The quantity of
interest α(γ, N ) ranges approximately from 10−15 to 10−6

for N = 8 and from 10−21 to 10−9 for N = 10. We observe
that the approach based on using the Gamma distribution
as an IS PDF clearly asymptotically outperforms the two
other approaches. For both values of N , the outperformance
increases as we decrease γ . Moreover, the biased estimator
exhibits better performances than the exponential twisting
one for both values of N and for the considered range ofγ val-
ues. Furthermore, increasing N has a considerable negative
effect on the performances of the exponential twisting and the
biased IS-based approaches. On the other hand, Fig. 6 shows
that increasing N does not largely affect the performance of
the IS estimator based on the use of the Gamma distribution
as an IS PDF. For illustration, the approach based on using the
Gamma distribution as an IS PDF is approximately 15 times
(respectively, 35) more efficient that the exponential twisting
one when N = 8 (respectively, N = 10) and γ = 0.6.

It is important to mention that the outperformance of the
estimator based on using the Gamma distribution as an IS
PDF over the one based on using the biased estimator is
expected. As it was mentioned above, the latter approach
gives approximately the same performance as the Gamma
distribution with shape parameter equal to 2, while the for-
mer one uses the Gamma distribution as an IS PDF with an
optimized shape parameter. (The shape parameter was cho-
sen to minimize an upper bound of the second moment of the
proposed estimator, see the expression of k∗ in (17).)

All of the above comparisons have been carried out in
terms of the number of sampled needed to meet a fixed accu-
racy requirement. In order to include the computing time
in our comparison, we define the work normalized relative
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Fig. 6 Squared coefficient of variation as a function of γ where Xi are
i.i.d. standard Log-normal random variables with ε = 0.05
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Fig. 7 WNRV as a function of γ where Xi are i.i.d. standard Log-
normal random variables with ε = 0.05

variance (WNRV) metric of an unbiased estimator α̂(γ, N )

of α(γ, N ) as follows (see Ben Rached et al. 2018):

WNRV(α̂(γ, N )) =SCV(α̂(γ, N ))

M
× computing time in seconds. (19)

The computing time is the time in seconds needed to get
an estimator of α(γ, N ) using M i.i.d. samples of α̂(γ, N ).
When comparing two estimators, the one that exhibits less
WNRV is more efficient than the other estimator. More pre-
cisely, an estimator is efficient in terms of WNRV than
another estimator which means that it achieves less relative
error for a given computational budget, or equivalently, it
needs less computing time to achieve a fixed relative error.
Using the same setting as in Fig. 6, we plot in Fig. 7 the
WNRV metric as a function of γ for two scenarios depend-
ing on the value of N (N = 8 and N = 10).

We observe that as α(γ, N ) is getting smaller, it is the
approach based on using the Gamma PDF as an IS PDF that
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outperforms the two other approaches in terms of WNRV.
(The efficiency increases as the event becomes rarer.) It is
worth recalling that the WNRV of the approach based on
biased PDF should be multiplied by 4 in order for the anal-
ysis to be fair. (This follows from the error analysis that was
performed in section 4.3.1.) Moreover, Fig. 7 shows that, in
addition to reducing the variance, as shown in Fig. 6, the
approach based on using the Gamma IS PDF also reduces
the computing time compared to the one using the expo-
nential twisting technique. To see that, for N = 10 and
γ = 0.6, the approach based on using the Gamma IS PDF is
approximately 35 times (respectively, 340 times) more effi-
cient than the one based on exponential twisting when using
the squared coefficient of variation metric (respectively, the
WNRV metric). More specifically, the Gamma-based IS
approach approximately reduces the computing time by a
factor of 10with respect to the exponential twisting approach.

6 Conclusion

We developed efficient importance sampling estimators to
estimate the rare event probabilities corresponding to the left-
tail of the cumulative distribution function of large sums of
nonnegative independent and identically distributed random
variables. The proposed estimators achieve asymptotically at
least the same performance as the exponential twisting tech-
nique, in the regime of rare events and for certain classes of
distributions that include most of the common distributions.
The main conclusion is that the Gamma PDF with suitably
chosen parameters achieves for most of the common distri-
butions substantial variance reduction and at the same time
avoids the restrictive limitations of the exponential twisting
technique. The numerical results validate the efficiency of the
proposed approach in being able to accurately and efficiently
estimate the quantity of interest in the rare event regime cor-
responding to large N and/or small γ . One possible extension
of the present work is to connect it to the works in Beskos
et al. (2017) and Jasra et al. (2021) by creating a sequence of
approximate measures corresponding to increasing the val-
ues of N .
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