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Abstract
Novelty detection methods aim at partitioning the test units into already observed and previously unseen patterns. However,
two significant issues arise: there may be considerable interest in identifying specific structures within the novelty, and
contamination in the known classes could completely blur the actual separation between manifest and new groups. Motivated
by these problems,we propose a two-stageBayesian semiparametric novelty detector, building upon prior information robustly
extracted from a set of complete learning units. We devise a general-purpose multivariate methodology that we also extend
to handle functional data objects. We provide insights on the model behavior by investigating the theoretical properties of
the associated semiparametric prior. From the computational point of view, we propose a suitable ξ -sequence to construct
an independent slice-efficient sampler that takes into account the difference between manifest and novelty components. We
showcase our model performance through an extensive simulation study and applications on both multivariate and functional
datasets, in which diverse and distinctive unknown patterns are discovered.

Keywords Bayesian mixture model · Bayesian nonparametrics · Minimum regularized covariance determinant · Novelty
detection · Slice sampler

1 Introduction

Supervised classification techniques aim at predicting a qual-
itative output for a test set by learning a classifier on a
fully-labeled training set. To this extent, classical methods
assume that the labeled units are realizations from each and
every sub-groups in the target population. However, many
real datasets contradict these assumptions. As an exam-
ple, one may think about an evolving ecosystem in which
novel species are likely to appear over time. In other words,

B Francesco Denti
fdenti@uci.edu

Andrea Cappozzo
andrea.cappozzo@polimi.it

Francesca Greselin
francesca.greselin@unimib.it

1 Department of Statistics and Computer Science, University of
California Irvine, CA, USA

2 Department of Statistics and Quantitative Methods,
University of Milano-Bicocca, Milan, Italy

3 MOX - Laboratory for Modeling and Scientific Computing,
Department of Mathematics, Politecnico di Milano, Italy

basic classifiers cannot handle the presence of previously
unobserved-or hidden-classes in the test set. Novelty detec-
tion methods, also known as adaptive methods, address this
issue by modeling the presence of classes in the test set
that have not been previously observed in the training. Rel-
evant examples of this type of data analysis include, but
are not limited to, radar target detection (Carpenter et al.
1997), detection of masses in mammograms (Tarassenko
et al. 1995), handwritten digit recognition (Tax and Duin
1998) and e-commerce (Manikopoulos and Papavassiliou
2002), for which labeled observations may not be available
for every group.

Within the model-based family of classifiers, adaptive
methods recently appeared in the literature. Miller and
Browning (2003) pioneer a mixture model methodology for
class discovery. Bouveyron (2014) introduces an adaptive
classifier in which two algorithms, based respectively on
transductive and inductive learning, are devised for inference.
More recently, Fop et al. (2021) extend the original work of
Bouveyron (2014) by accounting for unobserved classes and
extra variables in high-dimensional discriminant analysis.

Classical model-based classifiers are not robust, as they
lack the capability of handling outlying observations in the
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training and in the test set. On the one hand, the presence of
outliers in the training set can significantly alter the learning
phase, resulting in poorly representative classes and therefore
jeopardizing the entire classification process. In the train-
ing set, we identify as outliers units with implausible labels
and/or values. Cappozzo et al. (2020) extend the work of
Bouveyron (2014) addressing this problem by using a robust
estimator that relies on impartial trimming (Gordaliza 1991).
In short, the most unlikely data points under the currently
estimated model are discarded. On the other hand, dealing
with outliers in the test set is a more delicate task. Ideally, we
would like to distinguish between novelties, i.e., test observa-
tions displaying a common, specific pattern, and anomalies,
i.e., test observations that can be regarded as noise. While
the distinction between novel and anomalous entities is most
often apparent in practice, there exist some circumstances
under which such separation is vague and somewhat philo-
sophical. Let us go back to the aforementioned evolving
ecosystem example. It may happen that at an early instant, a
real novelty is mistaken to be mere noise due to its embry-
onic stage. Contrarily, if we fitted the same model at a later
time point, the increased sample size could be sufficient to
acknowledge an actual novel species.

To address the discussed challenges, we propose a two-
stage Bayesian semiparametric novelty detector. We devise
our model to sequentially handle the outliers in the training
set and the latent classes in the test set. In the first stage, we
learn themain characteristics of the known classes (for exam-
ple, their mean and variance) from the labeled dataset using
robust procedures. In the second phase, we fit a Bayesian
semiparametric mixture of known groups and a novelty term
to the test set. We use the training insights to elicit informa-
tive priors for the known components, modeled as Gaussian
distributions. The novelty term is instead captured via a flex-
ible Dirichlet Process mixture: this modeling choice reflects
the lack of knowledge about its distributional properties and
overcomes the problematic and unnatural a priori specifi-
cation of its number of components. We call our proposal
Bayesian Robust Adaptive model for Novelty Detection,
hereafter denoted as Brand. Essentially, Stage II of Brand
is formed by two nested mixtures, which can provide uncer-
tainty quantification regarding the two partitions of interest.
First, Brand separates the entire test set into known com-
ponents and a novelty term. Secondly, the novel data points
can be a posteriori clustered into different sub-components.
“True novelties” and anomalies may be distinguished, based
on clusters cardinality.

The rest of the article proceeds as follows. In Sect. 2 we
present our two-stagemethodology for novelty detection.We
dedicate Sect. 3 to the investigation of the random measures
clustering properties induced by our model. In Sect. 4, we
propose an extension of the multivariate model, delineat-
ing a novelty detection method suitable for functional data.

Section 5 discusses posterior inference, while in Sect. 6 we
present an extensive simulation study and applications to
multivariate and functional data. Concluding remarks and
further research directions are outlined in Sect. 7.

2 A two-stage Bayesian procedure for
novelty detection

Given a classification framework, consider the complete col-
lection of learning unitsX = {(xn, ln)}Nn=1, where xn denotes
a p-variate observation and ln = j ∈ {1, . . . , J } its associ-
ated group label. Both terms are directly available and the
distinct values in ln , n = 1, . . . , N represent the J observed
classes with subset sizes n1, . . . , nJ . Correspondingly, let
Y = {(ym, zm)}Mm=1 be the test set where, differently from
the usual setting in semisupervised learning, the unknown
labels zm could belong to a set that encompasses more ele-
ments than {1, . . . , J }. That is, a countable number of extra
classes may be “hidden” in the test with no prior information
available on their magnitude or on their structure. Therefore,
it is reasonable to account for the novelty term via a single
flexible component from which a dedicated post-processing
procedure may reveal circumstantial patterns (see Sect. 2.3).
Both xn and ym are independent realizations of a continuous
randomvector (or function, see Sect. 4)X , whose conditional
distribution varies according to the associated class labels. In
the upcoming sections, we assume that each observation in
class j is independent multivariate Gaussian, having density
φ

(·|Θ j
)
with location-scale parameter Θ j = (

μ j ,Σ j
)
,

where μ j ∈ R
p denotes the mean vector and Σ j the cor-

responding covariance matrix. This allows for the automatic
implementation of standard powerful methods in the training
information extraction (see Sect. 2.1). Notwithstanding, the
proposed methodology is general enough that it can be easily
extended to deal with different component distributions.

Our modeling purpose is to classify the data points of
the test set either into one of the J observed classes or into
the novel component. At the same time, we investigate the
presence of homogeneous groups in the novelty term, dis-
criminating between unseen classes and outliers. To do so,
we devise a two-stage strategy. The first phase, described in
Sect. 2.1, relies on a class-wise robust procedure for extract-
ing prior information from the training set. Then, we fit a
Bayesian semiparametric mixture model to the test units. A
full account of its definition is reported inSect. 2.2.Adiagram
summarizing our modeling proposal is reported in Fig. 1.

2.1 Stage I: robust extraction of prior information

The first step of our procedure is designed to obtain reli-
able estimates Θ̂ j for the parameters of the observed class
j , j = 1 . . . , J , from the learning set. To this aim, one could
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Fig. 1 A diagram that summarizes Brand two-stage structure. In Stage
I, robust information extraction (via the MCD estimator) is performed
and subsequently used to elicit the priors for the mixture model in Stage
II. In the second stage, a finite mixture model (FMM) is fitted to the

data, distinguishing among known components and novelties. The nov-
elty term is modeled with a Dirichlet Process mixture model (DPMM)

employ standard methods as the maximum likelihood esti-
mator, or different posterior estimates under the Bayesian
framework. Nonetheless, these standard approaches are not
robust against contamination, and the presence of only a few
outlying points could entirely bias the subsequent Bayesian
model, should the informative priors be improperly set. We
report a direct consequence of this undesirable behavior in
the simulation study of Sect. 6.1. Therefore, we opt for
more sophisticated alternatives to learn the structure of the
known classes, employing methods that can deal with out-
liers and label noise. Particularly, the selectedmethodologies
involve the Minimum Covariance Determinant (MCD) esti-
mator (Rousseeuw 1984; Hubert et al. 2018) and, when
facing high-dimensional data (as in the functional case of
Sect. 6.3), the Minimum Regularized Covariance Determi-
nant (MRCD) estimator (Boudt et al. 2020). Clearly, at this
stage, one can use any robust estimators of multivariate scat-
ter and location for solving this problem: see, for instance,
the comparison study reported in Maronna and Yohai (2017)
for a non-exhaustive list of suitable candidates.

We decide to rely on the MCD and MRCD for their well-
established efficacy in the classification framework (Hubert

and Van Driessen 2004) and direct availability of fast algo-
rithms for inference, readily implemented in the rrcov R
package (Todorov and Filzmoser 2009). We briefly recall
the main MCD and MRCD features in the remaining part of
this section. For a thorough treatment the interested reader
is referred to Hubert and Debruyne (2010) and Boudt et al.
(2020), respectively.

The MCD is an affine equivariant and highly robust esti-
mator of multivariate location and scatter, for which a fast
algorithm is available (Rousseeuw and Driessen 1999). The
raw MCD estimator with parameter ηMCD ∈ [0.5, 1] such
that �(n+ p+1)/2� ≤ �ηMCDN� ≤ N defines the following
location and dispersion estimates:

– μ̂
MCD is the mean of the �ηMCDN� observations for

which the determinant of the sample covariance matrix
is minimal,

– Σ̂
MCD

is the corresponding covariance matrix, multi-
plied by a consistency factor c0 (Croux and Haesbroeck
1999),
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with �·� denoting the floor function. The MCD is a consis-
tent, asymptotically normal and highly robust estimator with
bounded influence function and breakdown value equal to
(1 − �ηMCDN�/N )% (Butler et al. 1993; Cator and Lop-
uhaä 2012). However, a major drawback is its inapplicability
when the data dimension p exceeds the subset size �ηMCDN�
as the covariance matrix of any �ηMCDN�-subset becomes
singular. This situation appears ever so often in our context,
as the MCD is group-wise applied to the observed classes in
the training set, such that it is sufficient to have

p > min
n j , j=1,...,J

�ηMCDn j�

for the MCD solution to be ill-defined. To overcome this
issue, Boudt et al. (2020) introduced the MRCD estima-
tor. The main idea is to replace the subset-based covariance
estimationwith a regularized one, defined as aweighted aver-
age of the sample covariance on the �ηMCDN�-subset and
a predetermined positive definite target matrix. The MRCD
estimator is defined as the multivariate location and regu-
larized scatter based on the �ηMCDN�-subset that makes
its overall determinant the smallest. The MRCD preserves
the good breakdown properties of its non-regularized coun-
terpart, and besides, it is applicable in high-dimensional
problems where �ηMCDN� is possibly smaller than p.

The first phase of our two-stage modeling thus works as
follows: considering the available labels ln , n = 1, . . . , N
we apply the MCD (or MRCD) estimator within each class

to extract μ̂
MCD
j and Σ̂

MCD
j , j = 1 . . . , J . For ease of

notation, we use superscript ‘MCD’ for the robust estimates
even when we consider its regularized version. In general,
if the sample size is large enough, the MCD solution is pre-
ferred. There is no reason for ηMCD to be the same in all
observed classes. If a group is known a priori to be partic-
ularly outliers-sensitive, one should set its associated MCD
subset size to a smaller value than the remaining ones. How-
ever, since this type of information is seldom available, we
subsequently let ηMCD

j = ηMCD for all classes in the learn-
ing set. This concludes the first stage: the retained estimates
are then incorporated in the Bayesian model for the second
stage, presented in Sect. 2.2. The robust knowledge extracted
from X is treated as a source of reliable prior information,
eliciting informative hyperparameters. In this way, outliers
and label noise that might be present in the labeled units will
not bias the initial beliefs for the known groups in the second
stage, which is the main methodological contribution of the
present manuscript.

2.2 Stage II: BNP novelty detection in test data

We assume that each observation in the test set is generated
according to a mixture of J + 1 elements: J multivariate

Gaussians φ(·|Θ j ) that have been observed in the learning
set, and an extra term f nov called novelty component. In
formulas:

ym |π ,Θ j , f nov ∼
J∑

j=1

π jφ(·|Θ j ) + π0 f
nov. (1)

We define π = {π j }Jj=1, where π j denotes the prior proba-
bility of the observed class j (already present in the learning
set), whileπ0 is the probability of observing some novelty.Of
course,

∑J
j=0 π j = 1.To reflect our lack of knowledgeon the

novelty component f nov , we employ a Bayesian nonpara-
metric specification. In particular, we resort to the Dirichlet
Process mixture model (DPMM) of Gaussians densities (Lo
1984; Escobar andWest 1995) imposing the following struc-
ture:

f nov =
∫

φ(·|Θnov)G(dΘnov), G ∼ DP(γ, H), (2)

where DP(γ, H) denotes a Dirichlet Process with concen-
tration parameter γ and base measure H (Ferguson 1973).
Adopting Sethuraman’s Stick Breaking construction (Sethu-
raman 1994), we can express the likelihood as follows:

L(y|π ,μ,Σ,ω) =
M∏

m=1

⎡

⎣
J∑

j=1

π jφ
(
ym |μ j ,Σ j

)+

+π0

∞∑

h=1

ωhφ
(
ym |μnov

h ,Σnov
h

)
]

. (3)

The term
∑∞

h=1 ωhφ
(·|�nov

h

)
represents a Dirichlet Process

realization convoluted with a Normal kernel, for flexibly
modeling a potentially infinite number of hidden classes
and/or outlying observations. The following prior proba-
bilities for the parameters complete the Bayesian model
specification:

� j = (
μ j ,Σ j

) ∼ PTr
j , j = 1, . . . , J ,

�nov
h = (

μnov
h ,Σnov

h

) ∼ H , h = 1, . . . ,∞, (4)

π ∼ Dir (a0, a1, . . . , aJ ) , ω ∼ SB (γ ) .

Valuesa1, . . . , aJ are the hyper-parameters of aDirichlet dis-
tribution on the known classes. We can exploit the learning
set to determine reasonable values of such hyper-parameters
by setting a j = n j/N . The quantity a0 determines the initial
prior belief on how much novelty we are expecting to dis-
cover in the test set. Generally, the parameter controlling the
novelty proportion a0 is a priori considered to be small. We
adopt a conjugate Normal-inverse-Wishart (NIW) prior for
both the location-scale parameters of the manifest and the
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novel classes. For each of the known groups, we assume that

PTr
j ≡ N IW

(
μ̂
MCD
j , λTr , νTr , Σ̂

MCD
j

)
, j = 1, . . . , J

where μ̂
MCD
j and Σ̂

MCD
j are the MCD robust estimates

obtained in Stage I. At the same time, the precision parame-
ter λTr and the degrees of freedom νTr are treated as tuning
parameters to enforce high mass around the robust estimates.
By letting these two parameters go off to infinity, we can
also recover the degenerate case PTr

j = δ
�̂ j

where the

Dirac’s delta denotes a point mass centered in �̂ j . That is,
the prior beliefs extracted from the training set can be flex-
ibly updated by gradually transitioning from transductive to
inductive inference by increasing λTr and νTr (Bouveyron
2014). Similarly, we set H ≡ N IW (m0, λ0, ν0,S0) ,where
the hyperparameters are chosen to induce a flat prior for
the novel components. Lastly, with ω ∼ SB (γ ) we denote
the vector of Stick-Breaking weights, composed of elements
defined as

wk = vk
∏

l<k

(1 − vl), vk ∼ Beta(1, γ ). (5)

It is well known that, under theDP specification, the expected
number of clusters induced in the novelty term grows as
γ logM . We choose the DP mostly for computational con-
venience: if more flexibility is required, Brand can easily
be adapted to accommodate different nonparametric priors,
such as the Pitman-Yor process (Pitman 1995; Pitman and
Yor 1997) or the geometric process and its extensions (De
Blasi et al. 2020). To facilitate posterior inference given the
specification in (4), we consider the following complete like-
lihood:

L(y,α,β|π ,Θ,ω) = ∏M
m=1

[
παm1{αm>0 ∩ βm=0}+

+π01{αm=0 ∩ βm>0)}ωβm

] ×
×φ

(
ym |�∗

m

)
,

�∗
m = �αm1{βm=0} + �nov

βm
1{αm=0} (6)

where αm ∈ {0, . . . , J } and βm ∈ {0, . . . ,∞} are latent
variables identifying the unobserved group membership for
ym , m = 1, . . . , M . In details, the former identifies whether
observation m is a novelty (αm = 0) or not (αm > 0),
whereas the latter defines, within the novelty subset, the
resulting data partition (βm > 0) . To complete the speci-
fication, we set ω0 = 1.

Lastly, we want to underline that there might be some
cases where the number of novelty groups is known to be
bounded and does not grow with the sample size as in the
DP case. In those situations, an appealing alternative to the
DPMM is the Sparse Mixture Model, studied by Rousseau

andMengersen (2011) and recently investigated inMalsiner-
Walli et al. (2016).

2.3 Distinguishing novelties from anomalies

The advantage of employing a DPMM for the novelty part is
twofold: on the one hand, all the data coming from unseen
components are modeled with a unique, flexible density. On
theother hand, the clusteringnaturally inducedby theDPMM
favors the separation of the novelty component into actual
unseen classes and outlying units. More specifically, since
the concept of an outlier does not possess a rigorous math-
ematical definition (Ritter 2014), the estimated sample sizes
of the discovered classes act as an appropriate feature for
discriminating between scattered outlying units and actual
hidden groups. That is, if a component φ

(·|Θnov
h

)
fits only

a small number of data points, we can regard those units as
outliers. Similarly, we assume to have discovered an extra
class whenever it possesses a substantial structure. In real
applications, domain-expert supervision will always be cru-
cial for class interpretation when extra groups are believed
to have been detected. While the mixture between known
and novel distributions is identifiable and not subjected to
the label switching problem, the same cannot be said about
the DP component modeling the novelty density. To recover
a meaningful estimate for the partition of points regarded as
novel (βm > 0) we first compute the pairwise coclustering
matrix P = {pm,m′ }, whose entry pm,m′ denotes the proba-
bility that ym and ym′ belong to the same cluster. We then
retrieve the best partition minimizing the variation of infor-
mation (VI) criterion, as suggested inWade and Ghahramani
(2018). More details on how to post-process the MCMC out-
put are given in Sect. 5.

3 Properties of the proposed
semiparametric prior

We now investigate the properties of the underlying random
mixing measure induced by the model specification we pre-
sented in the previous section. All the proofs are deferred to
the Supplementary Material. We start by noticing that model
in (3)–(4) can be generalized in the following hierarchical
form, which highlights the dependence on a discrete random
measure p̃:

ym |Θm ∼ N (Θm) Θm | p̃ i .i .d.∼ p̃

p̃ =
J∑

j=1

π jδΘ j + π0

[+∞∑

h=1

ωhδΘnov
h

]

(π0, π1, . . . , πJ ) ∼ Dir(a0, a1, . . . , aJ ) ω ∼ SB(γ )

Θ j ∼ PTr
j Θnov

h ∼ H . (7)
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From (7)we can see howourmodel is an extension of the con-
taminated informative priors proposed in Scarpa and Dunson
(2009), where the authors propose to juxtapose a single atom
to a DP. To simplify the exposition of the results in this sec-
tion, without loss of generality, we assume that both Θ j and
Θnov

h are univariate randomvariables. Consequently,we sup-
pose that each PTr

j is a probability distribution with mean

μ j , second moment μ j,2 and variance σ 2
j , j = 1, . . . , J .

Similarly, let E
[
Θnov

h

] = μ0, V
[
Θnov

h

] = σ 2
0 ∀h ≥ 1 and

a = ∑J
j=0 a j . For all m ∈ {1, . . . , M}, we can prove that

E [Θm] =
J∑

j=0

a j

a
μ j ,

V [Θm] =
J∑

j=0

a j

a

(
μ j,2 − a j

a
μ2

j

)
− 2

J∑

l> j≥0

a jal
a2

μlμ j .

The overall variance can also be written in terms of variances
of every observed mixture components:

V [Θm] =
J∑

j=0

a j

a

(
σ 2
j +

(
1 − a j

a

)
μ2

j

)
− 2

J∑

l> j≥0

a jal
a2

μlμ j .

The previous expressions are important to compute the
covariance between the two random elements Θm and Θm′ ,
which helps to understand the behavior of p̃. Consider a vec-
tor 
 = {
 j }Jj=0, with the first entry equal to 1

1+γ
and the

remaining entries equal to 1. Then,

Covγ (Θm,Θm′) =
J∑

j=0

(
a j (a j + 1)

a(a + 1)

 jμ j,2 − a2j

a2
μ2

j

)

− 2

a2(a + 1)

J∑

j>l≥0

a jalμ jμl

+ a0(a0 + 1)

a(a + 1)

γ

1 + γ
μ2
0. (8)

The covariance is composed of three terms. In the first two,
the seen and unseen components have the same influence.
The last term is non-negative and entirely determined by
quantities linked to the novel part of the model. Notice that
if γ → 0 the covariance becomes

Cov0(Θm,Θm′) =
J∑

j=0

(
a j (a j + 1)

a(a + 1)
μ j,2 − a2j

a2
μ2

j

)

− 2

a2(a + 1)

J∑

j>l≥0

a jalμ jμl

which is the same covariance we would obtain if p̃ = p̃0 ≡∑J
j=0 π jδΘ j , i.e. if we were dealing with a “standard” mix-

ture model with J + 1 components. This implies that (8) can
be rewritten as

Covγ (Θm,Θm′) =Cov0(Θm,Θm′)

− a0(a0 + 1)

a(a + 1)

γ

1 + γ
σ 2
0 ,

which leads to a nice interpretation. The introduction of nov-
elty atoms decreases the “standard” covariance. This effect
gets stronger as the prior weight given to the novelty com-
ponent a0, the dispersion of the base measure σ 2

0 and/or the
concentration parameter γ increases.

Given the discrete nature of p̃, we can expect ties between
realizations sampled from this measure, say Θm and Θm′ .
Therefore, we can compute the probability of obtaining a tie
as:

P (Θm = Θm′) =
J∑

j=1

a j (a j + 1)

a(a + 1)
+ a0(a0 + 1)

a(a + 1)
· 1

1 + γ

=
J∑

j=0

a j (a j + 1)

a(a + 1)

 j , (9)

where the contribution to this probability of the novelty terms
is multiplicatively reduced by a factor that depends on the
inverse of the concentration parameter. If a priori we expect
a large number of clusters in the novelty term (large γ ), the
probability of a tie reduces. Indeed, some noticeable limiting
cases arise:

lim
γ→+∞P (Θm = Θm′) =

J∑

j=1

a j (a j + 1)

a(a + 1)
,

lim
γ→0

P (Θm = Θm′) =
J∑

j=0

a j (a j + 1)

a(a + 1)
.

If γ → 0 we obtain a finite mixture of J + 1 compo-
nents. Conversely, γ → +∞ leads to the case of a DP with
numerous atoms characterized by similar probability, hence
annihilating the contribution to the probability of the novelty
term. Moreover, suppose we rewrite the distribution of π as

Dir
(

a0
J+1 ,

ã
J+1 , . . . ,

ã
J+1

)
. In this case, the hyperparame-

ters relative to the observed groups are assumed equal to ã.
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Then, we obtain a = a0+J ã
J+1 , and

P (Θm = Θm′) =
J ã
J+1

(
ã

J+1 + 1
)

a0+J ã
J+1

(
a0+J ã
J+1 + 1

)

+
a0
J+1

(
a0
J+1 + 1

)

a0+J ã
J+1

(
a0+J ã
J+1 + 1

) · 1

1 + γ
. (10)

As J increases, the second part of (10) vanishes. Accord-
ingly, if we suppose an unbounded number of observed
groups letting J → ∞, then we have

P (Θm = Θm′) = 1/(1 + ã)

as in the classical DP case, and the model loses its ability to
detect novel instances.

4 Functional novelty detection

The modeling framework introduced in Sect. 2 is very gen-
eral and can be easily modified to handle more complex data
structures. In this section, we develop a methodology for
functional classification that allows novelty functional detec-
tion, building upon model (3)–(4). We hereafter assume that
our training and test instances are error-prone realizations of
a univariate stochastic process X (t), t ∈ T with T ⊂ R.

Recently, numerous authors have contributed to the area of
Bayesian nonparametric functional clustering (see, for exam-
pleBigelowandDunson2009; Petrone et al. 2009;Rodriguez
and Dunson 2014; Rigon 2019). Canale et al. (2017) propose
a Pitman–Yor mixture with a spike-and-slab base measure to
effectivelymodel the daily basal body temperature in women
by including the a priori known distinctive biphasic trajec-
tory that characterizes healthy beings. Instead of modifying
the base measure of the nonparametric process, Scarpa and
Dunson (2009) address the same problem by contaminating
a point mass with a realization from a DP. As such, part of
our method can be seen as a direct extension of the latter,
where J ≥ 1 different atoms centered in locations learned
from the training set are contaminated with a DP.

Let Θm(t) = (
fm(t), σ 2

m(t)
)
denote the vector compris-

ing the smooth functional mean fm : T → R and the
measurement noise σ 2

m : T → R
+ for a generic curve m

in the test set, evaluated at the instant t . Then the Brand
model, introduced in Sect. 2.2 for multivariate data, can be

modified as follows:

ym(t)|Θm(t) = fm(t) + εm(t); εm(t) ∼ N (0, σ 2
m(t))

Θm(t)| p̃ ∼ p̃, p̃ =
J∑

j=1

π jδΘ j + π0

[+∞∑

h=1

ωhδΘnov
h

]

,

(π0, π1, . . . , πJ ) ∼ Dir(a0, a1, . . . , aJ ), ω ∼ SB(γ ),

Θ j ∼ PTr
j , Θnov

h ∼ H , (11)

where all the distributions PTr
j and the base measure H

model the functional mean and the noise independently.
We propose the following informative prior for � j =(
f j (t), σ 2

j (t)
)
:

f j (t)
ind.∼ N

(
f̄ j (t), ϕ j

)
,

σ 2
j (t)

ind.∼ IG

⎛

⎜
⎝2 +

(
σ̄ 2
j (t)

)2

v j
, σ̄ 2

j (t)

⎛

⎜
⎝1 +

(
σ̄ 2
j (t)

)2

v j

⎞

⎟
⎠

⎞

⎟
⎠ .

(12)

We denote the estimates obtained from the training set of
the mean and variance functions as f̄ j and σ̄ 2

j , respectively,
for each observed class j , with j = 1, . . . , J . The hyper-
parameters ϕ j define the degree of confidence we a priori
assume for the information extracted from the learning set,
while the inverse gamma (IG) specification ensures that

E

[
σ 2
j (t)

]
= σ̄ 2

j (t) and Var
[
σ 2
j (t)

]
= v j . It remains to

define how we compute f̄ j and σ̄ 2
j , that is, how the robust

extraction of prior information is performed in this functional
extension. Applying standard procedures in Functional Data
Analysis (Ramsay andSilverman 2005),wefirst smooth each
training curve xn(t) via a weighted sum of B basis functions

xn(t) ≈
B∑

b=1

ρnbφb(t) n = 1, . . . , N

where φb(t) is the b-th basis evaluated in t and ρnb its asso-
ciated coefficient. Given the acyclic nature of the functional
objects treated in Sect. 6.3, we will subsequently employ
B-spline bases (de Boor 2001). Clearly, depending on the
problem at hand, other basis functions may be considered.
After such representation has been performed, we are left
with J matrices of coefficients each of dimension n j × B.
By treating them as multivariate entities, as done for exam-
ple in Abraham et al. (2003), we resort to the very same
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procedures described in Sect. 2.1, and we set

f̄ j (t) =
B∑

b=1

ρ̂MCD
jb φb(t),

σ̄ 2
j (t) = 1

n j − 1

∑

n:ln= j ∩ I( j)
MCD

(
xn(t) − f̄ j (t)

)2

where ρ̂MCD
jb is the robust location estimate on the n j ×

B matrix of coefficients, and I( j)
MCD denotes the subset

of untrimmed units resulting from the MCD/MRCD pro-
cedure in group j , j = 1, . . . , J . On the other hand,
more flexibility is needed to specify the base measure H
for Θnov

h = (
f novh (t), σ 2 nov

h (t)
)
. Therefore, via the same

smoothing procedure considered for the training curves, we
build a hierarchical specification for the quantities involved
in the novelty term:

f novh (t) =
B∑

b=1

ρnov
hb φb(t), ρnov

hb ∼ N (ψh, τ
2
h ),

ψh ∼ N (0, s2),

τ 2h ∼ IG(aτ , bτ ), σ 2 nov
h (t) ∼ IG(aH , bH ). (13)

The first line of (13) can be rewritten as

f novh (t) ∼ N

(

ψh

B∑

b=1

φb(t), τ
2
h

B∑

b=1

φ2
b(t)

)

.

We call this model functional Brand: it provides a power-
ful extension for functional novelty detection. A successful
application is reported in Sect. 6.3.

5 Posterior inference

The posterior distribution p(π ,ω, a,β,�,�nov|y) is ana-
lytically intractable, therefore we rely upon MCMC tech-
niques to carry out posterior inference. An easy sampling
scheme can be constructed mimicking the blocked Gibbs
sampler of Ishwaran and James (2001), where the infinite
series in (3) is truncated at a pre-specified level L < ∞.
However, this approach leads to a non-negligible truncation
error if L is too small, and to computational inefficiencies if
L is set too high. Instead, we propose a modification of the
ξ -sequence of the Independent Slice-efficient sampler (Kalli
et al. 2011), another well known conditional algorithm to
sample from the exact posterior. To adapt the algorithm to
our framework, we start from the following alternative repa-

rameterization of the model in (3)–(4):

ym |Θ̃, ζm ∼ N
(
Θ̃ζm

)
ζm |π̃ ∼

∞∑

k=1

π̃kδk(·)

π̃k = π
1{0<k≤J }
k · (π0 · ωk−J )

1{k≥J+1} for k ≥ 1 (14)

Θ̃k = �
1{0<k≤J }
k · (

�nov
k−J

)1{k≥J+1} for k ≥ 1

where Θ̃ is obtained by concatenating Θ and Θnov , δk is the
usual Dirac delta function, the weights π and ω are defined
as in Eq. (7), and ζm is a membership label which maps each
observation to its corresponding atom Θ̃ζm . Trivially, there is
a one-to-one correspondence between the membership vec-
tors (αm, βm) of model (6) and ζm

ζm = l ⇐⇒ αm = l · 1{ζm≤J }, βm = (l − J ) · 1{ζm>J }.
(15)

However, we prefer the form of model (6) thanks to the
direct interpretation of the membership latent variables α

and β, which associate each observation to the known or
novel classes, respectively. We introduce two sequences of
additional auxiliary parameters: a stochastic sequence u =
{um}Mm=1 of uniform random variables and a deterministic
sequence ξ = {ξl}l≥1. The introduction of these two latent
variables allows for a stochastic truncation at each iteration
of the sampler. The stochastic threshold, called L , is given
as L = max Lm and Lm is the largest integer such that
ξLm > um . This threshold establishes a finite number of
mixture components needed at each MCMC iteration, mak-
ing computations feasible. Then, we can rewrite model (6)
as

L (y, ζ ,u|π̃ ,μ,Σ) =
M∏

m=1

[
π̃ζm

ξζm

1{um<ξζm }φ
(
ym |�̃ζm

)]
.

(16)

In the definition of a dedicated deterministic sequence ξ ,
it is crucial to take into account the difference between the
manifest and the novel components. Usually, a very common
choice is ξl = (1−κ)κ l−1, for κ ∈ (0, 1). This option allows
to compute each Lm analytically, being the smallest integer
such that

Lm < 1 + log(um) − log(1 − κ)

log(κ)
.

However, the default choice of a geometrically decreasing ξ -
sequence is inappropriate in this context, sincewe are dealing
with amixturewhere not all the components are conceptually
equivalent. The default ξ -sequence tends to favor compo-
nents that come first in the mixture specification (in our case,
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Fig. 2 Example of deterministic sequence defined according to (17),
with κ = 0.25. The blue rectangle highlights the weights relative to the
known components

the known ones). To overcome this issue, we propose the fol-
lowing intuitive modification. Given a value for κ ∈ (0, 1),
we equally divide the (1−κ)%of themass into the first J+1
elements of the sequence. We then induce a geometric decay
in the remaining ones to split the residual fraction κ .We force
the element in position J + 1 to have the same mass given to
the manifest components, to avoid an under-representation
of the novelty part. To do so, we define

ξl =
⎧
⎨

⎩

1−κ
J+1 if l ≤ J

1−κ
J+1

(
(J+1)κ
J K+1

)l−J−1
if l > J + 1

(17)

It is easy to prove that
∑+∞

l=1 ξl = 1. According to (17),
the first J + 1 elements of the sequence have masses equal
to (1 − κ)/(J + 1). The truncation threshold L∗ changes
accordingly, becoming the largest integer such that

L∗ < J + 1 +
log(min(u)) − log

(
1−κ
J+1

)

log
(

(J+1)κ
Jκ+1

) . (18)

Inequality (18) states that the truncation threshold L∗ can
be only greater or equal to J + 1, ensuring that the MCMC
always takes into consideration the creation of at least one
cluster in the novel distribution. A representation of the
modified ξ -sequence is depicted in Fig. 2. We report the
pseudo-code for the devised Gibbs sampler in the Appendix.
The algorithm for the functional extension is not included for
conciseness. However, its structure closely follows the one
outlined for the multivariate case.

Once theMCMC sample is collected, we first compute the
a posteriori probability of being a novelty for every test unit
m, PPNm = P

[
ym ∼ f nov|Y]

, that is estimated according
to the ergodic mean:

ˆPPNm =
∑I

i=1 1{a(i)
m =0)}

I
, (19)

where α
(i)
m is the value assumed by the parameter αm at the

i-th iteration of the MCMC chain and I is the total number
of iterations. We remark that the inference on α can be con-
ducted directly, since the mixture between the J observed
components and f nov is not subjected to label switching. In
contrast, we need to take this problem into account when
dealing with β. To perform valid inference, one possibility
is to rely on the posterior probability coclustering matrix
(PPCM) as indicated in Sect. 2.3. Each entry of this matrix
pm,m′ = P

[
ym and ym′ belong to the same novelty class

]
is

estimated as

p̂m,m′ =
∑I

i=1 1{β(i)
m =β

(i)
m′ }

I
. (20)

Once we obtain the PPCM, we employ it to estimate the
best partition (BP) in the novelty subset. Indeed, one can
recover the BP by minimizing a loss function defined over
the space of partitions, which can be computed starting from
the PPCM. A famous loss function was proposed by Binder
(1978), and investigated in a BNP setting by Lau and Green
(2007). However, the so-called Binder loss presents peculiar
asymmetries, preferring to split clusters over merging. These
asymmetries could result in a number of estimated clusters
higher than needed. Therefore, we adopt the Variation of
Information (VI-Meilǎ 2007) as loss criterion. The associated
loss function, recently proposed by Wade and Ghahramani
(2018), is known to provide less fragmented results.

Finally, once the BP for the novelty component has been
estimated, we can rely on a heuristic based on the cluster
sizes to discriminate anomalies from actual new classes. Let
us suppose that the BP consists of S novel clusters. Denote
the number of instances assigned to cluster s ∈ {1, . . . , S}
with mnov

s . A cluster s is considered to be an agglomerate of
outlying points if its cardinality mnov

s is sufficiently small in
comparison to the entire novelty sample size, otherwise it is
regarded as a proper novel group.

6 Applications

6.1 Simulation study

In this section, we present a simulation study aimed at high-
lighting the capabilities of the new semiparametric Bayesian
model in performing novelty detection and we compare it
with existingmethodologies.We consider different scenarios
varying the sample sizes of the hidden classes and the adul-
teration proportions in the training set. At the same time, we
evaluate the importance of the robust information extraction
phase and how it affects the learning procedure.
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6.1.1 Experimental setup

We consider a training set formed by J = 3 observed classes,
each distributed according to a bivariate Normal density
N2(μ j ,Σ j ), j = 1, 2, 3, with the following parameters:

μ1 = (−5, 5)′, μ2 = (−4,−4)′, μ3 = (4, 4)′

Σ1 =
[
1 0.9
0.9 1

]
Σ2 =

[
1 0
0 1

]
Σ3 =

[
1 0
0 1

]
.

The class sample sizes are, respectively, equal to n1 = 300,
n2 = 300 and n3 = 400. The same groups are also present in
the test set, together with four previously unobserved classes.
We generate the new classes via bivariate Normal densities
with parameters:

μ4 = (0, 0)′, μ5 = (5,−10)′,
μ6 = (5,−10)′, μ7 = (−10,−10)′,

Σ4 =
[

1 −0.75
−0.75 1

]
, Σ5 =

[
1 0.9
0.9 1

]
,

Σ6 =
[

1 −0.9
−0.9 1

]
, Σ7 =

[
0.01 0
0 0.01

]
.

The test set encompasses a total of 7 components: 3 observed
and 4 novelties. Starting from the above-described data gen-
erating process, we consider four different scenarios varying:

– Data contamination level

– Nocontamination in the training set (Label noise
= False)

– 12% label noise between classes 2 and 3 (Label
noise = True)

– Test set sample size

– Novelty subset size equal to slightly more than 30%
of the test set (Novelty size = Not small)

m1 = 200, m2 = 200, m3 = 250, m4 = 90,

m5 = 100, m6 = 100, m7 = 10

– Novelty subset size equal to 15% of the test set
(Novelty size = Small)

m1 = 350, m2 = 250, m3 = 250, m4 = 49,

m5 = 50, m6 = 50, m7 = 1.

Figure 3 exemplifies the experiment structure displaying a
realization from the Label noise = True, Novelty
size = Not small scenario. As it is evident from the
plots, the label noise is strategically included to cause a more

difficult identification of the fourth class, should the param-
eters of the second and third classes be non-robustly learned.
Further, notice that the last group presents limited sample
size and variability: it could easily be regarded as pointwise
contamination (i.e., an anomaly) rather than an actual new
component. Nonetheless, following the reasoning outlined
in the introduction, we are interested in evaluating the abil-
ity of the nonparametric density to capture and discriminate
these types of peculiar patterns aswell. For each combination
of contamination level and test set sample size, we simulate
B = 100 datasets. Results are reported in the following sub-
section.

6.1.2 Simulation results

We compare the performance of the Brand model with dif-
ferent hyper-parameters specifications:

– the information from the training set is either non-
robustly (ηMCD = 1) or robustly (ηMCD = 0.75)
extracted,

– the precision parameter associated with the training prior
belief is either very high (λTr = 1,000) or moderately
low (λTr = 10).

In addition, two model-based adaptive classifiers are con-
sidered in the comparison, namely the inductive RAEDDA
model (Cappozzo et al. 2020) with labeled and unlabeled
trimming levels respectively equal to 0.12 and 0.05, and the
inductive AMDA model (Bouveyron 2014). For each repli-
cation of the simulated experiment, a set of four metrics is
recorded from the test set:

– Novelty predictive value (Precision): the proportion of
unitsmarked as novelties by a givenmethod truly belong-
ing to classes 4, . . . , 7,

– Accuracy on the observed classes subset: the classifi-
cation accuracy of a given method within the subset of
groups already observed in the training set,

Training set Test set

−10 −5 0 5 −10 −5 0 5

−10
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0

5
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2

3
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7

Fig. 3 Simulated data for the Label noise = True, Novelty
size = Not small scenario. Classes 4, . . . , 7 are not observed in
the learning set
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Fig. 4 Box plots for (from top to bottom) novelty predictive value, accuracy on the known classes and ARI metrics for B = 100 repetitions of the
simulated experiment, varying data contamination level and test set sample size
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– Adjusted Rand Index (ARI, Rand 1971): measuring the
similarity between the partition returned by a given
method and the underlying true structure,

– PPN : a posteriori probability of being a novelty, com-
puted according to Eq. (19) (Brand only).

We run 40,000 MCMC iterations and discard the first
20,000 as a burn-in phase. Apart from the hyper-parameters
for the training components, fairly uninformative priors are
employed in the base measure H , with m0 = (0, 0)′, λ0 =
0.01, ν0 = 10 and S0 = 10I2. Lastly, a Gamma DP con-
centration parameter is considered with prior rate and scale
hyper-parameters both equal to 1.

Figure 4 reports the results for B = 100 repetitions of
the experiment under the different simulated scenarios. A
Table containing the values on which this plot is built is
deferred to the Supplementary Material. The Novelty pre-
dictive value metric highlights the capability of the model
to correctly recover and identify the previously unseen pat-
terns. As expected, in the adulteration-free scenarios, all
methodologies succeedwell enough in separating known and
hidden components. The worst performance is exhibited by
the RAEDDA model for which, due to the fixed trimming
level, a small part of the group-wise most extreme (but still
genuine) observations is discarded, thus slightly overestimat-
ing the novelties percentage (the same happens for the ARI
metric). Different results are displayed in scenarios wherein
the label noise complicates the learning process. Robust pro-

cedures efficiently cope with the adulteration present in the
training set, while the AMDAmodel and the Brand methods
when ηMCD = 1 tend to largely overestimate the novelty
component. Particularly, the harmful effect caused by the
mislabeled units is exacerbated in the Brand model that sets
high confidence in the priors (λTr = 1,000), while a par-
tial mitigation, albeit feeble, emerges when λTr is set equal
to 10. This consequence is even more apparent in the hex
plots of Fig. 5, where we see that the latter model tries
to modify its prior belief to accommodate the (outlier-free)
test units, while the former, forced to stick close to its prior
distribution by the high value of λTr , incorporates the sec-
ond and third class in the novelty term. The final output, as
displayed in the Accuracy on the observed classes subset
boxplots, has an overall high misclassification error when it
comes to identifying the test units belonging to the previously
observed classes. Differently, setting robust informative pri-
ors prevents this undesirable behavior, as it is shown by both
the high level of accuracy and the associated low posterior
probability of being a novelty in the feature space wherein
the observed groups lie. On the other hand, the true parti-
tion recovery, assessed by the Adjusted Rand Index, does
not seem to be influenced by the label noise, with our pro-
posal always outperforming the competing methodologies
regardless of which hyper-parameters are selected. As pre-
viously mentioned, for Brand(ηMCD = 1, λTr = 10) and
Brand(ηMCD = 1, λTr = 1000) cases the second and third
classes are assimilated into the nonparametric component in

Brand (ηMCD =  0.75,  λTr = 10) Brand (ηMCD =  0.75,  λTr = 1000) Brand (ηMCD =  1,  λTr = 10) Brand (ηMCD =  1,  λTr = 1000)
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=
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Fig. 5 Hex plots of the average estimated posterior probability of
being a novelty, according to formula (19), for B = 100 repetitions of
the simulated experiment, varying data contamination level and Brand

hyper-parameters, Not small novelty subset size. The brighter the
color the higher the probability of belonging to f nov
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the Label Noise = True scenario. This is due to the
fact that the mislabeled units prevent Brand from correctly
learning the true structures of groups two and three in Stage I.
As a consequence, no correspondence between these improp-
erly estimated classes in the training is found in the test set,
so much so that the DP prior creates them anew within the
novelty term. Clearly, this is a sub-optimal behavior as the
separation of what is known fromwhat is novel is completely
lost, yet itmay raise suspicion ondealingwith a contaminated
learning set, suggesting the need of a robust prior information
extraction.

Additional simulated experiments, involving a high-
dimensional scenario and novelty detection problem under
model misspecification are included in the Supplementary
Material.

6.2 X-ray images of wheat kernels

Sophisticated and advanced techniques likeX-rays, scanning
microscopy and laser technology are increasingly employed
for the automatic collection and processing of images.Within
the domain of computer vision studies, novelty detection is
generally portrayed as a one-class classification problem.
There, the aim is to separate the known patterns from the
absent, poorly sampled or not well defined remainder (Khan
and Madden 2014). Thus, there is strong interest in devel-
oping methodologies that not only distinguish the already
observed quantities from the new entities, but that also iden-
tify specific structures within the novelty component. The
present case study involves the detection of a novel grain
type by means of seven geometric parameters, recorded
postprocessingX-ray photograms of kernels (Charytanowicz
et al. 2010). In more detail, for the 210 samples belonging
to the three different wheat varieties, high quality visual-
ization of the internal kernel structure is detected using a
soft X-ray technique and, subsequently, the image files are
post-processed via a dedicated computer software package
(Strumiłło et al. 1999). The obtained dataset is publicly avail-
able in the University of California, IrvineMachine Learning
data repository. This experiment involves the random selec-
tion of 70 training units from the first two cultivars, and a test
set of 105 samples, including 35 grains from the third variety.
The resulting learning scenario is displayed in Fig. 6. The aim
of the analysis is to employ Brand to detect the third unob-
served variety, whilst performing classification of the known
grain types with high accuracy. Firstly, the MCD estimator
with hyper-parameter hMCD = 0.95 is adopted for robustly
learning the training structure of the two observedwheat vari-
eties. In the second stage, our model is fitted to the test set,
discarding 20,000 iterations for the burn-in phase, and sub-
sequently retaining 10,000 MCMC samples. As usual, fairly
uninformative priors are employed in the base measure H ,
with m0 = 0, λ0 = 0.01, ν0 = 10 and S0 = I7, where

0 denotes the 7-dimensional zero vector. For the training
components, mean and covariance matrices of the Normal-
inverse-Wishart priors are directly determined by the MCD
output of the first stage, while νTr and λTr are specified to
be respectively equal to 250 and 1,000. The latter value indi-
cates that after having robustly extracted information for the
two observed classes, high trust is placed in the prior distri-
butions of the known components.Model results are reported
in Fig. 7, where the posterior probability of being a novelty
PPNm = P

[
ym ∼ f nov|Y]

, m = 1, . . . , M , displayed in
the plots below the main diagonal, are estimated according
to the ergodic mean in (19). The a posteriori classification,
computed via majority vote, is depicted in the plots above
the main diagonal, where the water-green solid diamonds
denote observations belonging to the novel class. The confu-
sion matrix associated with the estimated group assignments
is reported in Table 1, where the third group variety is effec-
tively captured by the flexible process modeling the novel
component.

All in all, the promising results obtained with this multi-
variate dataset may foster the employment of our method-
ology in automatic image classification procedures that
supersede the one-class classification paradigm, allowing for
a much more flexible anomaly and novelty detector in com-
puter vision applications.

6.3 Functional novelty detection of meat variety

In recent years, machine learning methodologies have expe-
rienced an ever-growing interest in countless fields, including
food authentication research (Singh and Domijan 2019).
An authenticity study aims to characterize unknown food
samples, correctly identifying their type and/or provenance.
Clearly, no observation is to be trusted in a context wherein
the final purpose is to detect potentially adulterated units,
in which, for example, an entire subsample may belong to
a previously unseen pattern. Motivated by a dataset of Near
Infrared Spectra (NIR) ofmeat varieties, we employ the func-

Training set Test set
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Fig. 6 Learning scenario (onlycompactness andperimetervari-
ables displayed) for novelty detection of an unobserved wheat variety,
seed dataset
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Fig. 7 Test set for the considered experimental scenario, seeds dataset.
Plots below the main diagonal represent the estimated posterior proba-
bility of being a novelty. The brighter the color the higher the probability

of belonging to f nov . Plots above the main diagonal display the associ-
ated group assignments, where the water-green solid diamonds denote
observations classified as novelties

tional model introduced in Sect. 4 to perform classification
and novelty detection when having a hidden class and four
manually adulterated units in the test set. The considered
data report the electromagnetic spectrum for a total of 231
homogenizedmeat samples, recorded from 400−2498nm at
intervals of 2 nm (McElhinney et al. 1999). The units belong
tofivedifferentmeat types,with 32beef, 55 chicken, 34 lamb,
55 pork, and 55 turkey records. The amount of light absorbed
at a given wavelength is recorded for each meat sample:
A = log10(1/R)where R is the reflectance value. The visible
part of the electromagnetic spectrum (400–780nm) accounts
for color differences in the meat types, while their chemi-
cal composition is recorded further along the spectrum. NIR
data can be interpreted as a discrete evaluation of a continu-
ous function in a bounded domain. Therefore, the procedure
described in Sect. 4 is a sensible methodological tool for
modeling this type of data objects (Barati et al. 2013). We

randomly partition the recorded units into labeled and unla-
beled sets. The former includes 28 chicken, 17 lamb, 28 pork,
and 28 turkey samples. The latter contains the same propor-
tion of these four meat types with an additional 32 beef units.
The last class is not observed in the learning set and needs
to be discovered. Also, four validation units are manually
adulterated and added to the test set as follows:

– a shifted version of a pork sample, achieved by removing
the first 15 data points and appending the last 15 group-
mean absorbance values at the end of the spectrum;

– a noisy version of a pork sample, generated by adding
Gaussian white noise to the original spectrum;

– amodified version of a turkey sample, obtained by abnor-
mally increasing the absorbance value in a single specific
wavelength to simulate a spike;
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Table 1 Confusion matrix for
the semiparametric Bayesian
classifier on the test set, seeds
dataset

Truth
Classification 1 2 3

1 30 0 7

2 2 35 0

New 3 0 28

The label “New” indicates obser-
vations that are estimated to have
arisen from the novelty compo-
nent

– a pork sample with an added slope, produced by multi-
plying the original spectrum by a positive constant.

These modifications mimic the ones considered in the
“Chimiométrie 2005” chemometric contest, where partic-
ipants were tasked to perform discrimination and outlier
detection of mid-infrared spectra of four different starches
types (Fernández Pierna and Dardenne 2007). In our con-
text, both the beef subpopulation and the adulterated units
are previously unseen patterns that shall be captured by the
novelty component.

Firstly, we extract robust prior information from the learn-
ing set. Given the spectra non-cyclical nature, we approxi-
mate each training unit via a linear combination of B = 100
B-spline bases, and their associated coefficients are retrieved.
Given the high-dimensional nature of the smoothing process,
the MRCD is employed to obtain robust group-wise esti-
mates for the splines coefficients. These quantities, which
are linearly combined with the B-spline bases, account for
the training atomsΘ j , j = 1, . . . , 4 specified in Eq. (11).We
adopt a value of ηMCD = 0.75 in the first stage, providing
functional atoms robust against contamination that may arise
in the training set. In this experiment, an inductive approach
is considered, for which the training estimates will be kept
fixed throughout the subsequentBayesian learning phase.We
further set aτ = 3, bτ = 1, s2 = 1, aH = 5, and bH = 1,
inducing low variability on the noise parameters as much as
not to compromise the hierarchical structure between known
and novelty components. A more detailed discussion on the
hyperparameters choice is deferred to the Supplementary
Material, where we evaluate alternative effects for differ-
ent prior settings within a controlled experiment. Once Θ̂ j ,
j = 1, . . . , 4 are retained, the Bayesian model of Sect. 4
is applied to the test units running a total of 20,000 itera-
tions and discarding the first 10,000 as warm-up. Figure 8
summarizes the results of the fitted model. Each spectrum is
colored according to its a posteriori probability of being a
novelty, computed as in (19). The resulting confusion matrix
is reported in Table 2, where it is apparent that the previously
unseen class, aswell as the adulterated units (labeled as “Out-
liers” in the table), are successfully captured by the novelty
component. The obtained classification accuracy is in agree-

ment with the ones produced by state-of-the-art classifiers in
a fully-supervised scenario (see, for example, Murphy et al.
2010; Gutiérrez et al. 2014). That is, our proposal is capa-
ble of detecting previously unseen classes and outlying units,
whilst maintaining competitive predictive power.

Looking at the classification performance, we observe
that Brand can correctly recover the underlying data parti-
tion, except for the turkey subgroup. Specifically, the model
struggles to separate the turkey units from the chicken ones.
Figure 9 provides an explanation for this issue. The left panel
shows the robust functionalmeans extracted from the training
set. The right panel shows the functional test objects contain-
ing the two types of poultry. The overlapping is evident in
both cases and it is the main reason why Brand merges the
two different sets.

Focusing on the novelty component, the model entirely
captures the beef hidden class and the adulterated units,
yet two turkey samples are also incorrectly assigned. The
obtained classification for the curves identified to be novel-
ties, resulting by VI minimization, is displayed in the left
panel of Fig. 10, where two distinct clusters are detected.
Interestingly, Brand separates the 32 beef samples (blue
dashed lines) from the two turkeys (solid red lines) and
classifies three of the four manually adulterated units to the
outlying cluster. In contrast, the remaining one is assigned to
the beef class, because of its peculiar shape, as it is shown in
Figure 13 of the Supplementary Material. Finally, we inves-
tigate why two turkey units are incorrectly assigned to the
novel component. A closer look at the turkey sub-population,
displayed in the right panel of Fig. 10, shows how these
two samples exhibit a somehow extreme pattern within their
group and can, therefore, be legitimately flagged as outlying
or anomalous turkeys.

We report two additional figures in the Supplementary
Material. Thefirst provides a visual summaryof the estimated
grouping; the second shows how the turkey test units are
partitioned into different clusters.

In this section, we have shown the effectiveness of our
methodology in correctly identifying a hidden group in a
functional setting, while jointly achieving good classification
accuracy and detection of outlying curves. The successful
application of themodel seems particularly desirable in fields
like food authenticity, where generally there is no a pri-
ori available information on how many modifications and/or
adulteration mechanisms may be present in the samples.

7 Conclusion and discussion

We have introduced a two-stage methodology for robust
Bayesian semiparametric novelty detection. In the first
stage, we robustly extract the observed group structure
from the training set. In the second stage, we incorpo-
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Table 2 Confusion matrix for
the semiparametric Bayesian
classifier on the test set, meat
dataset

Truth
Classification Beef Chicken Lamb Pork Turkey Outliers

Novelty 32 0 0 0 2 4

Chicken 0 21 0 1 12 0

Lamb 0 0 17 0 0 0

Pork 0 4 0 20 3 0

Turkey 0 2 0 3 9 0

The label “Novelty” indicates observations that are estimated to have arisen from the f nov

rate such prior knowledge in a contaminated mixture,
wherein we have employed a nonparametric component to
describe the novelty term. The latter could either corre-
spond to anomalies or actual new groups. This distinction
is made possible by retrieving the best partition within
the novel subset. We have investigated the properties of
the random measure underlying the model and its con-
nections with existing methods. Subsequently, the general
multivariate methodology has been extended to handle
functional data objects, resulting in a novelty detector for
functional data analysis. A dedicated slice-efficient sam-
pler, taking into account the difference between unseen

and seen components, has been devised for posterior infer-
ence. An extensive simulation study and applications on
multivariate and functional data have validated the effective-
ness of our proposal, fostering its employment in diverse
areas from image analysis to chemometrics. Brand can
represent the starting point for many different research
avenues. Future research directions aim at providing a
Bayesian interpretation of the robust MCD estimator to
propose a unified, fully Bayesian model. More versatile
specifications can be adopted for the known components,
weakening the Gaussianity assumption. These extensions
can be obtained by adopting more flexible distributions

Fig. 8 Estimated posterior
probability of being a novelty,
according to formula (19), the
brighter the color the higher the
probability of belonging to f nov
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Fig. 9 The left panel shows the robust functional means extracted from the training set. The right panel shows the test functional objects containing
a type of poultry
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DP clustering of novelties
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Fig. 10 Left panel: best partition of the novelty component recovered
by minimizing the Variation of Information loss function. The dashed
blue curves are beef samples, while the solid red ones are the manually
adulterated units and the two turkeys incorrectly assigned to the novel

component. Right panel: true turkey sub-population in the test set, the
units incorrectly assigned to the novel component are displayed with
solid dark red lines

while keeping the mean and variance of the resulting den-
sities constrained to the findings in the training set, for
example, via centered stick-breaking mixtures (Yang et al.
2010).

Similarly, functional Brand can be improved by adopting
a more general prior specification via Gaussian Processes
(Rasmussen and Williams 2005). Lastly, it is of paramount
interest to develop scalable algorithms, as Variational Bayes
(Blei et al. 2017) and expectation-maximization (Dempster
et al. 1977), for inference onmassive datasets. Such solutions
will offer both increased speed and lower computational cost,
which are crucial for assuring the applicability of our pro-
posal in the big data era.

8 Supporting information

The Supplementary Material referenced throughout the arti-
cle is availablewith this paper at the Statistics andComputing
website. As supporting information, we report the proofs of
the theoretical results showed in Sect. 3. Moreover, to com-
plement the results presented in Sect. 6, we showcase the
performance obtained by applyingBrand to various challeng-
ing simulated data, varying the distributional assumptions
and dimensionality. We also discuss an application to a
higher dimensional real dataset, the popular benchmark
Wine dataset from the UCI dataset repository, consider-
ing all its 13 features. Lastly, with the help of a controlled
experiment, we guide the reader through the choice of

hyperparameters and, more broadly, the whole usage of the
model in the functional case. Software routines, includ-
ing the implementation for both methods, the simulation
study, and real data analyses of Sect. 6 are openly avail-
able at https://github.com/AndreaCappozzo/brand-public_
repo.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10017-
7.
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Appendix

Gibbs sampling algorithm for model (3)–(4)

Algorithm 1: Efficient Slice Sampler for the BNP-
Novelty detection model
Input: Initial values for the MCMC, robust estimates from X.
Output: Posterior MCMC sample for the parameters of interest.
for i = 1, . . . , I do

1. Sample every um from a uniform distribution U (
0, ξζm

)
.

2. Compute the stochastic truncation term L∗ according to
(18).
3. Let m j = ∑M

m=1 1{αm= j}, with j = 0, . . . , J . Sample ß
from a conjugate Dirichlet distribution:

π ∼ Dir(a0 + m0, a1 + m1, . . . , aJ + mJ ).

4. Sample the SB variables after integrating out u:

vk | · · · ∼ Beta(1 +
M∑

m=1

1{αm=0 ∩ βm=k},

γ +
M∑

m=1

1{αm=0 ∩ βm>k}).

5. Compute the SB weights according to (5)
6. Compute the one-line probability weights π̃ according to
(15).
7. Sample the atoms for the observed classes � j,0 exploiting
conjugacy between the likelihood and the prior for
j = 1, . . . , J .
8. Sample the atoms for the novel classes �nov

0,l exploiting
conjugacy between the likelihood and the prior for
l = 1, . . . , L∗.
9. Obtain Θ̃ concatenating the updated values of � and �nov .
10. Sample each ξm from the following joint discrete
distribution:

P (ζm = l) ∝ π̃l

ξl
1{um<ξl }φ

(
ym |�̃l

)
, l = 1, . . . , L∗,

P (otherwise) ∝ 0.

11. Recover the values for the membership vectors α and β

using (15). Divide the elements in Θ̃ into � and �nov .
end
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