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Abstract
Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov
models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical
applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the
CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov
transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random
walk type transitions which are reversible with respect to a uniform initial distribution (on some domain), and autoregressive
kernels for Gaussian initial distributions. We propose to use online adaptations within the methods. In the case of random
walk transition, our adaptations use the estimated covariance and acceptance rate adaptation, and we detail their theoretical
validity. We tested our methods with a linear Gaussian random walk model, a stochastic volatility model, and a stochastic
epidemic compartment model with time-varying transmission rate. The experimental findings demonstrate that our method
works reliably with little user specification and can be substantially better mixing than a direct particle Gibbs algorithm that
treats initial states as parameters.

Keywords Adaptive Markov chain Monte Carlo · Bayesian inference · Compartment model · Conditional particle filter ·
Diffuse initialisation · Hidden Markov model · Smoothing · State space model

1 Introduction

In statistical applications of general state space hidden
Markov models (HMMs), commonly known also as state
space models, it is often desirable to initialise the latent state
of the model with a diffuse (uninformative) initial distribu-
tion (cf. Durbin and Koopman 2012). We mean by ‘diffuse’
the general scenario, where the first marginal of the smooth-
ing distribution is highly concentrated relative to the prior of
the latent Markov chain, which may also be improper.

The conditional particle filter (CPF) (Andrieu et al. 2010),
and in particular its backward sampling variants (Whiteley
2010; Lindsten et al. 2014), has been found to provide effi-
cient smoothing evenwith longdata records, both empirically
(e.g. Fearnhead and Künsch 2018) and theoretically (Lee
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et al. 2020). However, a direct application of the CPF to a
model with a diffuse initial distribution will lead to poor per-
formance, becausemost of the initial particles will ultimately
be redundant, as they become drawn from highly unlikely
regions of the state space.

There are a number of existingmethods which can be used
to mitigate this inefficiency. For simpler settings, it is often
relatively straightforward to design proposal distributions
that lead to an equivalentmodel,which no longer has a diffuse
initial distribution. Indeed, if the first filtering distribution
is already informative, its analytical approximation may be
used directly as the first proposal distribution. The iteratively
refined look-ahead approach suggested by Guarniero et al.
(2017) extends to more complicated settings, but can require
careful tuning for each class of problems.

We aim here for a general approach, which does not
rely on any problem-specific constructions. Such a gen-
eral approach which allows for diffuse initial conditions
with particle Markov chain Monte Carlo (MCMC) is to
include the initial latent state of the HMM as a ‘parame-
ter’. This was suggested by Murray et al. (2013) with the
particle marginal Metropolis–Hastings (PMMH). The same

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-020-09975-1&domain=pdf
https://doi.org/10.1007/s11222-020-09975-1
https://doi.org/10.1007/s11222-020-09975-1


   24 Page 2 of 14 Statistics and Computing            (2021) 31:24 

approach is directly applicable also with the CPF (using par-
ticle Gibbs); see Fearnhead and Meligkotsidou (2016), who
discuss general approaches based on augmentation schemes.

Our approach may be seen as an instance of the gen-
eral ‘pseudo-observation’ framework of Fearnhead and
Meligkotsidou (2016), but we are unaware of earlier works
about the specific class of methods we focus on here. Indeed,
instead of building the auxiliary variable from the conju-
gacyperspective asFearnhead andMeligkotsidou (2016), our
approach is based on Markov transitions that are reversible
with respect to the initial measure of the HMM. This
approach may be simpler to understand and implement in
practice, and is very generally applicable. We focus here on
two concrete cases: the ‘diffuse Gaussian‘ case, where the
initial distribution is Gaussian with a relatively uninforma-
tive covariance matrix, and the ‘fully diffuse‘ case, where the
initial distribution is uniform. We suggest online adaptation
mechanisms for the parameters, which make the methods
easy to apply in practice.

We start in Sect. 2 by describing the family of models we
are concerned with, and the general auxiliary variable ini-
tialisation CPF that underlies all of our developments. We
present the practical methods in Sect. 3. Section 4 reports
experiments of the methods with three academic models and
concludes with a realistic inference task related to modelling
the COVID-19 epidemic in Finland. We conclude with a dis-
cussion in Sect. 5.

2 Themodel and auxiliary variables

Our main interest is with HMMs having a joint smoothing
distribution π of the following form:

π(x1:T ) ∝ p(x1)p(y1 | x1)
T∏

k=2

p(xk | xk−1)p(yk | xk), (1)

where �:u denotes the sequence of integers from � to
u (inclusive), x1:T denotes the latent state variables, and
y1:T the observations. Additionally, π may depend on
(hyper)parameters θ , the dependence on which we omit for
now, but return to later, in Sect. 3.4.

For the convenience of notation, and to allow for some
generalisations, we focus on the Feynman–Kac form of the
HMM smoothing problem (cf. Del Moral 2004), where the
distribution of interest π is represented in terms of a σ -finite
measure M1(dx1) on the state space X, Markov transitions
M2, . . . , MT onX and potential functionsGk : Xk → [0,∞)

so that

π(dx1:T )∝M1(dx1)G1(x1)
T∏

k=2

Mk(xk−1, dxk)Gk(x1:k). (2)

The classical choice, the so-called ‘bootstrap filter’ (Gor-
don et al. 1993), corresponds to M1(dx1) = p(x1)dx1 and
Mk(xk−1, dxk) = p(xk | xk−1)dxk , where ‘dx’ stands for the
Lebesgue measure on X = R

d , and Gk(x1:k) = p(yk | xk),
but other choices with other ‘proposal distributions’ Mk are
also possible. Our main focus is when M1 is diffuse with
respect to the first marginal of π . We stress that our method
accomodates also improper M1, such as the uniform distri-
bution on Rd , as long as (2) defines a probability.

The key ingredient of our method is an auxiliary Markov
transition, Q, which we can simulate from, and which satis-
fies the following:

Assumption 1 (M1-reversibility) The Markov transition
probability Q is reversible with respect to the σ -finite mea-
sure M1, or M1-reversible, if

∫
M1(dx0)Q(x0, dx1)1(x0 ∈ A, x1 ∈ B)

=
∫

M1(dx1)Q(x1, dx0)1(x0 ∈ A, x1 ∈ B), (3)

for all measurable A, B ⊂ X.

We discuss practical ways to choose Q in Sect. 3. Assuming
an M1-reversible Q, we define an augmented target distribu-
tion, involving a new ‘pseudo-state’ x0 which is connected
to x1 by Q:

π̃(dx0:T ) = π(dx1:T )Q(x1, dx0)

∝ M1(dx0)Q(x0, dx1)G1(x1)
T∏

k=2

Mk(xk−1, dxk)Gk(x1:k).

It is clear by construction that π̃ admits π as its marginal,
and therefore, if we can sample x0:T from π̃ , then x1:T ∼ π .

Our method may be viewed as a particle Gibbs (Andrieu
et al. 2010) which targets π̃ , regarding x0 as the ‘parame-
ter’, and x1:T the ‘latent state’, which are updated using the
CPF. Algorithm 1 summarises the method, which we call the
‘auxiliary initialisation’ CPF (AI-CPF). Algorithm 1 deter-
mines a π -invariant Markov transition ẋ1:T → X̃ (B1:T )

1:T ; the
latter output of the algorithm will be relevant later, when we
discuss adaptation.

Algorithm 1 AI-CPF(ẋ1:T ; Q, M2:T ,G1:T , N )

1: Simulate X0 ∼ Q(ẋ1, · ).
2: Simulate X̃ (2:N )

1 ∼ Q(X0, · ) and set X̃ (1)
1 = ẋ1.

3: (X̃ (1:N )
1:T ,W (1:N )

1:T , A(1:N )
1:T−1) ← F-CPF(ẋ2:T , X̃ (1:N )

1 ; M2:T ,G1:T ,

N ).
4: (B1:T , V (1:N )) ← PickPath- x(X̃ (1:N )

1:T ,W (1:N )
1:T , A(1:N )

1:T−1, M2:T ,

G2:T ).
5: Set x̃1:T = (

X̃ (B1)
1 , X̃ (B2)

2 , . . . , X̃ (BT )
T

)
.

6: output
(
x̃1:T , (B1, V (1:N ), X̃ (1:N )

1 )
)
.
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Line 1 of Algorithm 1 implements a Gibbs step sampling
X0 conditional on X1:T = ẋ1:T , and lines 2–4 imple-
ment together a CPF targeting the conditional of X1:T given
X0. Line 3 runs what we call a ‘forward’ CPF, which is
just a standard CPF conditional on the first state particles
X (1:N )
1 , detailed in Algorithm 2. Line 4 refers to a call of

PickPath- AT (Algorithm 3) for ancestor tracing as in the
original work of Andrieu et al. (2010), or PickPath- BS
(Algorithm 4) for backward sampling (Whiteley 2010).
Categ(w(1:N )) stands for the categorical distribution, that is,
A ∼ Categ(w(1:N )) if Pr(A = i) = w(i).

Algorithm 2 F-CPF(ẋ2:T , X (1:N )
1 ; M2:T ,G1:T , N )

1: Set X(1:N )
1 ← X (1:N )

1 .
2: for k = 1, . . . , T − 1 do
3: W̃ (i)

k ← Gk(X
(i)
k ) and W (i)

k ← W̃ (i)
k /

∑N
j=1 W̃

( j)
k for i ∈ {1:N }.

4: A(2:N )
k ∼ Categ

(
W (1:N )

k

)
and set A(1)

k ← 1.

5: Draw X (i)
k+1 ∼ Mk+1( · | X (A(i)

k )

k ) for i ∈ {2:N }.
6: Set X (1)

k+1 = ẋk+1.

7: Set X(i)
k+1 = (X

(A(i)
k )

k , X (i)
k+1) for i ∈ {1:N }.

8: end for
9: W̃ (1:N )

T ← GT (X(1:N )
T ) and W (i)

T ← W̃ (i)
T /

∑N
j=1 W̃

( j)
T for i =

{1:N }.
10: output (X (1:N )

1:T , W (1:N )
1:T , A(1:N )

1:T−1).

The ancestor tracing variant can be used when the tran-
sition densities are unavailable. However, our main interest
here is with backward sampling, summarised in Algorithm 4
in the common case where the potentials only depend on two
consecutive states, that is, Gk(x1:k) = Gk(xk−1:k), and the
transitions admit densities Mk(xk−1, dxk) = Mk(xk−1, xk)
dxk with respect to some dominating σ -finite measure ‘dxk’.

Algorithm 3 PickPath- AT(X̃ (1:N )
1:T ,W (1:N )

1:T , A(1:N )
1:T−1, M2:T ,G2:T )

1: Draw BK ∼ Categ
(
W (1:N )
T ).

2: output (B1:T ,W (1:N )
1 ) where Bk = A

(Bk+1)

k for k = T − 1, . . . , 1.

Algorithm 4 PickPath- BS(X̃ (1:N )
1:T ,W (1:N )

1:T , A(1:N )
1:T−1, M2:T ,G2:T )

1: Draw BK ∼ Categ
(
W (1:N )
T ).

2: for k = T − 1, . . . , 1 do

3: Ṽ (i)
k ← W (i)

k Mk+1(X̃
(i)
k , X̃

(Bk+1)

k+1 )Gk+1(X̃
(i)
k , X̃

(Bk+1)

k+1 ) for i ∈ {1:N }.
4: Simulate Bk ∼ Categ(V (1:N )

k ), where V (i)
k = Ṽ (i)

k /
∑N

j=1 Ṽ
( j)
k .

5: end for
6: output (B1:T , V (1:N )

1 ).

We concludewith a brief discussion on the generalmethod
of Algorithm 1.

(i) We recognise that Algorithm 1 is not new per se, in
that it may be viewed just as a particle Gibbs applied
for a specific auxiliary variable model. However, we
are unaware of Algorithm 1 being presented with the
present focus: with an M1-reversible Q, and allowing
for an improper M1.

(ii) Algorithm 1 may be viewed as a generalisation of the
standard CPF. Indeed, taking Q(x0, dx1) = M1(dx1) in
Algorithm 1 leads to the standard CPF. Note that Line 1
is redundant in this case, but is necessary in the general
case.

(iii) In the case T = 1, Line 3 of Algorithm 1 is redun-
dant, and the algorithm resembles certain multiple-try
Metropolis methods (cf. Martino 2018) and has been
suggested earlier by Mendes et al. (2015).

(iv) Algorithm 2 is formulated using multinomial resam-
pling, for simplicity. We note that any other unbiased
resampling may be used, as long as the conditional
resampling is designed appropriately; see Chopin and
Singh (2015).

The ‘CPF generalisation’ perspective of Algorithm 1 may
lead to other useful developments; for instance, one could
imagine the approach to be useful with the CPF applied for
static (non-HMM) targets, as in sequentialMonte Carlo sam-
plers (Del Moral et al. 2006). The aim of the present paper is,
however, to use Algorithm 1with diffuse initial distributions.

3 Methods for diffuse initialisation of
conditional particle filters

To illustrate the typical problem that arises with a diffuse
initial distribution M1, we examine a simple noisy AR(1)
model:

xk+1 = ρxk + ηk, ηk ∼ N (0, σ 2
x )

yk = xk + εk, εk ∼ N (0, σ 2
y ), (4)

for k ≥ 1, x1 ∼ N (0, σ 2
1 ), M1(dx1) = p(x1)dx1,

Mk(xk−1, dxk) = p(xk | xk−1)dxk and Gk(x1:k) = p(yk |
xk).

We simulated a dataset of length T = 50 from this model
with x1 = 0, ρ = 0.8 and σx = σy = 0.5. We then ran
6000 iterations of the CPF with backward sampling (CPF-
BS) with σ1 ∈ {10, 100, 1000}; that is, Algorithm 1 with
Q(x0, · ) = M1( · ) togetherwithAlgorithm 4, and discarded
the first 1000 iterations as burn-in. For each value of σ1, we
monitored the efficiency of sampling x1. Figure 1 displays the
resulting traceplots. The estimated integrated autocorrelation
times (IACT) were approximately 3.75, 28.92 and 136.64,
leading to effective sample sizes (neff ) of 1600, 207 and 44,
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Fig. 1 Traceplot of the initial state of the noisy AR(1) model, using the
CPF with 16 particles and backward sampling with σ1 = 10 (top), 100
(middle) and 1000 (bottom)

respectively. This demonstrates how the performance of the
CPF-BS deteriorates as the initial distribution of the latent
state becomes more diffuse.

3.1 Diffuse Gaussian initialisation

In the case thatM1 in (2) is Gaussianwithmeanμ and covari-
ance Σ , we can construct a Markov transition function that
satisfies (3) using an autoregressive proposal similar to ‘pre-
conditioning’ in the Crank-Nicolson algorithm (cf. Cotter
et al. 2013). This proposal comeswith a parameterβ ∈ (0, 1],
so we denote this kernel by QAR

β . A variate Z ∼ QAR
β (x, · )

can be drawn simply by setting

Z =
√
1 − β2(x − μ) + βW + μ, (5)

where W ∼ N (0,Σ). We refer to Algorithm 1 with Q =
QAR

β as the diffuse Gaussian initialisation CPF (DGI-CPF).

In the special case β = 1, we have QAR
1 = M1, and so the

DGI-CPF is equivalent with the standard CPF.

3.2 Fully diffuse initialisation

Suppose that M1(dx) = M1(x)dx where M1(x) ≡ 1 is a
uniform density on X = R

d . Then, any symmetric transition
Q satisfies M1-reversibility. In this case, we suggest to use
QRW

C (x, dy) = qRWC (x, y)dywith amultivariate normal den-
sity qRWC (x, y) = N (y; x,C), with covarianceC ∈ R

d×d . In
case of constraints, that is, a non-trivial domain D ⊂ R

d , we
haveM1 = 1(x ∈ D). Then, we suggest to use aMetropolis–
Hastings type transition probability:

QRW
C (x, dy) = qRWC (x, y)min

{
1,

M1(y)

M1(x)

}
dy

+ δx (dy)r(x),

where r(x) ∈ [0, 1] is the rejection probability. This method
works, of course, with arbitrary M1, but our focus is with a
diffuse case,where the domain D is regular and large enough,
so that rejections are rare. We stress that also in this case,
M1(x) = 1(x ∈ D) may be improper. We refer to Algo-
rithm 1 with QRW

C as the ‘fully diffuse initialisation’ CPF
(FDI-CPF).

We note that wheneverM1 can be evaluated pointwise, the
FDI-CPF can always be applied, by considering themodified
Feynman–Kac model M̃1 ≡ 1 and G̃1(x) = M1(x)G1(x).
However, when M1 is Gaussian, the DGI-CPF can often lead
to a more efficient method. As with standard random walk
Metropolis algorithms, choosing the covariance C ∈ R

d×d

is important for the efficiency of the FDI-CPF.

3.3 Adaptive proposals

Finding a good autoregressive parameter of QAR
β or the

covariance parameter of QRW
C may be time-consuming in

practice. Inspired by the recent advances in adaptive MCMC
(cf. Andrieu and Thoms 2008; Vihola 2020), it is natural to
apply adaptation alsowith the (iterated)AI-CPF.Algorithm5
summarises a generic adaptive AI-CPF (AAI-CPF) using a
parameterised family {Qζ }ζ∈Z of M1-reversible proposals,
with parameter ζ .

Algorithm 5 AAI-CPF(ẋ (0)
1:T ; Qζ (0) , M2:T ,G1:T , N )

1: for j = 1, . . . , n do
2: (ẋ ( j)

1:T , ξ ( j)) ← AI-CPF(ẋ ( j−1)
1:T ; Qζ ( j−1) , M2:T ,G1:T , N ).

3: ζ ( j) ← Adapt(ζ ( j−1), ξ ( j), j).
4: end for
5: output (ẋ (1)

1:T , . . . , ẋ (n)
1:T ).

The function Adapt implements the adaptation, which
typically leads to ζ ( j) → ζ ∗, corresponding to a well-mixing
configuration. We refer to the instances of the AAI-CPF with
the AI-CPF step corresponding to the DGI-CPF and the FDI-
CPF as the adaptive DGI-CPF and FDI-CPF, respectively.

We next focus on concrete adaptations which may be
used within our framework. In the case of the FDI-CPF,
Algorithm 6 implements a stochastic approximation vari-
ant (Andrieu and Moulines 2006) of the adaptive Metropolis
covariance adaptation of Haario et al. (2001).

Here, η j are step sizes that decay to zero, ζ j = (μ j ,Σ j )

the estimated mean and covariance of the smoothing dis-
tribution, respectively, and Qζ = QRW

cΣ where c > 0 is a
scaling factor of the covarianceΣ . In the case of randomwalk
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Algorithm 6 AdaptFDI ,AM
(
(μ, Σ), (B1,W

(1:N )
1 , X (1:N )

1 ),
j
)

1: μ∗ ← (1 − η j )μ + η j X
(B1)
1 .

2: Σ∗ ← (1 − η j )Σ + η j (X
(B1)
1 − μ)(X (B1)

1 − μ)T.
3: output (μ∗,Σ∗).

Metropolis, this scaling factor is usually taken as 2.382/d
(Gelman et al. 1996), where d is the state dimension of the
model. In the present context, however, the optimal value
of c > 0 appears to depend on the model and on the num-
ber of particles N . This adaptation mechanism can be used
both with PickPath- AT and with PickPath- BS, but may
require some manual tuning to find a suitable c > 0.

Algorithm 7 details another adaptation for the FDI-CPF,
which is intended to be used together with PickPath- BS
only. Here, ζ j = (μ j ,Σ j , δ j ) contains the estimated mean,
covariance and the scaling factor, and Qζ = QRW

C(ζ ), where

C(ζ ) = eδΣ .

Algorithm 7AdaptFDI ,ASW AM
(
(μ,Σ , δ), (B1,W

(1:N )
1 , X (1:N )

1 ), j
)

1: μ∗ ← (1 − η j )μ + η j
∑N

i=1 W
(i)
1 X (i)

1 .

2: Σ∗ ← (1 − η j )Σ + η j
∑N

i=1 W
(i)
1 (X (i)

1 − μ)(X (i)
1 − μ)T.

3: δ∗ ← δ + η j (α − α∗) where α = 1 − W (1)
1 .

4: output (μ∗,Σ∗, δ∗).

Algorithm 8 AdaptDGI ,AS
(
ζ , (B1,W

(1:N )
1 , X (1:N )

1 ), j
)

1: ζ∗ ← ζ + η j (α − α∗) where α = 1 − W (1)
1 .

2: output ζ∗.

This algorithm is inspired by a Rao–Blackwellised variant
of the adaptive Metropolis within adaptive scaling method
(cf. Andrieu and Thoms 2008), which is applied with stan-
dard random walk Metropolis. We use all particles with their
backward samplingweights to update themeanμ and covari-
ance Σ , and an ‘acceptance rate’ α, that is, the probability
that the first coordinate of the reference trajectory is not cho-
sen. Recall that after the AI–CPF in Algorithm 5 has been
run, the first coordinate of the reference trajectory and its
associated weight reside in the first index of the particle and
weight vectors contained in ξ ( j).

The optimal value of the acceptance rate parameter α∗ is
typically close to one, in contrastwith randomwalkMetropo-
lis, where α∗ ∈ [0.234, 0.44] are common (Gelman et al.
1996). Even though the optimal value appears to be problem-
dependent, we have found empirically that 0.7 ≤ α∗ ≤ 0.9
often leads to reasonable mixing. We will show empirical
evidence for this finding in Sect. 4.

Algorithm 8 describes a similar adaptive scaling type
mechanism for tuning β = logit−1(ζ ) in the DGI-CPF, with
Qζ = QAR

β . The algorithm ismost practicalwithPickPath-
BS.

We conclude this section with a consistency result for
Algorithm 5, using the adaptation mechanisms in Algo-
rithms 6 and 7. In Theorem 1, we denote (μ j ,Σ j ) = ζ j in
the case of Algorithm 6, and (μ j ,Σ j , δ j ) = ζ j with Algo-
rithm 7.

Theorem 1 Suppose D is a compact set, a uniform mix-
ing condition (Assumption 2 in Appendix A) holds, and
there exists an ε > 0 such that for all j ≥ 1, the small-
est eigenvalue λmin(Σ j ) ≥ ε, and with Algorithm 7 also
δ j ∈ [ε, ε−1]. Then, for any bounded function f : X → ∞,

1

n

n∑

k=1

f (ẋ (k)
1:T )

n→∞−−−→ π( f ). almost surely.

The proof of Theorem 1 is given in Appendix A. The proof
is slightly more general, and accomodates for instance t-
distributed instead of Gaussian proposals for the FDI-CPF.
We note that the latter stability condition, that is, existence
of the constant ε > 0, may be enforced by introducing
a ‘rejection’ mechanism in the adaptation; see the end of
Appendix A. However, we have found empirically that the
adaptation is stable also without such a stabilisation mecha-
nism.

3.4 Use within particle Gibbs

Typical application of HMMs in statistics involves not only
smoothing, but also inference of a number of ‘hyperparame-
ters’ θ , with prior density pr(θ), and with

γθ (x1:T ) = p(y1:T , x1:T | θ) (6)

= M1(x1)G
(θ)
1 (x1)

T∏

k=2

M (θ)
k (xk−1, xk)G

(θ)
k (xk−1, xk).

The full posterior, π̌(θ, x1:T ) ∝ pr(θ)γθ (x1:T ) may be
inferred with the particle Gibbs (PG) algorithm of Andrieu
et al. (2010). (We assume here that M1 is diffuse, and thereby
independent of θ .)

The PG alternates between (Metropolis-within-)Gibbs
updates for θ conditional on x1:T , and CPF updates for x1:T
conditional on θ . The (A)AI-CPF applied with M (θ)

2:T and

G(θ)
1:T may be used as a replacement of the CPF steps in a

PG. Another adaptation, independent of the AAI-CPF, may
be used for the hyperparameter updates (cf. Vihola 2020).

Algorithm 9 summarises a generic adaptive PG with
the AAI-CPF. Line 2 involves an update of θ( j−1) to θ( j)

using transition probabilities Kζθ ( · , · | x1:T ) which leave
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π̌(θ | x1:T ) invariant, and Line 3 is (optional) adaptation.
This could, for instance, correspond to the robust adaptive
Metropolis algorithm (RAM) (Vihola 2012). Lines 4 and 5
implement the AAI-CPF. Note that without Lines 3 and 5,
Algorithm 9 determines a π̌ -invariant transition rule.

Algorithm 9 AAI-PG(θ(0), ẋ (0)
1:T ; QC(ζ (0)), M2:T ,G1:T , N )

1: for j = 1, . . . , n do
2: (θ( j), ξ

( j)
θ ) ∼ K

ζ
( j−1)
θ

(θ ( j−1), · | ẋ ( j−1)
1:T ).

3: ζ
( j)
θ ← Adaptθ (ζ

( j−1)
θ , θ ( j), ξ

( j)
θ ).

4: (ẋ ( j)
1:T , ξ ( j)) ← AI-CPF(ẋ ( j−1)

1:T ; Qζ ( j−1) , M (θ( j))
2:T ,G(θ( j))

1:T , N ).

5: ζ ( j) ← Adapt(ζ ( j−1), ξ ( j), j).
6: end for
7: output

(
(θ(1), ẋ (1)

1:T ), . . . , (θ(n), ẋ (n)
1:T )

)
.

4 Experiments

In this section, we study the application of the methods
presented in Sect. 3 in practice. Our focus will be on the
case of the bootstrap filter, that is, M1(dx1) = p(x1)dx1,
Mk(xk−1, dxk) = p(xk | xk−1)dxk and Gk(x1:k) = p(yk |
xk).

We start by investigating two simple HMMs: the noisy
random walk model (RW), that is, (4) with ρ = 1, and the
following stochastic volatility (SV) model:

xk+1 = xk + ηk,

yk = exk εk, (7)

with x1 ∼ N (0, σ 2
1 ), ηk ∼ N (0, σ 2

x ) and εk ∼ N (0, σ 2
y ).

In Sect. 4.3, we study the dependence of the method with
varying dimension, with a static multivariate normal model.
We conclude in Sect. 4.4 by applying our methods in a real-
istic inference problem related to modelling the COVID-19
epidemic in Finland.

4.1 Comparing DGI-CPF and CPF-BS

Wefirst studied how theDGI-CPF performs in comparison to
the CPF-BS when the initial distributions of the RW and SV
model are diffuse. Since the efficiency of sampling is affected
by both the values of the model parameters (cf. Fig. 1) and
the number of particles N , we experimented with a range
of values N ∈ {8, 16, 32, 64, 128, 256, 512} for which we
applied both methods with n = 10000 iterations plus 500
burn-in. We simulated data from both the RW and SV mod-
els with T = 50, x1 = 0, σy = 1 and varying σx ∈
{0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200}. We then

Fig. 2 The log (IRE) resulting from the application of the CPF-BS and
the best case DGI-CPF to the RW model. The horizontal axis depicts
different configurations of σ1 and σx , and in each panel N varies

applied both methods for each dataset with the correspond-
ing σx , but with varying σ1 ∈ {10, 50, 100, 200, 500, 1000},
to study the sampling efficiency under different parameter
configurations (σx and σ1). For the DGI-CPF, we varied
the parameter β ∈ {0.01, 0.02, . . . , 0.99}. We computed
the estimated integrated autocorrelation time (IACT) of the
simulated values of x1 and scaled this by the number of parti-
cles N . The resulting quantity, the inverse relative efficiency
(IRE), measures the asymptotic efficiencies of estimators
with varying computational costs (Glynn and Whitt 1992).

Figure 2 shows the comparison of the CPF-BS with the
best DGI-CPF, that is, the DGI-CPF with the β that resulted
in the lowest IACT for each parameter configuration and N .

The results indicate that with N fixed, a successful tuning
of β can result in greatly improved mixing in comparison
with the CPF-BS. While the performance of the CPF-BS
approaches that of the best DGI-CPF with increasing N , the
difference in performance remains substantial with parame-
ter configurations that are challenging for the CPF-BS.

The optimal N which minimizes the IRE depends on the
parameter configuration. For ‘easy’ configurations (where
IRE is small), even N = 8 can be enough, butmore ‘difficult’
configurations (where IRE is large), higher values of N can
be optimal. Similar results for the SV model are shown in
Online Resource 1 (Fig. 1), and lead to similar conclusions.

The varying ‘difficulty’ of the parameter configurations
is further illustrated in Fig. 3, which shows the log (IACT)

for the SV model with N = 256 particles. The CPF-BS
performed the worst when the initial distribution was very
diffuse with respect to the state noise σx , as expected. In
contrast, the well-tuned DGI-CPF appears rather robust with
respect to changing parameter configuration. The observa-
tions were similar with other N , and for the RW model; see
Online Resource 1 (Fig. 2).

The results in Figs. 2 and 3 illustrate the potential of the
DGI-CPF, but are overly optimistic because in practice, the
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Fig. 3 The log (IACT) of the CPF-BS (left) and the best case DGI-
CPF (right) with respect to σ1 and σx in the case of the SV model and
N = 256

Fig. 4 The logarithm of the mean IACT over 5 replicate runs of the
DGI-CPF with respect to varying β. The dataset was simulated from
the SV model with parameters σx = 1 and σ1 = 50 and fixed in each
replicate run of the algorithm. N was set to 128. The horizontal line
depicts the performance of the CPF-BS

β parameter of the DGI-CPF cannot be chosen optimally.
Indeed, the choice of β can have a substantial effect on the
mixing. Figure 4 illustrates this in the case of the SVmodel by
showing the logarithm of the mean IACT over replicate runs
of the DGI-CPF, for a range of β. Here, a β of approximately
0.125 seems to yield close to optimal performance, but if
the β is chosen too low, the sampling efficiency is greatly
reduced, rendering the CPF-BS more effective.

This highlights the importance of choosing an appropri-
ate value for β, and motivates our adaptive DGI-CPF, that
is, Algorithm 5 together with Algorithm 8. We explored the
effect of the target acceptance rate α∗ ∈ {0.01, 0.02, . . . , 1},
with the same datasets and parameter configurations as
before. Figure 5 summarises the results for both the SV and
RW models, in comparison with the CPF-BS. The results
indicate that with a wide range of target acceptance rates, the
adaptive DGI-CPF exhibits improved mixing over the CPF-
BS. When N increases, the optimal values for α∗ appear to
tend to one. However, in practice, we are interested in a mod-
erate N , for which the results suggest that the best candidates
for values of α∗ might often be found in the range from 0.7
to 0.9.

For the CPF-BS, the mean IRE is approximately constant,
which might suggest that the optimal number of particles
is more than 512. In contrast, for an appropriately tuned

Fig. 5 The logarithmof themean IRE over the parameter configurations
with the adaptive DGI-CPF and varying target acceptance rates. The
horizontal lines depict the mean performance of the CPF-BS

DGI-CPF, the mean IRE is optimised by N = 32 in this
experiment.

4.2 Comparing FDI-CPF and particle Gibbs

Next, we turn to study a fully diffuse initialisation. In
this case, M1 is improper, and we cannot use the CPF
directly. Instead, we compare the performance of the adap-
tive FDI-CPF with what we call the diffuse particle Gibbs
(DPG-BS) algorithm. The DPG-BS is a standard particle
Gibbs algorithm, where the first latent state x1 is regarded
as a ‘parameter’, that is, the algorithm alternates between
the update of x1 conditional on x2:T using a random walk
Metropolis-within-Gibbs step, and the update of the latent
state variables x2:T conditional on x1 using the CPF-BS. We
also adapt theMetropolis-within-Gibbs proposal distribution
QDPG of the DPG-BS, using the RAM algorithm (cf. Vihola
2020). For further details regarding our implementation of
the DPG-BS, see Appendix B.

We used a similar simulation experiment as with the adap-
tive DGI-CPF in Sect. 4.1, but excluding σ1, since the initial
distribution was now fully diffuse. The target acceptance
rates in theFDI-CPFwith theASWAMadaptationwere again
varied in α∗ ∈ {0.01, 0.02, . . . , 1} and the scaling factor in
the AM adaptation was set to c = 2.382. In the DPG-BS, the
target acceptance rate for updates of the initial state using the
RAM algorithm was fixed to 0.441 following Gelman et al.
(1996).

Figure 6 shows results with the RW model for the DPG-
BS, the FDI-CPF with the AM adaptation, and the FDI-CPF
with the ASWAM adaptation using the best value for α∗.
The FDI-CPF variants appear to perform better and improve
upon the performance of the DPG-BS especially with small
σx . Similar to Figs. 2 and 3, the optimal N minimizing the
IRE depends on the value of σx : smaller values of σx call for
higher number of particles.
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Fig. 6 The log (IRE) for the DPG-BS, FDI-CPF with the AM adap-
tation and the best case FDI-CPF with the ASWAM adaptation to the
datasets generated with varying σx from the RW model

The performance of the adaptive FDI-CPF appears similar
regardless of the adaptation used, because the chosen scaling
factor c = 2.382 for a univariate model was close to the
optimal value found by the ASWAM variant in this example.
We experimented also with c = 1, which led to less efficient
AM, in the middle ground between the ASWAM and the
DPG-BS.

The IACT for the DPG-BS stays approximately constant
with increasing N , which results in a log (IRE) that increases
roughly by a constant as N increases. This is understandable,
because in the limit as N → ∞, the CPF-BS (within the
DPG-BS) will correspond to a Gibbs step, that is, a perfect
sample of x2:T conditional on x1. Because of the strong cor-
relation between x1 and x2, even an ‘ideal’ Gibbs sampler
remains inefficient, and the small variation seen in the panels
for the DPG-BS is due to sampling variability. The results
for the SV model, with similar findings, are shown in Online
Resource 1 (Fig. 3).

Figure 7 shows the logarithm of the mean IRE of the FDI-
CPF with the ASWAM adaptation with respect to varying
target acceptance rateα∗. The results are reminiscent of Fig. 5
and show that with amoderate fixed N , the FDI-CPFwith the
ASWAM adaptation outperforms the DPG-BS with a wide
range of values for α∗. The optimal value of α∗ seems to tend
to one as N increases, but again, we are mostly concerned
with moderate N . For a well-tuned FDI-CPF the minimum
mean IRE is found when N is roughly between 32 and 64.

4.3 The relationship between state dimension,
number of particles and optimal target
acceptance rate

Awell chosen value for the target acceptance rate α∗ appears
to be key for obtaining good performance with the adaptive
DGI-CPF and the FDI-CPF with the ASWAM adaptation.
In Sects. 4.1–4.2, we observed a relationship between N and

Fig. 7 A comparison of the FDI-CPF with the ASWAM adaptation
against the DPG-BS. The horizontal axis shows the target acceptance
rate α∗ used in the adaptive FDI-CPF. The logarithm of the mean IRE
on the vertical axis is computed over the different σx values. The black
horizontal lines show the performance with the DPG-BS

the optimal target acceptance rate, denoted here by αopt, with
two univariate HMMs. It is expected that αopt is generally
somewhat model-dependent, but in particular, we suspected
that the methods might behave differently with models of
different state dimension d.

In order to study the relationship between N , d and αopt

in more detail, we considered a simple multivariate nor-
mal model with T = 1, M1(x) ∝ 1, and G1(x1) =
N (x1; 0, σ Id), the density of d independent normals. We
conducted a simulation experiment with 6000 iterations plus
500 burn-in. We applied the FDI-CPF with the ASWAM
adaptation with all combinations of N ∈ {24, 25, . . . , 211},
α∗ ∈ {0.01, 0.02, . . . , 1}, σ ∈ {1, 5, 10, 50, 100}, and with
dimension d ∈ {1, 2, . . . , 10}. Unlike before, wemonitor the
IACT over the samples of x1 as an efficiency measure.

Figure 8 summarises the results of this experiment. With
a fixed state dimension, αopt tended towards 1 with increas-
ing numbers of particles N , as observed with the RW and
SV models above. With a fixed number of particles N , αopt

appears to get smaller with increasing state dimension d, but
the change rate appears slower with higher d. Again, with
moderate values for N and d, the values in the range 0.7–0.9
seem to yield good performance.

Figure 9 shows a different view of the same data:
logit(αopt) is plotted with respect to log (N ) and d. Here,
we computed αopt by taking the target acceptance rate that
produced the lowest IACT in the simulation experiment, for
each value of σ , N and d. At least with moderate αopt and
N , there appears to be a roughly linear relationship between
logit(αopt) and log(N ), when d is fixed. However, because
of the lack of theoretical backing, we do not suggest to use
such a simple model for choosing αopt in practice.
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Fig. 8 The effect of state dimension d, number of particles N and
target acceptance rate α∗ on the logarithm of the mean IACT in the
multivariate normal model. The means are computed over the different
σ in the simulation experiment

Fig. 9 The best target acceptance rate αopt with respect to the number
of particles N and state dimension d on the multivariate normal model

4.4 Modelling the COVID-19 epidemic in Finland

Our final experiment is a realistic inference problem arising
from the modelling of the progress of the COVID-19 epi-
demic in Uusimaa, the capital region of Finland. Our main
interest is in estimating the time-varying transmission rate,
or the basic reproduction number R0, which is expected to
change over time, because of a number of mitigation actions
and social distancing. The model consists of a discrete-time

‘SEIR’ stochastic compartment model, and a dynamicmodel
forR0; such epidemic models have been used earlier in dif-
ferent contexts (e.g. Shubin et al. 2016).

We use a simple SEIR without age/regional stratification.
That is, we divide the whole population Npop to four separate
states: susceptible (S), exposed (E), infected (I ) and removed
(R), so that Npop = S + E + I + R, and assume that Npop is
constant. We model the transformedR0, denoted by ρ, such
that R0 = R0

maxlogit−1(ρ), where R0
max is the maximal

value for R0. The state vector of the model at time k is,
therefore, Xk = (Sk, Ek, Ik, Rk, ρk). One step of the SEIR
is:

Sk+1 = Sk − ΔEk+1,

Ek+1 = Ek + ΔEk+1 − ΔIk+1,

Ik+1 = Ik + ΔIk+1 − ΔRk+1,

Rk+1 = Rk + ΔRk+1,

ρk+1 = ρk + Δρk+1,

where the increments are as distributed as follows:

ΔEk+1 ∼ Binomial(Sk, pβ), pβ = 1 − exp (−βk(Ik/Npop)),

ΔIk+1 ∼ Binomial(Ek, pa), pa = 1 − exp (−a),

ΔRk+1 ∼ Binomial(Ik, pγ ), pγ = 1 − exp (−γ ),

Δρk+1 ∼ Normal(0, σ 2).

Here, βk = R0
maxlogit−1(ρk)pγ is the time-varying infec-

tion rate, and a−1 and γ −1 are the mean incubation period
and recovery time, respectively. Finally, the random walk
parameter σ controls how fast (ρk)k≥2 can change.

The data we use in the modelling consist of the daily num-
ber of individuals tested positive for COVID-19 in Uusimaa
(Finnish Institute for Health and Welfare 2020). We model
the counts with a negative binomial distribution dependent
on the number of infected individuals:

Yk ∼ NegativeBinomial

(
epγ

p

1 − p
Ik, p

)
. (8)

Here, the parameter e denotes sampling effort, that is, the
average proportion of infected individuals that are observed,
and p is the failure probability of the negative binomial dis-
tribution, which controls the variability of the distribution.

In the beginning of the epidemic, there is little information
available regarding the initial states, rendering the diffuse
initialisation a convenient strategy. We set

M1(S1, E1, I1, R1, ρ1)

=1(S1+E1+ I1=Npop)1(S1, E1, I1≥0)1(R1=0), (9)
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where the number of removed R1 = 0 is justified because
we assume all were susceptible to COVID-19, and that the
epidemic has started very recently.

In addition to the state estimation, we are interested in
estimating the parameters σ and p. We assign the prior
N (−2.0, (0.3)2) to log (σ ) to promote gradual changes in
R0, and an uninformative prior, N (0, 102), for logit(p).
The remaining parameters are fixed to Npop = 1638469,
R0

max = 10, a = 1/3, γ = 1/7 and e = 0.15, which are in
part inspired by the values reported by the Finnish Institute
for Health and Welfare.

We used the AAI-PG (Algorithm 9) with the FDI-CPF
with the ASWAMadaptation, and a RAMadaptation (Vihola
2012) for σ and p, (i.e. in the Lines 2–3 of Algorithm 9).
The form of (9) leads to the version of the FDI-CPF dis-
cussed in Sect. 3.2 where the initial distribution is uniform
with constraints. We use a random walk proposal to gen-
erate proposals (ρ1, E1, I1) → (ρ∗

1 , E
∗
1 , I

∗
1 ), round E∗

1
and I ∗

1 to the nearest integer, and then set R∗
1 = 0 and

S∗
1 = Npop − E∗

1 − I ∗
1 − R∗

1 . We refer to this variant of the
AAI-PG as the FDI-PG algorithm.Motivated by our findings
in Sects. 4.1–4.3, we set the target acceptance rate α∗ in the
FDI-CPF (within the FDI-PG) to 0.8.

As an alternative to the FDI-PG we also used a particle
Gibbs algorithm that treats σ , p as well as the initial states
E1, I1 and ρ1 as parameters, using the RAM to adapt the
random walk proposal (Vihola 2012). This algorithm is the
DPG-BS detailed in Appendix B with the difference that the
parameters σ and p are updated together with the initial state,
and pDPG additionally contains all terms of (6)which depend
on σ and p.

We ran both the FDI-PG and the DPG-BS with N = 64
a total of n = 500, 000 iterations plus 10, 000 burn-in, and
thinning of 10. Figures 10 and 11 show the first 50 auto-
correlations and traceplots of E1, I1, (R0)1, σ and p, for
both methods, respectively. The corresponding IACT and
neff as well as credible intervals for the means of these vari-
ables are shown in Table 1. The FDI-PG outperformed the
DPG-BSwith each variable. However, as is seen fromOnline
Resource 1 (Fig. 4), the difference is most notable with the
initial states, and the relative performance of the DPG-BS
approaches that of the FDI-PG with increasing state index.
The slow improvement in the mixing of the state variable R
occurs because of the cumulative nature of the variable in
the model, and the slow mixing of early values of I . We note
that even though themixingwith the DPG-BSwasworse, the
inference with 500, 000 iterations leads in practice to sim-
ilar findings. However, the FDI-PG could provide reliable
inference with much less iterations than the DPG-BS. The
marginal density estimates of the initial states and param-
eters are shown in Online Resource 1 (Fig. 5). The slight
discrepancies in the density estimates of E1 and I1 between

Fig. 10 The first 50 autocorrelations for the model parameters and
initial states with the FDI-PG and the DPG-BS computed after thinning
the total 500000 samples to every 10th sample

Fig. 11 Traceplots for the initial states and model parameters for the
SEIR model with the FDI-PG and the DPG-BS. The 5000 samples
shown per method and parameter correspond to every 100th sample of
the total 500000 samples simulated

the methods are likely because of the poor mixing of these
variables with the DPG-BS.

We conclude with a few words about our findings regard-
ing the changing transmission rate, which may be of some
independent interest. Figure 12 displays the data and a pos-
terior predictive simulation, and the estimated distribution
of R0 computed by the FDI-PG with respect to time, with
annotations about events that may have had an effect on
the spread of the epidemic, and/or the data. The initial R0

is likely somewhat overestimated, because of the influx of
infections from abroad, which were not explicitly modelled.
There is an overall decreasing trend since the beginning of
‘lockdown’, that is, when the government introduced the first
mitigation actions, including school closures. Changes in the
testing criteria likely cause some bias soon after the change,
but no single action or event stands out.

Interestingly, if we look at our analysis, but restrict our
focus up to the end of April, we might be tempted to quan-
tify how much certain mitigation actions contribute to the
suppression of the transmission rate in order to build pro-
jections using scenario models (cf. Anderson et al. 2020).
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Table 1 The integrated
autocorrelation time, effective
sample size and credible
intervals of the mean for the
initial states and parameters in
the SEIR model

Variable IACT neff 95% mean CI

FDI-PG DPG-BS FDI-PG DPG-BS FDI-PG DPG-BS

E1 30.087 882.583 1661.838 56.652 (353.888, 374.054) (301.379, 423.106)

I1 14.296 626.963 3497.603 79.75 (165.697, 172.388) (155.374, 203.458)

(R0)1 32.168 436.755 1554.331 114.481 (3.41, 3.513) (3.266, 3.636)

σ 41.261 114.919 1211.796 435.088 (0.15, 0.154) (0.147, 0.154)

p 5.18 38.178 9652.794 1309.647 (0.134, 0.135) (0.133, 0.135)

Fig. 12 The distribution of the basic reproduction numberR0 (top) and
a posterior predictive simulation (bottom) based on the posterior distri-
bution computed with the FDI-PG. The plot for R0 shows the median
in black and probability intervals (75% and 95%) in shades of grey. The

black points in the bottom plot represent the data used. The grey points
represent observations simulated conditional on the posterior distribu-
tion of the model parameters and states

However, when the mitigation measures have been gradually
lifted by opening the schools and restaurants, the openings
do not appear to have had notable consequences, at least until
now. It is possible that at this point, the number of infections
was already so low, that it has been possible to test all sus-
pected cases and trace contacts so efficiently, and that nearly
all transmission chains have been contained. Also, the public
may have changed their behaviour, and are now following the
hygiene and social distancing recommendations voluntarily.
Such a behaviour is, however, subject to change over time.

5 Discussion

We presented a simple general auxiliary variable method
for the CPF for HMMs with diffuse initial distributions and
focused on two concrete instances of it: the FDI-CPF for a
uniform initial density M1 and the DGI-CPF for a Gaussian
M1. We introduced two mechanisms to adapt the FDI-CPF
automatically: the adaptive Metropolis (AM) of Haario et al.

(2001) and amethod similar to aRao–Blackwellised adaptive
scaling within adaptive Metropolis (ASWAM) (cf. Andrieu
and Thoms 2008), and provided a proof of their consistency.
We also suggested an adaptation for the DGI-CPF, based on
an acceptance rate optimisation. The FDI-CPF or the DGI-
CPF, including their adaptive variants, may be used directly
within a particleGibbs as a replacement for the standardCPF.

Our experiments with a noisy random walk model and a
stochastic volatility model demonstrated that the DGI-CPF
and the FDI-CPF can provide orders of magnitude speed-ups
relative to a direct application of the CPF and to diffuse ini-
tialisation using particle Gibbs, respectively. Improvement
was substantial also in our motivating practical example,
where we applied the adaptive FDI-CPF (within particle
Gibbs) in the analysis of the COVID-19 epidemic in Finland,
using a stochastic ‘SEIR’ compartment model with chang-
ing transmission rate. Latent compartment models are, more
generally, a good example where our approach can be use-
ful: there is substantial uncertainty in the initial states, and it
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is difficult to design directly a modified model that leads to
efficient inference.

Our adaptation schemes are based on the estimated covari-
ance matrix and a scaling factor which can be adapted
using acceptance rate optimisation. For the latter, we found
empirically that with a moderate number of particles, good
performance was often reached with a target acceptance rate
ranging in 0.7–0.9.We emphasise that even though we found
this ‘0.8 rule’ to work well in practice, it is only a heuristic,
and the optimal target acceptance rate may depend on the
model of interest. Related to this, we investigated how the
optimal target acceptance rate varied as a function of the num-
ber of particles and state dimension in a multivariate normal
model, but did not find a clear pattern. Theoretical verifi-
cation of the acceptance rate heuristic, and/or development
of more refined adaptation rules, is left for future research.
We note that while the AM adaptation performed well in our
limited experiments, the ASWAM may be more appropriate
when used within particle Gibbs (cf. Vihola 2020). The scal-
ing of the AM remains similarly challenging, due to the lack
of theory for tuning.
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Appendix

A Proof of Theorem 1

For afinite signedmeasure ξ , the total variation of ξ is defined
as ‖ξ‖tv = sup‖ f ‖∞≤1 ξ( f ), where ‖ f ‖∞ = supx | f (x)|,
and the supremum is over measurable real-valued functions
f , and ξ( f ) = ∫

f dξ . For Markov transitions P and P ′,
define d(P, P ′) = supx ‖P(x, · ) − P ′(x, · )‖tv.

In what follows, we adopt the following definitions:

Definition 1 Consider Lines 3 and 4 of Algorithm 1 with
X̃ (1:N )
1 = x̃ (1:N )

1 and ẋ2:T , and define:

(i) PCPF(x̃
(1:N )
1 , ẋ2:T ; · ) as the law of X̃ (B1:T )

1:T , and

(ii) (In case PickPath- BS is used:) P̃CPF(x̃
(1:N )
1 , ẋ2:T ; · )

as the law of
(
X̃ (B1:T )
1:T , (B1, V (1:N ), X̃ (1:N )

1 )
)
.

Consider then Algorithm 1with parameterised Q = Qζ , and
define, analogously:

(iii) Pζ is the Markov transition from ẋ1:T to X̃ (B1:T )
1:T .

(iv) P̃ζ is the Markov transition from from (ẋ1:T , · ) to(
X̃ (B1:T )
1:T , (B1, V (1:N ), X̃ (1:N )

1 )
)
.

Lemma 1 We have d(Pζ , Pζ ′) ≤ Nd(Qζ , Qζ ′) and d(P̃ζ ,

P̃ζ ′) ≤ Nd(Qζ , Qζ ′).

Proof Let (P̂CPF, P̂ζ ) ∈ {(PCPF, Pζ ), (P̃CPF, P̃ζ )} and take
measurable real-valued function f on the state space of P̂ζ

with ‖ f ‖∞ = 1.
We may write

P̂ζ (ẋ1:T , f )

=
∫

Qζ (ẋ1, dx0)

[ ∫
δẋ1(dx̃

(1)
1 )

N∏

k=2

Qζ (x0, dx̃
(k)
1 )P̂CPF(x̃

(1:N )
1 , ẋ2:T , f )

]
, (10)

and therefore, upper bound

|P̂ζ (ẋ1:T , f ) − P̂ζ ′(ẋ1:T , f )|
≤ |Qζ (ẋ1, g

(ẋ1:T )
0 ) − Qζ ′(ẋ1, g

(ẋ1:T )
0 )|

+
N∑

i=2

∫
Qζ ′(ẋ1, dx0)|Qζ (x0, g

(ẋ1:T ,x0)
i )

−Qζ ′(x0, g
(ẋ1:T ,x0)
i )|
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with functions defined below, which satisfy ‖g(ẋ1:T )
0 ‖∞ ≤ 1

and ‖g(ẋ1:T ,x0)
i ‖∞ ≤ 1:

g(ẋ1:T )
0 (x0) =

∫
δẋ1(dx̃

(1)
1 )

N∏

k=2

Qζ (x0, dx̃
(k)
1 )

PCPF(x̃
(1:N )
1 , ẋ2:T , f ),

g(ẋ1:T ,x0)
i (x̃ (i)

1 ) = δẋ1(dx̃
(1)
1 )

i−1∏

k=2

Qζ ′(x0, dx̃
(k)
1 )

N∏

k=i+1

Qζ (x0, dx̃
(k)
1 )PCPF(x̃

(1:N )
1 , ẋ2:T , f ).

��
The following result is direct:

Lemma 2 Let QΣ stand for the randomwalkMetropolis type
kernel with increment proposal distribution qΣ , and with
target function M1 ≥ 0, that is, a transition probability of
the form:

QΣ(x, A) =
∫

A
qΣ(dz)min

{
1,

M1(x + z)

M1(x)

}

+1(x ∈ A)

(
1 −

∫
qΣ(dz)min

{
1,

M1(x + z)

M1(x)

})
.

Then, ‖QΣ(x, · ) − QΣ ′(x, · )‖tv ≤ 2‖qΣ − qΣ ′ ‖tv.
The following result is from (Vihola 2011, proof of Propo-

sition 26):

Lemma 3 Let qΣ(x, dy) stand for the centred Gaussian dis-
tribution with covariance Σ , or the centred multivariate
t-distribution with shape Σ and some constant degrees of
freedom ν > 0. Then, for any 0 < b� < bu < ∞ there exists
a constant c = c(b�, bu) < ∞ such that for all Σ,Σ ′ with
all eigenvalues within [b�, bu],

‖qΣ − qΣ ′ ‖tv ≤ c‖Σ − Σ ′‖,

where the latter stands for the Frobenius norm in R
d .

Assumption 2 (Mixing) The potentials are bounded:

(i) ‖Gk‖∞ < ∞ for all k = 1, . . . , T .

Furthermore, there exists ε > 0 and probability measures νζ

such that for all ζ ∈ Z:

(ii) Qζ (x0, A) ≥ ενζ (A) for all x0 ∈ X and measurable
A ⊂ X.

(iii)
∫

νζ (dx0)Qζ (x0, dx1)
G1(x1)

∏T
k=2 Mk(xk−1, dxk)Gk(xk−1, xk)dx1:T ≥ ε.

Lemma 4 Suppose that Assumption 2 holds, then the kernels
Pζ and P̃ζ satisfy simultaneous minorisation conditions, that
is, there exists δ > 0 and probability measures νζ , ν̃ζ , such
that

Pk
ζ (x1:T , · ) ≥ δνζ ( · ) and P̃k

ζ (x̃1:T , · ) ≥ δν̃ζ ( · ),

for all x1:T ∈ X, x̃ (1:N )
1 ∈ XN , and ζ ∈ Z.

Proof For P̂ζ ∈ {Pζ , P̃ζ }, we may write as in the proof of
Lemma1

P̂ζ (x1:T , · ) =
∫

Qζ (x1, dx0)P̂
∗
CPF,ζ,x0(x1:T , · ),

where the latter term refers to the term in brackets in (10) —
the transition probability of a conditional particle filter, with
reference x1:T , and the Feynman–Kacmodel M̌ (ζ,x0)

1 (dx1) =
Qζ (x0, dx1), M2:T and G1:T , whose normalised probabil-
ity we call π∗

ζ,x0
. Assumption 2, 2 and 2 guarantee that

P∗
CPF,ζ,x0

(x1:T , dx ′
1:T ) ≥ επ∗

ζ,x0
(dx ′

1:T ),where ε̂ > 0 is inde-
pendent of x0 and ζ (Andrieu et al. 2018, Corollary 12). Note
that the same conclusion holds also with backward sampling,
because it is only a further Gibbs step to the standard CPF.
Likewise, in case of P̃ζ , the result holds because we may
regard P̃ζ as an augmented version of Pζ (e.g. Franks and
Vihola 2020). We conclude that

P̂ζ (x1:T , · ) ≥ εε̂

∫
νζ (dx0)π

∗
ζ,x0( · ),

where the integral defines a probability measure independent
of x1:T . ��

We may write the k:th step of Algorithm 5 as:

(i) (Xk, ξk) ∼ P̃ζk−1(Xk−1, · ),
(ii) ζ ∗

k = ζk−1 + ηk H(ζk−1, Xk, ξk),

where H correspond to Algorithm 6 or 7, respectively.
The stability may be enforced by introducing the following
optional step:

(iii) ζk = ζ ∗
k 1(ζk ∈ Z) + ζk−11(ζ ∗

k /∈ Z),

which ensures that ζ ∈ Z, the feasible set for adaptation.

Proof (Proof of Theorem 1) The result follows by (Saksman
and Vihola 2010, Theorem 2), as (A1) is direct, Lemma 4
implies (A2) with V ≡ 1, λn = 0, bn = 1, δn = δ and
ε = 0, Lemmas 2 and 3 imply (A3), and (A4) holds trivially,
as ‖H( · )‖∞ < ∞, thanks to the compactness of D. ��
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B Details of the DPG-BS algorithm

The diffuse particleGibbs algorithm targets (2) by alternating
the sampling of x2:T given x1, and x1 given x2:T . Hence, the
algorithm is simply particle Gibbs where the initial state is
treated as a parameter. Define

pDPG(x1 | x2:T ) ∝ M1(x1)G1(x1)M2(x2 | x1)G2(x1, x2).

With this definition, the DPG-BS algorithm can be written as
in Algorithm 10. Lines 3–5 constitute a CPF-BS update for
x2:T , and Line 6 updates x1. A version of the RAM algorithm
(Vihola 2012) (Algorithm 11) is used for adapting the normal
proposal used in sampling x1 from pDPG.

Algorithm 10 DPG-BS(X (0)
1 , ẋ (0)

2:T ;π, N )
1: Set S0 = I , α∗ = 0.441, ηmax = 0.5, γ = 0.66.
2: for j in 1, . . . , n do

3: Simulate X̃ (2:N )
2 ∼ M2( · | X ( j−1)

1 ) and set X̃ (1)
2 = ẋ(0)

2 .

4: (X̃ (1:N )
2:T ,W (1:N )

2:T , A(1:N )
2:T−1) ← F-CPF(ẋ3:T , X̃ (1:N )

2 ; M3:T ,G2:T , N ).

5: (B2:T , ξ) ← PickPath- BS(X̃ (1:N )
2:T ,W (1:N )

2:T , A(1:N )
2:T−1, M3:T ,G3:T )

6: (X ( j)
1 , S j ) ← RAM(pDPG( · | X̃ (B2:T )

2:T ), X ( j−1)
1 , S j−1, α∗, ηmax, γ ).

7: Set X( j) = (X ( j)
1 , X̃

(B2)

2 , X̃
(B3)

3 , . . . , X̃
(BT )

T ).

8: end for
9: output X(1:n)

Algorithm 11 RAM(p, θ(n−1), Sn−1, α∗, ηmax, γ ) (iteration n)

1: Simulate Un ∼ N (0, Id ).
2: Propose θ∗ = θ(n−1) + Sn−1Un .

3: Compute αn = min

{
1,

p(θ∗)

p(θ(n−1))

}
.

4: With probability αn , set θ(n) = θ∗; otherwise set θ(n) = θ(n−1).
5: Set ηn = min{ηmax, dn−γ }.
6: Compute Sn such that Sn S

′
n = Sn−1

(
I + ηn (αn − α∗)

UnU
′
n

‖Un‖2
)
S
′
n−1.

7: output θ(n), Sn .
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