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Abstract
The minimum regularized covariance determinant method (MRCD) is a robust estimator for multivariate location and scatter,
which detects outliers by fitting a robust covariance matrix to the data. Its regularization ensures that the covariance matrix is
well-conditioned in any dimension. TheMRCDassumes that the non-outlying observations are roughly elliptically distributed,
but many datasets are not of that form. Moreover, the computation time of MRCD increases substantially when the number
of variables goes up, and nowadays datasets with many variables are common. The proposed kernel minimum regularized
covariance determinant (KMRCD) estimator addresses both issues. It is not restricted to elliptical data because it implicitly
computes theMRCD estimates in a kernel-induced feature space. A fast algorithm is constructed that starts from kernel-based
initial estimates and exploits the kernel trick to speed up the subsequent computations. Based on the KMRCD estimates, a
rule is proposed to flag outliers. The KMRCD algorithm performs well in simulations, and is illustrated on real-life data.

Keywords Anomaly detection · High dimensional data · Kernelization · Minimum covariance determinant · Regularization

1 Introduction

The minimum covariance determinant (MCD) estimator
introduced in Rousseeuw (1984, 1985) is a robust estima-
tor of multivariate location and covariance. It forms the basis
of robust versions ofmultivariate techniques such as discrim-
inant analysis, principal component analysis, factor analysis
and multivariate regression, see e.g. Hubert et al. (2008,
2018) for an overview. The basic MCDmethod is quite intu-
itive. Given a data matrix of n rows with p columns, the
objective is to find h < n observations whose sample covari-
ance matrix has the lowest determinant. The MCD estimate
of location is then the average of those h points, whereas the
scatter estimate is a multiple of their covariance matrix. The
MCD has good robustness properties. It has a high break-
down value, that is, it can withstand a substantial number of
outliers. The effect of a small number of potentially far out-
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liers is measured by its influence function, which is bounded
(Croux and Haesbroeck 1999).

Computing the MCD was difficult at first but became
faster with the algorithm of Rousseeuw and Van Driessen
(1999) and the deterministic algorithm DetMCD (Hubert
et al. 2012). An algorithm for n in the millions was recently
constructed (De Ketelaere et al. 2020). But all algorithms for
the original MCD require that the dimension p be lower than
h in order to obtain an invertible covariance matrix. In fact
it is recommended that n > 5p in practice (Rousseeuw and
Van Driessen 1999). This restriction implies that the origi-
nal MCD cannot be applied to datasets with more variables
than cases, that are commonly found in spectroscopy and
areas where sample acquisition is difficult or costly, e.g. in
the field of omics data.

A solution to this problem was recently proposed in
Boudt et al. (2020), which introduced the minimum regular-
ized covariance determinant (MRCD) estimator. The scatter
matrix of a subset of h observations is now a convex com-
bination of its sample covariance matrix and a target matrix.
This makes it possible to use the MRCD estimator when the
dimension exceeds the subset size. But the computational
complexity of MRCD still contains a term O(p3) from the
covariance matrix inversion, which limits its use for high-
dimensional data. Another restriction is the assumption that
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the non-outlying observations roughly follow an elliptical
distribution.

To address both issues we propose a generalization of the
MRCD which is defined in a kernel-induced feature space
F , where the proposed estimator exploits the kernel trick:
the p × p covariance matrix is not calculated explicitly but
replaced by the calculation of a n×n centered kernel matrix,
resulting in a computational speed-up in case n � p. Sim-
ilar ideas can be found in the literature, see e.g. Dolia et al.
(2006, 2007) which kernelized the minimum volume ellip-
soid (Rousseeuw 1984, 1985). The results of the KMRCD
algorithm with the linear kernel k(x, y) = x�y and radial
basis function (RBF) kernel k(x, y) = e−‖x−y‖2/(2σ 2) are
shown in Fig. 1. This example will be described in detail in
Sect. 6.

The paper is organized as follows. Section 2 describes the
MCD and MRCD estimators. Section 3 proposes the kernel
MRCD method. Section 4 describes the kernel-based initial
estimators used as well as a kernelized refinement procedure,
and proves that the optimization in feature space is equivalent
to an optimization in terms of kernelmatrices. The simulation
study in Sect. 5 confirms the robustness of the method as
well as the improved computation speed when using a linear
kernel. Section 6 illustrates KMRCD on three datasets, and
Sect. 7 concludes.

2 TheMCD andMRCDmethods

2.1 Theminimum covariance determinant estimator

Assume that we have a p-variate dataset X containing n data
points, where the i th observation xi = (xi1, xi2, . . . , xip)� is
a p-dimensional column vector. We do not know in advance
which of these points are outliers, and they can be located
anywhere. The objective of the MCD method is to find a set
H containing the indices of |H | = h points whose sample
covariance matrix has the lowest possible determinant. The
user may specify any value of h with n/2 ≤ h < n. The
remaining n − h observations could potentially be outliers.
For each h-subset H the location estimate cH is the average
of these h points:

cH = 1

h

∑

i∈H
xi

whereas the scatter estimate is a multiple of their covariance
matrix, namely

cα�̂H = cα

h − 1

∑

i∈H

(
xi − cH

) (
xi − cH

)�

where cα is a consistency factor (Croux and Haesbroeck
1999) that depends on the ratio α = h/n. The MCD aims to
minimize the determinant of �̂H among all H ∈ H, where
the latter denotes the collection of all possible sets H with
|H | = h:

�̂MCD = argmin
H∈H

det
(
�̂H

)
. (1)

Computing the exact MCD has combinatorial complexity, so
it is infeasible for all but tiny datasets. However, the approxi-
mate algorithmFastMCD constructed in Rousseeuw andVan
Driessen (1999) is feasible. FastMCD uses so-called con-
centration steps (C-steps) to minimize (1). Starting from any
given �̂H , the C-step constructs amore concentrated approx-
imation by calculating the Mahalanobis distance of every
observation based on the location and scatter of the current
subset H :

MD
(
x, cH , �̂H

)
=

√(
x − cH

)�(
�̂H

)−1(
x − cH

)
.

These distances are sorted and the h observations with the
lowest MD(xi , cH , �̂H ) form the new h-subset, which is
guaranteed tohave an equal or lower determinant (Rousseeuw
andVanDriessen 1999). The C-step can be iterated until con-
vergence.

2.2 Theminimum regularized covariance
determinant estimator

The minimum regularized covariance determinant estimator
(MRCD) is a generalization of the MCD estimator to high
dimensional data (Boudt et al. 2020). The MRCD subset H
is defined by minimizing the determinant of the regularized
covariance matrix �̂H

reg:

�̂MRCD = argmin
H∈H

(
det

(
�̂H

reg

))
,

where the regularized covariance matrix is given by

�̂H
reg = ρT + (1 − ρ)cα�̂H

with 0 < ρ < 1 and T a predetermined andwell-conditioned
symmetric and positive definite target matrix. The determi-
nation of ρ is done in a data-driven way such that �̂MRCD

has a condition number at most κ , for which Boudt et al.
(2020) proposes κ = 50. The MRCD algorithm starts from
six robust, well-conditioned initial estimates of location and
scatter, taken from the DetMCD algorithm (Hubert et al.
2012). Each initial estimate is followed by concentration
steps, and at the end the subset H with the lowest determinant
is kept. Note that approximate algorithms like FastMCD and
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Fig. 1 Illustration of kernel MRCD on two datasets of which the non-outlying part is elliptical (left) and non-elliptical (right). Both datasets contain
20% of outlying observations. The generated regular observations are shown in black and the outliers in red. In the panel on the left a linear kernel
was used, and in the panel on the right a nonlinear kernel. The curves on the left are contours of the robust Mahalanobis distance in the original
bivariate space. The contours on the right are based on the robust distance in the kernel-induced feature space

MRCD aremuch faster than exhaustive enumeration, but one
can no longer formally prove a breakdownvalue. Fortunately,
simulations confirm the high robustness of these methods.
Also note that such approximate algorithms are guaranteed
to converge, because they iterate C-steps starting from a finite
number of initial fits. The algorithm may converge to a local
minimum of the objective rather than its global minimum,
but simulations have confirmed the accuracy of the result.

3 The kernel MRCD estimator

We now turn our attention to kernel transformations
(Schölkopf et al. 2002), formally defined as follows.

Definition 1 A function k : X × X → R is called a kernel
on X iff there exists a real Hilbert space F and a map φ :
X → F such that for all x , y in X :

k(x, y) = 〈φ(x), φ(y)〉,

where φ is called a feature map and F is called a feature
space.

We restrict ourselves to positive semidefinite (PSD) ker-
nels. A symmetric function k : X × X → R is called
PSD iff

∑n
i=1

∑n
j=1 ci c j k(xi , x j ) ≥ 0 for any x1, . . . , xn

in X and any c1, . . . , cn in R. Given an n × p dataset
X , its kernel matrix is defined as K = ��� with � =
[φ(x1), ..., φ(xn)]�. The use of kernels makes it possible to
operate in a high-dimensional, implicit feature space with-
out computing the coordinates of the data in that space, but
rather by replacing inner products by kernel matrix entries. A

well known example is given by kernel PCA (Schölkopf et al.
1998), where linear PCA is performed in a kernel-induced
feature space F instead of the original space X . Working
with kernel functions has the advantage that non-linear ker-
nels enable the construction of non-linear models. Note that
the size of the kernel matrix is n×n, whereas the covariance
matrix is p × p. The latter is an advantage when dealing
with datasets for which n � p, for then the memory and
computational requirements are considerably lower.

Given an n × p dataset X = {x1, . . . , xn} we thus get its
image {φ(x1), . . . φ(xn)} in feature space, where it has the
average

cF = 1

n

n∑

i=1

φ(xi ) .

Note that the dimension of the feature space F may be
infinite. However, we will restrict ourselves to the sub-
space F̃ spanned by {φ(x1) − cF , . . . , φ(xn) − cF } so that
m:=dim(F̃) ≤ n−1. In this subspace the points φ(xi )− cF
thus have at most n − 1 coordinates. The covariance matrix
in the feature space given by

�̂F = 1

n − 1

n∑

i=1

(φ(xi ) − cF )(φ(xi ) − cF )�

is thus a matrix of size at most (n−1)×(n−1). Note that the
covariance matrix is centered but the original kernel matrix
is not. Therefore we construct the centered kernel matrix K̃
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by

K̃i j =
(
φ(xi ) − 1

n

n∑

	=1

φ(x	)
)�(

φ(x j ) − 1

n

n∑

	′=1

φ(x	′)
)

= Ki j − 1

n

n∑

	=1

K	 j − 1

n

n∑

	′=1

Ki	′ + 1

n2

n∑

	=1

n∑

	′=1

K		′

=
(
K − 1nnK − K1nn + 1nnK1nn

)

i j
(2)

where 1nn is the n × n matrix with all entries set to 1/n.
Note that the centered kernel matrix is equal to K̃ = �̃�̃�
with �̃ = [φ(x1) − cF , . . . , φ(xn) − cF ]� and is PSD by
construction. The following result is due to Schölkopf et al.
(1998).

Theorem 1 Given an n× p dataset X, the sorted eigenvalues
of the covariance matrix �̂F and those of the centered kernel
matrix K̃ satisfy

λ
�̂F
j = λK̃

j

n − 1

for all j = 1, . . . ,m where m = rank(�̂F ).

Proof of Theorem 1 The eigendecomposition of the centered
kernel matrix K̃ is

K̃ = �̃�̃� = V�V�

where � = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn . The
eigenvalue λ j and eigenvector v j satisfy

�̃�̃�v j = λ jv j

for all j = 1, . . . ,m. Multiplying both sides by �̃�/(n − 1)
gives

(
1

n − 1
�̃��̃

)(
�̃�v j

)
= λ j

n − 1

(
�̃�v j

)
.

Combining the above equations results in

�̂Fv
�̂F
j = λ j

n − 1
v

�̂F
j

for all j = 1, . . . ,m where v
�̂F
j = (�̃�v j ) is the j th eigen-

vector of �̂F . The remaining eigenvalues of the covariance
matrix, if any, are equal to zero. �

The above result can be related to a representer theorem
for kernel PCA (Alzate and Suykens 2008). It shows that
the nonzero eigenvalues of the covariance matrix are pro-
portional to the nonzero eigenvalues of the centered kernel
matrix, thus proving that �̂F and K̃ have the same rank.

What would a kernelized MCD estimator look like? It
would have to be equivalent to applying the original MCD
in the feature space, so that in case of the linear kernel the
original MCD is obtained. TheMCD estimate for location in
the subspace F̃ is

cHF = 1

h

∑

i∈H
φ(xi )

whereas the covariance matrix now equals

�̂H
F = 1

h − 1

∑

i∈H

(
φ(xi ) − cHF

)(
φ(xi ) − cHF

)�
.

Likewise, the robust distance becomes

MD
(
φ(x), cHF , �̂H

F
)

=
(
φ(x) − cHF

)�(
�̂H
F

)−1(
φ(x) − cHF

)
.

In these formulas the mapping function φ may not be known,
but that is not necessary since we can apply the kernel trick.
More importantly, the covariance matrix may not be invert-
ible as theφ(xi )−cHF lie in a possibly high-dimensional space

F̃ . We therefore propose to apply MRCD in F̃ in order to
make the covariance matrix invertible. Let �̃H be the row-
wise stacked matrix

�̃H =
[
φ(xi(1)) − cHF , . . . , φ(xi(h)) − cHF

]�

where i(1), . . . , i(h) are the indices in H . For any 0 < ρ < 1
the regularized covariance matrix is defined as

�̂H
reg = (1 − ρ)�̂H

F + ρ Im = 1 − ρ

h − 1
�̃�

H �̃H + ρ Im

where Im is the identity matrix in F̃ . The KMRCD method
is then defined as

�̂KMRCD = argmin
H∈H

det
(
�̂H

reg

)
(3)

where H is the collection of subsets H of {1, . . . , n} such
that |H | = h and �̂H is of maximal rank, i.e. rank(�̂H ) =
dim(span(φ(xi(1)) − cHF , . . . , φ(xi(h)) − cHF )) = q with
q:=min(m, h−1).We can equivalently say that the h-subset
H is in general position. The corresponding regularized ker-
nel matrix is

K̃ H
reg = (1 − ρ)K̃ H + (h − 1)ρ Ih (4)

where K̃ H = �̃H �̃T
H denotes the centered kernel matrix of

h rows, that is, (2) with n replaced by h. The MRCDmethod
in feature space F̃ minimizes the determinant in (3) in F̃ . But
wewould like to carry out an optimization on kernel matrices
instead. The following theorem shows that this is possible.

123



Statistics and Computing (2021) 31 :66 Page 5 of 18 66

Theorem 2 Minimizing det(�̂H
reg) over all subsets H in H is

equivalent to minimizing det(K̃ H
reg) over all h-subsets H with

rank(K̃ H ) = q.

Proof of Theorem 2 From Theorem 1 it follows that the

nonzero eigenvalues of �̂H
F and K̃ H are related by λ

�̂H
F

j =
1

h−1λ
K̃ H

j . If H belongs toH, �̂H
F has exactlyq nonzero eigen-

values so K̃ H also has rank q, and vice versa. The remaining
m − q eigenvalues of �̂H are zero, as well as the remain-
ing h − q eigenvalues of K̃ H . Now consider the regularized
matrices

�̂H
reg = (1 − ρ)�̂H

F + ρ Im

and

K̃ H
reg = (1 − ρ)K̃ H + (h − 1)ρ Ih .

Computing the determinant of both matrices as a product of
their eigenvalues yields:

det
(
�̂H

reg

)
= ρm−q

q∏

j=1

(
(1 − ρ)λ

�̂H
F

j + ρ
)

and

det
(
K̃ H
reg

)
= ρh−q

q∏

j=1

(
(1 − ρ)λK̃ H

j + (h − 1)ρ
)

= ρh−q
q∏

j=1

(h − 1)
(
(1 − ρ)λ

�̂H
F

j + ρ
)

= ρh−q

ρm−q
(h − 1)q det

(
�̂H

reg

)
.

Therefore det(K̃ H
reg) = ρh−m(h−1)q det(�̂H

reg) in which the
proportionality factor is constant, so the optimizations are
equivalent. �

Following Haasdonk and Pekalska (2009) we can also
express the robust Mahalanobis distance in terms of the reg-
ularized kernel matrix, by

MD
(
φ(x), cHF , �̂H

reg

)

=
√

(
φ(x) − cHF

)� (
�̂H

reg

)−1 (
φ(x) − cHF

)

=
√

1

ρ

(
k̃(x, x) − (1 − ρ)k̃(H , x)�

(
K̃ H
reg

)−1
k̃(H , x)

)

(5)

where k̃(x, x) = (φ(x) − cHF )�(φ(x) − cHF ) is a special

case of the formula k̃(x, y) = k(x, y) − ∑
i∈H k(xi , x) −

∑
i∈H k(xi , y)−∑

i∈H
∑

j∈H k(xi , x j ) for x = y. The nota-

tion k̃(H , x) stands for the column vector �̃H (φ(x)−cHF ) =
(k̃(xi(1), x), . . . , k̃(xi(h), x))� inwhich i(1), . . . , i(h) are the
members of H . This allows us to calculate the Mahalanobis
distance in feature space from the kernel matrix, and conse-
quently to perform the C-step procedure on it. Note that (5)
requires inverting the matrix K̃ H

reg instead of the matrix �̂H
reg.

The C-step theorem of the MRCD in Boudt et al. (2020)
shows that when you select a new h-subset as those i for
which the Mahalanobis distance relative to the old h-subset
is smallest, the regularized covariance determinant of the new
h-subset is lower than or equal to that of the old one. In other
words, C-steps lower the objective function ofMRCD.Using
Theorem2, thisC-step theorem thus also extends to thekernel
MRCD estimator.

4 The kernel MRCD algorithm

This section introduces the elements of the kernel MRCD
algorithm. If the original data comes in the form of an n × p
dataset X , we start by robustly standardizing it. For this we
first compute the univariate reweighted MCD estimator of
Rousseeuw and Leroy (1987) with coverage h = [n/2] + 1
to obtain estimates of the location and scatter of each vari-
able, which are then used to transform X to z-scores. The
kernel matrix K is then computed from these z-scores. Note,
however, that the data can come in the form of a kernel
matrix that was not derived from data points with coordi-
nates. For instance, a so-called string kernel can compute
similarities between texts, such as emails, without any vari-
ables or measurements. Such a kernel basically compares the
occurrence of strings of consecutive letters in each text. Since
the KMRCD method does all its computations on the kernel
matrix, it can also be applied to such data.

4.1 Initial estimates

The MRCD estimator needs initial h-subsets to start C-steps
from. In the original FastMCD algorithm of Rousseeuw and
Van Driessen (1999) the initial h-subsets were obtained by
drawing random (p+1)-subsets out of the n data points. For
each its empirical mean and covariance matrix were com-
puted as well as the resulting Mahalanobis distances of all
points, after which the subset with the h smallest distances
was obtained. However, this procedure would not be possible
in situations where p > n because Mahalanobis distances
require the covariance matrix to be invertible. The MRCD
method instead starts from a small number of other initial
estimators, inherited from the DetMCD algorithm in Hubert
et al. (2012).
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For the initial h-subsets in KMRCD we need methods
that can be kernelized. We propose to use four such initial
estimators, the combination of which has a good chance of
being robust against different contamination types. Since ini-
tial estimators can be inaccurate, a kernelized refinement step
will be applied to each. We will describe these methods in
turn.

The first initial method is based on the concept of spa-
tial median. For data with coordinates, the spatial median is
defined as the pointm that has the lowest total Euclidean dis-
tance

∑
i ||xi −m|| to the data points. This notion also makes

sense in the kernel context, since Euclidean distances in the
feature space can be written in terms of the inner products
that make up the kernel matrix. The spatial median in coor-
dinate space is often computed by the Weiszfeld algorithm
and its extensions, see e.g. Vardi and Zhang (2000). A kernel
algorithm for the spatial median was provided in Debruyne
et al. (2010). It writes the spatial medianmF in feature space
as a convex combination of the φ(xi ):

mF =
n∑

i=1

γiφ(xi )

in which the coefficients γ1, . . . , γn are unknown. The
Euclidean distance of each observation to mF is computed
as the square root of

||φ(xi ) − mF ||2

= ||φ(xi ) −
n∑

j=1

γ jφ(x j )||2

= ||φ(xi )||2 + ||
n∑

j=1

γ jφ(x j )||2 − 2〈φ(xi ),
n∑

j=1

γ jφ(x j )〉

= k(xi , xi ) +
n∑

j=1

n∑

	=1

γ jγ	k(x j , x	) − 2
n∑

j=1

γ j k(xi , x j )

(6)

and the coefficients γ1, . . . , γn that minimize
∑

i ||φ(xi ) −
mF || are obtained by an iterative procedure described in
Algorithm 2 in Sect. A.1 of the Supplementary Material.
The first initial h-subset H is then given by the objects with
the h lowest values of (6). Alternatively, H is described by
a weight vector w = (w1, . . . , wn) of length n, where

wi :=
{
1 if i ∈ H

0 otherwise.
(7)

The initial location estimate cF in feature space is then the
weighted mean

cF =
∑n

i=1 wiφ(xi )∑n
i=1wi

. (8)

The initial covariance estimate �̂F is the weighted covari-
ance matrix

�̂F = 1∑n
i=1ui

�̃�diag(u1, . . . , un) �̃ (9)

given by covarianceweights (u1, . . . , un) that in generalmay
differ from the location weights (w1, . . . , wn). But for the
spatial median initial estimator one simply takes ui :=wi for
all i .

The second initial estimator is basedon theStahel-Donoho
outlyingness (SDO) of Stahel (1981), Donoho (1982). In a
space with coordinates it involves projecting the data points
on many unit length vectors (directions). We compute the
kernelized SDO (Debruyne and Verdonck 2010) of all obser-
vations and determine an h-subset as the indices of the h
points with lowest outlyingness. This is then converted to
weights wi as in (7), and we put ui :=wi again. The entire
procedure is listed as Algorithm 3 in the Supplementary
Material.

The third initial h-subset is based on spatial ranks
(Debruyne et al. 2009). The spatial rank ofφ(xi )with respect
to the other feature vectors is defined as:

Ri = 1

n

∥∥∥∥∥∥

∑

j �=i

φ (xi ) − φ
(
x j

)
∥∥φ (xi ) − φ

(
x j

)∥∥

∥∥∥∥∥∥

= 1

n

⎡

⎢⎣

⎛

⎝
∑

j �=i

φ (xi ) − φ
(
x j

)
∥∥φ (xi ) − φ

(
x j

)∥∥

⎞

⎠
� ⎛

⎝
∑

	�=i

φ (xi ) − φ (x	)

‖φ (xi ) − φ (x	)‖

⎞

⎠

⎤

⎥⎦

1
2

= 1

n

⎡

⎣
∑

j �=i

∑

	�=i

k(xi , xi ) − k(xi , x j ) − k(xi , x	) + k(x j , x	)

α(xi , x j )α(xi , x	)

⎤

⎦

1
2

(10)

where α(xi , x j ) = [k(xi , xi ) + k(x j , x j ) − 2k(xi , x j )] 12 . If
Ri is large, this indicates that φ(xi ) lies further away from
the bulk of the data than most other feature vectors. In this
sense, the values Ri represent a different measure of the out-
lyingness of φ(xi ) in the feature space. We then consider the
h lowest spatial ranks, yielding the location weights wi by
(7), and put ui :=wi . The complete procedure is Algorithm
4 in the Supplementary Material. Note that this algorithm is
closely related to the depth computation in Chen et al. (2009)
which appeared in the same year as Debruyne et al. (2009).

The last initial estimator is a generalization of the spatial
sign covariance matrix (Visuri et al. 2000) (SSCM) to the
feature space F . For data with coordinates, one first com-
putes the spatial medianm described above. The SSCM then
carries out a radial transform which moves all data points
to a sphere around m, followed by computing the classical
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product moment of the transformed data:

�̂SSCM = 1

n − 1

n∑

i=1

(xi − m)

||xi − m||
(xi − m)�

||xi − m|| .

The kernel spatial sign covariance matrix (Debruyne et al.
2010) is defined in the same way, by replacing xi by φ(xi )
and m by mF = ∑n

i=1 γiφ(xi ). We now have two sets of
weights. For location we use the weights wi = γi of the
spatial median and apply (8). But for the covariance matrix
we compute the weights ui = 1/||φ(xi ) − mF || with the
denominator given by (6). Next, we apply (9) with these ui .
The entire kernel SSCM procedure is listed as Algorithm 5
in the Supplementary Material. Note that kernel SSCM uses
continuous weights instead of zero-one weights.

4.2 The refinement step

It happens that the eigenvalues of initial covariance estima-
tors are inaccurate. In Maronna and Zamar (2002) this was
addressed by re-estimating the eigenvalues, and Hubert et al.
(2012) carried out this refinement step for all initial estimates
used in that paper. In order to employ a refinement step in
KMRCDwe need to be able to kernelize it.Wewill derive the
equations for the general case of a location estimator given
by a weighted sum (8) and a scatter matrix estimate given by
a weighted covariance matrix (9) so it can be applied to all
four initial estimates. We proceed in four steps.

1. The first step consists of projecting the uncentered data
on the eigenvectors VF of the initial scatter estimate �̂F :

B = �VF = ��̃�D
1
2 V =

(
K − Kw1�

n

)
D

1
2 V , (11)

where D=diag(u1, . . . , un)/(
∑n

i=1ui ), 1n=(1, . . . , 1)�,
and VF = �̃�D

1
2 V with V the normalized eigen-

vectors of the weighted centered kernel matrix K̂ =
(D

1
2 �̃)(D

1
2 �̃)� = D

1
2 K̃ D

1
2 .

2. Next, the covariance matrix is re-estimated by

�∗
F = VF LV�

F = �̃�D
1
2 V LV�D

1
2 �̃ ,

where L = diag(Q2
n (B.1) , . . . , Q2

n (B.n)) in which Qn is
the scale estimator of Rousseeuw and Croux (1993) and
B. j is the j th column of B.

3. The center is also re-estimated, by

c∗
F = (�∗

F )
1
2 median

(
�(�∗

F )−
1
2

)

where median stands for the spatial median. This cor-
responds to using a modified feature map φ∗(x) =

φ(x)(�∗
F )− 1

2 for the spatial median or runningAlgorithm
2 with the modified kernel matrix

K ∗ = ��̃�D
1
2 V L−1V�D

1
2 �̃��

=
(
K − Kw1�

n

)
D

1
2 V L−1D

1
2

(
K − Kw1�

n

)�
.

(12)

Transforming the spatial median gives us the desired cen-
ter:

c∗
F = (�∗

F )
1
2

n∑

i=1

(�∗
F )−

1
2 γ ∗

i φ(xi ) =
n∑

i=1

γ ∗
i φ(xi ),

where γ ∗
i are the weights of the spatial median for the

modified kernel matrix.

4. The kernel Mahalanobis distance is calculated as

d∗
F (x) =

(
φ(x) − c∗F

)�
(�∗

F )−1
(
φ(x) − c∗F

)

=
(
φ(x) − c∗F

)�
�̃�D

1
2 V L−1V�D

1
2 �̃

(
φ(x) − c∗F

)

= k∗(x, X)D
1
2 V L−1V�D

1
2 k∗(x, X)

� (13)

with,

k∗(x, X) = k(x, X) −
n∑

i=1

wi k(x, xi )1
�
n

−
n∑

j=1

γ ∗
j k(x j , X) −

n∑

i=1

n∑

j=1

wiγ
∗
j k(xi , x j )1

�
n

where k(x, X) = (k(x, x1), . . . , k(x, xn)).

The h points with the smallest d∗
F (x) form the refined

h-subset. The entire procedure is Algorithm 6 in the Sup-
plementary Material.

4.3 Kernel MRCD algorithm

We now have all the elements to compute the kernel MRCD
byAlgorithm 1. Given any PSD kernel matrix and subset size
h, the algorithmstarts by computing the four initial estimators
described in Sect. 4.1. Each initial estimate is then refined
according to Sect. 4.2. Next, kernel MRCD computes the
regularization parameter ρ. This is done with a kernelized
version of the procedure in Boudt et al. (2020). For each
initial estimate we choose ρ such that the regularized kernel
matrix K̃ H

reg of (4) is well-conditioned. If we denote by λ

the vector containing the eigenvalues of the centered kernel
matrix K̃ H , the condition number of K̃ H

reg is

κ(ρ) = (h − 1)ρ + (1 − ρ)max(λ)

(h − 1)ρ + (1 − ρ)min(λ)
(14)
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and we choose ρ such that κ(ρ) ≤ 50. (Sect. A.3 in the sup-
plementary material contains a simulation study supporting
this choice.) Finally, kernel C-steps are applied until con-
vergence, where we monitor the objective function of Sect.
3.

Algorithm 1 Kernel MRCD.
1. Input: kernel matrix K , subset size h.
2. Compute the weights of the four initial estimates of location and

scatter as in Sect. 4.1.
3. Refine each initial estimate as in Sect. 4.2.
4. For each resulting subset, determine ρ(i) such that κ(ρ(i)) ≤ 50.
5. Determine the final ρ as in Boudt et al. (2020): if maxi ρ(i) ≤ 0.1

set ρ = maxi ρ(i), otherwise set ρ = max
(
0.1,mediani (ρ(i))

)
.

6. For H = H (1), . . . , H (4) perform C-steps as follows:

(a) Compute the regularized kernel matrix K̃ H
reg for the h-subset

H from (4).
(b) Calculate the regularizedMahalanobis distance for each obser-

vation i by (5).
(c) Redefine H as the h indices i with smallest distance.
(d) Compute and store the objective. If not converged, go back to

(a).

7. Select the h-subset with the overall smallest objective function.
8. Output: the final h-subset and the robust distances.

In the special case where the linear kernel is used, the cen-
tered kernel matrix K̃ H immediately yields the regularized
covariance matrix �̂H

reg through

�̂H
reg = 1 − ρ

h − 1

(
X̃ H

)�
Ṽ�Ṽ� X̃ H + ρ Ih

where X̃ H = XH − 1
h

∑
i∈H xi is the centered matrix of the

observations in H and � and Ṽ contain the eigenvalues and
normalized eigenvectors of K̃ H . (The derivation is given in
Sect. A.2.) So instead of applying MRCD to coordinate data
we can also run KMRCD with a linear kernel and transform
K̃ H to �̂H

reg afterward. This computation is faster when the
data has more dimensions than cases.

4.4 Anomaly detection by KMRCD

Mahalanobis distances (MD) relative to robust estimates of
location and scatter are very useful to flag outliers, because
outlying points i tend to have higher MDi values. The stan-
dard way to detect outliers by means of the MCD in low
dimensional data is to compare the robust distances to a cut-
off that is the square root of a quantile of the chi-squared
distribution with degrees of freedom equal to the data dimen-
sion (Rousseeuw and Van Driessen 1999). However, in high
dimensions the distribution of the squared robust distances
is no longer approximately chi-squared, which makes it
harder to determine a suitable cutoff value. Faced with a

similar problem (Rousseeuw et al. 2018) introduced a dif-
ferent approach, based on the empirical observation that
robust distances of the non-outliers in higher dimensional
data tend to have a distribution that is roughly similar to
a lognormal. They first transform the distances MDi to
LDi = log(0.1+MDi ), where the term 0.1 prevents numer-
ical problems should a (near-)zero MDi occur. The location
and spread of the non-outlying LDi are then estimated by
μ̂MCD and σ̂MCD, the results of applying the univariate MCD
to all LDi using the same h as in the KMCRD method itself.
Data point i is then flagged iff

LDi − μ̂MCD(LD)

σ̂MCD(LD)
> z(0.995)

where z(0.995) is the 0.995 quantile of the standard normal
distribution. The cutoff value for the untransformed robust
distances is thus

c = exp
(
μ̂MCD(LD) + z(0.995)σ̂MCD(LD)

) − 0.1. (15)

The user may want to try different values of h to be used in
both the KMRCD method itself as well as in the μ̂MCD and
σ̂MCD in (15). One typically starts with a rather low value of
h, say h = 0.5n when the linear kernel is used and there are
up to 10 dimensions, and h = 0.75n in all other situations.
This will provide an idea about the number of outliers in the
data, after which it is recommended to choose h as high as
possible provided n−h exceeds the number of outliers. This
will improve the accuracy of the estimates.

4.5 Choice of bandwidth

A commonly used kernel function is the radial basis func-
tion (RBF) k(x, y) = e−‖x−y‖2/(2σ 2) which contains a tuning
constant σ that needs to be chosen. When the downstream
learning task is classification σ is commonly selected by
cross validation, where it is assumed that the data has no
outliers or they have already been removed. However, in
our unsupervised outlier detection context there is nothing to
cross validate. Therefore, we will use the so-called median
heuristic (Gretton et al. 2012) given by

σ 2 = median
{‖xi − x j‖2; 1 ≤ i < j ≤ n

}
(16)

inwhich the xi are the standardized data in the original space.
We will use this σ in all our examples.

4.6 Illustration on toy examples

We illustrate the proposed KMRCD method on the two toy
examples in Fig. 1. Both datasets consist of n = 1000 bivari-
ate observations. The elliptical dataset in the left panel was
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generated from a bivariate Gaussian distribution, plus 20%
of outliers. The non-elliptical dataset in the panel on the right
is frequently used to demonstrate kernel methods (Suykens
et al. 2002). This dataset also contains 20% of outliers, which
are shown in red and form the outer curved shape. We first
apply the non-kernelMCDmethod,which does not transform
the data, with h = �0.75n�. (Not using a kernel is equivalent
to using the linear kernel.) The results are in Fig. 2. In the
panel on the left this works well because the MCD method
was developed for data of which the majority has a roughly
elliptical shape. For the same reason it does not work well
on the non-elliptical data in the right hand panel.

We now apply the kernel MRCD method to the same
datasets. For the elliptical dataset we use the linear kernel,
and for the non-elliptical dataset we use the RBF kernel with
tuning constant σ given by formula (16). This yields Fig. 3.
Wefirst focus on the left hand column. The figure shows three
stages of the KMRCD runs. At the top, in Fig. 3a, we see the
result for the selected h-subset, after the C-steps have con-
verged. The members of that h-subset are the green points,
whereas the points generated as outliers are colored red. Since
h is lower than the true number of inlying points, some inliers
(shown in black) are not included in the h-subset. In the next
step, Fig. 3b shows the robust Mahalanobis distances, with
the horizontal line at the cutoff value given by formula (15).
The final output of KMRCD shown in Fig. 3c has the flagged
outliers in orange and the points considered inliers in blue.
As expected, this result is similar to that of the non-kernel
MCD in the left panel of Fig. 2.

The right hand column of Fig. 3 shows the stages of the
KMRCD run on the non-elliptical data. The results for the
selected h-subset in Fig. 3a look much better than in the right
hand panel of Fig. 2, because the level curves of the robust
distance now follow the shape of the data. In stage (b) we
see that the distances of the inliers and the outliers are fairly
well separated by the cutoff (15), with a few borderline cases,
and stage (c) is the final result. This illustrates that using a
nonlinear kernel allows us to fit non-elliptical data.

5 Simulation study

5.1 Simulation study with linear kernel

In this section we compare the KMRCDmethod proposed in
the current paper, run with the linear kernel, to the MRCD
estimator of Boudt et al. (2020). Recall that using the lin-
ear kernel k(x, y) = x�y means that the feature space can
be taken identical to the coordinate space, so using the linear
kernel is equivalent to not using a kernel at all. Our purpose is
twofold. First, we want to verify whether KMRCD performs
well in terms of robustness and accuracy, and that its results
are consistent with those of MRCD. And secondly, we wish

to measure the computational speedup obtained by KMRCD
in high dimensions. In order to obtain a fair comparison we
run MRCD with the identity matrix as target, which corre-
sponds to the target of KMRCD. All computations are done
in MATLAB on a machine with Intel Core i7-8700K and 16
GB of 3.70GHz RAM.

For the uncontaminated data, that is, for contamination
fraction ε = 0, we generate n cases from a p-variate nor-
mal distribution with true covariance matrix �. Since the
methods under consideration are equivariant under transla-
tions and rescaling variables, we can assume without loss of
generality that the center μ of the distribution is 0 and that
the diagonal elements of � are all 1. We denote the distri-
bution of the clean data by N (0, �). Since the methods are
not equivariant to arbitrary nonsingular affine transforma-
tions we cannot set � equal to the identity matrix. Instead
we consider � of the ALYZ type, generated as in Sect. 4
of Agostinelli et al. (2015), which yields a different � in
each replication, but always with condition number 100. The
main steps of the construction of� inAgostinelli et al. (2015)
are the generation of a random orthogonal matrix to provide
eigenvectors, and the generation of p eigenvalues such that
the ratio between the largest and the smallest is 100, followed
by iterations to turn the resulting covariance matrix into a
correlation matrix while preserving the condition number.
(In Sect. A.3 of the supplementary material also � matrices
with higher condition numbers were generated, with similar
results.)

For a contamination fraction ε > 0 we replace a ran-
dom subset of �εn� observations by outliers of different
types. Shift contamination is generated from N (μC , �)

where μC lies in the direction where the outliers are hard-
est to detect, which is that of the last eigenvector v of
the true covariance matrix �. We rescale v by making
vT�−1v = E[Y 2] = p where Y 2 ∼ χ2

p. The center is
taken as μC = kv where we set k = 200. Next, clus-
ter contamination stems from N (μC , 0.052 Ip) where Ip is
the identity matrix. Finally, point contamination places all
outliers in the point μC so they behave like a tight clus-
ter. These settings make the simulation consistent with those
in Boudt et al. (2020), Hubert et al. (2012) and De Kete-
laere et al. (2020). The deviation of an estimated scatter
matrix �̂ relative to the true covariance matrix � is mea-
sured by theKullback–Leibler (KL) divergenceKL(�̂,�) =
trace(�̂�−1) − log(det(�̂�−1)) − p. The speedup factor is
measured as speedup = time(MRCD)/time(KMRCD). Dif-
ferent combinations of n and p are generated, ranging from
p = n/2 to p = 2n.

Table 1 presents the Kullback–Leibler deviation results.
The top panel is for ε = 0, the middle panel for ε = 0.1 and
the bottom panel for ε = 0.3 . All table entries are averages
over 50 replications. First look at the results without con-
tamination. By comparing the three choices for h, namely
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Fig. 2 Results of the non-kernel MCD method on the toy datasets of Fig. 1. The contour lines are level curves of the MCD-based Mahalanobis
distance

�0.5n�, �0.75n� and �0.9n�, we see that lowering h in this
setting leads to increasingly inaccurate estimates �̂. This is
the price we pay for beingmore robust to outliers, since n−h
is an upper bound on the number of outliers the methods can
handle. When we look at the panels for higher ε we see a
similar pattern. When ε = 0.1 the choice �0.9n� is suffi-
ciently robust, and the lower choices of h have higher KL
deviation. But when ε = 0.3 only the choice h = �0.5n� can
detect the outliers, the other choices cause the estimates to
break down. These patterns are confirmed by the averaged
MSE = ∑p

i=1

∑p
j=1(�̂ − �)2i j/p

2 shown in Table 7 in the
Supplementary Material.

From these results we conclude that it is important that
h be chosen lower than n minus the number of outliers, but
not much lower since that would make the estimates less
accurate. A good strategy is to first run with a low h, which
reveals the number of outliers, and then to choose a higher
h that can still handle the outliers and yields more accurate
results as well.

As expected the KMRCD results are similar to those of
MRCD, but not identical because there are differences in the
selection of initial estimators, also leading to differences in
the resulting regularization parameter ρ shown in Table 8 in
the Supplementary Material.

We now turn our attention to the computational speedup
factors in Table 2, that were derived from the same simulation
runs as Table 1. Overall KMRCD ran substantially faster than
MRCD, with the factor becoming larger when n decreases
and/or the dimension p increases. There are two reasons for
the speedup. First of all, the MRCD algorithm computes six
initial scatter estimates, ofwhich the last one is themost com-
putationally demanding since it computes a robust bivariate
correlation of every pair of variables, requiring p(p − 1)/2

computations whose total time increases fast with p. Part of
the speedup stems from the fact that KMRCD does not use
this initial estimator, whereas its own four kernelized initial
estimates gave equally robust results. This explains most of
the speedup in Table 2.

For p > n there is a second reason for the speedup, the
use of the kernel trick. In particular, each C-step requires
the computation of the Mahalanobis distances of all cases.
MRCD does this by inverting the p × p covariance matrix
�̂H

reg , whereas KMRCD uses equation (5) which implies that

it suffices to invert the n×n kernel matrix K̃ H
reg , which takes

time complexity O(n3) instead of O(p3).

5.2 Simulation with nonlinear kernel

In this section we compare the proposed KMRCD estimator
to theMRCD estimator of Boudt et al. (2020) on two types of
non-elliptical datasets. The first type is generated by a copula.
The black points in the left panel of Fig. 4 were generated
from the t copula (Nelsen 2007) with Pearson correlation 0.1
and ν = 1 degrees of freedom.We then added 20%of outliers
shown in red, generated from the uniform distribution on the
unit square but restricted to points that are far from the black
points. In Fig. 9 of Sect. A.6 we show similar figures with
the Frank, Clayton, and Gumbel copulas.

Figure 5 illustrates a second setting, where the regular
observations in black are generated near the unit circle, and
inside the circle are red outliers generated from the Gaussian
distributionwith center 0 and covariancematrix equal to 0.04
times the identity matrix. This is a simple example where the
clean data lie near a manifold.

In the simulation we generated 100 datasets of each type,
with n = 500 and the outlier fraction ε equal to 0.1 or 0.2,
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(a) h -subset results after C-step convergence.
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(b) Robust Mahalanobis distances with outlier cutoff.

(c) Final results with the flagged outliers shown in orange.

Fig. 3 Kernel MRCD results on the toy datasets of Fig. 1. In the left column the linear kernel was used, and in the right column the RBF kernel.
The three stages a, b and c are explained in the text
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Table 1 Kullback–Leibler
deviations of �̂ from �

Point contamination Shift contamination Cluster contamination
Value of h/n Value of h/n Value of h/n
0.50 0.75 0.90 0.50 0.75 0.90 0.50 0.75 0.90

ε = 0 :

KMRCD

400 × 200 126.72 80.03 64.65 127.66 78.99 64.54 129.37 79.42 64.45

300 × 200 174.37 110.03 88.43 176.46 108.45 87.94 174.52 109.68 87.50

200 × 200 262.41 171.74 140.18 263.03 172.23 140.66 260.21 169.02 140.45

200 × 300 492.70 381.13 319.42 491.65 379.07 317.45 491.64 373.38 319.44

200 × 400 724.41 602.78 535.59 715.59 602.44 532.55 731.76 607.21 537.27

MRCD

400 × 200 126.58 80.82 65.65 127.00 79.99 65.63 128.92 80.63 65.35

300 × 200 175.88 110.57 89.49 176.21 109.22 88.79 174.36 110.28 88.85

200 × 200 265.04 174.13 141.23 264.57 173.56 141.10 261.93 172.00 141.05

200 × 300 499.11 384.91 323.48 500.80 383.02 322.14 499.30 378.74 324.27

200 × 400 734.47 608.04 539.54 729.52 610.79 539.24 738.21 611.83 543.84

ε = 0.1 :

KMRCD

400 × 200 128.14 78.48 63.16 127.28 78.28 62.28 128.91 79.75 62.71

300 × 200 176.76 107.10 86.94 174.32 109.86 87.37 176.13 108.54 87.86

200 × 200 263.76 172.21 137.31 260.06 171.46 137.72 260.42 171.76 136.27

200 × 300 493.36 368.80 311.48 488.10 377.46 311.04 491.24 378.81 319.45

200 × 400 728.07 600.12 558.79 723.40 596.87 535.08 720.44 604.06 534.81

MRCD

400 × 200 128.22 79.59 64.19 127.92 79.76 63.48 129.09 81.11 63.91

300 × 200 174.17 107.67 88.05 172.96 111.15 88.00 173.46 109.50 89.12

200 × 200 262.71 171.55 137.51 259.52 170.79 138.03 261.48 170.95 136.31

200 × 300 493.66 368.88 309.88 494.44 382.69 312.85 499.27 382.10 320.48

200 × 400 723.42 599.88 525.99 736.52 601.15 536.73 733.36 611.43 537.56

ε = 0.3 :

KMRCD

400 × 200 127.46 4914.7 2073.9 126.26 1142.7 1613.4 124.73 1124.8 1600.6

300 × 200 176.51 5104.1 2046.1 176.82 1125.9 1597.6 173.30 1117.2 1555.3

200 × 200 257.91 5180.6 2038.3 255.55 1168.8 1559.1 257.90 1163.6 1535.9

200 × 300 485.71 5494.5 2230.0 488.19 1310.0 1626.8 490.05 1311.1 1616.9

200 × 400 714.57 5779.1 2316.1 721.41 1448.7 1736.7 718.17 1423.4 1721.1

MRCD

400 × 200 124.33 6771.6 3082.7 125.15 1395.6 2068.9 124.68 1371.1 2078.5

300 × 200 164.89 7118.6 3049.4 172.11 1415.2 2076.5 168.51 1393.0 2011.1

200 × 200 237.08 7519.3 3075.1 241.27 1481.1 2040.1 242.59 1485.8 2014.7

200 × 300 450.12 8233.1 3413.4 483.07 1653.4 2122.5 483.67 1659.9 2102.4

200 × 400 663.35 8585.0 3507.7 717.65 1812.8 2212.9 719.74 1790.5 2201.6

so the number of regular observations is n(1 − ε). With all
four copulas the KMRCD estimator used the radial basis
function with bandwidth (16). For the circle-based data the
polynomial kernel k(x, y) = (x�y + 1)2 of degree 2 was
used.

We measure the performance by counting the number
of outliers in the h-subset, and among the n(1 − ε) points
with the lowest (kernel) Mahalanobis distance. The averaged
counts over the 100 replications are shown in Table 3. By
comparing the rows of KMRCD and MRCD with the same
ε, we see thatMRCDhasmore true outliers in its h-subset and
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Table 2 Speedup factors of
KMRCD relative to MRCD

Point contamination Shift contamination Cluster contamination
Value of h/n Value of h/n Value of h/n
0.50 0.75 0.90 0.50 0.75 0.90 0.50 0.75 0.90

ε = 0 :

400 × 200 97 95 89 99 96 91 100 98 92

300 × 200 281 242 229 281 242 229 284 242 228

200 × 200 301 249 227 299 253 226 301 253 228

200 × 300 661 558 516 623 562 519 657 563 520

200 × 400 1144 979 897 1157 982 892 1159 978 899

ε = 0.1 :

400 × 200 98 90 87 96 92 89 96 92 90

300 × 200 263 227 211 278 240 225 282 239 224

200 × 200 292 243 216 302 252 225 302 249 228

200 × 300 631 534 504 652 564 516 664 567 512

200 × 400 1113 951 870 1157 981 902 1110 980 903

ε = 0.3 :

400 × 200 77 79 72 100 96 93 99 95 93

300 × 200 211 193 185 281 251 233 288 251 234

200 × 200 234 206 202 301 262 238 299 257 238

200 × 300 543 472 432 653 564 522 654 566 520

200 × 400 1000 791 749 1161 976 911 1150 977 900
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Fig. 4 The left panel shows black data points generated from the t copula, plus 20% of outliers in red. The middle panel shows the contour curves
of the Mahalanobis distance from the MRCD estimator, and the right panel those of the KMRCD estimator. Both estimators were computed for
h = 0.75n . The points in the h-subset are shown in green, the other points with the 80% lowest Mahalanobis distance in grey, and the remainder
in red. (colour figure online)

its n(1 − ε) set. In the table, KMRCD outperforms MRCD
for both choices of ε and for all three choices of h. The good
performance of KMRCD is also seen in the right panel of
Fig. 4, where the contours of the kernel Mahalanobis dis-
tance nicely follow the distribution. The difference between
MRCD and KMRCD is most apparent on the circle-based
data: in Fig. 5 the KMRCD fits the regular data on the circle,
whereas the original MRCDmethod, by its nature, considers
the outliers in the center as regular data.

We conclude that in this nonlinear setting, KMRCD has
successfully extended the MRCD to non-elliptical distribu-

tions. We want to add two remarks about this. First, as in all
kernel-based methods the choice of the kernel is important,
and choosing a different kernel can lead to worse results.
And second, just as in the linear setting h should be lower
than n minus the number of outliers, so in practice it is rec-
ommended to first run with a low h, look at the results in
order to find out how many outliers there are, and possibly
run again with a higher h.

Section A.4 of the supplementary material contains addi-
tional simulation results about the computation time of the
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Fig. 5 The left panel shows data generated near the unit circle in black, plus 20% of outliers in red. The other panels are analogous to Fig. 4. (colour
figure online)

Table 3 Average number of outliers in the h-subset H , and among the n(1 − ε) points with lowest (kernel) Mahalanobis distance

t copula Frank copula Clayton copula Gumbel copula Circle
0.75 0.8 0.9 0.75 0.8 0.9 0.75 0.8 0.9 0.75 0.8 0.9 0.75 0.8 0.9

ε = 0.1 :

KMRCD

H 0 0 0.5 0 0 2.9 0 0 2.6 0 0 2.8 0 0 0

n(1 − ε) 10 8.2 0.5 3.9 4.2 2.9 4.3 4.4 2.6 4.4 4.7 2.8 0 0 0

MRCD

H 1.2 2.9 13.3 1.3 2.1 11.2 2.4 3.7 11.6 2.0 2.9 11.2 50 50 50

n(1 − ε) 22.5 20.3 13.3 12.9 12.2 11.2 14.4 14.0 11.6 13.7 13.3 11.2 50 50 50

ε = 0.2 :

KMRCD

H 0.1 2.1 / 0 3.5 / 0 3.3 / 0 3.8 / 0 0 /

n(1 − ε) 9.0 2.1 / 4.8 3.5 / 4.4 3.3 / 5.2 3.8 / 0 0 /

MRCD

H 12.9 21.7 / 8.4 16.3 / 10.2 18.5 / 10 18.7 / 100 100 /

n(1 − ε) 27.5 21.7 / 18.9 16.3 / 19.7 18.5 / 20.1 18.7 / 100 100 /

four initial estimators in KMRCD and their subsequent C-
steps, in different settings with linear and nonlinear kernels.

6 Experiments

6.1 Food industry example

We now turn our attention to a real dataset from the food
industry. In that setting datasets frequently contain outliers,
because samples originate from natural products which are
often contaminated by insect damage, local discolorations
and foreign material. It also happens that the image acquisi-
tion signals yield non-elliptical data, and in that case a kernel
transform can help.

The dataset is bivariate and contains two color signals
measured on organic sultana raisin samples. The goal is to

classify these into inliers and outliers, so that during produc-
tion outliers can be physically removed from the product in
real time. There are training data and test data, but the class
label ‘outlier’ is not known beforehand. The scatter plot of
the training data in Fig. 6a reveals the non-elliptical (and to
some extent triangular) structure of the inliers. Three types of
outliers are visible. Those with high values of λ1 and low λ2
at the bottom right correspond to foreign, cap-stem related
material like wood, whereas points with high values of λ2
represent discolorations. There are also a few points with
high values of both λ1 and λ2 which correspond to either
discolored raisins or objects with clear attachment points of
cap-stems. Outliers of any of these three types need to be
flagged and removed from the product. From manually ana-
lyzing data of this product it is known beforehand that the
fraction of outliers is rather low, at most around 2%.
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(a) Linear kernel, training set
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(b) Non-linear kernel, training set
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(c) Linear kernel, test set

0 5 10 15
Wavelength λ1

-2

-1

0

1

2

3

4

5

6
W
av
el
en

gt
h

λ
2

(d) Non-linear kernel, test set

Fig. 6 Food industry example: KMRCD results with the linear kernel (left column) and the RBF kernel (right column). The top row contains the
training data, and the resulting fits were applied to the test data in the bottom row

We first run KMRCD on the training data. In its prepro-
cessing step it standardizes both variables. For comparison
purposeswe use two kernels. In the left hand column of Fig. 6
we apply the linear kernel, and in the right hand column we
use the RBF kernel with tuning constant σ given by (16).
Since we know the fraction of outliers is low we can put
h = �0.95n�. Each figure shows the flagged points in orange
and the remaining points in blue, and the contour lines are
level curves of the robust distance.

The fit with linear kernel in Fig. 6a has contour lines that
do not follow the shape of the data very well, and as a con-
sequence it fails to flag some of the outliers, such as those

with high λ2 and some with relatively high values of both
λ1 and λ2. The KMRCD fit with nonlinear kernel in Fig. 6b
has contour lines that model the data more realistically. This
fit does flag all three types of outliers correctly. Both trained
models were then used to classify the previously unseen test
set. The results are similar to those on the training data. The
anomaly detection with linear kernel in Fig. 6c again misses
the raisin discolorations, which would keep these impurities
in the final consumer product. Fortunately, the method with
the nonlinear kernel in panel (d) does flag them.
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Fig. 7 MNIST denoising results based on the classical covariance matrix (top panel) and on the KMRCD estimate (bottom panel). The first and
second rows of each panel show the same original and noise-added test set images. The remaining rows contain the results of projecting on the first
5, 15, and 30 eigenvectors

6.2 MNIST digits data

Our last example is high dimensional. The MNIST dataset
contains images of handwritten digits from 0 to 9, at the
resolution of 28 × 28 grayscale pixels (so there are 784
dimensions), and was downloaded from http://yann.lecun.
com/exdb/mnist. There is a training set and a test set. Both
were subsampled to 1000 images. To the training data we
added noise distributed asN (0, (0.5)2) to 20%of the images,
and in the test set we added noise with the same distribution
to all images. We then applied KMRCD with RBF kernel
with tuning constant σ given by (16) and h = �0.75n� to the
1000 training images. Next, we computed the eigenvectors
of the robustly estimated covariance matrix.

Our goal is to denoise the images in the test set by pro-
jecting them onto the main eigenvectors found in the training
data. Aswe are interested in a reconstruction of the data in the
original space rather than in the feature space, we transform
the scores back to the original input space by the iterative
optimization method of Mika et al. (1999).

The top panel of Fig. 7 illustrates what happens when
applying this computation to the classical covariance matrix
in feature space, which corresponds to classical kernel PCA
(Schölkopf et al. 1998). The bottom panel is based on

KMRCD. The first row of each panel displays original test
set images, and the second row shows the test images after
the noise was added. The first and second rows do not depend
on the estimation method, but the remaining rows do. There
we see the results of projecting on the first 5, 15, and 30
eigenvectors of each method. In the top panel those images
are rather diffuse, which indicates that the classical approach
was affected by the training imageswith added noise and con-
siders the added noise as part of its model. This implies that
increasing the number of eigenvectors used will not improve
the overall image quality much. The lower panel contains
sharper images, because the robust fit of the training data
was less affected by the images with added noise that acted
as outliers.

We can also compute the mean absolute error∑n
i=1

∑p
j=1 s|xi, j − x̂i, j |/(np) between the original test

images (with p = 784 dimensions) and the projected ver-
sions of the test images with added noise. Figure 8 shows
this deviation as a function of the number of eigenvectors
used in the projection. The deviations of the robust method
are systematically lower than those of the classical method,
confirming the visual impression from Fig. 7.
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Fig. 8 The mean absolute error of the denoised images to the original
test images in function of the number of eigenvectors used in the pro-
jection. The top curve is for the classical covariance matrix in feature
space, the lower curve for KMRCD

7 Conclusions

The kernelMRCDmethod introduced in this paper is a robust
method that allows to analyze non-elliptical data when used
with a nonlinear kernel. Another advantage is that even when
using the linear kernel the computation becomes much faster
when there aremore dimensions than cases, a situation that is
quite common nowadays. Due to the built-in regularization
the result is always well-conditioned.

The algorithm starts from four kernelized initial estima-
tors, and to each it applies a new kernelized refinement step.
The remainder of the algorithm is based on a theorem show-
ing that C-steps in feature space are equivalent to a new type
ofC-steps on centered kernelmatrices, so the latter reduce the
objective function. The performance of KMRCD in terms of
robustness, accuracy and speed is studied in a simulation, and
the method is applied to several examples. Potential future
applications of the KMRCD method are as a building block
for other multivariate techniques such as robust classifica-
tion.

Research-level MATLAB code and an example script are
freely available from the webpage http://wis.kuleuven.be/
statdatascience/robust/software.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10041-
7.
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