
Stat Comput (2018) 28:1169–1186
https://doi.org/10.1007/s11222-017-9786-y

Optimal Bayesian estimators for latent variable cluster models

Riccardo Rastelli1 · Nial Friel2,3

Received: 23 March 2017 / Accepted: 20 October 2017 / Published online: 31 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract In cluster analysis interest lies in probabilistically
capturing partitions of individuals, items or observations into
groups, such that those belonging to the same group share
similar attributes or relational profiles. Bayesian posterior
samples for the latent allocation variables can be effectively
obtained in a wide range of clustering models, including
finite mixtures, infinite mixtures, hiddenMarkovmodels and
block models for networks. However, due to the categorical
nature of the clustering variables and the lack of scalable
algorithms, summary tools that can interpret such samples
are not available. We adopt a Bayesian decision theoretical
approach to define an optimality criterion for clusterings and
propose a fast and context-independent greedy algorithm to
find the best allocations. One important facet of our approach
is that the optimal number of groups is automatically selected,
thereby solving the clustering and the model-choice prob-
lems at the same time. We consider several loss functions to
compare partitions and show that our approach can accom-
modate a wide range of cases. Finally, we illustrate our
approach on both artificial and real datasets for three differ-
ent clustering models: Gaussian mixtures, stochastic block
models and latent block models for networks.
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1 Introduction

Cluster analysis plays a central role in statistics and machine
learning, yet it is not immediately clear how one can appro-
priately summarise the output of partitions from a Bayesian
clustering model. This article seeks to address this impasse,
proposing an optimality criterion for clusterings derived
from decision theory, and a greedy algorithm to estimate
the optimal partition and number of groups. Clustering mod-
els are often represented as discrete latent variable models:
each of the data objects corresponds to the elements of
V = {1, 2, . . . , N } and is characterised by a categorical
latent variable z = {1, 2, . . . , K } denoting its group label.
Such variables are often called clustering variables or alloca-
tions. Notable examples of latent variable clustering models
include: product partition models (Hartigan 1990; Barry and
Hartigan 1992), finite mixtures (McLachlan and Peel 2004),
infinite mixtures (Quintana 2006 and references therein),
latent block models for networks (Nowicki and Snijders
2001; Govaert 1995), hidden Markov models (MacDonald
and Zucchini 1997).

Themotivation for this paper ensues from the introduction
within the statistical community of the so-called trans-
dimensional samplers. One well-known and widely used
sampler is the reversible jump algorithm of Green (1995),
extended to the context of finite mixtures by Richardson and
Green (1997) and to hidden Markov models by Robert et al.
(2000). Reversible jump Markov chain Monte Carlo allows
one to explore a number of models with a single Markov
chain that “jumps” between them, thereby estimating both
the model parameters and the posterior model probabilities.
A more recent trans-dimensional Markov chainMonte Carlo
algorithm is the allocation sampler introduced by Nobile
and Fearnside (2007). This takes advantage of the fact that,
in some mixture models, the marginal posterior distribution
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of the allocation variables can be obtained by analytically
integrating out all of the model parameters. This allows one
to use a collapsed Gibbs sampler and obtain a posterior
marginal sample for the clustering variables. One advantage
of this method is that the number of groups can be inferred at
each step from the clustering variables automatically, hence
obtaining posterior probabilities for the differentmodels. The
core idea of the allocation sampler has been recently extended
to a number of frameworks, including latent class analysis
(White et al. 2016), latent block models (Wyse and Friel
2012), stochastic block models (McDaid et al. 2013), latent
position models (Ryan et al. 2017) and change point analy-
sis (Benson and Friel 2016). In Bayesian nonparametrics a
similar approach has been proposed by Neal (2000), Favaro
and Teh (2013) for Dirichlet process mixture models.

Both reversible jumpand allocation sampler return a trans-
dimensional sample for the allocations. Theoretically, such
a sample contains all of the posterior information needed for
the clustering of the data; however, interpreting such infor-
mation is a very challenging task. Since the allocations are
categorical variables, usual summary statistics such as the
mean, median and quantiles are not well defined. In addition,
these Markov chain Monte Carlo algorithms are sensitive to
label-switching issues (Stephens 2000); in fact, when using
the latent variable representation, all mixture models are
non-identifiable up to a permutation of the cluster labels. In
addition, the sample itself may be computationally impracti-
cal to handle, since even basic operations may require a cost
that grows with N 2 or the square of the size of the sample.

The problem described really boils down to a very sim-
ple research question: we want to summarise the information
provided by a sample of partitions into an optimal partition.
This issue has been addressed in several previousworks, such
as Strehl andGhosh (2003),Gionis et al. (2007),Dahl (2009),
Fritsch and Ickstadt (2009),where the authors propose anum-
ber of approaches that define a theoretical optimal partition
and introduce algorithms to find it. One critique to these con-
tributions is that the proposed methodologies lack a sound
theoretical background and they may be seen as ad hoc.

In this work we use a Bayesian decision theoretical
framework to define an optimality criterion for partitions,
as previously proposed by Binder (1978), Lau and Green
(2007), Wade and Ghahramani (2015). From the Bayesian
theoretical point of view, our approach defines the best possi-
ble solution to the partitioning problem using the information
contained in the sample. Also, an important facet of this
methodology is that it builds upon recent adaptations of the
allocation sampler (Wyse andFriel 2012;McDaid et al. 2013;
Ryan et al. 2017;White et al. 2016),making up for one impor-
tant shortcoming of these samplers: the interpretation of the
results.

The essence of the decision theoretical framework lies in
the definition of a loss function in the space of partitions,

which is often a metric measuring how different two parti-
tions are. Then, the optimal partition is estimated as the one
minimising the average loss with respect to the sample given.
In the Bayesian perspective, this is equivalent to adopting a
Bayes estimator (orBayes action), which is the decisionmin-
imising the expected posterior loss (EPL).

We propose a greedy algorithm as means to find the opti-
mal partition, focusing on its computational complexity and
scalability. The algorithm can deal with a wide family of
loss functions and requires only the sample of partitions as
input. Hence, our methodology has wide applicability and
is the only scalable procedure that can be used to perform
Bayesian clustering for a relatively arbitrary loss function.
One important advantage of our algorithmic frameworks is
that the resultingoptimal clustering automatically determines
the optimal number of groups.

Previous works (Lau and Green 2007; Wade and Ghahra-
mani 2015) were confined to the case of Bayesian non-
parametric models. Here we stress that this approach is
automatically extended to a very general clustering con-
text, and hence, we propose applications to several different
frameworks.

The R package GreedyEPL accompanying this paper is
publicly available on CRAN, and it contains an implemen-
tation of the procedure described.

The plan of the paper is summarised as follows: Sect. 2
describes the theoretical foundations of Bayesian clustering;
in Sect. 3 we describe the properties of several loss functions
to compare partitions, and we characterise the wide breadth
to which our method extends; in Sect. 4 we introduce our
greedy algorithm and analyse its complexity and features,
whereas Sect. 5 shows an interesting procedure that can be
used to potentially save an amount of computational time.
We propose a simulation study in Sect. 6, where we assess
the efficiency of our method, and we compare its perfor-
mance with that of other available algorithms. We consider
several loss functions and assess their ability to recover the
true clustering and the correct model. Finally, three applica-
tions to real datasets are proposed in Sect. 7: the Old Faithful
dataset for Gaussian mixture models, the French political
blogosphere for stochastic block models and the congres-
sional voting data for latent block models. Section 8 closes
the paper with some final comments.

2 Bayesian clustering: the theory

Let Z be a T × N matrix, where, for every t = 1, . . . , T
and i = 1, . . . , N , zti is a categorical variable (typically
zti ∈ {1, 2, . . . , N }) indicating the cluster label of observa-
tion i at iteration t . The rows of Z determine a sample of
partitions of the same set V = {1, 2, . . . , N }, and we assume
that such sample is drawn from the posterior distribution of
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a clustering model, given the observed data Y . An alterna-
tive representation of the sample would be

{
z(1), . . . , z(T )

}
,

where z(t) = {zt1, . . . , zt N } ∈ Z corresponds to the t-th row
of Z, and Z is the space of all partitions of V .

Interest lies in conveying the information provided by the
posterior sample into a single optimal partition. Bayesian
decision theory offers an elegant approach to tackle this
task, essentially recasting the clustering problem into one
of decision-making.

The first step consists of choosing a loss function L :
Z × Z → R. For any two partitions (hereafter also called
decisions) a and z, the quantity L (a, z) indicates the loss
occurring when the decision a is chosen, while z is the cor-
rect partition. The choice of the loss function adopted is
completely arbitrary and supposedly situational; nonethe-
less, some loss functions have interesting features and tend to
work well in many contexts. A loss function is not necessar-
ily a distance in the space of partitions although this is often
regarded as a desirable property, since it helps particularly in
the interpretation and representation of the results.

An optimal decision (also calledBayes action) is onemin-
imising the expected posterior loss, defined as:

Ψ (a) := Ez [L (a, z) |Y] =
∑

z∈Z
π (z|Y)L (a, z) . (1)

Considering that the posterior sample
{
z(1), . . . , z(T )

} ∼
π ( · |Y) is available, for every decision a ∈ Z , an unbiased
estimator of the associated expected posterior loss results as:

ψ (a) = 1

T

T∑

t=1

L
(
a, z(t)

)
≈ Ψ (a) . (2)

We aim then at finding the decision â minimising the
approximate expected posterior loss:

â = arg min
a∈Z

ψ (a) . (3)

3 Choice of the loss function

3.1 Common loss functions

Given the sample Z, a naive but fast method to obtain an
optimal clustering would be to consider the single partition
that obtained the highest posterior value during the sampling,
i.e.:

âMAP = arg max
t=1,2,...,T

π
(
z(t)|Y

)
. (4)

In a decision theoretical context, this is equivalent to choosing
a 0–1 loss defined as:

L (a, z) =
{
1 if a �≡ z,
0 if a ≡ z; (5)

since the Bayes action minimising (3) would simply be the
mode of the sample. The sign “≡” here means that there
exists a label permutation σ such that σ (ai ) = zi , ∀i ∈ V .
Reading the definition in (5), the loss is zero iff the partitions
are equivalent. In all of the other cases, the loss is 1 regard-
less of how different the partitions actually are. This peculiar
behaviour makes the 0–1 loss rather unappealing as means to
compare partitions. Note that all of the clustering algorithms
that return a MAP estimate can be interpreted in this con-
text as tools minimising the expected 0–1 loss, although they
normally do not require the sample Z, and are very compu-
tationally efficient. Hence, MAP estimates may be criticised
since in the Bayesian paradigm the corresponding loss is not
particularly sensible.

Another loss function that is commonly used is the
quadratic loss, which gives the posterior mean as Bayes
action. However, in a clustering context this has little mean-
ingdue to the categorical nature of the variables,whichmakes
any sort of averaging of allocations not particularlymeaning-
ful.

3.2 Loss functions to compare partitions

Amore sensible approach would be to choose a loss function
that is specifically designed to compare partitions. In recent
years, many measures to compare partitions have been pro-
posed, eachwith very different properties and characteristics.
The works of Meilă (2007), Vinh et al. (2010), Wade and
Ghahramani (2015) and references therein offer an excellent
overview.

A common approach used to compare partitions (here a
and z denote two arbitrary partitions with Ka and Kz groups,
respectively) relies on the Ka × Kz contingency matrix (or
confusion matrix), whose entries are defined as:

na,z
gh =

N∑

i=1

1{ai =g}1{zi =h} (6)

where g varies among the groups of a, and h among those of
z. The entries of such a matrix simply count the number of
items that a classifies in group g and z classifies in group h,
for every g and h.

Here, we focus on loss functions that depend on a and
z only through the entries of na,z. This is a fairly general
and reasonable assumption which is in line with the theory
developed by Binder (1978); in fact, most metrics can be
transformed into functions of the counts (see Vinh et al. 2009
and references therein).

We assume that the loss function has the following
representation:
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L
({

na,z
gh

}

g,h
,
{

na
g

}

g
,
{
nz

h

}
h

)

= f0

⎛

⎝
Ka∑

g=1

Kz∑

h=1

f1
(

na,z
gh

)
,

Ka∑

g=1

f2
(

na
g

)
,

Kz∑

h=1

f3
(
nz

h

)
⎞

⎠

(7)

where f0, f1, f2, f3 are real-valued functions that can be
evaluated in constant time and na

g and nz
h indicate the sizes

of group g and h, respectively, i.e.:

na
g =

Kz∑

h=1

na,z
gh , nz

h =
Ka∑

g=1

na,z
gh . (8)

for every g = 1, . . . , Ka and h = 1, . . . , Kz. The assump-
tion determined by (7) is actually not restrictive: most of the
commonly used loss functions for partitions satisfy this con-
dition. We note that the arguments of the function f0 include
the following quantities as special cases:

• The entropies of a and z, describing the uncertainty asso-
ciated with a and z, respectively:

H (a) = −
Ka∑

g=1

na
g

N
log2

na
g

N
;

H (z) = −
Kz∑

h=1

nz
h

N
log2

nz
h

N
. (9)

• The joint entropy of a and z:

H (a, z) = −
Ka∑

g=1

Kz∑

h=1

na,z
gh

N
log2

na,z
gh

N
. (10)

This describes instead the uncertainty of the random
variable with probability density function given by the
quantities na,z

gh /N , for every g and h.
• Themutual information, which can be evaluated from the
entropies and joint entropy:

I (a, z) = H (a) + H (z) − H (a, z) . (11)

This quantity is particularly meaningful and has been
advocated in a normalised version by Strehl and Ghosh
(2003) as a distance measure between partitions.

Note the common convention that x log2 x = 0 if x = 0.
Evidently these information-based quantities can be obtained
as special cases of the functions f1, f2 and f3, making our
assumption rather general and broadly satisfied.

Here follows a brief description of some well-known loss
functions that are included in our framework.

Binder’s loss (B) We use a special case of a more general
formula first introduced by Binder (1978):

LB (a, z) = 1

2

Ka∑

g=1

(
na

g

)2 + 1

2

Kz∑

h=1

(
nz

h

)2 −
Ka∑

g=1

Kz∑

h=1

(
na,z

gh

)2
.

(12)

This loss is equivalent to theHamming distance (Meilă 2012)
and to the Rand index (Rand 1971). Binder’s loss has an
interesting property that simplifies greatly the minimisation
of (3). One can in fact easily construct a so-called posterior
similarity matrix of size N × N , whose entries bi j denote
the estimated posterior probability of i and j being allocated
to the same group, for every i and j in V . Then, the Binder
Bayes action satisfies:

âB = arg min
a∈Z

∑

i< j

[
1{ai =a j} − bi j

]
(13)

where1A is equal to 1 if the eventA is true or zero otherwise.
This simplifies the minimisation problem since (13) depends
on the sample only through the posterior similarity matrix,
which can be effectively computed beforehand.

The variation of information (VI) This loss is one we partic-
ularly focus on in this paper and is defined as:

LVI (a, z) = 2H (a, z) − H (a) − H (z) . (14)

The VI loss, first studied in Meilă (2007), has received an
increasing amount of attention in the last decade, mainly
due to its strong mathematical foundations and practical effi-
ciency. In the paper byMeilă (2007) as well as in subsequent
works such as Wade and Ghahramani (2015), the mathe-
matical properties and behaviour of the VI loss have been
deeply studied. We mention that this loss is a metric, that
it forms a lattice and that it is horizontally and vertically
aligned in the space of partitions. In addition, it is invariant
to label-switching, i.e. switching labels for either a or z will
not affect the value LVI (a, z). More details regarding the
theoretical properties of the VI loss can be found in Meilă
(2007).

The normalised variation of information (NVI) This loss is
defined as:

LNVI (a, z) = 1 − I (a, z)
H (a, z)

. (15)

The normalised version of the VI loss takes values in [0, 1].
This scale-invariancemay facilitate the interpretation and the
comparisons of partitions under different conditions. Since
we adopt an optimisation approach, this feature is not crucial
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in our framework due to the partitions always referring to the
same set of individuals.

The normalised information distance (NID) This loss is
defined as:

LNID (a, z) = 1 − I (a, z)
max {H (a) , H (z)} . (16)

The NID loss has been advocated in Vinh et al. (2010) as a
general purpose—context independent—loss function with
desirable behaviours.

4 Minimisation of the expected posterior loss

An exhaustive search withinZ becomes impractical even for
very small N (the cardinality ofZ is a numberwithmore than
100 digits if N = 100). Therefore, the minimisation can be
seen as a binary programming optimisation problemwhich is
known to be NP-hard, and hence not solvable through exact
methods.

Also, the objective function requires the calculation of the
sum in (2) at each evaluation. Getting a new posterior sam-
ple at each step is not a practical option; hence, the same
sample is used for all of the evaluations of (2). Nonethe-
less, even a single evaluation of the objective function can
become computationally burdensome when the size of the
sample is large. Therefore, the decision theoretical approach
becomes soon impractical as N and T increase, and finding
scalable procedures is crucial. In this section we introduce
a new algorithm that, using greedy updates, is able to esti-
mate the Bayes action for the wide family of loss functions
satisfying (7), requiring in input only the posterior sample of
partitions.

4.1 Greedy algorithm

Heuristic greedy algorithms have been recently rediscovered
as a means to maximise the so-called exact integrated com-
plete likelihood in various contexts: stochastic block models
(Côme and Latouche 2015), latent block models (Wyse
et al. 2017), Gaussian finite mixtures (Bertoletti et al. 2015).
Similar approaches have also beenproposed inBayesian non-
parametrics for Dirichlet prior mixtures (Raykov et al. 2016)
although in this case they did not cast the clustering prob-
lem into the optimisation of an exact model-based clustering
criterion. Among the many papers adopting types of greedy
optimisation, we find the approaches of Besag (1986), Strehl
and Ghosh (2003), Newman (2004) particularly related to
ours.

We propose a greedy algorithm that updates a partition
by changing the cluster memberships of single observations

Algorithm 1 Greedy algorithm
1: Let a be the starting partition.

2: Set ψa = ψ (a).

3: Set STOP to false.

4: while STOP is false do

5: ψstop = ψa.

6: Set V = {1, 2, . . . , N }.
7: while V is not empty do

8: Pick i at random from V and delete it from V .
9: For every s = 1, . . . , Kup, evaluate ψ

(
ai :ai →s

)
.

10: Move i to ŝ = arg maxs=1,...,Kup ψ
(
ai :ai →s

)
.

11: Update ψa = ψ (a).

12: end while

13: if ψstop = ψa then

14: STOP = true.

15: end if

16: end while

17: Return a and ψa.

using a greedy heuristic, hence decreasing the expected pos-
terior loss of the partition at each step. As input, the algorithm
only requires a starting partition, the posterior sample Z and
a user-specified parameter Kup, equal to the maximum num-
ber of groups allowed (a reasonable default value would be
Kup = N ). The algorithm cycles over the observations in
random order, and, for each of these, it tries all of the pos-
sible reallocations, eventually choosing the one giving the
best decrease in the objective function. The notation ai :r→s

denotes the partition awhere the observation i has been real-
located fromgroup r to s.At eachmove, the number of groups
may increase (if the observation is reallocated to an empty
group) or decrease (if a group is left empty), although the
latter scenario is much more frequent. Due to the low proba-
bility of creating new groups, it is generally advisable to start
with a partition made of close to Kup groups. The procedure
stops when a complete sweep over all observations yields no
change in the expected posterior loss. The pseudo-code for
the algorithm is shown in Algorithm 1.

Due to the greedy nature of this procedure, the algorithm
is bound to return a local optimum, rather than a global one.
Consequently, several restarts with different initial partitions
may be required. However, due to the greedy behaviour, con-
vergence is usually reached in very few iterations, in each
run. In all of the applications proposed we choose the start-
ing partition completely at random among those with up to
Kup groups. Since the algorithm has a tendency to reduce the
number of groups, we normally set Kup to a large value (as
large as computational resources allow for), which gives the
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best chances to converge to a global optimum. By contrast,
choosing, for example, the MAP as starting partition may
result in premature convergence and local optima issues. We
note that these indications are in line with those provided in
Hastie et al. (2015).

One interesting feature of the greedy algorithm is that
the whole space of partitions is explored; hence, the optimal
partitions may differ substantially from all of the clusterings
in the sample. In fact, many non-optimal solutions may have
higher posterior values than the optimal one. In contrast to
Côme and Latouche (2015), Wyse et al. (2017), we do not
perform any final merge step, as in most cases this did not
improve the results.

4.2 Complexity

The basic operation that determines the complexity of the
greedy optimisation is the evaluation of the variation in the
objective function when a possible reallocation is tested (line
9 in the pseudo-code 1). Assume that the move from a to
ai :r→s is being tested, for some groups r and s. The following
quantity needs to be evaluated:

�ψ := ψ (ai :r→s) − ψ (a)

= 1

T

T∑

t=1

[
L

(
ai :r→s, z(t)

)
− L

(
a, z(t)

)]
, (17)

which in turn requires, ∀t = 1, . . . , T :

�L(t) := L
(
ai :r→s, z(t)

)
− L

(
a, z(t)

)
. (18)

For a certain t , the move only affects two entries of na (i.e.

na
r and na

s ) and two entries of na,z
(t)

(i.e. na,z(t)
rv and na,z(t)

sv ,
where v = zti ). This means that the change in the arguments
of f0 can be evaluated in a constant time, hence making the
cost of evaluating �ψ ∼ O (T ).

Since the algorithm tries all possiblemoves for each obser-
vation, the overall computational cost is O (

T N Kup
)
.

4.3 Comparisons with other algorithms

Both Lau and Green (2007) and Wade and Ghahramani
(2015) proposed original algorithmic frameworks to min-
imise an expected posterior loss.WhileLau andGreen (2007)
only focused on Binder’s loss,Wade and Ghahramani (2015)
also extended the procedure to the VI loss, albeit resorting to
an approximation of the objective function. Both method-
ologies take advantage of the posterior similarity matrix
representation, briefly pointed out in (13). Note that this rep-
resentation is exclusive to the Binder’s loss; hence, these
approaches lack the possibility to be generalised to other
loss functions, unless approximations are introduced.

The computational cost for an evaluation of the objec-
tive function (13) does not depend on T , since the posterior
information contained in the sample is summarised in the
posterior similarity matrix. The calculation of the posterior
similarity matrix itself requiresO (

T N 2
)
operations, yet this

can be performed offline and it is unlikely to impact the over-
all computing time.

On theother hand, our algorithmdoes not require a N 2 cost
at any stage; hence, it should be preferable when the number
of observations to classify is very large. We note that, due to
the dependence of the complexity on T , our algorithm will
benefit if the sample is small and thinned with a large lag.
A trade-off between the reliability of the posterior sample
and computing time should be assessed, in which one should
provide a sample that is as small as possible but not so small
that the approximation to the posterior distribution is not
reliable. As concerns Kup, in order to minimise the chances
to stop at a local optimum, this should be set to a value as
large as the computational power allows for: Kup = N would
be ideal, but this may only be feasible when N is very small.

More generally, the computational cost of the algorithm
may be compared to the complexity of the sampler used
to get the posterior sample. In fact, one key advantage of
the collapsed Gibbs samplers proposed in Nobile and Fearn-
side (2007), McDaid et al. (2013), Wyse and Friel (2012) is
their computational efficiency. The posterior sample returned
by these samplers is necessary to perform the minimisation
of the expected posterior loss. Hence, an ideal complexity
for the optimisation problem should be not higher than that
required by the sampler in the first place. Unfortunately,
when analysing these samplers, new quantities (the num-
ber of dimensions for Gaussian mixtures, or the number
of edges in block models) come into play, making a strict
comparison of the complexity not possible. However, in
our applications we noticed that the computational bottle-
neck was always set by the samplers, and not by the greedy
algorithm.

5 Classes of equivalences in the posterior sample

Since the sample space Z is discrete, the posterior sample Z
may contain repetitions, due to the sampler returning to the
same partition during the sampling procedure. This suggests
that, regardless of the partition a, a number of the calculations
required to obtain L (a, z) are redundant. In fact, given a
partition z, the following holds:

L
(
a, z(t)

)
= L (a, z) ; (19)

L
(
ai→g, z(t)

)
= L (

ai→g, z
)
. (20)

for all i = 1, . . . , N and g = 1, . . . , Kup and ∀t : z(t) ≡ z.
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It follows that the posterior sample can be summarised

into the sample of its unique rows Z̃ =
{
z̃(1), . . . , z̃(T̃ )

}
and

a vector of counts ω =
{
ω(1), . . . , ω(T̃ )

}
describing how

many times the corresponding partition appears in the origi-
nal sample Z. Therefore, the approximate expected posterior
loss can be equivalently written as:

ψ (a) = 1

T̃

T̃∑

t=1

ω(t)L
(
a, z̃(t)

)
. (21)

A similar reasoning can be used to make the calculation of
ψ

(
ai→g

)
more efficient.

The main difficulty in applying the technique just
described lies in identifying the new representation effi-
ciently. One problem consists in the implementation of the
operator “≡” since partitions should be compared up to a
permutation of the labels. To solve this, we use a procedure
described in Strehl and Ghosh (2003) that defines a unique
labelling for all partitions: the first item is assigned to cluster
1, and then iteratively the next item is assigned either to an
existing cluster or to the next empty cluster. Using this rela-
belling, any two equivalent partitions will be transformed
into the same sequence of digits in a computational time
O (T N ).

Furthermore, the same vector can be seen as a number
in base—Kup representation which uniquely identifies the
corresponding partition and the equivalence class imposed
by “≡”. Hence, a sorting algorithm can be used to reorder
the sample according to such identifiers, for a computa-
tional cost of O (N T log T ), where N is the cost of a single
comparison of partitions. Once the partitions are sorted, the
unique set and the corresponding weights can be obtained in
O (T N ).

The advantage provided by this representation heavily
depends on the dataset and on the corresponding marginal
posterior distribution: less repetitions will appear if the pos-
terior is flat and the partitioning very uncertain. On the other
hand, the computational savings may be substantial in cases
where only few partitions have a high posterior value.

Note that the sorting procedure creates a new computa-
tional bottleneck in the case where log T > Kup. However,
we found this is not relevant in practical terms and negligible
when compared to the computational time demanded by the
actual optimisation.

In amachine learning context, theweighted sample Z̃may
be interpreted as a cluster ensemble problem, whereby each
partition corresponds to the output of a clustering algorithm
and the counts are weights describing the relative (possi-
bly subjective) importance of the solution. Our methodology
may be applied in this scenario without further modifica-
tions, providing a sound background to the decision-making
process.

6 Simulations

In this section we propose two applications to simu-
lated bivariate Gaussian mixtures datasets. The design of
these experiments resembles that of Wade and Ghahramani
(2015).

In a finite mixture model, each data observation yi ∈ R
2

is generated from a mixture of bivariate Gaussians:

p (Y|λ,μ,�) =
N∏

i=1

K∑

g=1

λgMVN 2
(
yi ; μg,�g

) ; (22)

whereλ1, . . . , λg are themixtureweights andMVN 2 ( · ;μ,

�) denotes the bivariate Gaussian distribution with mean μ

and covariance matrix�. Alternatively, using the latent vari-
able representation, an allocation variable zi is associated
with each observation, denoting which Gaussian component
has generated the corresponding yi , resulting as follows:

p (Y|z,μ,�) =
K∏

g=1

∏

i :zi =g

MVN 2
(
yi ; μg, �g

)
. (23)

In this section, a Dirichlet process is used as a prior on
the model parameters, following the approach of Ferguson
(1973). This leads to an infinite mixture model which gener-
alises that of (22), since it potentially has an infinite number
of mixture components K . This generative process assumes
that observations are sequentially allocated either to an exist-
ing group (with probability Ng

α+N−1 , proportional to the size
of the corresponding group g) or to a new group (with proba-
bility α

α+N−1 ). Each time a new group is created, its specific
parameters are generated from:

�g ∼ Inverse Wishart (ν, uνI) ;
μg|�g ∼ MVN 2

(
0,

1

a
�g

)
.

(24)

where I denotes the identity matrix of dimension 2. The prior
on α is:

p(α) =
[
1 − (α − αmin)

(αmax − αmin)

]h

. (25)

We use the function rDPGibbs from the R package
bayesm to obtain posterior samples for the allocation vari-
ables. Uniform priors are assumed on the parameters a, ν and
u, and all of the hyperparameters of the model are set to the
default values of rDPGibbs. Once a sample of partitions
is obtained, we consider the following algorithms to find the
best clustering for the data observations:
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• L&G: this denotes the algorithm of Lau and Green
(2007), as implemented in the function minbinder of
mcclust. This algorithm minimises the expected pos-
terior Binder’s loss.

• W&G: this denotes the algorithm of Wade and Ghahra-
mani (2015), as implemented in the function minVI of
mcclust.ext. This algorithmminimises the expected
posterior VI loss, but it relies on a Jensen’s inequality to
take advantage of the posterior similarity matrix formu-
lation.

• MEDV: this denotes the algorithm of Medvedovic et al.
(2004) (implemented in mcclust) where hierarchical
clustering is used on the dissimilarity matrix with entries
1 − bi j .

• PEAR: this denotes the algorithm of Fritsch and Ickstadt
(2009) implemented in mcclust. In this case the algo-
rithm minimises the expected posterior adjusted Rand
index.

• GreedyVI, GreedyB, GreedyNVI, GreedyNID: these
correspond to the optimal partitions obtained using our
method, and they are all implemented in the package
GreedyEPL accompanying this paper. The correspond-
ing loss functions are the variation of information,
Binder’s, normalised variation of information and nor-
malised information distance, respectively. Note that in
all of theGreedymethods the algorithms are started with
a randompartition of Kup = 20 groups, unless stated oth-
erwise.

6.1 Example 1

The data Y used in this sample consist of N = 400 points
drawn from a mixture of K = 4 Gaussians where:

λ1 = λ2 = λ3 = λ4 = 0.25;
μ1 =

(
1
1

)
; μ2 =

(−1
1

)
; μ3 =

(−1
−1

)
;

μ4 =
(

1
−1

)
;

�1 =
(
1 0
0 1

)
; �2 =

(
0.5 0
0 0.5

)
; �3 =

(
1 0
0 1

)
;

�4 =
(
1.5 0
0 1.5

)
.

(26)

We aim at studying the scalability of all of the algorithms as
N increases. First, a posterior sample of 5,000 partitions is
obtained for the full dataset (N = 400). Then, for n vary-
ing in (40, 80, 120, 160, 200, 240, 280, 320, 360, 400) each
algorithm is run on the subset obtained by selecting only
the first n observations (and their corresponding allocations).
The number of seconds needed for one single run of each of
the algorithms is shown in Fig. 1. The method of Lau and

0
10

0
20

0
30

0
40

0

Computing time

n

Se
co

nd
s

40 80 120 160 200 240 280 320 360 400

W&G
MEDV
L&G
GreedyVI
GreedyB
GreedyNVI
GreedyNID

Fig. 1 Example 1. Computing times for the clustering methods con-
sidered

Green (2007) scales very poorly with n and hence is run only
for n ≤ 200. In terms of scalability, themethod of Fritsch and
Ickstadt (2009) seems to be no different from Medvedovic
et al. (2004), and hence, it is not shown in the plot. From the
results it appears that the methods based on hierarchical clus-
tering are the fastest, followed by our procedure. Themethod
of Wade and Ghahramani (2015) does not scale particularly
well, but it could be improved with a C implementation.

Some of the optimal partitions obtained on the full dataset
are shown in Fig. 2. As a measure of quality of the clustering,
we consider the number of groups in the optimal partitions
(shown in Table 1) and we also compare the optimal parti-
tions to the true one using the variation of information loss,
as shown in Table 2. Most algorithms tend to overestimate
the number of groups except those of Wade and Ghahramani
(2015) and Medvedovic et al. (2004). However, as shown
in Table 2, these solutions with 4 groups are not optimal in
the VI sense. In fact, the only method minimising the exact
expected posterior VI loss is GreedyVI, which is also the
method achieving the smallest expected posterior VI values.
These results suggest that the approximation of Wade and
Ghahramani (2015) induces an over-penalisation on the num-
ber of groups, whereas most commonly used loss functions
(VI included, to some extent) tend to largely overestimate the
number of groups.

6.2 Example 2

The aim of this study is to assess the performances of the
different loss functions considered in Sect. 3.2. The methods
L&G and W&G are not considered since they optimise the
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Fig. 2 Example 1. True allocations (top-left) and optimal clusterings obtained through MEDV (top-right), W&G (bottom-left) and GreedyVI
(bottom-right). It seems that the VI criterion tends to create new groups whenever the allocation of an observation is uncertain

Table 1 Example 1: number of
groups for the optimal partitions
of each of the methods, for each
of the values of n considered

40 80 120 160 200 240 280 320 360 400

W&G 4 4 4 4 4 4 4 4 4 4

MEDV 4 4 4 4 4 4 4 4 4 4

PEAR 5 5 7 7 7 9 12 13 16 17

L&G 8 9 10 11 12

GreedyVI 6 6 6 5 5 5 7 7 10 10

GreedyB 8 9 10 11 12 15 18 20 24 27

GreedyNVI 9 8 8 7 6 7 10 10 13 16

GreedyNID 7 9 10 12 13 14 16 18 14 21

same objective functions (or approximation thereof) of our
methods GreedyB and GreedyVI (respectively).

Here we consider the same generative model as in the
previous example, but with a different covariance structure:

�g =
(

σ 0
0 σ

)
∀g = 1, 2, 3, 4. (27)

The parameter σ varies in the set (0.7, 0.8, 0.9, 1, 1.1), and
it makes the clustering task more challenging as it increases.
For each of these scenarios, 50 datasets of N = 100 observa-
tions are generated, and a collection of partitions is obtained
using the rDPGibbs function of bayesm. The sampler dis-
cards the first 25,000 partitions and then stores one partition
every tenth until a sample of length 5,000 is obtained. For
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Table 2 Example 1: VI
expected posterior loss for each
of the optimal partitions with
respect to the posterior sample
used

40 80 120 160 200 240 280 320 360 400

W&G 0.860 0.921 0.948 0.994 0.963 0.958 0.978 0.964 1.029 1.054

MEDV 0.893 0.979 1.017 1.025 0.985 0.960 1.024 0.974 1.051 1.055

PEAR 0.840 0.917 0.998 1.014 0.994 0.980 0.996 0.990 1.041 1.064

L&G 0.858 0.986 1.014 1.053 1.036

GreedyVI 0.825 0.908 0.942 0.963 0.940 0.943 0.968 0.955 1.008 1.029

GreedyB 0.858 0.986 1.014 1.053 1.036 1.048 1.067 1.063 1.122 1.161

GreedyNVI 0.864 1.040 0.958 0.971 0.941 0.946 0.974 0.962 1.016 1.162

GreedyNID 0.854 0.954 0.992 1.032 1.009 1.007 1.021 1.020 1.137 1.080

The size of the dataset n varies on the columns. The GreedyVI method is the only one
minimising the non-approximated expected VI loss, and it achieves the smallest values in
each dataset (italics)
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Fig. 3 Example 2. On the left panel, the proportion of datasets where the estimated K is correct is shown. The average value of K is instead shown
on the right panel, to assess whether the number of groups was on average underestimated or overestimated

each of these datasets, the algorithms GreedyVI, GreedyB,
GreedyNVI, GreedyNID, MEDV and PEAR are run and
the corresponding optimal partitions are compared. As con-
cerns model-choice, the results are shown in Fig. 3. Overall,
the VI loss achieves the best performance, whereas the
methods based on hierarchical clustering over-perform the
methods based on the other loss functions. The only method
inclined towards an underestimation of the number of groups
is that of Medvedovic et al. (2004), confirming the results of
Sect. 6.1. All of the other methods tend to overestimate K ,
to some extent. We remark that Binder’s loss, similarly to
the normalised variation of information and the normalised
information distance, dramatically overestimates the number
of groups as the dataset becomes more challenging. These
findings are in agreement with those of Wade and Ghahra-
mani (2015).

We also show several comparisons of the optimal cluster-
ings with respect to the true allocations in Fig. 4, using the

same loss functions as measures of disagreement. Accord-
ing to these comparison measures, it is clear that theMEDV
method performs quite poorly,whereasPEAR achieves good
results in all cases. Regarding the othermethods, it seems dif-
ficult to rank them. In most cases each method achieves the
best scores when it is assessed using the corresponding loss
function. The reason why this does not happen every time
is simply because the true partition may not necessarily cor-
respond to the best clustering of the data and should not be
expected to correspond to the minimum value of any of the
objective functions considered. Combining Figs. 3 and 4, it is
worth noting that the VI loss has a tendency to overestimate
the number of groups when the dataset is not challenging,
but it can fail to see any clustering structure if the noise
in the data is larger. This is signalled by the fact that its
performance declines as the clustering task becomes more
difficult.
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Fig. 4 Example 2. All of the optimal partitions are compared to the true one using the following loss functions: variation of information (top-left),
Binder’s (top-right), normalised variation of information (bottom-left), normalised information distance (bottom-right)

7 Real data examples

In this section, we provide three applications of our method-
ology to different clustering contexts and compare the results
obtained with previous analyses. In light of the results of the
previous section, and to simplify the illustration, we only
show the results only for the VI loss.

7.1 Old Faithful geyser dataset

7.1.1 The data

The dataset considered contains the waiting times between
eruptions and the duration of the eruption for the Old Faith-
ful geyser in Yellowstone National Park, Wyoming, USA.
Interest lies in predicting the time until the next eruption.
The number of observations is N = 272. The dataset has
been analysed in a number of works, including Azzalini and
Bowman (1990), and has been reproposed in many papers
dealing with mixture models. The data, shown in Fig. 5,

clearly exhibit two regimes: a short eruption will make the
wait until the next event shorter, whereas a long eruption will
be followed by a longer wait.

7.1.2 Results

We obtained a sample for the allocations using the func-
tion rDPGibbs from the R package bayesm. One million
observations were first discarded as burn-in, and then, one
observation every hundredth was retained until a sample size
of 10,000 was obtained. Then, 100 runs of the greedy algo-
rithm were performed, using random starting partitions with
Kup = 20 groups. The evolution of the expected posterior
losses for each of the runs is shown on the left panel of Fig. 5.
In this case, the performance of the greedy optimiser is excel-
lent, in that in each single run the algorithm converges to the
same optimal partition. The central panel of Fig. 5 shows the
best clustering obtained withGreedyVI. When compared to
the 2 regimes interpretation, this partition exhibits two addi-
tional small groups made of the observations with uncertain
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Fig. 5 Old Faithful dataset. On the left panel the expected posterior
loss values obtained during the optimisation are shown. The best value
is reached in all of the 100 runs of the algorithm, suggesting an excellent
performance. The red line shows the EPL value evolution for the first
run returning the best partition. On the central panel, the VI-optimal

partition is shown. The right panel shows instead the posterior proba-
bilities for the number of groups. This distribution has a peak at K = 4,
which corresponds to the number of groups in the GreedyVI partition.
(Color figure online)

allocations. We note that the VI-optimal number of groups
corresponds to the modal value of K in the posterior sam-
ple. The computational time needed to obtain the sample was
about 30 minutes, whereas an average of 20 s were required
for each run of the greedy algorithm.

7.2 Stochastic block models: French political
blogosphere

7.2.1 The data

The data first appeared in Zanghi et al. (2008) and consist
of a undirected graph where nodes represent political blogs’
websites and edges represent hyperlinks between them. As
in Latouche et al. (2011) we focus only on a subset of
the original dataset, available in the R package mixer.
The data consist of a single-day snapshot of political blogs
automatically extracted on 14 October 2006 and manually
classified by the “Observatoire Présidentielle project”. The
graph is composed of 196 nodes and 1432 edges, and the
main political parties are the UMP (French “republican”),
UDF (“moderate” party), liberal party (supporters of eco-
nomic liberalism) and PS (French “democrat”), although 11
different parties appear in total. The observed data are mod-
elled by the adjacency matrix Y whose entries are defined as
follows:

yi j =
{
1 if an undirected edge between blogsi and j appear;

0 otherwise;

(28)

for every 1 ≤ i < j ≤ N .

7.2.2 Stochastic block models

Stochastic block models (Nowicki and Snijders 2001) are
mixture models for networks, whereby the clustering prob-
lem is formulated on the nodes of the network and the
connection profile of each node is selected by its clustermem-
bership. For every i , the allocation variable zi denotes the
group to which node i belongs, and a multinomial-Dirichlet
prior structure is assumed on these variables. The number of
underlying groups K is unknown and hence to be inferred.
Conditionally on the allocations, the likelihood for the graph
Y = {

yi j : 1 ≤ i < j ≤ N
}
factorises as:

P (Y|z,�) =
K∏

g=1

K∏

h=1

∏

{i :zi =g}

∏

{
j :z j =h

j �=i

}
π

yi j
gh

(
1 − πgh

)1−yi j .

(29)

Here,� is a symmetric K ×K matrix of connection probabil-
ities, where the generic element πgh indicates the probability
that an edge occurs between a node in group g and a node in
group h, for any g and h in {1, . . . , K }. Furthermore, each
πgh is assumed to be a realisation of an independent Beta ran-
domvariable. The hyperparameters for theBeta andDirichlet
distributions are all set to 0.5.

Since conjugate priors are used, all of the model param-
eters can be integrated out analytically. It follows that the
quantity p (z|Y) is available analytically and can be targeted
by a so-called collapsed Gibbs sampler. This is exactly the
idea developed by McDaid et al. (2013).
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Table 3 French blogs:
confusion matrix for the
variational partition and the
political affiliations

1 2 3 4 5 6 7 8 9 10 11 12

Cap21 2 0 0 0 0 0 0 0 0 0 0 0

CA 0 0 8 0 0 0 0 0 0 0 0 3

FN-MNR-MPF 4 0 0 0 0 0 0 0 0 0 0 0

Les Verts 5 0 2 0 0 0 0 0 0 0 0 0

PCF-LCR 5 0 1 0 0 0 0 0 0 0 0 0

PCF-LCR 1 0 0 0 0 0 0 0 0 0 0 0

PS 5 0 9 0 0 0 19 18 2 4 0 0

PRG 9 0 1 0 0 0 0 1 0 0 0 0

UDF 0 1 1 0 24 6 0 0 0 0 0 0

UMP 1 24 2 11 2 0 0 0 0 0 0 0

Liberaux 1 0 0 0 0 0 0 0 0 0 24 0

French political blogs
political affiliations
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Fig. 6 French blogs. Representation of the French political blogs network, with colours and node labels denoting cluster memberships

7.2.3 Results

First, we performed block modelling using the variational
algorithm implemented in the package mixer and obtained
a partitioning to be used as reference. The optimal varia-
tional solution has 12 groups, which roughly correspond to
the political affiliations, as shown in Table 3.

Then, we used our methodology to estimate the VI-
optimal partition. The sample for the allocation variables was
obtained through the collapsed SBM algorithm of McDaid
et al. (2013), discarding the first 1 million updates and keep-
ing 1 observation every 100th thereafter. A sample size of
10,000 was then used to perform the greedy optimisation,
using random starting partitions. The computational time
needed to get the sample was about 5 hours, whereas an aver-
age of 50 swere required for each run of the greedy algorithm,
with Kup fixed to 50. The evolution of the expected poste-

rior losses for each of the runs are shown on the left panel
of Fig. 8. We note that the optimal EPL value was actually
reached in 10% of the runs.

The VI-optimal partition exhibits 18 groups and is repre-
sented in the right panel of Fig. 6. Figure 7 shows instead
the reordered adjacency matrices for the three different par-
titions. The posterior distribution for the number of groups is
shown in Fig. 8. We note that the optimal number of groups
contrasts with the modal value of the posterior distribution.

It appears that the VI-optimal clustering is a finer parti-
tion that splits up some of the larger groups into subgroups.
Nonetheless, from Fig. 7 it is clear that this entails a better
discrimination of the profiles of blogs. A confusion matrix
matching the solution to the political affiliations is shown in
Table 4. The liberals are well discriminated in both the vari-
ational and VI-optimal partitions. The two partitions also
agree on the blogs affiliated to the UDF party: 24 of them
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Adjacency matrix for political affiliations Adjacency matrix for VI Bayes action Adjacency matrix for variational action

Fig. 7 French blogs. Reordered adjacencymatrices for three different partitioning of the French political blogs dataset: available political affiliations
(left panel), VI-optimal allocations (central panel) and variational optimal allocations (right panel)
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Fig. 8 French blogs. On the left panel, the expected posterior loss val-
ues obtained during the greedy optimisation are shown. The best value
is reached in 10 out of the 100 runs of the algorithm. The red line shows
the EPL value evolution for the first run returning the best partition. On

the right panel, the posterior distribution for the number of groups in
the French political blogosphere dataset is shown. The MAP value is
K = 17 which contrasts with the optimal value obtained through the
greedy algorithm. (Color figure online)

Table 4 French blogs:
confusion matrix for the
VI-optimal partition and the
political affiliations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Cap21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

CA 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6 0 1

FN-MNR-MPF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

Les Verts 0 0 0 0 0 0 0 0 2 0 0 0 0 0 5 0 0 0

PCF-LCR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0

PCF-LCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

PS 0 0 0 15 0 2 0 0 13 18 0 0 0 0 5 1 3 0

PRG 0 1 1 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0

UDF 0 0 0 0 0 0 0 6 0 0 1 0 24 0 0 0 0 1

UMP 0 0 0 0 0 0 11 0 0 0 21 3 2 0 0 3 0 0

Liberaux 0 0 0 0 24 0 0 0 0 0 1 0 0 0 0 0 0 0
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are well discriminated and isolated from the rest, a subset of
6 blogs are classified into their own group, 1 blog is asso-
ciated with the UMP party, and 1 is not well recognised.
The main differences between the two partitions arise with
respect to the other two relevant parties:UMPandPS. In these
two cases it appears that the relational profiles of the blogs
are not particularly determined by the political affiliation,
since both partitions recognise a number of subgroups within
each party, signalling heterogeneity. UMP is decomposed
in 5 subgroups in both partitions, while PS is decomposed
in 6 and 7 subgroups for the variational and VI partition,
respectively.

7.3 Latent block model: congressional voting data

We propose an application of our methodology to the UCI
Congressional voting data, previously analysed in Wyse and
Friel (2012), Wyse et al. (2017).

7.3.1 The data

The data record whether 435 members of the 98th congress
voted “yay” or “nay” on 16 key issues. Abstained and absent
were treated as “nays”. Also, information on the political
affiliation of each member is available: 267 individuals are
“democrats” and 168 “republicans”. Following Wyse and
Friel (2012), Wyse et al. (2017), the data are rearranged
into a bipartite network, whereby two types of nodes are
defined (one corresponding to congress members and one to
issues) and only undirected edges between nodes of differ-
ent types are allowed. Similarly to stochastic block models,
an adjacency matrix Y is used to summarise the data, with

edges corresponding to “yays” (yi j = 1) and non-edges cor-
responding to “nays” (yi j = 0). Note that in this case the
matrix Y has size 435 × 16, whereby rows correspond to
congressmen and columns to issues.

7.3.2 Bipartite latent block model

A latent block model (see, for instance, Wyse et al. 2017) is
used to model the bipartite graph. A clustering problem is
formulated on both the rows and columns of the adjacency
matrix: two partitions r and c determine the clustering of
congress members and issues, respectively. The number of
groups of r and c are denoted by Kr and Kc, respectively,
and are unknown. These two partitions independently fol-
low the same multinomial-Dirichlet structure as described in
previous applications.

As concerns the likelihood of the model, a Kr × Kc matrix
� is introduced, so that its generic element πgh ∈ [0, 1] cor-
responds to the probability of the occurrence of an edge from
a node in group g to a node in group h. Hence, condition-
ally on the allocations, the likelihood can be factorised into
independent blocks:

P (Y|r, c,�)=
Kr∏

g=1

Kc∏

h=1

∏

{i :ri =g}

∏

{ j :c j =h}
π

yi j
gh

(
1 − πgh

)1−yi j .

(30)

Bipartite latent blockmodelsmay also be recast asmixture
models, where the mixture is with respect to the partitions:

P (Y|θ,�) =
∑

r,c

p (r|θ) p (c|θ) P (Y|r, c,�) . (31)
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Fig. 9 Congressional voting data. On the left panel the expected poste-
rior loss values obtained during the greedy optimisation are shown. The
best value is reached in 65 out of the 100 runs of the algorithm. The red
line shows the EPL value evolution for the first run returning the best

partition. On the right panel, the posterior distribution for the number
of groups of congress members is shown. We note that the VI-optimal
value K = 6 corresponds to the modal value. (Color figure online)
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The connection probabilities πgh are realisations of inde-
pendent Beta random variables for every g = 1, . . . , Kr and
h = 1, . . . , Kc, and all of the hyperparameters are fixed to
0.5.

Since conjugate priors are used, all of the model parame-
ters can be integrated out analytically, thereby obtaining the
marginal posterior p (r, c|Y) in exact form. Further details
on the integration can be found in Wyse and Friel (2012),
Wyse et al. (2017).

7.3.3 Results

The algorithm of Wyse and Friel (2012) was used to obtain
a sample for the allocations of both congress members and
issues. Similarly to previous analyses, 1 million observations
were discarded and 10,000 were used as final sample using a
thinning of 100. The partitioning of the data corresponding to
the highest posterior valuewas saved as a reference.We found
that posing a clustering problem on the issues was not partic-
ularly interesting in that very few issues were aggregated in
the same cluster; hence, we show here only the cluster anal-
ysis on the congress members. The sample of partitions for
the members was processed through the procedure of Sect. 5,
and then, several runs of the greedy optimisation were per-

MAP Bayes

Fig. 10 Congressional voting data. Reordered adjacency matrices for
theMAPand theVI partitions. The partitions on the columns (issues) are
equivalent, whereas the rows are clustered in different ways, although
the number of clusters is equal

Table 5 Congressional voting data: confusion matrix comparing the
political affiliation with the VI partition

1 2 3 4 5 6

Democrat 42 79 127 16 1 2

Republican 4 6 0 125 30 3

formed. The computational time needed to get the sample
was about 30 hours, whereas an average of 70 s was required
for each run of the greedy algorithm,with Kup fixed to 30.We
note that the optimal value was actually reached in 65% of
the runs. Figure 9 shows the posterior sample for the number
of groups. The reordered adjacency matrices for the MAP
and the VI-optimal partition are shown in Fig. 10. From the
confusion table shown in Table 5 it appears that the twomain
political factions are split into three subgroups each, with a
total of 29 individuals against the tide.

8 Conclusions

We have proposed a Bayesian approach to summarise a sam-
ple of partitions from an arbitrary clustering context. Our
method relies on a greedy algorithm which is particularly
efficient in finding both the optimal partition and the best
number of groups byminimising the average losswith respect
to a posterior sample. The method can be used in a variety of
clustering contexts and it can handle many well-known loss
functions.

In this paper we have specifically addressed the computa-
tional issues related to this problem, and we have shown that
our algorithm can scale well with the number of items to be
classified. In addition, while previous methods focused only
on ad hoc criteria or particular choices of the loss function,
ourmethodology is the only scalablemethod that can encom-
pass most comparison measures within a unified framework.
Furthermore, by construction, label-switching issues do not
affect our method.

The greedy algorithm usually converges with very few
iterations; however, several restarts may be useful to avoid
convergence to local optima. In some of the applications pro-
posed, in order to assess the rates of convergence, 100 runs
of the algorithm were performed for each dataset. Unless
the computational efficiency is not a priority, we advice
against this practice. Convergence was excellent on one of
the datasets, but it was less successful on a more challenging
one. We noticed that, when compared to other similar greedy
routines (Côme and Latouche 2015; Wyse et al. 2017; Berto-
letti et al. 2015), the algorithm is more likely to converge to
the global optimum, even though no final hierarchical merge
step is used. This may be a consequence of the fact that the
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objective function is generally smoother and easier to opti-
mise. We have proposed a simulation study to analyse the
performances of the various loss functions and the compu-
tational costs required. The variation of information loss has
been shown to perform very well in terms of model-choice,
whereas the other losses considered, including Binder’s loss,
tend to largely overestimate the number of groups.

The wide applicability of our algorithm comes at a cost:
each step of the optimisation process involves a computa-
tional cost depending on the size of the sample T , which
can easily make the problem intractable if a large sample is
used. However, in most cases this impasse can be downsized
simply by “thinning” the sample. In addition, we have pro-
posed a generalisation of our algorithm to include weighted
samples: situationally, this may allow one to decrease the
number of partitions further. As concerns storage costs, the
main bottleneck is set by the T contingency tables of size K 2

that are used throughout the optimisation.
To emphasise the context independence of our approach,

we have proposed applications to real datasets for three dif-
ferent clustering frameworks. In the Gaussian mixture model
case (Old Faithful dataset), the loss function used favours 4
groups, diverging from the findings of previous works. The
results on the French political blogosphere also appear to
be very different from those obtained through previous anal-
yses. On the one hand an overestimation of the number of
groups may be argued; on the other hand the groups obtained
with our approach are evidently more homogeneous. A clus-
tering problem on the members of the congressional voting
data has also been proposed: here the two main political fac-
tions are well recognised, and the results seem to agree with
the previous analyses of Wyse and Friel (2012), Wyse et al.
(2017).

One limitation of our approach is that it only provides
a point estimate of the best partition. While the optimal
clustering summarises all of the information contained in
the posterior sample, there is no direct assessment of the
uncertainty associated with the optimal solution. Due to the
discrete nature of the space, and due to the obvious computa-
tional difficulties, this issue is rather difficult to address and
it seems not to have a straightforward solution. However, it
should be noted that interesting advances on this problem
have been recently made by Wade and Ghahramani (2015).

A second important drawback of our method is that
it primarily relies on the quality of the posterior sample.
Often, the posterior distribution of a clustering model can
be extremely complex or multimodal, making the conver-
gence of Gibbs samplers rather slow. This is discussed for
example in Hastie et al. (2015). The collapsed Gibbs sam-
plers of Nobile and Fearnside (2007), McDaid et al. (2013),
Wyse and Friel (2012) are particularly computationally effi-
cient, yet too often they suffer of high rejection rates and poor
mixing. Unfortunately, at the moment there are no conclu-

sive solutions to address this impasse, suggesting that future
research should focus on introducing newways to explore the
space of partitions Z in a clever way, hence making MCMC
approaches more efficient.
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