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Abstract
We consider the problem of learning the level set for which a noisy black-box function exceeds a given threshold. To efficiently
reconstruct the level set, we investigate Gaussian process (GP) metamodels. Our focus is on strongly stochastic simulators, in
particular with heavy-tailed simulation noise and low signal-to-noise ratio. To guard against noise misspecification, we assess
the performance of three variants: (i) GPs with Student-t observations; (ii) Student-t processes (TPs); and (iii) classification
GPs modeling the sign of the response. In conjunction with these metamodels, we analyze several acquisition functions
for guiding the sequential experimental designs, extending existing stepwise uncertainty reduction criteria to the stochastic
contour-finding context. This also motivates our development of (approximate) updating formulas to efficiently compute such
acquisition functions. Our schemes are benchmarked by using a variety of synthetic experiments in 1–6 dimensions. We also
consider an application of level set estimation for determining the optimal exercise policy of Bermudan options in finance.

Keywords Gaussian Process · Stochastic contour-finding · Sequential updating formulas · Student-t process

1 Introduction

1.1 Statement of problem

Metamodeling has become widespread for approximating
black-box functions that arise in applications ranging from
engineering to environmental science and finance (Santner
et al. 2013). Rather than aiming to capture the precise shape
of the function over the entire region, in this article we
are interested in estimating the level set where the function
exceeds some particular threshold. There is also research on
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this problem under the name “regression level sets” (Scott
and Davenport 2007; Willett and Nowak 2007; Yang et al.
2014). Level set estimation is common in contexts where we
need to quantify the reliability of a system or its performance
relative to a benchmark. It also arises intrinsically in control
frameworkswhere onewishes to rank the payoff from several
available actions (Hu and Ludkovski 2017).

We consider a setup where the latent f : D → R is a
continuous function over a d-dimensional input space D ⊆
R
d . The level set estimation problem consists in classifying

every input x ∈ D = S ∪ C according to

S = {x ∈ D : f (x) ≥ 0}, C = {x ∈ D : f (x) < 0}.
(1.1)

Without loss of generality, the threshold is taken to be zero,
so that the level set estimation is equivalent to learning the
sign of the response function f . For later use, we also define
the corresponding zero contour of f , namely the partition
boundary ∂S = ∂C = {x ∈ D : f (x) = 0}. (Note that ∂S
and ∂C do not mean the topological boundary of the sets.)

For any xi ∈ D, we have access to a simulator Yi that
generates noisy samples of f (xi ):

Yi = f (xi ) + εi , (1.2)
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where εi are realizations of independent mean zero ran-
dom variables with variance τ 2(x), the distribution of which
depends on xi only. The simulator represents realizations of
a stochastic system, capturing settings where the output is a
function not just of the inputs, but also of some intrinsic ran-
dom shocks. Those shocks might represent random awards
available to a decision maker, or random disturbances that
might tip the system into a failed state. The shocks typically
have a simple structure (i.i.d uniform or Gaussian) but are
fed through a nonlinear black-box transformation to produce
observable system outputs with unknown statistical proper-
ties. Such stochastic simulators, where different runs with
same x yield distinct Yi ’s, are ubiquitous across scientific,
engineering and financial domains that rely on stochastic
models (Baker et al. 2020).

To assess a level set estimation algorithm, we compare
the resulting estimate ̂S with the true S in terms of their
symmetric difference. Let μ be a probability measure on
the Borel σ -algebra B(D) (e.g., μ = LebD the Lebesgue
measure on D). Then, our loss function is

L(S,̂S) = μ(SΔ̂S), (1.3)

where S1ΔS2 := (S1∩Sc2)
⋃

(Sc1∩S2), and Sc is the comple-
ment of S: Sc = {x ∈ D : x /∈ S}. Frequently, the inference
is carried out by first producing an estimate ̂f of the response
function; in that case, we take ̂S = {x ∈ D : ̂f (x) ≥ 0} and
rewrite the loss as

L( f , ̂f ) =
∫

D
I(sign ̂f (x) �= sign f (x))μ(dx), (1.4)

where I(·) is the indicator function.

1.2 Motivation

As a concrete example of level set estimation, consider the
problem of evaluating the probability of failure, determined
via the positive level set S of a performance function f (·)
(Vazquez and Bect 2009; Picheny et al. 2010; Bect et al.
2017). The system is safe when f (x) ≤ 0 and fails other-
wise. In the context where the performance function can be
evaluated via deterministic experiments, the estimation of the
safe zone (more precisely its volumeμ(S)) was carried out in
Bect et al. (2012) and Mukhopadhyay et al. (2005) employ-
ing a Gaussian process metamodel with a sequential design.
A related case study dealing with the probability of failure
in a nuclear fissile chain reaction appeared in Chevalier et al.
(2014).

Another application, which motivated this present inves-
tigation, comes from simulation-based algorithms for valu-
ation of Bermudan options (Gramacy and Ludkovski 2015;
Ludkovski 2018). In that context, described in Sect. 5, there

is a sequence of problems indexed by t . For each t , St is the
continuation region which is characterized as the zero level
set of the timing value f (x; t). The stochastic interpretation
links f (x; t) to a conditional expectation of a path-dependent
functional of aMarkov process X , and the loss function (1.3)
corresponds to the quality of the estimated stopping rule rel-
ative to the underlying distribution μ(·; t) of Xt .

1.3 Design of experiments for contour finding

Reconstructing S via a metamodel can be divided into two
steps: the construction of the response model and the devel-
opment of methods for efficiently selecting the simulation
inputs x1:n , with n as the design size, known as design of
experiments (DoE). Since the level set is intrinsically defined
in terms of the unknown f , an adaptive DoE approach is
needed to select xn’s sequentially.

For the response modeling aspect, GP regression, or
kriging, has emerged as the most popular nonparametric
approach for both deterministic and stochastic black-box
functions (Bect et al. 2012; Gramacy and Lee 2009; Picheny
et al. 2013a; Jalali et al. 2017). GPs have also been widely
used for the level set estimation problem; see Bryan and
Schneider (2008), Gotovos et al. (2013), Hu and Ludkovski
(2017), Picheny et al. (2010) and Ranjan et al. (2008). In a
nutshell, at step n the GP paradigm constructs a metamodel
̂f (n) that is then used to guide the selection of xn+1 and
also to construct the estimatêS(n). To this end, GPs are well
suited for sequential design by offering a rich uncertainty
quantification aspect that can be (analytically) exploited to
construct information-theoreticDoE heuristics. The standard
framework is to develop an acquisition function In(x) that
quantifies the value of information fromanewsample at input
x conditional on an existing dataset (x1:n, y1:n) and then to
maximize In :

xn+1 = argmax
x∈D In(x). (1.5)

Early level set sampling criteriawere proposed byBryan et al.
(2006), Vazquez and Martinez (2006), Bichon et al. (2008),
Picheny et al. (2010), and Ranjan et al. (2008) based onmod-
ifications to the expected improvement criterion (Jones et al.
1998) for response function optimization. A criterion more
targeted to reduce the uncertainty about S itself was devel-
oped by Bect et al. (2012) using the concept of stepwise
uncertainty reduction (SUR). Specifically, the SUR strat-
egy aims to maximize the global learning rate about S; see
also Chevalier et al. (2014) for related computational details.
Further criteria using tools from random set theory were
developed in Chevalier et al. (2013) and Azzimonti et al.
(2016) using the notions of Vorob’ev expectation.
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1.4 Summary of contributions

The main goal of this article is to present a compre-
hensive assessment of GP-based surrogates for stochastic
contour-finding. Learning ̂S requires blending the exploita-
tion objective to locally estimate the contour ∂S with the
exploration objective of visiting less-sampled regions. To
do so, we maintain the sequential design paradigm and
GP-based surrogates described above which boil down to
accurate inference of the mean response and sampling noise
that in turn drive the posterior mean ̂f and the posterior GP
variance s(x)2.

Our analysis focuses on the effect of observation noise on
contour-finding algorithms and complements Picheny et al.
(2013b) and Jalali et al. (2017), who benchmarked GP meta-
models for Bayesian optimization (BO) where the objective
is to evaluatemaxx f (x). The latter study observed the strong
impact of ε on performance of BO; in our own analysis, we
confirm the need for specialized metamodeling frameworks
and sequential design strategies in order to strike the best
balance in carrying out uncertainty quantification and con-
structing a robust surrogate.

Motivated by our application settings, we analyze the joint
role of the acquisition function In(·) and the metamodel
̂f . On the latter front, we seek approaches that are not too
swayed by the simulation noise structure. This issue is funda-
mental to any realistic stochastic simulator where there is no
justification for assumingGaussian-distributed ε (as opposed
to the physical experimental setup where ε represents obser-
vation noise and is expected to be Gaussian thanks to the
central limit theorem). This motivates us to study alterna-
tive GP-based metamodels for learninĝS that are resistant to
non-Gaussian ε in (1.2).

First, we investigate two ways to handle heavy-tailed
simulation noise: t-observation GPs (Vanhatalo et al. 2009;
Jylänki et al. 2011) and Student-t processes (TPs) (Shah
et al. 2014; Wang et al. 2017). In particular, we document
the strong performance of t-observation GPs; to our knowl-
edge, this is the first use of either tool in sequential analysis
and contour-finding. Second, to target the classification-like
objective underlying (1.3), we consider the use of classifi-
cation GPs (Rasmussen and Williams 2006; Williams and
Barber 1998) that model the sign of the response Y (x)
via a probit model driven by a latent GP Z(·): P(Y (x) >

0|x) = probit(Z(x)). Deployment of the probit regression is
expected to “wash out” non-Gaussian features in ε beyond
its effect on the sign of the observations. This context offers
an interesting and novel comparison between regression and
classification approaches benchmarked against a shared loss
function. Third, we present an original use of monotonic GP
metamodels (Riihimäki and Vehtari 2010) for level set esti-
mation. This idea exploits a structure commonly encountered
in applications where the level set S is connected, suggest-

ing to force ̂f to be monotone in the specified coordinates in
order to improve upon agnostic black-box strategies.

We then combine all the above metamodels with spe-
cialized acquisition functions targeting level set estimation,
cf. Sect. 3. We consider four choices (Contour Upper Confi-
dence Bound (cUCB), targeted mean squared error (tMSE),
stepwise uncertainty reduction (SUR) and gradient stepwise
uncertainty reduction (gSUR)) that include heuristics that
depend only on the posterior standard deviation s(n)(·), as
well as those that anticipate information gain from sampling
at xn+1 via the look-ahead standard deviation s(n+1)(·). For
the latter, because in the GPs with non-Gaussian noise s(n+1)

dependsonY (xn+1),wedevelop and implement approximate
look-ahead formulas ŝ(n+1) for all our metamodels. To our
knowledge, this is the first presentation of such formulas for
GPs with non-Gaussian noise, as well as TPs.

After setting up the methodological toolbox, we then pro-
vide a detailed comparison among the proposed acquisition
functions, identifying the best-performing combinations of
I(·) and metamodel ̂f and documenting the complex inter-
play between design geometry and surrogate architecture. To
this end, we benchmark across a range of synthetic experi-
ments that aim to stress-test each scheme in terms of model
misspecification, in particular in terms of handling non-
Gaussian ε. This benchmarking reveals new insights relative
to most of the cited papers that consider only deterministic
contour-finding.

The rest of the article is organized as follows. Section 2
describes the metamodels we employ. Section 3 develops
the sequential designs for the level set estimation problem.
Section 4 compares the models using synthetic data where
ground truth is known. Two case studies from derivative pric-
ing are investigated in Sect. 5. In Sect. 6, we summarize our
conclusions. The look-ahead variance formulas for GPs with
non-Gaussian noise are discussed in Section C of Supple-
mentary Material.

2 Statistical model

2.1 Gaussian process regression with Gaussian noise

We begin by discussing regression frameworks for contour-
finding that target learning the latent f (·). The Gaussian
process paradigm treats f as a random function whose
posterior distribution is determined from its prior and the
collected samples An ≡ {(xi , yi ), 1 ≤ i ≤ n}. We view
f (·) ∼ GP(m(·), K (·, ·)), a priori, as a realization of aGaus-
sian process specified by its mean functionm(x) := E[ f (x)]
and covariance function

K (x, x ′) := E[( f (x) − m(x))( f (x ′) − m(x ′))].
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In the classical case (Rasmussen and Williams 2006),
the noise distribution is homoscedastic Gaussian ε(x) ∼
N (0, τ 2), and the priormean is zero,m(x) = 0.Given obser-
vations y1:n = [y1, . . . , yn] at inputs x1:n = [x1, . . . , xn],
the conditional distribution f |An is then another Gaussian
process, with posterior marginal mean ̂f (n)

Gsn(x∗) and covari-

ance v
(n)
Gsn(x∗, x ′∗) given by (throughout we use subscripts to

indicate the metamodel type, e.g., Gsn for Gaussian noise)

̂f (n)
Gsn(x∗) = k(x∗)[K + τ 2I]−1y1:n, (2.1)

v
(n)
Gsn(x∗, x ′∗) = K (x∗, x ′∗) − k(x∗)[K + τ 2I]−1k(x ′∗),(2.2)

with the 1 × n vector k(x∗) and n × n matrix K defined
by k(x∗) := K (x∗, x1:n) = [K (x∗, x1), ..., K (x∗, xn)], and
Ki, j := K (xi , x j ).

The posterior mean ̂f (n)
Gsn(x∗) is treated as a point estimate

of f (x∗) and the posterior variance s(n)
Gsn(x∗)2 = v

(n)
Gsn(x∗, x∗)

as the uncertainty of this estimate. We use f to denote the
random posterior vector f (x1:n)|An .

Model Fitting: In this article, we model the covariance
between the values of f at two inputs x and x ′ with the
squared exponential (SE) function:

Kse(x, x
′) := σ 2

se exp

(

−
d
∑

i=1

(xi − x ′i )2

2θ2i

)

, (2.3)

defined in terms of the hyperparameters ϑ = {σ 2
se, θ1, ..., θd ,

τ } known as the process variance and lengthscales, respec-
tively. Simulation variance τ is also treated as unknown and
part of ϑ . To estimate the hyperparameters ϑ , we use the
marginal likelihood

p(y1:n|x1:n,ϑ) =
∫

p(y1:n|x1:n, f)p(f |ϑ)df . (2.4)

Onemay similarly express theposterior over thehyperparam-
etersϑ , where p(y1:n|x1:n,ϑ) plays the role of the likelihood.
To avoid expensiveMCMC integration,we use themaximum
likelihood (ML) estimatêϑ which maximizes the likelihood
(2.4). Given the estimated hyperparameters ̂ϑ , we take the
posterior of f as p(f |y1:n, x1:n,̂ϑ). The samemethod is used
for all metamodels throughout this article.

Remark: In the present article, we target the non-Gaussian
aspects, in particular the likely heavy-tailed property of simu-
lation noise.A complementary strand of the literature focuses
on heteroscedastic simulation variance; see the stochastic
kriging approach of Ankenman et al. (2008) and the earlier
works by two of the authors (Binois et al. 2018, 2019).

2.2 Gaussian process regression with Student t noise

Taking the noise term εi as Gaussian is widely used since
the marginal likelihood is then analytically tractable. In a
stochastic simulation setting, however, the exact distribution
of the outputs relative to their mean is unknown and often is
clearly non-Gaussian. Amore robust choice is to assume that
εi has a Student-t distribution (Jylänki et al. 2011). In partic-
ular, this may work better when the noise is heavy-tailed by
making inference more resistant to outliers (O’Hagan 1979).
In the resulting t-GP formulation, εi is assumed to be t-
distributed with variance τ 2 and ν > 2 degrees of freedom.
(The latter is treated as another hyperparameter.) Using the
Gamma function Γ , the marginal likelihood of observing
y1:n can be written as

ptGP(y1:n|x1:n, f) =
n
∏

i=1

Γ ((ν + 1)/2)

Γ (ν/2)
√

νπσn

×
(

1 + (yi − fi )2

νσ 2
n

)−(ν+1)/2

.

(2.5)

The likelihood ptGP(y1:n|x1:n, f) is no longer Gaussian,
and integrating (2.5) against the Gaussian prior p( f |ϑ) is
intractable; we therefore use the Laplace approximation (LP)
method (Vanhatalo et al. 2009) to calculate the posterior.
A second-order Taylor expansion of log ptGP(f |x1:n, y1:n)
around its mode, f̃ (n)

tGP := argmaxf ptGP(f |x1:n, y1:n), gives
a Gaussian approximation

ptGP(f |x1:n, y1:n) ≈ qtGP(f |x1:n, y1:n)
= N

(

f̃ (n)
tGP, ˝

−1
tGP

)

, (2.6)

where ˝tGP is the Hessian of the negative conditional log
posterior density at f̃ (n)

tGP:

˝tGP = −∇2 log ptGP(f |x1:n, y1:n)|f=f̃(n)
tGP

= K−1 + WtGP, (2.7)

and WtGP = −∇2 log ptGP(y1:n|f, x1:n)|f=f̃(n)
tGP

is diagonal,

since the likelihood factorizes over observations.
Using (2.6), the approximate posterior distribution is also

Gaussian f (x∗)|An ∼ N (̂f (n)
tGP(x∗), s2tGP(x∗)), defined by its

mean ̂f (n)
t (x∗) and covariance v

(n)
tGP(x∗, x ′∗):

̂f (n)
tGP(x∗) = k(x∗)K−1 f̃ (n)

tGP, (2.8)

v
(n)
t (x∗, x ′∗) = K (x∗, x ′∗)

− k(x∗)[K + W−1
tGP]−1k(x ′∗). (2.9)

Note the similarity to (2.1)–(2.2): With Student-t likelihood,
the mode f̃ (n)

tGP plays the role of y1:n and W−1
tGP replaces
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the noise matrix τ 2I. Critically, the latter implies that the
posterior variance is a function of both designsx1:n andobser-
vations y1:n .

2.3 Gaussian process classification

Our target in (1.1) is to learn where the mean response is
positive, which is equivalent to classifying each x ∈ D as
belonging either to S or to N . Assuming that ε(x) is sym-
metric, {x ∈ S} = { f (x) ≥ 0} = {P(Y (x) > 0) > 0.5}.
This motivates us to consider the alternative of directly mod-
eling the response sign (rather than overall magnitude) via a
classification GPmodel (Cl-GP) (Williams and Barber 1998;
Rasmussen and Williams 2006). The idea is to model the
probability of a positive observation Y (x) by using a probit
regression: P(Y (x) > 0|x) = �(Z(x)), with �(·) the stan-
dard normal cdf.We follow the notations used by Rasmussen
andWilliams (2006) to formulate the Cl-GP. Other link func-
tions can also be used to model the probability: For example,
Williams and Barber (1998) used logistic regression with
P(Y (x) > 0|x) = 1

1+e−Z(x) . The latent classifier function is
taken as the GP Z ∼ GP(0, K (·, ·)). After learning Z , we
then set ̂S = {x ∈ D : ̂Z(x) > 0}.

Remark: Cl-GP fundamentally recovers the “median-
zero” level set where {x : P(Y (x) ≥ 0) = 0.5}. In cases
where the noise is skewed, the recovered Cl-GP would there-
fore be biased relative to the level set {x : f (x) ≥ 0}. In that
situation, use of Cl-GP could be viewed as a bias-variance
trade-off.

To compute the posterior distribution of Z conditional
on An , we use the fact that for an observation (xi , yi ) and
conditional on zi = Z(xi ), the likelihood of yi > 0 is
�(zi )1{yi≥0} + (1− �(zi ))1{yi<0}. To simplify notation, we
use Y̌ (x) = sign Y (x) ∈ {−1, 1} to represent the signed
responses driving Cl-GP, leading to pCl( y̌1:n|z, x1:n) =
∏n

i=1 �(y̌i zi ). The posterior of the latent z = Z(x1:n) is
therefore

pCl(z|x1:n, y̌1:n) = p(z|x1:n)∏n
i=1 �(y̌i zi )

p( y̌1:n|x1:n)
. (2.10)

Similar to t-GP, we follow the implementation described
inWilliams and Barber (1998) and Rasmussen andWilliams
(2006) anduse aLaplace approximation for the non-Gaussian
pCl(z|x1:n, y̌1:n) in Eq. (2.10) (details to be found in Supple-
mentary Material Section B). The posterior mean for Z(·)
at x∗ is then expressed by using the GP predictive mean
equation (2.1) and LP approximation (B.1 of Supplementary
Material):

ẑ(n)(x∗) = k(x∗)K−1z̃(n), (2.11)

v
(n)
Cl (x∗, x ′∗) = K (x∗, x ′∗) − k(x∗)[K + V−1]−1k(x ′∗).

(2.12)

We see the same algebraic structure, with z̃(n) a stand-in for
y1:n in (2.1) and V−1 a stand-in for τ 2I in (2.2).

2.4 Student-t process regression with Student t
noise

Instead of just adding Student-t likelihood to the obser-
vations, Shah et al. (2014) proposed t-processes (TPs) as
an alternative to GPs, deriving closed-form expressions for
the marginal likelihood and posterior distribution of the t-
process by imposing an inverse Wishart process prior over
the covariance matrix of a GP model. They found the t-
process to be more robust to model misspecification and
to be particularly promising for BO as TPs retain most of
the appealing properties of GPs, including analytical expres-
sions, with increased flexibility.

Dealing with noisy observations is less straightforward
with TPs, since the sum of two independent Student-t dis-
tributions has no closed form. Shah et al. (2014) showed
that this drawback can be circumvented by incorporat-
ing the noise directly in the kernel. The corresponding
data-generating mechanism is taken to be multivariate-t
y1:n ∼ T

(

ν,m(x1:n),K + τ 2I
)

, where the degrees of free-
dom are ν ∈ (2,∞). The posterior predictive distribution is

then f (x∗)|An ∼ T
(

ν + n, ̂f (n)
TP (x∗), v(n)

TP (x∗, x∗)
)

, where

(Shah et al. 2014)

̂f (n)
TP (x∗) = k(x∗)[K + τ 2I]−1y1:n, (2.13)

v
(n)
TP (x∗, x ′∗) = ν + β(n) − 2

ν + n − 2

{

K (x∗, x ′∗)

−k(x∗)[K + τ 2I]−1k(x ′∗)
}

, (2.14)

with

β(n) := y
1:n[K + τ 2I]−1y1:n .

Comparing with the regular GPs, we have the same
posterior mean ̂f (n)

TP (x∗) = ̂f (n)
Gsn(x∗), but the posterior

covariance now depends on observations y1:n and is inflated:
v

(n)
TP (x∗, x ′∗) = ν+β(n)−2

ν+n−2 v
(n)
Gsn(x∗, x ′∗). Moreover, the latent

function f and the noise are uncorrelated but not indepen-
dent. Assuming the same hyperparameters, as n goes to
infinity, the above predictive distribution becomes Gaussian.
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Inference of TPs can be performed similarly as for a GP,
for instance, based on the marginal likelihood:

pTP(y1:n|x1:n,ϑ) = Γ (ν+n
2 )

((ν − 2)π)
n
2 Γ (ν

2 )
|K|−1/2

×
(

1 + y
1:nK−1y1:n

ν − 2

)− ν+n
2

. (2.15)

One issue is estimation of ν, which plays a central role
in the TP predictions. It is found in Shah et al. (2014) that
restricting ν to be small whenmaximizing (2.15) is important
in order to avoid degenerating to the plain GP setup.

2.5 Metamodel performance for level set inference

To evaluate the performance of different metamodels, we
consider severalmetrics. The first statistic is the error rateER
based on the loss function L defined in Eq. (1.3), measuring
the distance between the level set S and its estimate ̂S:

ER := μ(SΔ̂S)

=
∫

D
I
[

sign f (x) �= sign ̂f (x)
]

μ(dx).
(2.16)

For Cl-GP, we replace f (x) with Z(x), namely use ER =
∫

D I
[

sign Z(x) �= sign ẑ(x)
]

μ(dx).
The error rate ER evaluates the accuracy of the estimated

̂S when the ground truth is known. In a realistic case study
when the latter is unavailable, we replace R by its empir-
ical counterpart, based on quantifying the uncertainty in ̂S
through the associated uncertainty of ̂f . Following Azzi-
monti et al. (2016), we define the integrated posterior error
E as the expected distance in measure between the random
set S|A and ̂S:

E := E
[

μ(SΔ̂S)|A] =
∫

D
Ē(x)μ(dx), (2.17)

with local posterior error Ē(x) calculated by using (2.1) and
(2.2):

Ē(x) := E
[

I[sign f (x) �= sign ̂f (x)]|A]

=
∫

R

I[sign f (x) �= sign ̂f (x)]p( f (x)|A)d f (x)

= �

(−|̂f (x)|
s(x)

)

. (2.18)

The local posterior error Ē(x) is the posterior probability
of wrongly classifying x conditional on the training dataset
A. It is intrinsically tied to the point estimate ̂f (x) and the
associated posterior variance s(x)2 through the Gaussian

uncertainty quantification. For TP, the predictive distribu-
tion is Student-t , so that the Gaussian cdf � is replaced with
survival function. For Cl-GP, we replace ̂f (x) with ẑ(x) in
(2.18).

Uncertainty Quantification: To quantify the overall
uncertainty about S (rather than local uncertainty about
f (x)), a natural criterion is the volume of the credible band
C I α

∂S that captures inputs x whose sign remains ambiguous
given A. Given a credibility level α (e.g., α = 0.05), we
define

C I α
∂S

(n) :=
{

x ∈ D : |̂f (n)(x)| ≤ z1− α
2
s(n)(x)

}

, (2.19)

where z1− α
2
is the appropriateGaussian/Student-t α-quantile.

Thus (2.19) is the region where the sign of f is non-constant
over the posterior α-CI of f . Observe that x ∈ C I α

∂S
(n) ⇔

Ē(x) > α
2 . Noting that the posterior error is Ē(x) = 0.5

for x ∈ ∂S, we have the approximation
∫

D Ē(x)dx �
∫

D[0.5 · 1Ē(x)>0.5α + 0 · 1Ē(x)<0.5α]dx = 0.5μ(C I α
∂S). We

have confirmed empirically that the area of C I α
∂S is roughly

proportional to the integrated posterior error E . We alsomen-
tion that E is equivalent to the Vorob’ev deviation Chevalier
et al. (2013) with a median Vorob’ev threshold.

3 Sequential design

We estimate the level set S in a sequential design setting that
assumes that f is expensive to evaluate, for example, because
of the complexity of the underlying stochastic simulator.
Therefore, efficient selection of the inputs x1:n is important.
In sequential design, at each step the next sampling location
xn+1 is selected given all previous measurements. We fol-
low the standard approach to sequential design that is based
on greedily optimizing a posterior-based acquisition func-
tion I as in (1.5). These strategies got popularized thanks
to the success of the expected improvement (EI) criterion
and the associated efficient global optimization (EGO) algo-
rithm (Jones et al. 1998). The basic loop for sequential design
is:

– Initialize An0 = {(xi , yi ), 1 ≤ i ≤ n0}.
– Loop for n = n0+1, . . . , N .

– Choose the next input xn+1 = argmaxx∈M In(x),
and sample yn+1 = Y (xn+1).

– Augment An+1 = An
⋃{(xn+1, yn+1)}.

– Update ̂S(n+1) with An+1.

We now propose several acquisition functions In(x) in
Eq. (1.5). The key plan is to target regions close to the bound-
ary ∂̂S. A second strategy is to use the look-ahead posterior
standard deviation s(n+1) conditional on sampling at x , in
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order to assess the corresponding informationgain. This links
the constructed design to themetamodel for f , since different
surrogate architectures quantify uncertainty differently.

3.1 Contour upper confidence bound

The first metric, dubbed Contour Upper Confidence Bound
(cUCB), stems from the Upper Confidence Bound (UCB)
strategies proposed by Srinivas et al. (2012) for Bayesian
optimization. The idea of UCB is to express the exploitation–
exploration trade-off through the posterior mean ̂f (x) and
standard deviation s(x). Following the spirit of UCB, cUCB
blends theminimization of |̂f (n)(x)| (exploitation)withmax-
imization of the posterior uncertainty s(n)(x) (exploration):

IcUCB
n (x) :=

{

−|̂f (n)(x)| + γ (n)s(n)(x)
}

μ(x), (3.1)

where γ (n) is a step-dependent sequence of weights. Thus,
cUCB targets inputs with high uncertainty (large s(n)(x))
and close to the boundary ∂̂S (small |̂f (n)|), additionally
weighted by μ(·). Small γ (n) leads to aggressive sampling
concentrated along the estimated ∂̂S; large γ (n) leads to
space-filling sampling that effectively minimizes the ulti-
mate integrated mean-squared error. Thus, the choice of γ ’s
is critical for the performance; in particular, γ (n) should
be increasing to avoid being trapped in local minima of
|̂f (n)(x)|. In the original application to BO, Srinivas et al.
(2012) proposed γ (n) = C log n and showed that for a
certain choice of C , one can then control with high prob-
ability the respective cumulative regret. A constant choice of
γ (n) = 1.96 corresponds to the Straddle scheme in Bryan
et al. (2006) and leads to In(x) ≥ 0 ⇔ x ∈ C I 0.95(∂S).
Gotovos et al. (2013) employed γ (n) = 3 for a confidence
region instead of confidence interval as in Straddle and (3.1),
and Bogunovic et al. (2016) suggested γ (n) = √

log(|D|n2);
both papers mention that the recommendation in Srinivas
et al. (2012) is too conservative and tends to over-exploration.
Based on our experiments (see Supplementary Material Sec-
tion A), we recommend to adapt γ (n) to the relative ratio
between ̂f (n)(x) (for steeper response surfaces, γ should be
larger) and s(n)(x). (γ needs to rise as posterior uncertainty
decreases.). Our recipe is

γ (n) = IQR(̂f (n))

3Ave(s(n))
, (3.2)

where Ave(s(n)) denotes the average of posterior standard
deviation and IQR is the inter-quantile range of ̂f (n) over D.
This keeps both terms in (3.1) comparable as n changes.
In Supplementary Material Section A, we investigate the
performance of cUCB with different γ (n)’s, see Table 1 in
Supplementary Material. We observe that (1) there is no sin-

gle choice that consistently performs best; (2) the adaptive
γ (n) is most frequently the best, achieving the smallest error
rate in roughly half the cases. Note that since s(n) decreases
in n (signal-to-noise ratio increases over time), (3.2) makes
γ (n) increase in n, which is consistent with the theoretical
results of Srinivas et al. (2012).

Remark 1 The local posterior error Ē(x) as defined in
Eq. (2.18) could be directly used as an acquisition function,
i.e.,

ILPPM
n (x) ≡ Ē(x) = �

(

− |̂f (n)(x)|
s(n)(x)

)

. (3.3)

This Local Posterior Probability ofMisclassification (LPPM)
acquisition function is similar to the sequential criteria in
Echard et al. (2010), Ranjan et al. (2008), Bichon et al.
(2008), and Bryan et al. (2006), all based on the idea of
sampling at x where the event { f (x) ≥ 0}|An is most uncer-
tain. However, (3.3) is not suitable for our purposes since it
is maximized across the entire ∂̂S (namely ILPPM

n (x) = 0.5
for any x where ̂f (n)(x) = 0), so does not possess a unique
maximizer as soon as ∂̂S is non-trivial. One potential solu-
tion could be to maximize (3.3) over a finite candidate set,
which, however, requires significant fine-tuning.

3.2 Integrated stepwise uncertainty reduction

In order to take into account the spatial structure of D, we
next consider a criterion that targets the global reduction
in the uncertainty of̂S. The integrated Stepwise Uncertainty
Reduction metric (SUR), first proposed by Bect et al. (2012),
is linked to the posterior error E from Sect. 2.5:

ISUR
n (x) := E (n) − EY (x)[E (n+1)|xn+1 = x]

= E (n) − EY (x)

[ ∫

u∈D
�

( −|̂f (n+1)(u)|
s(n+1)(u)|xn+1=x

)

μ(du)

]

.

(3.4)

Crucially, ISU R ties the selection of xn+1 to the look-
aheadmean ̂f (n+1)(xn+1) and look-ahead standard deviation
s(n+1)(xn+1) that appear on the right-hand side of (3.4).
To compute the integral over Y (x), we replace ̂f (n+1)(x)
with its average ̂f (n)(x) = En[ f (x)] = En[En+1[ f (x)]] =
En[̂f (n+1)(x)]. Similarly, we plug in the approximate one-
step-ahead standard deviation ŝ(n+1), cf. Supplementary
Material Section C (especially Equations (C.1), (C.13) and
(C.15)) for s(n+1)(x). Lastly, we replace the integral over D
with a sum over a finite subset D of size M leading to

̂ISUR
n (x) = −

∑

xm∈D
�

( −|̂f (n)(xm)|
ŝ(n+1)(xm)|xn+1=x

)

μ(xm). (3.5)
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Then, ISU R(x) can be viewed asmeasuring the overall infor-
mation gain about S from sampling at x . The motivation
behind SUR is to minimize the expected one-step-ahead
posterior error E , which would correspond to 1-step Bayes-
optimal design.

Remark 2 In the casewhere εi ∼ N (0, τ 2), Chevalier (2013)
calculated an analytical expression for EY (x)

[

E (n+1)
]

, see
Supplementary Material Section E. That computation does
not work with non-Gaussian noise, or for Cl-GP and TP.
In Supplementary Material Section E, we compare the two
resulting expressions and find that the approximate (3.4) with
ŝ(n+1)(x)performsgenerally better, being less sensitive to the
noise structure.

3.3 Gradient SUR

Our third strategy focuses on quickly reducing the posterior
error by comparing the current Ē(xn+1) given An and the
expected Ē(xn+1) conditional on the one-step-ahead sam-
ple, An ∪ {xn+1, yn+1}. This is conceptually similar to SUR
above but considers just the local information gain, drop-
ping the computationally intensive integral over D and only
integrating out the effect of Y (xn+1) on Ē(xn+1):

IgSUR
n (x) := {ILPPM

n (x) − EY (x)

[

ILPPM
n+1 (x)

]

}μ(x)

=
{

�

(

− |̂f (n)(x)|
s(n)(x)

)

− EY (x)

[

�

(

− |̂f (n+1)(x)|
s(n+1)(x)

)]

}

μ(x). (3.6)

The name gSUR is because (3.6) is related to the knowledge
gradient strategy of Frazier et al. (2008), modified to target
contour-finding. We apply the same approximation as for
SUR to simplify the expectation over Y (x)

̂IgSUR
n (x) =

{

�

(

− |̂f (n)(x)|
s(n)(x)

)

− �

(

− |̂f (n)(x)|
ŝ(n+1)(x)|xn+1=x

)}

μ(x).

(3.7)

Note that if x is such that ̂f (n)(x) = 0, then both terms above
are 1/2 and IgSUR

n (x) = 0. Thus, the gSUR criterion will
not place samples directly on ∂̂S, but will aim to bracket the
zero contour. To our knowledge, gSUR is a new criterion for
sequential level set estimation that interpolates between the
local cUCB and the integrated SURwhile still making use of
the predictive local gain in information about the contour. As
for SUR, one may utilize Equation (E.2) in Supplementary
Material for IgSUR under the implicit assumption that the
simulation noise is Gaussian.

3.4 Targetedmean squared error

As a last alternative, we utilize the targeted mean squared
error (tMSE) criterion. tMSE is a localized form of the tar-
geted IMSE criterion in Picheny et al. (2010)

I tIMSE
n (x) :=

∫

s(n)(x)2 · W tMSE
n (x)μ(dx), (3.8)

and is defined as

I tMSE
n (x) := s(n)(x)2 · W tMSE

n (x)μ(x), (3.9)

where W tMSE
n (x) := 1√

2πs(n)(x)
exp

(

− ̂fn(x)2

2s(n)(x)2

)

.

(3.10)

The tMSE criterion upweighs regions close to the zero
contour through the weight function W tMSE

n (x) which mea-
sures the distance of x to ∂̂S(n) using the Gaussian posterior
density N (̂f (n), s(n)(x)2). Like cUCB, tMSE is based only
on the posterior at step n and does not integrate over future
Y (x)’s. The tMSE is implemented in the KrigInv R pack-
age. Similar to cUCB and gSUR, tMSE picks the input in
the region close to the zero contour at step n and favors
exploitation, while SUR and tIMSE pick the input that will
minimize the integrated one-step-ahead uncertainty over the
entire space and is explorative. Computationally, the local-
ized criteria are more efficient since they skip the expensive
integration. In this article, we use SUR as a representative
of the exploratory criteria and compare its performance with
the other localized criteria.

Remark 3 In Picheny et al. (2010), an additional parameter
σε was added to the definition of W tMSE

n (x) by replacing
s(n)(x) everywhere with

√

s(n)(x)2 + σ 2
ε . Larger σε yields

more space-filling designs as W tMSE
n (x) becomes flatter.

Since Picheny et al. (2010) dealt with deterministic exper-
iments, σε was necessary to ensure that W tMSE

n (x) is well
defined at existing x1:n and the recommendation was for σε

to be 5% of the range of f . In our case, s(n)(x) is intrinsically
bounded away from zero and (3.10) works well as is. Addi-
tional experiments (available upon request) indicate that the
performance of (3.9) is not sensitive to σε , so tominimize the
number of tuning parameters we stick to σε = 0 in (3.10).

In the TP case, for cUCB, gSUR and SUR, we replace the
standard normal cdf �(·) appearing in the formulas by its
Student-t counterpart (with the estimated degrees of freedom
νn). For tMSE, to maintain tractability, we keep the same
expression (3.10) for the weights W tMSE.
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3.5 Illustration

For instructive purposes, we consider a one-dimensional case
where we use the Gaussian observation GP to learn the sign
of the quadratic f (x) = x2 − 0.752 on D = [0, 1], where
S = [0, 0.75] andwith the unique zero contour at ∂S = 0.75.
The initial design x1:10 consists of n = 10 inputs drawn
according to Latin hypercube sampling (LHS). The obser-
vations are Y (x) = f (x) + ε, where ε ∼ t3(0, 0.12). In
the top plot in Fig. 1, we plot the true f (·), the posterior
mean ̂f (100)(·), and the associated 95%-CI. We also show
the credible band for ∂̂S; in the respective bottom panel, we
plot the acquisition functions IcUCB

n (·), IgSUR
n (·), ISUR

n (·)
and I tMSE

n (·) as defined in Eqs. (3.1), (3.7), (3.5), and (3.9).
Comparing the acquisition functions of the four criteria,

we find that, besides SUR, all of the others have maxima
within the shaded credible interval of the boundary C I 0.95∂S .
In practice, we care only about the maximizer of the acquisi-
tion function, rather than its full shape, since the former drives
the selection of the next sample xn+1. The xn+1’s selected by
cUCB and tMSE criteria are close. For the gSUR criterion,
because IgSUR

n (x) = 0 at ∂̂S, there are two local maxima
with a “valley” between them. The interval between the two
local maxima is roughly the credible interval C I 0.95∂S for the
boundary (2.19). Both cUCB and tMSE select a location very
close to the boundary ̂f (n)(xn+1) � 0.We note that SUR has
the flattest acquisition function among all the criteria, con-
sistent with the idea that it will tend to be more explorative.

Fig. 1 Comparison of acquisition functions.Upper panel: true function
f = (x + 0.75)(x − 0.75) (black dashed line), the posterior mean ̂f (·)
(solid line) and 95% C I α

f (shaded area) based on observed samples
(x1:100, y1:100) (blue dots). Along the x-axis, we also show the credible
interval of the partition boundary C I α

∂S (gray solid line) relative the
true zero contour S = [0, 0.75] (red triangle). Lower panel: acquisition
functions In(·) for cUCB, gSUR, SUR and tMSE criteria, with vertical
lines marking the respective maxima argmaxx In(x)

After using the various acquisition functions to select xn+1

at n = 11, . . . , 100, we show in Fig. 2 the resulting designs
x1:n and the final estimate ̂f (100) with aGaussian observation
GP metamodel. As desired, all methods target the true zero
contour at ∂S = 0.75. As a result, the posterior variance
s(n)(x)2 is much lower in this neighborhood; in contrast,
especially for tMSE and cUCB, few samples are taken far
from x = 0.75, and the posterior uncertainty there remains
high. The true zero contour is within the estimated posterior
CI for all the criteria.

The bottom row in Fig. 2 shows the sampled location xn as
a function of step n. We observe that cUCB and tMSE heav-
ily concentrate their search around the zero contour, leading
to few samples (and consequently relatively large posterior
errors E (n)) in other areas, and much wider posterior CIs for
these two criteria although the overall error rateER is compa-
rable. All criteria exhibit an “edge” effect; that is, besides the
desired zero contour x = 0.75, multiple samples are taken
close to the edges of the input space at x = 0 and x = 1. This
occurs due to the relatively large posterior variance s2(·) in
those regions (which arises intrinsically with any spatially-
based metamodel) that in turn strongly influences I in (3.1),
(3.7), (3.5) and (3.9). Inputs sampled by the gSUR criterion
bracket the contour ∂S from both directions, matching the
two-hill-and-a-valley shape of IgSUR in Fig. 1. We note that
the two sampling “curves” get closer as n grows, indicating
a gradual convergence of the estimated zero contour ∂̂S(n),
akin to a shrinking credible interval of ̂S(n). The SUR cri-

Fig. 2 Top row: Fitted metamodel ̂f (100) (solid red line) and its 95%-
CI (shaded region) versus the true f = (x + 0.75)(x − 0.75) (dashed
black), for each of the four design strategies. The estimated 95% CI
for the zero contour ∂S is marked on the x-axis with a gray interval;
red triangle indicates the true zero contour ∂S = 0.75. Bottom row:
sampled inputs xn (on the x-axis to match the top row) as a function
of step n = 1, . . . , 100 (on the y-axis, moving from top to bottom)
for cUCB, tMSE, gSUR and SUR criteria. The rug plots at the bottom
visualize the overall distribution of x1:n at n = 100. The first ten inputs
are selected using a (fixed-across schemes) LHS design on D = [0, 1]
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terion generates a much more diffuse design: It engages in
more exploration and is less dependent on the current lev-
els of the posterior error E . This eventually creates a flatter
profile for Ē(x).

The preceding discussion considered a single metamodel
choice for f . Although Figs. 1 and 2 only present results of
one run for each design with plain GP, the features observed
are generic. Other metamodels will generate different design
features; in particular, sensitivity to ε will lead to a differ-
ent mix of exploration (xn’s far from the zero contour) and
exploitation even for the same choice of a In criterion. Fig-
ures 6 and 8, as well as Table 3, emphasize our message that
one must jointly investigate the combinations of I(·) and ̂f
when benchmarking the performance of the algorithm.

4 Synthetic experiments

4.1 Benchmark construction

As synthetic experiments, we consider four benchmark prob-
lems in dimension d = 1, 2 and 6. For the latter two, we
borrow the widely used Branin-Hoo 2-D, Michalewicz 2-D
and Hartman 6-D functions; see, for example, Picheny et al.
(2013b). The original functions have been rescaled to map
their sample space D onto [0, 1]d ; see Table 1.

The latent functions are chosen to cover a variety of
problem properties. The quadratic f in 1-D is strictly mono-
tonically increasing, yielding a single boundary ∂S. The
original Branin-Hoo function (Picheny et al. 2013b) is mod-
ified so that f is increasing in x1 and the zero-level set has a
non-trivial shape in x2. The Hartman is a multimodal func-
tion with a complex zero contour. The parameters in the
originalHartman function described, for instance, in Picheny

et al. (2013b) are adjusted to reduce the “bumps” in the zero
contour and make the problem more appropriate for the sign
classification task. These three functions are used to provide
a comprehensive comparison between all metamodels.

The Michalewicz function features two intersecting “val-
leys” surrounded by plateaus and is known to be challenging
for GP Bayesian optimization because the spatial correlation
is high along the plateaus, but very low (response almost
discontinuous) around the local minima. This implies a spa-
tially non-stationary response covariance which makes a
Gaussian-noise GP highlymisspecified. By construction, Cl-
GP focuses only on the sign of f (·) and so should outperform
level set estimation for such a case study. We used this func-
tion to compare performance of classification and regression
GPs.

A large number of factors can influence the performance
of metamodels and designs. In line with the stochastic sim-
ulation perspective, we concentrate on the impact of the
simulation noise and consider four observation setups. These
cover a variety of noise distributions and signal-to-noise ratio
(SNR), measured through the proportion of standard devia-
tion στ to the range R f of the response. The first two settings
use Student-t distributed noise, with (i) low στ and (ii) high
στ . The third setting uses (iii) Gaussian mixture noise to
further test misspecification of ε. Lastly, we consider the
challenging case of (iv) a heteroscedastic Student-t noise
with state-dependent degrees of freedom. In total, we have
3×4×4×6 experiments (indexed by dimensionality, noise
setting, design heuristic and metamodel type).

Besides the noise distribution, we fix all other metamodel-
ing aspects. All schemes are initialized with n0 = 10d inputs
drawn from an LHS design on [0, 1]d and use the SE kernel
(2.3) for the covariance matrix K . To analyze for the vari-
ability due to the initial design and the noise realizations, we

Table 1 Response surfaces x �→ f (x) for synthetic experiments

Quadratic (1-D) f (x) = (x + 0.75)(x − 0.75)

with x ∈ [0, 1]
Modified Branin-Hoo (2-D) f (x) = 1

178

[(

x̄1 − 5.1(x̄2)2

4π2 + 5x̄2
π

− 20
)2 + (10 − 10

8π ) cos(x̄1) − 181.47
]

with: x̄1 = 15x1, x̄2 = 15x2 − 5, x1, x2 ∈ [0, 1]
Modified Michalewicz (2-D) f (x) = 8 ×

(

−∑2
i=1 sin(πxi ) sin20

(

iπ(xi )2
)+ 0.5

)

with x ∈ [0, 1]2
Modified Hartman6 (6-D) f (x) = −1

0.1

[∑4
i=1 Ci exp

(−∑6
j=1 a ji (x j − p ji )

2
)− 0.1

]

with: C = [0.2, 0.22, 0.28, 0.3]

a =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

8.00 0.50 3.00 10.00
3.00 8.00 3.50 6.00
10.00 10.00 1.70 0.50
3.50 1.00 8.00 8.00
1.70 6.00 10.00 1.00
6.00 9.00 6.00 9.00

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, p = 1
104

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1312 2329 2348 4047
1696 4135 1451 8828
5569 8307 3522 8732
124 3736 2883 5743
8283 1004 3047 1091
5886 9991 6650 381

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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Table 2 Stochastic simulation
setup for synthetic experiments Initial design Latin hypercube sampling of size n0 = 10d

Total budget n d = 1, n = 100; d = 2, n = 150; d = 6, n = 1000

Test set size M = |D| d = 1, M = 1000; d = 2, M = 500; d = 6, M = 1000

Noise setting for εi (i) t/small : t3(0, (0.1R f )
2)

(ii) t/large : t3(0, (0.5R f )
2)

(iii) Gsn/mix: 50/50 mix of N (0, (0.5R f )
2) and N (0, R2

f )

(iv) t/hetero : t6−4x1 (0, (0.4(4x
1 + 1))2)

R f ≡ maxx f (x) − minx f (x) = 1

perform 20 macro-runs of each design/acquisition function
combination. For each run, the same initial inputs are used
across all GP metamodels and designs; however, the initial
x1:n0 vary across runs.

Optimizationof the ImprovementMetric:Weemployed
the cUCB, SUR, tMSE and gSUR criteria to maximize
the improvement metric I and select the next input xn+1.
This maximization task is non-trivial in higher dimensions
because I is frequently multimodal and can be flat around
its local maxima. We use a genetic optimization approach
as implemented in the ga (genetic algorithm) function in
MATLAB using the default parameter settings. (We consid-
ered increasing the number of generations with no material
impact on results.) This is a global, gradient-free optimizer
that uses an evolutionary algorithm to explore the input space
D.

Evaluation of Performance Metrics: Recall that evalu-
ating the quality of ∂̂S is based on ER and E from (2.16)
and (2.17) that require integration over D. In practice, these
are computed based on a weighted sum over a finite D,
̂E := ∑M

m=1 �
(−|̂f (xm)|

s(xm )

)

μ(xm) for a space-filling sequence
D ≡ x1:M ∈ D of test points. In 1-D experiments, D was
an equispaced grid of size M = 1000. In higher dimensions,
to avoid the use of a lot of test points that are required to
ensure an accurate approximation, we adaptively pickD that
targets the critical region close to the zero contour. To do so,
we replace the integral with a weighted sum:

R � pc
M1

∑

x1:M1∈D1

I(sign f (xm) �= sign ̂f (xm))

+ (1 − pc)

M2

∑

x1:M2∈D2

I(sign f (xm) �= sign ̂f (xm)),

(4.1)

where M = M1 + M2 and the test locations x1:M1 and x1:M2

are subsampled from a large space-filling (scrambled Sobol)
sequence on D. Theweight pc determines the relative volume
of D1 and D2 = D\D1, where on D1 = {x : f (x) � 0}
we are close to the zero contour. In the experiments below,
we use M1 = 0.8M, M2 = 0.2M , and pc = 0.4, so that the
density of test points close to ∂S is six times relative to those

far from the zero contour. We employ the same strategy for
speeding the evaluation of the posterior error E .

Surrogate Inference: Values of hyperparameters ϑ are
crucial for a good performance of GP metamodels. We
estimate ϑ using maximum likelihood. Except for TP, all
models are fitted with the open source package GPstuff
(Vanhatalo et al. 2013) in MATLAB. TPs are fitted with the
hetGP (Binois et al. 2018) package in R, with procedures
matching the MATLAB ones as much as possible. Auxiliary
tests did not reveal any significant effects from using other
available tools for plain GPs and t-GP, such as GPML (Ras-
mussen and Nickisch 2010).

In principle, the hyperparameters ϑ change at every step
of the sequential design, in other words, wheneverAn is aug-
mented with (xn+1, yn+1). To save time, however, we do not
update ϑ at each step. Instead, we first estimate the hyperpa-
rameters ϑ based on the initial design An0 and then freeze
them, updating their values only every few steps. Specifically,
ϑ is re-estimated at steps n0+1, n0 +2, n0+4, n0 +8, n0 +
16, . . .. This is done solely for computational efficiency and
is driven by the fact that in later stages (n � 100), inferred
hyperparameters tend to change minimally step to step. We
observed minimal impact on accuracy from doing so.

The lengthscales θi are the most significant for surrogate
goodness of fit. A too-small lengthscale will make the esti-
mated ̂f look “wiggly” and might lead to overfitting, while
θi too large will fail to capture an informative shape of the
true f and hence S. Since our input domain is always [0, 1]d ,
we restrict θi ∈ [0.3, 2] ∀i to be on the order of the length of
the sample space D.

Computational Overhead:All the consideredmetamod-
els are computationally more demanding than the baseline
Gaussian GP. For t-GP and Cl-GP, additional cost arises due
to the Laplace approximation. TP necessitates estimation of
the parameter ν and also the computation of β in (2.14).
In the experiments considered, the respective computation
times were roughly double to triple relative to the Gaussian-
noise GP. In terms of sequential design, cUCB, tMSE and
gSUR have approximately equal overhead; SUR is signif-
icantly more expensive because it requires evaluating the
sum in (3.5). Note that all heuristics include two expensive
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steps: optimization for xn+1 and computation of ̂f (n) and s(n)

(and/or ŝ(n+1)).
Overall timing of the schemes is complicated because of

the combined effects of n (design budget), M (size of test
set), and the use of different software (some schemes run in
R and others in MATLAB). Most important, the ultimate com-
putation time is driven by the simulation cost of generating
Y (x)-samples, which is trivial in the synthetic experiments
but assumed to be large in the motivating context.

All of the computer programs that are used to produce
results in this section and Sect. 5 are uploaded on Zenodo
https://zenodo.org/record/4584456#.

4.2 Comparison of regression GPmetamodels

Figure 3 shows the boxplots of the error rate ER of ̂S(N )

at the final design (N = 100 in 1-D; N = 150 in 2-D;
N = 1000 in 6-D). The plots are sorted by noise settings and
design strategies, facilitating comparison between the dis-
cussed metamodels. In Table 3, we list the best metamodel
and design combination in each case. Several high-level
observations can be made. First, we observe the limitations
of the baseline Gaussian GP metamodel, which cannot toler-
ate too much model misspecification. As the noise structure
getsmore complex, the classical GP surrogate begins to show
increasing strain; in the last t/hetero setup, it is both unsta-
ble (widely varying performance across runs) and inaccurate,
with error rates upward of 30% on “bad” runs. In addition,
according to results shown in Table 3, across all of the twelve
cases, besides the 1-D experiment with t/small noise, the
Gaussian-noise GP never performs as the best metamodel.

This result is not surprising but confirms that the noise dis-
tribution is key for the contour-finding task and illustrates
the non-robustness of the Gaussian observation model, due
to which outliers strongly influence the inference.

Second, we document that the simple adjustment of using
Student-t observations significantly mitigates the above
issue. t-GP performs consistently and significantly better
than Gaussian-noise GP in essentially all settings. This
result is true even when both models are misspecified (the
Gsn/mix and t/hetero cases). The performance of t-GP
was still better (though not statistically significantly so)when
we tested it in the setting of homoscedastic Gaussian noise
(see Table 3 in SupplementaryMaterial Section F). The latter
fact is not surprising—t-GP adaptively learns the degrees-
of-freedom parameter ν and hence can “detect” Gaussian
noise by setting ν to be large. Conversely, in heavy-tailed
noise cases, the use of Student-t likelihood will effectively
ignore outliers (O’Hagan 1979) and thus produce more accu-
rate predictions than working with a Gaussian observation
assumption. We find that t-GP can handle complex noise
structures and offers a good choice for all-around perfor-
mance, making it a good default selection for applications.
It brings smaller error rate ER, more stable hyperparameter
estimation, less contour bias and tighter contour CI. More-
over, t-GP is significantly better than all the other GPs in
eight of the twelve setups, indicating that t-GP is essentially
the best out of all GP metamodels in most cases. Figure 4
shows the mean error rate ER (2.16) as a function of step
n in the 6-D t/large and t/hetero experiments. This illus-
trates the learning rates of different models and schemes as
data are collected. In both cases, t-GP starts frommore accu-

Fig. 3 Boxplots of final error
rate ER(n) from (2.16) across
designs (rows) and noise setups
(columns). Colors correspond to
different GP metamodels. Note
that x-axis limits are different
across columns. Top row is for
the 1-D experiment and design
size n = 100; middle row: 2-D
modified Branin-Hoo function
with n = 150; bottom row: 6-D
modified Hartman6 function
with n = 1000
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Table 3 Mean (w/standard deviation) error rate ER and corresponding best-performing sequential design heuristic for the 1-D exponential function,
2-D Modified Branin-Hoo function and 6-D Modified Hartman6 function synthetic case studies

Model t/small t/large Gsn/mix t/hetero

1-D Quadratic

GP tMSE 0.73% (0.60%) tMSE 3.24% (2.79%) cUCB 3.87% (3.17%) gSUR 15.68% (12.15%)

t-GP tMSE 0.80% (0.93%) tMSE 3.15% (1.83%) gSUR 3.28% (3.74%) gSUR 12.50% (9.05%)

TP cUCB 0.97% (0.84%) cUCB 5.93% (5.60%) tMSE 5.09% (4.40%) SUR 16.44% (10.14%)

Cl-GP tMSE 0.87% (0.64%) tMSE 3.39% (4.16%) cUCB 4.99% (3.77%) cUCB 8.83% (7.35%)

2-D Branin-Hoo

GP cUCB 1.78% (0.57%) gSUR 4.75% (1.95%) SUR 4.92% (1.86%) cUCB 10.36 % (3.94%)

t-GP cUCB 1.70% (0.29%) tMSE 3.95% (1.47%) SUR 4.10% (2.07%) tMSE 9.00% (8.66%)

TP tMSE 1.27% (0.41%) cUCB 4.79% (1.84%) SUR 5.19% (1.68%) cUCB 12.75 % (9.02%)

Cl-GP cUCB 1.56% (0.51%) cUCB 4.27% (1.59%) cUCB 5.71% (1.85%) tMSE 13.23% (7.74%)

6-D Hartman6

GP SUR 3.81% (0.34%) SUR 5.33% (0.54%) SUR 5.19% (0.70%) cUCB 11.67% (2.89%)

t-GP SUR 3.75% (0.40%) SUR 3.98% (0.47%) SUR 4.86% (0.67%) SUR 8.25% (1.60%)

TP SUR 1.25% (0.20%) cUCB 5.66% (1.98%) cUCB 4.88% (0.88%) cUCB 10.69% (2.34%)

Cl-GP cUCB 7.99% (4.69%) SUR 7.20% (0.66%) SUR 8.31% (2.44%) SUR 11.11% (2.20%)

Results are based on 20 macro-replications of each scheme. Best combinations for each column are indicated in bold

Fig. 4 Error rate ER(n) (2.16)
as a function of step n in the 6-D
t/large and t/hetero settings.
We compare four metamodels
(colors) and two DoE’s (line
types). We plot mean results
across 20 macro-replications of
each scheme
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rate estimation, especially in t/hetero case where the initial
error rate ER for t-GP is approximately two-thirds of that
for GP. It learns the contour of interest over iterations, has a
fast decreasing error rate ER and ends up with the smallest
error rate in both cases.

Third, we also inspect the performance of the TP meta-
model. As shown in Table 3, TP is the best in two cases
out of the twelve, both of which are with the t/small noise.
We note that TP works worst in t/hetero cases, having both
large error rate ER and posterior error E . Therefore, TP does
not work well in cases with low SNR or greatly misspecified
noise. This may be related to the parameterization of TPs,
with noise handled in the kernel, which seems less robust to

misspecification.Also, sinceTPs revert toGPs as n increases,
the advantage of flexibility offered by themodeling decreases
as iterations goes and thusmay not last enough for lowSNRs,
which require more samples. It is apparent, for instance, in
Fig. 4, where the learning rate at early stage (step < 250) is
larger than for its counterparts.

Table 3 shows that there is no one overall “best” design
for all metamodels across all cases. However, it does sug-
gest some design/metamodel “combos” that work better than
others. The classification GPs seem to prefer more aggres-
sive designs, such as cUCB and tMSE, while t-GP prefers
more exploratory designs, such as SUR, especially in higher
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dimension. Additional discussion regarding the relative per-
formance of design heuristics is in Sect. 4.4.

4.3 Classification GPs for level set estimation

We generally find that classification GPs are not the best
metamodel. Namely, Cl-GPwith cUCBdesign has the small-
est error rate only in one (t/hetero in 1-D) out of 12 cases
shown in Table 3. However, Cl-GP is often competitive and
is better than Gaussian-noise GP in some cases with tMSE
and cUCB designs (except for the 6-D cases, where the error
rate ER of cUCB is not significantly different from that of
SUR, although mean of SUR is slightly smaller). There is
significant improvement for models with low SNR; the only
exception is for the low-noise setup where Cl-GP underper-
forms baseline GP. Figure 4 shows that in the 6-D t/hetero
case, Cl-GP achieves error rate ER which is two-thirds of
ER for GP and TP at step 0. Also, it enjoys faster reduc-
tion in ER(n), while the design size n is small. This matches
the intuition that employing classification “flattens” the sig-
nal by removing outliers. By considering only the sign of
the response, the classification model disregards its mag-
nitude, simplifying the noise structure at the cost of some
information loss. The net effect is helpful when the noise
is misspecified or too strong so as to interfere with learning
the mean response. It is detrimental if the above gain is out-
weighed by the information loss, as apparently happens in
the 6-D experiments when the design size n is large.

Wealso observe that the stability ofCl-GP is highly depen-
dent on the design: Some designs create large across-run
variations in performance. We hypothesize that this is due to
a more complex procedure for learning the hyperparameters
of Cl-GP; therefore, designs that are not aggressive enough
to explore the zero contour region (such as gSUR) face dif-
ficulties in estimating ϑ . As a result, relative to t-GP, Cl-GP
has larger sampling variances.

To provide better intuition regarding the settings where
Cl-GP works best, we test the performance of classification
GP and regression GP on the 2-D modified Michalewicz
function with Gsn/mix noise. Table 4 and Fig. 5 present
the results comparing Cl-GP with cUCB against t-GP with
SUR. The latter schemewas chosen as being the typical best-
performing combination. We evaluate ER with budgets of
n = 150 and n = 500. In both cases, Cl-GP performs bet-
ter than t-GP, achieving significantly smaller error rate ER.
This is visualized in Fig. 5 that shows the estimated contours
∂̂S at n = 500. While both models detect the vertical zero
contour, only Cl-GP identifies the horizontal boundary and
samples inputs in that neighborhood. Figure 5 also shows the
error rate ER as a function of step for Cl-GP and t-GP. Cl-
GP starts with a smaller ER and higher learning rate for both
cUCB and SUR in the early stage (step < 200) compared

Table 4 Mean (w/standard deviation) error rate ER for Cl-GP and t-GP
with cUCB and SUR in 2-D modified Michalewicz synthetic experi-
ments

Design Cl-GP t-GP

Budget n = 150

cUCB 10.77% (2.75%) 13.14% (5.00%)

SUR 13.97% (1.30%) 15.50% (3.55%)

Budget n = 500

cUCB 6.72% (2.33%) 8.20% (0.92%)

SUR 10.60% (1.81%) 9.57% (1.41%)

Results are based on 20 macro-replications of each scheme

with t-GP. Cl-GP with cUCB ends up with the most accurate
estimate, echoing the results shown in Table 4.

In conclusion, the modified Michalewicz function illus-
trates the potential gain of using Cl-GP over regression GPs
where the covariance is not spatially stationary. The non-
stationary space also benefits the localized criteria over the
global ones, since the global change might be neutralized
and may not provide an exact measure of uncertainty. This
also explains why Cl-GP performs significantly better with
cUCB than SUR.

4.4 Designs for contour-finding

A key goal of our study is qualitative insights about experi-
mental designs most appropriate for noisy level set estima-
tion. Through identifying the best-performing heuristics, we
get an inkling regarding the structure of near-optimal designs
for (1.1). In this section, we illustrate the latter within a 2-D
setup that can be conveniently visualized. Taking the t/large
experiment as an example, in Fig. 6 we plot the fitted zero
contour ∂̂S at N = 150 together with the chosen inputs
x1:150 across the six metamodels and the four I heuristics.
As expected, most of the designs are around the contour ∂S,
which is the intuitive approach to minimize the error ER.
Nevertheless, we observe significant differences in designs
produced by different I’s. The cUCB criterion placesmost of
the samples close to the estimated zero contour ∂̂S, reflecting
its aggressive exploitation nature. It leads to little information
collected about other regions than the contour ∂S, especially
around the boundaries of sample space D and hence rela-
tively large Ē(x) there, inflating E for cUCB. As visualized
in Fig. 7, the posterior error E tends to be the largest for
cUCB. For tMSE, the samples tend to cluster at several sub-
regions of ∂̂S and on the edges of D. For gSUR, x1:n cover
a band along ∂̂S, resembling the shape of the cUCB design
but more dispersed. Both approaches are better at reducing E
compared with cUCB but are not directly aimed at this. For
SUR, the design is much more exploratory, covering a large
swath of D. All these findings echo the 1-D setting in Fig. 2.
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Fig. 5 a Modified Michalewicz
function; b error rate ER(n)

(2.16) as a function of step n in
the 2-D modified Michalewicz
experiments; c and d: The
estimated zero contour ∂̂S (red
solid line) and its 95% credible
band (dot dashed lines) for
Cl-GP and t-GP at n = 500.
Blue dots are the samples
selected by cUCB. Black dashed
line is the true zero contour ∂S

(a) (b)

(c) (d)

Fig. 6 Estimates of the zero
contour ∂̂S for the 2-D modified
Branin-Hoo example with
t/large noise setting. We show
∂̂S(n) (red solid line) at step
n = 150, with its 95% credible
band (red dot dashed lines), the
true zero contour ∂S (black
dashed line) and the sampled
inputs x1:n (replicates indicated
with larger symbols). We
compare across the six
metamodels (rows) and four
DoE heuristics (columns)
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Fig. 7 Integrated posterior error
E(n) in Eq. (2.17) for GP, t-GP,
TP and Cl- GP metamodels
(colors), using cUCB, tMSE,
gSUR and SUR-based designs
(sub rows) with n = 100 in 1-D,
n = 150 in 2-D and n = 1000 in
the 6-D experiments (rows)
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Another noteworthy feature is replication of some inputs,
that is, repeated selection of the same x sites. This does not
occur for cUCB, but happens for SUR, tMSE and gSUR
that frequently (across algorithm runs) sample repeatedly at
the vertices of D (indicated by the size of the correspond-
ing marker in Fig. 6). The replication is typically mild. (We
observe 145+ unique designs among a total of 150 xn’s.)
This finding echoes (Binois et al. 2019) on the importance of
replication to distinguish between signal and noise, which is
a key distinction with the noise-free setting ε ≡ 0.

Given the abovediscussion and the relative overheadof the
different heuristics, we conclude that in lower-dimensional
problems, there is little benefit to using themore sophisticated
SUR criterion, while for higher-dimensional problems, SUR
criterion is significantly better than the others. Beyond that,
tMSE appears to be an adequate and cheaper choice. How-
ever, as the input space becomes more complicated (with a
higher dimension or lower SNR observations), we needmore
exploration over the input space and the explorative criteria
like SUR start to shine.

5 Application to optimal stopping problems
in finance

In our next case study, we consider contour-finding for
determining the optimal exercise policy of a Bermudan
financial derivative. The underlying simulator is based on
a d-dimensional geometric Brownian motion (X t ) that rep-

resents prices of d assets with interest rate r , dividend yield
δ and volatility σ and follows the log-normal dynamics

X t+Δt = X t exp

(

(r − δ − 1

2
σ 2)Δt + ΔW t

)

, (5.1)

where ΔW t ∼ N (0,ΔtΣ) i.i.d. across t , and Σ is a given
d × d covariance matrix. Let h(t, x) be the option payoff
from exercising when X t = x ∈ R

d . The Bermudan option
pricing problem consists of maximizing the expected reward
h(τ, Xτ ) over all stopping times τ ∈ {0,Δt, 2Δt, . . . , T }
(exercising is allowed every Δt time units) bounded by the
specified horizon T :

V (t, x) := supτ≥t,τ∈SE[h(τ, Xτ )|Xt = x]. (5.2)

The approach in the so-called regressionMonteCarlo (RMC)
methods (Longstaff and Schwartz 2001; Tsitsiklis and Van
Roy 2001) is to convert the decision of whether to exer-
cise the option τ(t, x) = t or continue τ(t, x) > t , when
Xt = x at intermediate step t , into comparing the imme-
diate reward h(t, x) vis à vis the reward-to-go C(t, x). The
optimal strategy is to dynamically pick the action with the
higher expected payoff and is equivalent to determining the
zero level set (known as the stopping region) St = {x ∈ D :
f (x; t) ≤ 0} of the timing value f (x; t) := C(t, x)−h(t, x).
During backward dynamic programming, we iterate over
t = T , T − Δt, . . . , 0, recursively estimating the respective
̂St . To do so, we simulate trajectories Xx

t :T emanating from
input x ; the simulator Y (x; t) returns the difference between
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the pathwise payoff based on the exercise strategy summa-
rized by the forward-looking {̂Ss, s > t} along the trajectory
(Xx

t :T ), and h(t, x).
We refer to Ludkovski (2018) for the full details of

employing a GP metamodel for learning the timing value
f (·; t); as noted there this setting implies a skewed, non-
Gaussian, heteroscedastic distribution of the simulation noise
ε and is a challenging stochastic contour-finding problem.
Note that in order to reflect the underlying distribution of X t

at time t (conditional on the given initial value X0 = x0),
the weighting measure μ(x) = pXt (x |x0) is used. Thus,
μ(·) is log-normal based on (5.1). In line with the problem
context, we no longer directly measure the accuracy of learn-
ing {St } but instead focus on the ultimate output of RMC,
which is the estimated option value in (5.2). The latter must
itself be numerically evaluated via an out-of-sample Monte
Carlo simulation that averages realized payoffs along a large
database of M paths x1:M0:T :

̂V (0, x0) = 1

M

M
∑

m=1

h(τm, x (m)
τm ),

τm = inf{t : x (m)
t ∈ ̂St }.

(5.3)

Since our goal is to find the best exercise strategy, higher ̂V ’s
indicate a better approximation of the ground truth {St }.

To allow a direct comparison, we set parameters matching
the test cases in Ludkovski (2018), considering a 2-D and 3-
D example. In both cases, the volatility matrix Σ = σ I in
(5.1) is diagonal with constant terms; that is, the coordinates
X1
1:n, . . . ,Xd

1:n are independently and identically distributed.
As a first example, we consider a 2-D basket Put option with
parameters r = 0.06, σ = 0.2, δ = 0,Δt = 0.04,K =
40, T = 1. The payoff is h(t, x) = e−r t (K − x1+x2

2 )+ with
K = 40. Here, it is known that stopping becomes optimal
once both asset prices x1 and x2 become sufficiently low, so
the level set St is toward the bottom-left of D; see Fig. 8.
In contrast, stopping is definitely suboptimal when h(t, x) =
0 ⇔ (x1+x2)/2 > K. Consequently, the input sample space
is taken to be D = [25, 55] × [25, 55] ∩ {x1 + x2 ≤ 80}.

In this first case study, the timing value f (x; t) is known
to be monotonically increasing in the asset price x . To incor-
porate this constraint, we augment the four mainmetamodels
(GP, t-GP, Cl-GP and TP) with two monotonic versions, M-
GPandMCl-GP.By constraining the fitted ̂f to bemonotone,
we incorporate structural knowledge about the ground truth,
which in turn reduces posterior uncertainty and thus might
produce more accurate estimates of S. Monotonicity of the
metamodel for f is also one sufficient way to guarantee that
the outputted level set ̂S is a connected subset of D.

Our monotone GPs are based on Riihimäki and Vehtari
(2010). In general, any infinite-dimensional Gaussian pro-

cess is intrinsically non-monotone, since the multivariate
Gaussian distribution is always supported on the entire Rd ,
rather than an orthant. Nevertheless, local monotonicity in ̂f
can be enforced by considering the gradient∇ f of f which is
also a Gaussian process. Specifically, Riihimäki and Vehtari
(2010) proposed to adaptively add virtual observations for
∇ f ; we employ the resulting implementation in the pub-
lic GPstuff library (Vanhatalo et al. 2013) to build our
own version dubbed M-GP. We employ the same strategy
to restrict the coordinates z j of the latent probit GP Z to be
increasing (decreasing) across D. Implementation details are
included in Supplementary Material Section D.

As a second example, we consider a 3-D max-Call x ∈
R
3 with payoff h(t, x) = e−r t (max(x1, x2, x3) − K)+.

The parameters are r = 0.05, δ = 0.1, σ = 0.2, X0 =
(90, 90, 90),K = 100, T = 3 and Δt = 1/3. Since stop-
ping is ruled out when h(t, x) = 0 ⇔ max(x1, x2, x3) <

K, the sample space is taken to be D = [50, 150]3 ∪
{max(x1, x2, x3) > K}. In this case, stopping is optimal
if one of the coordinates xi is significantly higher than the
other two, so St consists of three disconnected components.
In this problem, there is no monotonicity, so we employ only
the GP, t-GP, Cl-GP and TP metamodels.

Because of the iterative construction of the simulator, the
SNR gets low for small t’s. The variance τ 2(x) is also highly
state dependent, tending to be smaller for sites further from
the zero contour. While in this case study, the simulations are
very fast, low SNR requires many hundreds of observations
to reliably detect the level set. Since the expense of sequential
design of GP metamodels comes mainly from choosing the
new input at each step, it is impractical to have such a large n.
To reduce metamodel overhead, we employ batched designs
(Ludkovski 2018; Ankenman et al. 2008), reusing x ∈ D
for r replications to collect observations y(1)(x), . . . , y(r)(x)
from the corresponding simulator Y (x). Then, we treat the
mean of the r observations,

ȳ(x) = 1

r

r
∑

i=1

y(i)(x), (5.4)

as the response for input x and use (x, ȳ(x)) as a single
design entry. Such reduction by a factor of r in the num-
ber of unique inputs n = N/r significantly speeds fitting
and updating. Moreover, the statistical properties of ȳ are
improved thanks to the central limit theorem (CLT): Noise
variance τ̄ 2(x) = τ 2(x)/r is much smaller, and its distribu-
tion is more Gaussian. In the case studies below, we observe
raw skewness in the range of [−2, 1] and raw kurtosis in the
range of [2, 20]; after batching skewness decreases by a fac-
tor of

√
r and excess kurtosis mostly disappears for r ≥ 10.

Nevertheless, unless r is in the dozens, the distribution of ȳ
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Table 5 Performance of
different designs and models on
the 2-D Bermudan Put option in
Sect. 5

LHS cUCB tMSE gSUR SUR

r = 3, n = 80

GP 1.211 (0.120) 1.425 (0.008) 1.427 (0.007) 1.431 (0.009) 1.431 (0.007)

t-GP 1.125 (0.113) 1.409 (0.013) 1.417 (0.008) 1.409 (0.010) 1.406 (0.013)

TP 1.179 (0.133) 1.408 (0.022) 1.414 (0.008) 1.378 (0.044) 1.316 (0.037)

M-GP 1.403 (0.014) 1.438 (0.007) 1.440 (0.006) 1.442 (0.009) 1.433 (0.005)

Cl-GP 1.111 (0.121) 1.395 (0.015) 1.402 (0.013) 1.393 (0.013) 1.391 (0.013)

MCl-GP 1.407 (0.008) 1.429 (0.010) 1.429 (0.013) 1.431 (0.007) 1.396 (0.019)

r = 15, n = 80

GP 1.425 (0.017) 1.448 (0.003) 1.450 (0.002) 1.450 (0.003) 1.449 (0.003)

t-GP 1.406 (0.033) 1.445 (0.003) 1.447 (0.002) 1.444 (0.005) 1.446 (0.004)

TP 1.414 (0.023) 1.443 (0.003) 1.443 (0.004) 1.441 (0.004) 1.430 (0.006)

M-GP 1.407 (0.008) 1.449 (0.003) 1.451 (0.002) 1.454 (0.002) 1.451 (0.003)

Cl-GP 1.353 (0.050) 1.441 (0.004) 1.440 (0.003) 1.435 (0.004) 1.436 (0.005)

MCl-GP 1.416 (0.010) 1.448 (0.004) 1.449 (0.003) 1.443 (0.003) 1.418 (0.008)

r = 48, n = 25

GP 1.341 (0.068) 1.450 (0.003) 1.449 (0.003) 1.443 (0.004) 1.448 (0.003)

t-GP 1.336 (0.126) 1.449 (0.003) 1.452 (0.003) 1.442 (0.004) 1.449 (0.003)

TP 1.367 (0.063) 1.433 (0.006) 1.430 (0.011) 1.421 (0.039) 1.423 (0.023)

M-GP 1.415 (0.007) 1.446 (0.002) 1.444 (0.002) 1.445 (0.004) 1.442 (0.004)

Cl-GP 1.110 (0.144) 1.430 (0.010) 1.434 (0.005) 1.409 (0.008) 1.388 (0.016)

MCl-GP 1.423 (0.015) 1.446 (0.004) 1.448 (0.003) 1.413 (0.024) 1.414 (0.024)

Results are the mean (standard deviation) payoff of 25 runs of experiments evaluating on the same out-of-
sample testing set of M = 160,000 X0:T -paths at each run. Best combinations indicated in bold. Best designs
highlighted in gray

remains heteroscedastic and highly state dependent in both
x and t , making a Gaussian-noise GP strongly misspecified.

For the 2-D Put case study, we then test a total of three
budget settings: (i) r = 3, n = 80 (low budget of N = 240
simulations); (ii) r = 15, n = 80 (high budget N = 800with
moderate replication); and (iii) r = 48, n = 25 (high N =
800 with high replication). Comparing (ii) and (iii) shows the
competing effects of having non-Gaussian noise (for lower r )
and small design size (low n). The initial design size is n0 =
10. In this example, taking n � 80 gives only marginally
better performance but significantly raises the computation
time and hence is ruled out as impractical. Three setups are
investigated for the 3-D example: r = 3, n = 100 (low-
budget of N = 300), r = 20, n = 100 (moderate-budget of
N = 2000) and r = 20, n = 200 (high budget N = 4000),
both with n0 = 30. In all examples, the results are based
on 25 runs of each scheme and are evaluated through the
resulting expected reward ̂V (0, x0) (5.3) on a fixed out-of-
sample testing set of M = 160,000 paths of X0:T .

The results for Gaussian-noise GP, t-GP and TP can be
reproduced via the publicly available mlOSP R package
at http://github.com/mludkov/mlOSP, which in particular
implements all the discussed acquisition functions.

5.1 Results

Tables 5 and 6 compare the different designs and metamod-
els. To assess the sequential design gains, we also report the
results from using a baseline non-adaptive LHS design on D.
At low budget, we observe the dramatic gains of using adap-
tive designs for level set estimation, which allow us to obtain
the same performance with an order-of-magnitude smaller
simulation budget. The tMSE and gSUR criteria work best
for the 2-D Put, while SUR is the best for the 3-D max-Call,
indicating that the exploratory designs start to win out in
more complex settings with higher d.

Regarding the metamodels, in the low-budget setups, the
monotonic GP metamodel works best for the 2-D Put and
t-GP for the 3-D max-Call. For the higher budget, which
also coincides with higher r ∈ {10, 50}, the metamodel
performance is similar, with t-GP slightly better than the
other GP variants. In particular, once the SNR is high, clas-
sical Gaussian GP is effectively as good as any alternative.
In both examples, TP and classification metamodels do not
work well, possibly because of being more sensitive to the
heteroscedastic aspect. We note that TP as well as the clas-
sification metamodels suffers from instability, so that lower
̂V (0, x0) is matched with a high sampling standard devia-
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Table 6 Performance of
different designs and models on
the 3-D Bermudan max-Call in
Sect. 5

LHS cUCB tMSE gSUR SUR

r = 3, n = 100

GP 10.036 (0.331) 10.725 (0.095) 10.773 (0.071) 10.711 (0.086) 10.753 (0.072)

t-GP 9.894 (0.447) 10.736 (0.088) 10.747 (0.087) 10.720 (0.104) 10.782 (0.076)

TP 9.169 (0.354) 10.101 (0.218) 9.872 (0.102) 8.867 (0.357) 10.482 (0.156)

Cl-GP 9.552 (0.567) 10.566 (0.084) 10.657 (0.097) 10.586 (0.099) 10.604 (0.119)

r = 20, n = 100

GP 10.924 (0.076) 11.078 (0.029) 11.072 (0.028) 11.055 (0.032) 11.101 (0.023)

t-GP 10.923 (0.071) 11.061 (0.039) 11.055 (0.027) 11.044 (0.029) 11.100 (0.027)

TP 10.385 (0.178) 10.815 (0.039) 10.745 (0.045) 10.620 (0.087) 10.507 (0.087)

Cl-GP 10.761 (0.112) 11.026 (0.032) 10.991 (0.037) 10.901 (0.049) 10.937 (0.041)

r = 20, n = 200

GP 11.105 (0.036) 11.147 (0.021) 11.119 (0.022) 11.131 (0.018) 11.178 (0.020)

t-GP 11.090 (0.034) 11.141 (0.019) 11.126 (0.020) 11.115 (0.027) 11.175 (0.021)

TP 10.585 (0.118) 10.896 (0.030) 10.811 (0.035) 10.764 (0.041) 10.638 (0.038)

Cl-GP 10.995 (0.059) 11.109 (0.025) 11.056 (0.040) 10.985 (0.027) 11.010 (0.029)

Results are the mean (w/standard deviation) payoff of 25 macro-replications evaluating on the same out-of-
sample testing set of M = 160,000 X0:T -paths at each run. Best combinations indicated in bold. Best designs
highlighted in gray.

(a) (b) (c)

(d) (e) (f)

Fig. 8 The estimated exercise boundary ∂̂S (solid line with 95% CI as
dashed lines) at t = 0.6 for 2-D Bermudan Put from Sect. 5. Shading,
which varies panel to panel, indicates the point estimate for the latent
̂f (x) or ẑ(x). We also show the design (x1:n, y1:n) with positive yn’s

marked by× and negative yn’s by ◦. All schemes used r = 15, n = 80.
aGPwith tMSE. b t-GP with tMSE. c Cl-GPwith cUCB. dM-GPwith
gSUR. e TP with gSUR. f MCl-GP with tMSE

tion. Another observation is that Cl-GP andMCl-GP perform
poorly with an exploratory heuristic like SUR, especially
with high budget, which echoes conclusions in Sects. 4.3
and 4.4. Due to the strong skewness of the underlying sim-

ulator, classification GP is biased which explains its poor
performance for low r = 3 in (5.4).

Figure 8 shows the estimated exercise boundary ∂̂St with
its 95% CI at t = 0.4 for the 2-D Put, for each of the five
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metamodels, each with the design yielding the highest pay-
off. We observe that all the best-performing designs look
similar, placing about a dozen xn’s (some of which are from
the initial design x1:n0 ) throughout D and the rest tightly
along the zero contour. The results suggest that the criteria
are largely interchangeable and that simpler In heuristics are
able to reproduce the features of the more sophisticated or
expensive SUR. The heuristics do differ in their uncertainty
quantification; t-GP andGPgenerate tightest CI bands, while
those of classification GPs and TP are too wide, indicating
lack of confidence in the estimate. Of note, the regression GP
metamodels (GP, t-GP and M-GP) also generate the lowest
sampling variance for ̂V (0, x0).

Based on these results, our take-aways are threefold. First,
similar to Ludkovski (2018) we document significant gains
fromsequential design. Second,wefind thatwhile usingSUR
is helpful for more complicated settings with higher dimen-
sion d and larger budget, tMSE is the recommended DoE
heuristic for lower-dimensional cases, achieving excellent
results with minimal overhead (in particular without requir-
ing look-ahead variance). Third, we find that for applications
with thousands of simulations, the Gaussian observation
model is sufficient, since the underlying design needs to
be replicated r � 1 in order to avoid excessively large
K-matrices. Therefore, there is little need for more sophis-
ticated metamodels, although useful gains can be realized
from enforcing the monotonic structure, if available.

6 Conclusion

We have carried a comprehensive comparison of five meta-
models and four design heuristics on 19 case studies (4×3+1
synthetic, plus six real worlds). In sum, the considered alter-
natives to standard Gaussian-observation GP do perform
somewhat better. In particular, t-GP directly nests plain GP
and hence essentially always matches or exceeds the per-
formance of the latter. We also observe gains from using
Cl-GP when SNR is low or the response covariance is not
spatially stationary and from monotonic surrogates when
the underlying response is monotone. That being said, final
recommendation regarding the associated benefit depends
on computational considerations, as the respective overhead
becomes larger (and exact updating of the metamodel no
longer possible).

In terms of design, we advocate the benefits of tMSE in
low-dimensional simulations,whichgenerates high-performing
experimental designs without requiring expensive acqui-
sition function (or even look-ahead variance). The tMSE
criterion does sometimes suffer from the tendency to put
many designs at the edge of the input space but otherwise
tends to match the performance of more complex and com-
putationally intensive In’s. For complex simulations, SUR is

probably still the best choice (although in that case, random-
set-based heuristics should also be considered). Particularly
in higher dimensionswithmisspecified noise, SUR is the best
choice among all designs for t-GP. We also stress that the
user ought to thoughtfully pick the combination of sequen-
tial design and metamodel, since cross-dependencies are
involved (e.g., classification metamodels generally do not
work well with the SUR criterion in lower dimension).
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