
Stat Comput (2016) 26:1121–1136
DOI 10.1007/s11222-015-9596-z

A pseudo-marginal sequential Monte Carlo algorithm for random
effects models in Bayesian sequential design

J. M. McGree1 · C. C. Drovandi1 · G. White1 · A. N. Pettitt2

Received: 15 October 2014 / Accepted: 13 July 2015 / Published online: 5 August 2015
© Springer Science+Business Media New York 2015

Abstract Motivated by the need to sequentially design
experiments for the collection of data in batches or blocks,
a new pseudo-marginal sequential Monte Carlo algorithm is
proposed for random effects models where the likelihood is
not analytic, and has to be approximated. This new algo-
rithm is an extension of the idealised sequential Monte Carlo
algorithm where we propose to unbiasedly approximate the
likelihood to yield an efficient exact-approximate algorithm
to perform inference and make decisions within Bayesian
sequential design.We propose four approaches to unbiasedly
approximate the likelihood: standard Monte Carlo integra-
tion; randomised quasi-Monte Carlo integration, Laplace
importance sampling and a combination of Laplace impor-
tance sampling and randomised quasi-Monte Carlo. These
four methods are compared in terms of the estimates of like-
lihood weights and in the selection of the optimal sequential
designs in an important pharmacological study related to the
treatment of critically ill patients. As the approaches consid-

B J. M. McGree
james.mcgree@qut.edu.au

C. C. Drovandi
c.drovandi@qut.edu.au

G. White
gentry.white@qut.edu.au

A. N. Pettitt
a.pettitt@qut.edu.au

1 School of Mathematical Sciences Faculty, Queensland
University of Technology, GPO Box 2434, Brisbane,
QLD 4001, Australia

2 Australian Research Council Centre of Excellence for
Mathematical & Statistical Frontiers (ACEMS), Parkville,
Australia

ered to approximate the likelihood can be computationally
expensive, we exploit parallel computational architectures to
ensure designs are derived in a timely manner.

Keywords Graphics processing unit · Importance
Sampling · Intractable likelihood · Laplace approximation ·
Nonlinear regression · Optimal design · Parallel computing ·
Particle filter · Randomised quasi Monte Carlo

1 Introduction

Experiments for the collection of data in batches or blocks
are prevalent in applied science and technology in areas such
as pharmacology (Mentré et al. 1997), agriculture (Patter-
son and Hunter 1983) and aeronautics (Woods and van de
ven 2011). When modelling data from such experiments, it
is important to account for the correlation or dependence
of observations collected in a given batch or a given block.
The same is of course true when constructing an optimal
experimental design. Unfortunately, this task is generally
computationally prohibitive, and therefore has received lim-
ited attention from researchers. In a sequential design setting,
the computational challenge is efficiently updating prior
information as new data are observed and the need to find an
optimal design for the collection of data from the next batch
or block each time this prior information has been updated.
The latter requires locating the design that maximises the
expected utility where this expected utility is generally a
functional of the posterior distribution averaged over uncer-
tainty in the model, parameter values and supposed observed
data. Hence, it is necessary to efficiently sample from or
accurately approximate a larger number of posterior distrib-
utions. This poses a significant computational challenge and
renders many algorithms such as standard Markov chain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-015-9596-z&domain=pdf

1122 Stat Comput (2016) 26:1121–1136

Monte Carlo (MCMC) computationally infeasible (Ryan
et al. 2015). Hence, the requirement for an efficient com-
putational algorithm for Bayesian inference motivates the
consideration of the sequential Monte Carlo (SMC) algo-
rithm. Computational efficiency is achieved when using the
SMC algorithm as prior information can be updated as more
data are observed avoiding the need to re-run posterior sam-
pling approaches based on the full data set. Further, in using
theSMCalgorithm, one canhandlemodel uncertainty by run-
ning SMC algorithms for each rival model (Drovandi et al.
2014) avoiding any between-model moves. One also avoids
computationally expensive approximations of the evidence
or marginal likelihood of a given model through the avail-
ability of a convenient approximation which is a by-product
of the SMC algorithm (Del Moral et al. 2006).

The particular design problem considered in this work is
a sequential design problem in pharmacology, and involves
pharmacokinetic (PK)models and extra corporealmembrane
oxygenation (ECMO). In 2009, during the worldwide H1N1
pandemic, ECMO was a vital treatment for H1N1 patients
requiring advanced ventilator support in Australia and inter-
nationally (Davies et al. 2009). ECMO is a modification of
cardiopulmonary bypass (CPB). However, unlike conven-
tional CPB, ECMO is utilised in already critically ill patients,
and lasts for days rather than hours increasing the likelihood
of complications. Nonlinear random effect models for data
from such trials have been considered recently (Ryan et al.
2014). As the likelihood based on a value of the random
effects is available analytically, these models are, in prin-
ciple, straightforward to estimate, for example, via MCMC.
However, the need to draw frommany posterior distributions
renders this sampling method computationally infeasible in
the context of experimental design, and thus we propose a
new SMC algorithm for sequential design and inference.

To apply the SMC algorithm in the PK context (and in
general), the likelihood needs to be evaluated a large num-
ber of times. Unfortunately, for nonlinear random effect
models, this likelihood is typically unavailable analytically
(Kuk 1999). We therefore propose to unbiasedly estimate the
likelihood within SMC forming an exact-approximate algo-
rithm to facilitate efficient Bayesian inference and design for
random effects models. In our research, we consider four
approaches for the approximation. Firstly, we consider stan-
dard Monte Carlo (MC) integration. Here, Q random effect
values are randomly drawn from the (current) prior distribu-
tion, and the average conditional likelihood (over Q) is taken
as the estimate of the likelihood. Secondly, we extend stan-
dard MC integration by choosing randomised low discrep-
ancy sequences of random numbers for the integration. This
is known as randomised quasi-Monte Carlo (RQMC), and
can yieldmore efficient estimateswhen compared to standard
MC(Niederreiter 1978). Thirdly,we considerLaplace impor-
tance sampling (LIS) where a Laplace approximation is used

to form the importance distribution in importance sampling
(Kuk 1999). Lastly, we consider the combination of LIS and
RQMC where draws from the importance distribution are
chosen as (transformed) randomised low discrepancy ran-
dom numbers. These approaches form new pseudo-marginal
algorithms for random effect models, and are explained in
Sect. 3. We also compared these methods within a sequential
Bayesian design context in Sect. 5.

To facilitate the construction of designs in a reasonable
amount of time, we propose the exploitation of parallel com-
putational architectures. In particular, we explore the use of a
graphics processing unit (GPU). We are not aware of the use
of such hardware in the derivation of optimal designs. How-
ever, they have been used recently within SMC to reduce run
times (Durham and Geweke 2011; Vergé et al. 2015). Actu-
ally, the SMC algorithm is often labelled an “embarrassingly
parallel” algorithm (see for example Gramacy and Polson
(2011)), and hence naturally lends itself to such endeavors.
We note that our use of the GPU is not within the standard
SMC algorithm but rather for the approximation of the like-
lihood.

A recent review of modern computational algorithms for
Bayesian design has been given by Ryan et al. (2015),
and discusses some work in a sequential design context.
Approaches based onMCMC techniques have been explored
for fixed effects models by Weir et al. (2007), McGree
et al. (2012). In each case, importance sampling was used
in selecting the next design point to avoid running many
MCMC posterior simulations. Approaches based on SMC
have also been considered for fixed effects models by
Drovandi et al. (2013, 2014). In the 2013 paper, a variety
of utility functions were considered to construct a design
to precisely estimate model parameters. In the following
2014 paper, a utility function for model discrimination was
developed and applied within a number of nonlinear set-
tings. The generic algorithms used in both of these papers
provides a basis for the work proposed in this paper. How-
ever, this generic algorithm was limited to independent data
settings, and therefore our proposed methods for random
effect models present a significant extension of this previ-
ous research.

Müller (1999) has considered an MCMC approach to
derive static (non sequential) Bayesian experimental designs
by considering the design variable as random and exploring
a target distribution comprised of the design variable, the
model parameter and the data. Extensions to this approach
have been given by Amzal et al. (2006) who used a par-
ticle method to explore the utility surface and employed
simulated annealing (Corana et al. 1987) to concentrate the
samples near themodes. Suchmethodology has been applied
in Bayesian experimental design, but is currently restricted
to simply comparing fixed designs (Han and Chaloner 2004),
optimising designs in low dimensions, for a single, fixed

123

Stat Comput (2016) 26:1121–1136 1123

effects model (Müller 1999) and/or limited utility functions
(Stroud et al. 2001).

Our paper proceeds with a description of the inference
framework within which we develop our methodology. This
is followed by Sect. 3 which decribes our proposed SMC
algorithm for random effects models. In Sect. 4, we define a
utility function called Bayesian A-optimality for parameter
estimation and show how it is approximated within our algo-
rithm. In Sect. 5, our proposed methods are applied to a PK
study in sheep. We conclude with a discussion of our work,
and suggestions for further research.

2 Inferential framework

Consider the sequential problem where a design is required
for the collection of data in a batch or block to precisely
estimate parameters across one or a finite number of K
models defined by the random variable M ∈ {1, . . . , K }.
We follow the M-closed perspective of Bernardo and Smith
(2000), and assume that one of the K models is appropri-
ate to describe the observed data. Each model m contains
parameters θm = (μm,Ωm, σm) defining the model para-
meters μm , the between batch or block variability of the
model parameters Ωm and the residual variability parameter
σm . Note that the subscript m will be dropped if only one
model is under consideration. Define the likelihood func-
tion f (y1: j |M = m, θm, d1: j) for all data y1: j observed
up to batch or block j at design points d1: j . To construct
this likelihood for each model, we assume that batch/block
effects are independent random draws from a population of
batches/blocks so that data from block j denoted as y j are
conditionally independent of y1: j−1 and d1: j−1 given d j .
Then, the likelihood is formed as follows:

f
(
y1: j |M = m, θm, d1: j

)

= Π
j
k=1 f (yk |M = m, θm, dk) , for j = 1, . . . , J.

Then, the likelihood for data from batch or block j can be
expressed as

f
(
y j |M = m, θm, d j

) =
∫

f
(
y j |bmj , M = m, θm, d j

)

×p
(
bmj |μm,Ωm, M = m

)
dbmj ,

(1)

where bmj ∼ p(μm,Ωm |M = m) denotes the random effect
associated with block j for model m.

Prior distributions are placed on θm for each model
denoted as p(θm |M = m), and we also define a probability
distribution for the random effects p(bmj |μm,Ωm, M = m),
where in our work this is a multivariate normal distribution

with meanμm and variance-covarianceΩm for modelm. We
also place prior model probabilities on each model denoted
as p(M = m). All of this prior information is sequentially
updated as data are observed on each block, and then used
in finding the optimal design for data collection in the next
batch or block.

3 Sequential Monte Carlo algorithm

SMC is an algorithm for sampling from a smooth sequence
of target distributions. Originally developed for dynamic sys-
tems and state space models (Gordon et al. 1994; Liu and
Chen 1998), the algorithm has also been applied to static
parameter models through the use of a sequence of artifi-
cial distributions (Chopin 2002; Del Moral et al. 2006). In
our sequential design setting, the sequence of target distribu-
tions presents as a sequence of posterior distributions through
data annealing (for example, see Gilks and Berzuini 2001).
We first introduce the standard or idealised SMC algorithm,
then present our new developments.

3.1 Idealised sequential Monte Carlo algorithm

As given in Chopin (2002), for a particular model m, the
sequence of target distributions built up through data anneal-
ing is given by

p
(
θm |M = m, y1: j , d1: j

) ∝ f
(
y1: j |M = m, θm, d1: j

)

×p (θm |M = m) , for j = 1, . . . , J.

For a givenmodel, there are essentially three steps in theSMC
algorithm; re-weighting, resampling and mutation steps.
As data are observed, the algorithm generates a set of N
weighted particles for each model m to represent each tar-
get/posterior distribution in the sequence. This is achieved by
initially drawing equally weighted particles for each model
from the respective prior distributions. As data are observed,
particles for each model are continually re-weighted via
importance sampling (Hammersley and Handscomb 1964)
until the effective sample size (ESSm) of the importance
approximation of the current target distribution for each
model falls below a predefined threshold (E). For models
where ESSm < E , within model resampling is performed to
replicate particleswith relatively largeweightwhile eliminat-
ing particles with relatively small weight. This is followed
by the mutation step where an MCMC kernel (Metropolis
et al. 1953; Hastings 1970) that maintains invariance of the
current target is used to diversify each particle set. Alterna-
tive kernels are possible that lead toO(N 2) rather thanO(N)

SMC algorithms (Del Moral et al. 2006).
In using this SMC algorithm, there is also the availability

of an efficient estimate of the evidence for a given model

123

1124 Stat Comput (2016) 26:1121–1136

(leading to an efficient estimate of posterior model probabil-
ities). As shown in Del Moral et al. (2006), the evidence of a
givenmodel can be approximated as a by-product of the SMC
algorithm. To show this, we note that the ratio of normalising
constants for a given model m (Zm, j+1/Zm, j) is equivalent
to the predictive distribution of the next observation y j+1

given current data y1: j :

Zm, j+1/Zm, j =
∫

θm

f
(
y j+1|M = m, θm, d j+1

)

×p
(
θm |M = m, y1: j , d1: j

)
dθm .

Here, we form a particle approximation to the above integral
as follows:

Zm, j+1/Zm, j ≈
N∑

i=1

Wi
m, j f

(
y j+1|M = m, θ im, j , d j+1

)
.

This approximation of the evidence is therefore available at
negligible additional computational cost, and allows for effi-
cient design and analysis in sequential settings where there
exists uncertainty about the model (Drovandi et al. 2014).

3.2 Pseudo-marginal sequential Monte Carlo algorithm
for random effect models

Implementing the idealised SMC algorithm requires evalu-
ating the likelihood many times (in the re-weight and move
steps). Unfortunately for nonlinear random effect models,
this is generally analytically intractable, see Eq. (1). Here,
we propose to extend the idealised SMC algorithm to ran-
dom effect models through unbiasedly approximating this
likelihood. Four different approaches are considered for this
approximation. Firstly, we consider standard MC integration
for the approximation. For each particle of a givenmodel θ im ,
the likelihood can be approximated as follows:

f
(
y j |M = m, θ im , d j

)
=

∫
f
(
y j |bmj , M = m, θ im , d j

)

×p
(
bmj |μi

m , Ω i
m , M = m

)
dbmj ,

≈ 1

Q

Q∑

q=1

f
(
y j |bqmj , M = m, θ im , d j

)

= f̂
(
y j |M = m, θ im , d j

)
, (2)

where

bqmj
iid∼ p

(
.|μi

m,Ω i
m, M = m

)
, q = 1, . . . , Q.

Alternatively, QMCmethods can be used to approximate the
integral in Eq. (2). To implement QMC, the Q integration
nodes are replaced with (transformed) deterministic nodes

that are more evenly distributed over (0, 1]dim(μm). Exam-
ples of such sequences include the Halton (Halton 1960),
Sobol’ (Sobol’ 1967) and Faure (Faure 1982) sequences.
In order to maintain an unbiased estimate, randomised ver-
sions of these deterministic sequences can be used. Here, we
consider a rank-1 lattice shift which entails applying a ran-
dom shift modulo 1 (Cranley and Patterson 1976; L’Ecuyer
and Lemieux 2000) and the Baker’s transformation to each
coordinate in the sequence. Pseudo code for this is given in
Algorithm 1, where vk is the shift applied to the lattice. Such
an approach has been used to estimate the likelihood function
of a mixed logit model (Munger et al. 2012).

Algorithm 1 Pseudo code for rank-1 lattice shift of u in
(0, 1]dim(μm)

1: Initialize vk and uq,k ∈ (0, 1]dim(μm) for i = 1, . . . , Q and k =
1, . . . , dim(μm)

2: for q = 1 : Q do
3: for k = 1 : dim(μm) do
4: uq,k = 2(((q − 1)vk + k)mod 1)
5: if uq,k ≥ 1 then
6: uq,k = 2 − uq,k
7: end if
8: end for
9: end for
10: Output: Rank-1 lattice shift of uq,k for i = 1, . . . , Q and k =

1, . . . , dim(μm)

Implementing this approach to randomise the determinis-
tic sequences in our framework means that the actual values
of bqmj are based on uq ∈ (0, 1]dim(μm) that are more evenly

distributed over (0, 1]dim(μm) than random draws. Such an
approach is termed RQMC, and has been shown to be supe-
rior to standard Monte carlo integration in terms of the effi-
ciency of an estimate (Morokoff and Caflisch 1995). In our
work, the randomshift is applied to an initialHalton sequence
of length Q in (0, 1]dim(μm) each ‘new’ time the likelihood
is estimated. This ensures appropriate unbiasedness for our
exact-approximate algorithm. Then, the Cholesky factoriza-
tion of Ω i

m is found and applied to the Φ−1(uq)s to generate
the bqmj s from the appropriate distribution, where Φ denotes
the normal cumulative distribution function.

The third approach we consider to approximate this like-
lihood is LIS. This approach was proposed by Kuk (1999) to
estimate the likelihood for generalised linear mixed models.
For each particle θ im , a numerical optimiser was used to find
the mode of the following with respect to bmj :

f
(
y j |bmj , M = m, θ im, d j

)
p

(
bmj |μi ,Ω i

m, M = m
)

,

and a multivariate Normal distribution (denoted as
pLA(μi

L A,Ω i
m, M = m)) was formed with meanμi

L A being
the mode and the variance-covariance matrix Ω i

m being the

123

Stat Comput (2016) 26:1121–1136 1125

random effect variability corresponding to the i th particle for
model m. Then, by noting that

f
(
y j |M = m, θ im , d j

)

=
∫

f
(
y j |bmj , M = m, θ im , d j

)
p

(
bmj |μi

m ,Ω i
m , M = m

)

pLA
(
bmj |μi

L A,Ω i
m , M = m

)

×pLA
(
bmj |μi

L A,Ω i
m , M = m

)
dbmj , (3)

the likelihood can be approximated as follows:

f̂
(
y j |M = m, θ im , d j

)

= 1

Q

Q∑

q=1

f
(
y j |bqmj , M = m, θ im , d j

)
p

(
bqmj |μi

m , Ω i
m , M = m

)

pLA
(
bqmj |μi

L A, Ω i
m , M = m

) ,

where bqmj ∼ pLA(μi
L A,Ω i

m, M = m) for each particle i .
The fourth approach combines LIS and RQMC. Instead

of drawing randomly from the Laplace approximation, these
draws are chosen based on randomised Halton sequences
using μi

L A and Ω i
m .

In comparing these approximations, standard MC and
RQMCwill potentially performpoorlywhen the correspond-
ing Laplace approximation does not overlap with the prior
density p(bmj |μi

m,Ω i
m, M = m), with MC generally pro-

ducing more variable weights. Such cases could occur, for
example, when the random effect values are relatively far
from μi

m . Hence, it is believed that MC and RQMCwill pro-
duce more variable likelihood weights (and therefore more
variable estimates) than LIS and LIS+RQMC. However, this
comes at the computational cost of finding the mode for
each particle. This potential trade-off between variability of
weights and computational cost will be explored in Sect. 5.

Any of the above approaches can be used to unbiasedly
approximate the likelihood to form a pseudo-marginal SMC
algorithm for random effect models. Andrieu and Roberts
(2009) consider a similar psuedo-marginal approach within
an MCMC framework, and Tran et al. (2014) consider
Bayesian inference via importance sampling for models with
latent variables based on an unbiased estimate of the likeli-
hood. Our algorithm is similar to the framework proposed
by Chopin et al. (2013) for state space models. Further,
there have been developments using QMC and RQMC in the
SMC algorithm, see Gerber and Chopin (2014) who provide
empirical evidence that using QMC methods may signif-
icantly outperform the standard implementation of SMC
in terms of approximation error. As noted in Gerber and
Chopin (2014), the error rate for standard MC is O(N−1/2)

improving toO(N−1+ε) usingQMC, and improving again to
O(N−3/2+ε) using RQMC, under certain conditions (Owen
1997a, b, 1998b). Owen (1998a) also proposed a method
based on RQMC for ‘very high’ dimensional problems, but
notes that the advantages of using QMC and RQMC dimin-

ish as the dimension increases or for integrals that are not
smooth (Morokoff and Caflisch 1995).

3.3 Implementation of the pseudo-marginal sequential
Monte Carlo algorithm

Pseudo code for our SMC algorithm is given in Algorithm 2,
and now explained. Let {Wi

m, j , θ
i
m, j }Ni=1 denote the particle

approximation for model m, for target p j (.), then the re-
weight step is given by

wi
m, j+1 = Wi

m, j f̂
(
y j+1|M = m, θ im, j , d j+1

)
,

as the batch or block data are conditionally independent
and an MCMC kernel is used in the mutation step. From
Chopin (2002) and Del Moral et al. (2006), the f̂ (y j+1|M =
m, θ im, j , d j+1) are the approximate incremental weights
given by target j + 1 divided by target j , and are given by
the approximate likelihood, Eq. (2). Once the new weights
wi
m, j+1 are normalized to give Wi

m, j+1, the particle approx-

imation {Wi
m, j+1, θ

i
m, j }Ni=1 approximates target j + 1.

Algorithm2SMCalgorithm for randomeffectmodels incor-
porating model uncertainty

1: Draw θ im,0 ∼ p(θm |M = m) and set Wi
m,0 = 1/N , for m =

1, . . . , K and i = 1, . . . , N
2: Set Ẑm,0 = 1 for m = 1, . . . , K
3: Let d ∈ D
4: for j = 0 : J − 1 do
5: Find design point d j+1 and collect data point y j+1
6: for m = 1 : K do
7: Re-weight step: wi

m, j+1 = Wi
m, j f̂ (y j+1|M = m, θ im, j , d j+1),

for i = 1, . . . , N
8: Estimate marginal likelihood for each model via

Zm, j+1/Zm, j ≈ ∑N
i=1 W

i
m, j f̂ (y j+1|M = m, θ im, j , d j+1)

9: Normalize weights Wi
m, j+1 = wi

m, j+1/
∑N

k=1 wk
m, j+1, for i =

1, . . . , N
10: Calculate ESSm = 1/

∑N
i=1(W

i
m, j+1)

2

11: if ESSm < E OR j = J − 1 then
12: Resample step: {θ im, j ,W

i
m, j+1}Ni=1 → {θ im, j+1, 1/N }Ni=1

13: Calculate the random walk variance terms for MCMC pro-
posal qm, j+1(.|.) using particles {θ im, j ,W

i
m, j+1}Ni=1

14: for i = 1 : N do
15: Move step: Perform Rm moves on particle θ im, j+1 with

an MCMC kernel of invariant distribution p j+1(θm |M =
m, y1: j+1, d1: j+1) with acceptance probability α with

f̂ (y1: j+1|M = m, θ im, j+1, d1: j+1) being recorded and re-
used.

16: end for
17: else
18: Set θ im, j+1 = θ im, j , for i = 1, . . . , N
19: end if
20: end for
21: end for
22: Output: {θ im,J , 1/N }Ni=1 for m = 1, . . . , K

123

1126 Stat Comput (2016) 26:1121–1136

We assess the adequacy of this approximation by estimat-
ing the ESSm by 1/

∑N
i=1(W

i
m, j+1)

2 (Liu and Chen 1995).
If the ESSm falls below E , the particle set is replenished by
resampling the particles with probabilities proportional to
the normalised weights. In our work, we used multinomial
resampling. However, other resampling techniques such as
systematic or residual resampling could be considered (Kita-
gawa 1996). Following this step, the particles are diversified
by applying Rm MCMC steps to each particle to increase the
probability of the particle moving. Assuming a symmetric
proposal distribution, the acceptance probability α for a pro-
posal θ∗

m, j+1 for a given model is given by the Metropolis
probability

α = min

⎧
⎨

⎩

p
(
θ∗
m, j+1

)
f̂
(
y1: j+1|M = m, θ∗

m, j+1, d1: j+1

)

p
(
θ im, j+1

)
f̂
(
y1: j+1|M = m, θ im, j+1, d1: j+1

) , 1

⎫
⎬

⎭
.

The proposal distribution in the MCMC kernel q(.|.) is effi-
ciently constructed based the current set of particles (as they
are already distributed according to the target p j+1(.)). This
avoids tuning the algorithm or having to implement other
schemes such as adaptive MCMC. We also note that as each
rival model has a particle set, any between model ‘jumps’ are
avoided.

As shown in Sect. 3.1, there is also the availability of
an efficient estimate of the evidence for a given model. For
random effect models, we base this on the approximate like-
lihood. We note that an estimate of the evidence is generally
difficult to obtain for nonlinear models, and, in particular,
mixed effects models. The particle approximation for Eq. (3)
is then based on the approximate likelihood as follows:

Zm, j+1/Zm, j ≈
N∑

i=1

Wi
m, j f̂

(
y j+1|M = m, θ im, j , d j+1

)
.

Tran et al. (2014) show the validity of this estimate. As
Z0 = 1, the evidence can be approximated sequentially in
the algorithm as data are observed. Further, posterior model
probabilities p(m| y1: j+1, d1: j+1) are estimated based on the
above estimates of evidence (for each given model).

4 Experimental design

SMC has been employed within a sequential design frame-
work for estimation of a fixed effects model (Drovandi et al.
2013) and for discriminating between fixed effects models
(Drovandi et al. 2014). In each paper, appropriate utility
functions were defined for the experimental goals. Here, we
consider an estimation utility termed Bayesian A-optimality,
and extend to the case where one wishes to precisely esti-
mate parameters over a finite number of models. This utility

is based on A-optimality (Kiefer 1959), where the total or
average variance of the parameter estimates is minimised
(Atkinson et al. 2007).

Consider a design d. In general, the expected utility for
this design for a single model can be expressed as

u(d) =
∫

θ

∫

y
u(d, θ , y)p(θ , y|d)d ydθ . (4)

This can be extended as follows when uncertainty about the
true model is considered

u (d) =
K∑

m=1

p (M = m| y, d)

∫

θm

∫

y
u (d, y,m, θ)

× p (θm, y, M = m|d) d ydθm . (5)

Two utility functions will be considered in the examples that
follow. For a single model, the utility is given by the inverse
of the trace of the posterior variance; Bayesian A-optimality
as follows:

u(d, y) = 1/trace
(
VAR

[
θ | y, d])

.

This is extended to the case of K models by maximising the
inverse of the product of the Bayesian A-optimality utility
values over the K models (scaled appropriately such that
each utility value is between 0 and 1). This can be simplified
by taking the logarithm which leads to the consideration of
maximising the inverse of the sum of the logarithm of traces
of the posterior variances for all K models. That is,

u(d, y) = 1/
K∑

l=1

log trace (VAR[θ l | y, d, M = l]) .

We now show how to estimate utilities of the forms given in
Eqs. (4) and (5) in a sequential design framework. Suppose
we have collected data up until batch or block j denoted as
y1: j collected at design points d1: j . Define a general utility
u(d, z,m, θm | y1: j , d1: j), where d is a proposed design for
future observation z taken frommodelm with parameter θm .
Then, the expected utility of a given design d conditional on
data already observed y1: j at design points d1: j , denoted as
u(d| y1: j , d1: j), is given by

u
(
d| y1: j , d1: j

) = Ez,m,θm | y1: j ,d1: j
[
u

(
d, z,m, θm | y1: j , d1: j

)]

=
K∑

m=1

∫

z

∫

θm

u
(
d, z,m, θm | y1: j , d1: j

)

×p
(
z,m, θm | y1: j , d1: j , d

)
dθmdz

=
K∑

m=1

∫

z

∫

θm

u
(
d, z,m, θm | y1: j , d1: j

)

123

Stat Comput (2016) 26:1121–1136 1127

×p
(
z|m, θm , y1: j , d1: j , d

)

×p
(
θm |m, y1: j , d1: j

)

×p
(
m| y1: j , d1: j

)
dθmdz

=
K∑

m=1

p
(
m| y1: j , d1: j

)

∫

z

∫

θm

u
(
d, z,m, θm | y1: j , d1: j

)

×p (z|m, θm, d) p
(
θm |m, y1: j , d1: j

)
dθmdz,

where the summation over the posterior model probabilities
is dropped if only a single model is under consideration.

As shown in Algorithm 2, suppose, up to batch or
block j , we have a particle set for each model defined as
{Wi

m, j , θ
i
m, j }Ni=1, for m = 1, . . . , K . We approximate the

above integrals via simulating zim, j from the posterior pre-

dictive distribution p(z|m, θ im, j , d). This gives a weighted

sample {Wi
m, j , θ

i
m, j , z

i
m, j } from p(z, θm |m, y1: j , d1: j , d).

Then, MC integration can be used to approximate the above
integrals as follows:

u
(
d| y1: j , d1: j

) ≈
K∑

m=1

p
(
m| y1: j , d1: j

) N∑

i=1

Wi
m, j

×u
(
d, zim, j | y1: j , d1: j

)
,

where u(d, zim, j | y1: j , d1: j) is approximated by forming a
particle approximation (via importance sampling) to the pos-
terior distribution where zim, j (and d) are supposed observed
data. That is, in the case of model uncertainty,

u
(
d, zim, j | y1: j , d1: j

)

= 1

/ K∑

l=1

log trace
(
VAR[θ l | y1: j , zim, j , d1: j , d, M = l]

)
.

5 Examples

Data have been collected on sheep which have been treated
with ECMO, and have been modelled previously by Ryan
et al. (2014). Each sheepwas subjected toECMOfor 24 hours
and infused with various antibiotic drugs. Blood samples
were then collected at various times. In the original studies,
Davies et al. (2009) and Shekar et al. (2013) were interested
in the PK profile of antibiotic drugs in healthy sheep receiv-
ing ECMO for 24 hours as it is known that drugs are absorbed
in the circuitry of ECMO.We propose to re-design this study
to minimise the uncertainty about population PK parameters
such that differences between PK profiles for ECMO versus
non-ECMO sheep can be investigated.

The general form of the models considered in Ryan et al.
(2014) and in this paper are as follows. Let the time of blood

Algorithm 3 Estimation of utility function within the SMC
algorithm for random effect models incorporating model
uncertainty

1: We have particles {Wi
m, j , θ

i
m, j }Ni=1, for m = 1, . . . , K

2: Initialise data y1: j and designs d1: j
3: for d ∈ D do
4: for m = 1, . . . , K do
5: for i = 1, . . . , N do
6: Simulate zim, j ∼ p(z|M = m, θ im, j , d)

7: Form temporary weights w̃i
m via re-weight step w̃i

m =
Wi

m, j f̂ (z
i
m, j |m, θ im, j , d)

8: Evaluate utility u(d, zim, j | y1: j , d1: j) based on w̃i
m

9: end for
10: end for
11: u(d| y1: j , d1: j) ≈ ∑K

m=1 p(m| y1: j , d1: j)
∑N

i=1 W
i
m, j u(d,

zim, j | y1: j , d1: j)
12: end for
13: Output: Estimate of u(d| y1: j , d1: j) for d ∈ D.

samples in minutes for sheep j (where each sheep was con-
sidered as a block) be denoted as d j = (d1 j , d2 j), where the
possible sampling times available for blood collection are:

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

6 15
15 30
30 45
45 60
60 120
120 180
180 240
240 300
300 360

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

That is, two repeated measures are taken on each sheep, and
the design problem is to choose which two sampling times
(that is, which row of the above matrix) to actually use to
collect plasma samples. Then

y j ∼ MV N
(
g

(
μ j , d j

)
, σ 2diag g

(
μ j , d j

)2)
,

b j ∼ MV N (0,Ω) , μ j = μ + b j ,

with μ j defined later, and priors

μ ∼ MV N (δ,Σ) , for δ and Σ known

Ω ∼ I nvWish (Ψ , ν) , forΨ and ν known

log σ ∼ N (a, b), for a and b known.

In both of the examples that follow, we assumed the broad
spectrum antibiotic meropenem was administered to 10
sheep which were on ECMO.Meropenemwas delivered as a
single, IV bolus dose of 500 mg (D = 500), infused over 30
minutes (T in f = 30). The design problem was to sequen-
tially determine the optimal times to collect blood samples

123

1128 Stat Comput (2016) 26:1121–1136

in plasma from 10 sheep in order to precisely estimate popu-
lation PK parameters. We considered Bayesian A-optimality
for this purpose, and, as a comparison, we also considered a
random design (selects sampling times at random). To inves-
tigate the properties of the utility functions, 500 trials were
simulated with each utility used to select the sampling times.
As this is a sequential design problem, data needed to be
‘collected’ once an optimal design for a given batch or block
was found. This was facilitated by generating data from an
assumed model; the parameter values of which were chosen
as themodes of the prior distributions for a givenmodel. Util-
ity values under Bayesian A-optimality were recorded for all
trials, and the chosen sampling times were also recorded.
These results were then used to compare the utilities.

In the first example, we explore the proposed methods
for approximating the likelihood in terms of the estimated
likelihood weights and the optimal sampling times selected.
The results from this investigation will be used to determine
which approximation will be used in the subsequent simula-
tion studies. In these studies, we use N = 1000 particles and
Q = 1000 integration nodes for both examples. Further, Rm

is set to 10 and 20 for the models introduced in the first and
second examples, respectively.

Throughout these examples, the Q evaluations of the con-
ditional likelihood for the approximation of Eq. (1) were
performedon aGPU.For a given approximation, this requires
evaluating the conditional likelihood Q times for each of the
N particles yielding N × Q times in total, for each model
considered.With the number of particles N being in the inter-
val 102 − 105 and Q the number of conditional likelihood
evaluations per particle of the order of 103, it is obvious that
there is substantial gain in computational speed by evaluating
these likelihoods in parallel. This approach is implemented in
CUDA (NVIDIA2012) via theMATLABCUDAAPI (MAT-
LAB 2013). The complete SMC algorithm is implemented
in MATLABwith a mex function written in CUDA to evalu-
ate the approximation to the likelihood using the GPU. This
implementation is compared to C code compiled and called
in a similar manner. The resulting code for implementing
these approaches is available upon request.

5.1 Example 1: Comparison of approximations to the
likelihood

Initially, we assumed that a one-compartment infusionmodel
was appropriate to describe the metabolism of meropenem.
This model can be described as follows:

g
(
μ j , d j

) =

⎧
⎪⎪⎨

⎪⎪⎩

D
T in f

1
k j v j

(
1 − exp

(−k j d j
))

, for d j ≤ T in f

D
T in f

1
k j v j

(
1 − exp

(−k j T in f
))

exp
(−k j

(
d j − T in f

))
, otherwise

where (k j , v j) = exp(μ j).

0 50 100 150 200 250
0

10

20

30

40

50

60

Time (mins)

C
on

ce
nt

ra
tio

n
(m

g/
L)

Fig. 1 Prior predictive plot for the one-compartment infusion model
as described in Section 6.1 based on 500 simulations

Prior information about parameter values was based on
the results from Ryan et al. (2014) with;

δ = (−3.26, 8.94),Σ = 0.01I,Ω =
[

0.0071 −0.0057
−0.0057 0.0080

]
,

Ψ = 0.02I, ν = 5, a = −2.3, b = 0.5 and σ = 0.1.

The prior predictive distribution under this model is shown
in Fig. 1. One can observe that the maximum concentration
is reached at 30 mins (the infusion time), and that the vari-
ability is largest here primarily because proportional residual
variability was assumed. Further, it appears that the drug will
have been eliminated fromplasma 200mins after the infusion
has started.

We start by investigating the four approximations of the
likelihood proposed in this paper. A trial of 10 sheepwas sim-
ulated (with N = 500 and Q = 1000). Each time new data
were observed, the likelihood weights from each of the four
approximations were evaluated and recorded. These weights
are shown in Fig. 2. The likelihood weights as given by all
four approximations appear to agreewell for the first 7 sheep,
with some differences becoming apparent for the 8th, 9th
and 10th sheep. There appears to be no differences between
the likelihood weights for the two Laplace methods, in gen-
eral, with some differences seen when considering MC and
RQMC.We investigate these approximation methods further
by comparing the estimated expected values of the Bayesian
A-optimality utility for different designs.

To compare estimates of the expected Bayesian A-
optimality utility, another trial of 10 sheep was simulated.
Each time an optimal design needed to be determined, all four
approximation methods were run and the expected Bayesian
A-utility values for each proposed design were recorded.
These expected utility values are shown in Fig. 3 for all four

123

Stat Comput (2016) 26:1121–1136 1129

−0.01 0 0.01 0.02
0

100

200

300
(a)

Weights

D
e

n
s
it
y

−5 0 5 10

x 10
−3

0

100

200

300

400
(b)

Weights

D
e

n
s
it
y

−0.01 0 0.01 0.02
0

100

200

300

400
(c)

Weights

D
e

n
s
it
y

−5 0 5 10

x 10
−3

0

200

400

600
(d)

Weights

D
e

n
s
it
y

−0.01 0 0.01 0.02
0

100

200

300

400
(e)

Weights

D
e

n
s
it
y

−0.01 0 0.01 0.02
0

100

200

300

400
(f)

Weights

D
e

n
s
it
y

−5 0 5 10

x 10
−3

0

200

400

600
(g)

Weights

D
e

n
s
it
y

−5 0 5 10

x 10
−3

0

200

400

600
(h)

Weights

D
e

n
s
it
y

−5 0 5 10

x 10
−3

0

200

400

600
(i)

Weights

D
e

n
s
it
y

−0.01 0 0.01 0.02
0

100

200

300

400
(j)

Weights

D
e

n
s
it
y

LIS
RQMC
MC
LIS+RQMC

Fig. 2 Distribution of approximate likelihood weights as given by standard MC, RQMC, LIS and LIS+RQMC for a simulated trial on 10 sheep
(plots (a) to (j) respectively) with N = 500 and Q = 1000

1.5 2 2.5 3

x 10
−6

1.5

2

2.5

3
x 10

−6 (a)

Utility estimate

U
til

ity
 e

st
im

a
te

3 3.5 4 4.5

x 10
−6

3

3.5

4

4.5
x 10

−6 (b)

Utility estimate

U
til

ity
 e

st
im

a
te

3 4 5

x 10
−6

3

3.5

4

4.5

5

5.5
x 10

−6 (c)

Utility estimate

U
til

ity
 e

st
im

a
te

5.5 6 6.5 7 7.5

x 10
−6

5.5

6

6.5

7

7.5
x 10

−6 (d)

Utility estimate

U
til

ity
 e

st
im

a
te

6.5 7 7.5 8

x 10
−6

6.5

7

7.5

8
x 10

−6 (e)

Utility estimate

U
til

ity
 e

st
im

a
te

7 7.5 8 8.5

x 10
−6

7

7.5

8

8.5
x 10

−6 (f)

Utility estimate

U
til

ity
 e

st
im

a
te

8 8.5 9 9.5

x 10
−6

8

8.5

9

9.5
x 10

−6 (g)

Utility estimate

U
til

ity
 e

st
im

a
te

9 9.5 10 10.5

x 10
−6

9

9.5

10

x 10
−6 (h)

Utility estimate

U
til

ity
 e

st
im

a
te

1.05 1.1 1.15 1.2

x 10
−5

1.05

1.1

1.15

1.2
x 10

−5 (i)

Utility estimate

U
til

ity
 e

st
im

a
te

1.3 1.35 1.4 1.45

x 10
−5

1.3

1.35

1.4

1.45
x 10

−5 (j)

Utility estimate
U

til
ity

 e
st

im
a

te

LIS+RQMC vs MC
LIS+RQMC vs RQMC
LIS+RQMC vs LIS

Fig. 3 Comparison of approximate expected utility values for Bayesian A-optimality as given by standard MC, RQMC, LIS and LIS+RQMC for
a simulated trial on 10 sheep (plots (a) to (j) respectively) with N = 500 and Q = 1000

approximation methods. In general, there is a linear rela-
tionship between the expected utility values for all methods.
Importantly, all four methods find the same design as being
optimal for all 10 sheep. It seems for our purposes (that is,
our design space, example, etc) that any of the considered
methods could be used to select the optimal designs.

We now need to choose which approximation method to
run in the examples that follow. In terms of choosing the
optimal designs, all four methods appear similar. So then the
choice between the methods will be based on the variability
of the likelihoodweights. Tomore comprehensively compare
the variability of the likelihood weights between the meth-
ods, the ESS values of particle sets for the four approaches
were compared. This involved running additional simulation
studies of 500 trials each of 10 sheep with MC, RQMC, LIS
and then LIS+RQMC being used to approximate the likeli-
hood weights. However, in order for the comparison of ESS

values to be deemed reasonable, the sampling times and sub-
sequent data generated in the sequential design process were
fixed. This means that the ESS values from each approxi-
mation method can be compared as they are based on the
same target distributions. These comparisons are shown in
Figs. 4a–d for MC compared to RQMC and 5a–d for MC
compared to LIS, for Q = 10, 100, 500 and 1000. The plots
forMC comparedwith LIS+RQMCare omitted as the results
are similar to the comparison of MC and LIS.

From Fig. 4, we can see that overall there seems to be a
one-to-one relationship between the ESS values from MC
and RQMC, with the values become less variable as Q
increases. Initially, there does not appear to be much of a dif-
ference between the ESS values. However, we investigated
these values further by considering the number of times (out
of 5000) RQMC gave an ESS value greater than MC. This
yielded the following percentages 56.0, 55.9, 49.0 and 53.1%

123

1130 Stat Comput (2016) 26:1121–1136

0 500 1000
0

200

400

600

800

1000
(a)

ESS RQMC

ES
S

M
C

0 500 1000
0

200

400

600

800

1000
(b)

ESS RQMC
ES

S
M

C
0 500 1000

0

200

400

600

800

1000
(c)

ESS RQMC

ES
S

M
C

0 500 1000
0

200

400

600

800

1000
(d)

ESS RQMC

ES
S

M
C

Fig. 4 Comparison of ESS as given by standard MC and RQMC for 500 simulated trials of 10 sheep with N = 1000 and Q = 10, 100, 500 and
1000 for plots (a)–(d), respectively

0 500 1000
0

200

400

600

800

1000
(a)

ESS LIS

E
S

S
 M

C

0 500 1000
0

200

400

600

800

1000
(b)

ESS LIS

E
S

S
 M

C

0 500 1000
0

200

400

600

800

1000
(c)

ESS LIS

E
S

S
 M

C

0 500 1000
0

200

400

600

800

1000
(d)

ESS LIS

E
S

S
 M

C

Fig. 5 Comparison of ESS as given by standard MC and LIS for 500 simulated trials of 10 sheep with N = 1000 and Q = 10, 100, 500 and 1000
for plots (a)–(d), respectively

for Q = 10, 100, 500 and 1000, respectively. The results are
mixed but for Q = 10, 100 and 1000, RQMC gave bet-
ter ESS values with the average (median) difference being
11.6 (6.0), 4.2 (1.86) and 0.8 (0.3), respectively. This sug-
gests that there are potentially quite reasonable gains when
using RQMC. Of course, when Q = 500, MC gave better
ESS valuesmore often. This suggests that the performance of
RQMCmaybe implementation specific. In fact, performance
also varies depending upon the value of vk chosen in Algo-
rithm 1. In our work, we arbitrarily selected vk = [0.1, 0.1],
where vk could in actual fact be chosen to minimize a mea-
sure of discrepancy (Dick et al. 2004; Munger et al. 2012).
This could provide improved ESS values for RQMC.

From Fig. 5, again it appears that overall there is a one-
to-one relationship between the ESS values. However, the
percentage of times (out of 5000) LIS gave an ESS value
greater than MC was 53.9, 50.7, 50.1 and 50.5 % for Q =
10, 100, 500 and 1000, respectively. Further, LIS gave better
ESS values than MC with the average (median) difference
being 13.0 (3.5), 1.4 (0.1), 0.5 (0.02) and 0.03 (0.04) for
Q = 10, 100, 500 and 1000, respectively. When comparing
RQMC and LIS, it appears that RQMC yields the smallest
variability of the likelihood weights (when Q = 10, 100 and
1000). Therefore, this method will be used in the examples
that follow. We note also that the computation time when

using RQMCwhen compared to LIS is significantly reduced
as the need to numerically find the mode a large number of
times poses considerable computational burden. In fact, the
computation time required for RQMC is only incrementally
larger than that as given by standard MC.

5.2 Example 1 continued: Bayesian A-optimality for one
compartment pharmacokinetic model

The Bayesian A-optimal sampling times for each of the 10
sheep over 500 simulated studies are shown in Fig. 6, where
the figure shows the empirical probability distribution of the
first of the two selected sampling times in each sheep. It is
clear that early sampling times are prefered with the majority
of sampling times being selected before 30 mins. Indeed, for
the first 4 sheep, sampling times [6, 15] mins were selected
100 % of the time. Larger sampling times were selected for
sheep near the end of the trial. Overall, it appeared that design
selectionwas largely driven by the parameterwhichwasmost
variable. In most cases, this was the parameter representing
the volume of distribution.

Utility values for the 500 simulated trials for Bayesian
A-optimality and the random design are shown in Fig. 7.
It can be seen that there can potentially be over a 10 fold
improvement in the (inverse of the) total or average variance

123

Stat Comput (2016) 26:1121–1136 1131

1 2 3 4 5 6 7 8 9 10

6

15

30

45

60

120

180

240

300

Sheep ID

S
am

pl
in

g
tim

e
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6 Empirical probability distribution of sampling times selected
in 500 simulated trials of 10 sheep for the one-compartment infusion
model under Bayesian A-optimality. Note: Only the first sampling time
has been plotted

0 0.5 1 1.5 2 2.5 3

x 10
−5

0

0.5

1

1.5

2
x 10

5

Utility value

Bayesian A−optimality
Random

Fig. 7 Utility values for the 500 simulated trials for Bayesian A-
optimality and the random design

of the parameters when using the Bayesian A-optimality as
opposed to the random design. It can also be seen that there
are occasions where the random design may have yielded
a higher utility value than A-optimality. This is presumably

because, given the small number of potential designs to use
for data collection, by chance, the randomdesign has selected
sampling times that lead to precise parameter estimates. Fur-
ther, varibility in the simulated data may also contribute to
the occurrence of such instances. Notably, this overlap is only
seen in about the lower 50th percentile of the utility values
for the BayesianA-optimality utility function suggesting that
this utility is in general outperforming random selection.

5.3 Example 1 continued: Comparison of run times

Of interest are the run times for evaluating the likelihood
under different implementations. These are shown for imple-
mentations inC andCUDA(GPU) for this example inTable 1
and Fig. 11a. The run times shown are for the evaluation
of the likelihood, averaged over 25 evaluations. The results
shown in Fig. 11 are just the log base 10 of those shown in
Table 1. These runs were performed on a Windows desktop
computer with an Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60
GHz processor and a NVIDIA Quadro 2000 1GB GPU. Fur-
ther, we note that the evaluation of the likelihood requires
the generation of random numbers which can contribute sig-
nificantly to run times. In all run times shown, the required
random numbers were generated before the timed likelihood
call. In regards to the implementations, it is believed that the
comparisons between the C and CUDA implementations are
true representations of what can be gained through using a
GPU. This is because the CUDA implementation is essen-
tially the same C code but compiled to run on a GPU. Hence,
it is essentially the hardware that is being compared.

From Table 1 and Fig. 11:

– The CUDA code runs about 18 times faster than the C
code;

– There is a roughly linear increase in computing time with
respect to Q for the GPU implementation;

– Increases in time are not linear with respect to N for
the GPU implementation. For example, there is not a
huge increase in computing time between N = 100 and
N = 1000. Moreover, in general, there is about a 10

Table 1 Average run times (s) for the evaluation of the likelihood under different implementations for data from a single block for the one
compartment and two compartment infusion models

Implementation Q = 1000 Q = 2000 Q = 4000

N = 100 N = 1000 N = 10000 N = 100 N = 1000 N = 10000 N = 100 N = 1000 N = 10000

Example 1

C (serial) 0.0218 0.2221 2.2451 0.0457 0.4432 4.4381 0.0878 0.8858 8.8913

CUDA (parallel) 0.0107 0.0137 0.1263 0.0210 0.0273 0.2470 0.0430 0.0541 0.4964

Example 2

C (serial) 0.0291 0.2873 2.9043 0.0584 0.5721 5.8276 0.1174 1.1702 11.6148

CUDA (parallel) 0.0213 0.0269 0.2386 0.0422 0.0537 0.4751 0.0813 0.1074 0.9705

123

1132 Stat Comput (2016) 26:1121–1136

fold increase in run times when N = 100 compared to
N = 10,000;

– For the C implementations, increases in time are roughly
linear with N and Q;

The reduction in computing times presented when imple-
menting the C and CUDA code is quite reasonable, with the
maximum benefits for using CUDA coming for the largest N
and Q, which is the case where computational time is most
expensive.

5.4 Example 2: Bayesian A-optimality for one and two
compartment pharmacokinetic models

Consider an example where there is uncertainty around the
form of g(μ j , d j). As well as the model in the first exam-
ple, the following two-compartment infusion model was also
contemplated:

g(μ j , d j) =

⎧
⎪⎨

⎪⎩

D
T in f

[
A j
α j

(1 − exp(−α j d j)) + Bj
κ j

(1 − exp(−κ j d j))
]
, d j ≤ T in f

D
T in f

[
A j
α j

(1 − exp(−α j T in f)) exp(−α j (d j − T in f)) + Bj
κ j

(1 − exp(−κ j T in f)) exp(−κ j (d j − T in f))
]
, otherwise

,

for (k j , k12 j , k21 j , v j) = exp(μ j), where

A j = 1

v j

α j − k21 j
α j − κ j

, Bj = 1

v j

κ j − k21 j
κ j − α j

,

α j = k21 j k j
κ j

,

κ j = 1

2

[
k12 j + k21 j − k j

−
√(

k12 j + k21 j + k j
)2 − 4k21 j k j

]
.

Results obtained from a two compartment analysis of data
from Ryan et al. (2014) were used to give the prior distribu-
tion values:

δ = (−2.502, 0.8326, 0.6563, 8.225) ,Σ = 0.01I,

Ω =

⎡

⎢⎢
⎣

0.0120 −0.0012 0.0012 0.0018
−0.0012 0.0085 0.0002 −0.0051
0.0012 0.0002 0.0104 0.0046
0.0018 −0.0051 0.0046 0.0195

⎤

⎥⎥
⎦ ,

Ψ = 0.02I, ν = 7, a = −2.3, b = 0.5 and σ = 0.1.

The prior predictive distribution of this two-compartment
model is shown in Fig. 8. This appears similar in shape to the
one-compartment model with the peak concentration at 30
mins after the infusion has started. The additional compart-

0 50 100 150 200 250
0

10

20

30

40

50

60

Time (mins)

C
on

ce
nt

ra
tio

n
(m

g/
L)

Fig. 8 Prior predictive plot for two-compartment infusion model as
described in Section 6.4 based on 500 simulations

ment in this model yields the characteristic kink in the tail,
and, in this case, there appears to be more variability around
the typical response when compared to the one-compartment
model.

The Bayesian A-optimal sampling times for each of the
10 sheep over 500 simulated studies are shown in Fig. 9 for
when the one-compartment model was supposed responsi-
ble for the sequential data generation. Again, the plot shows
the empirical probability distribution of the first of the two

1 2 3 4 5 6 7 8 9 10

6

15

30

45

60

120

180

240

300

Sheep ID

S
am

pl
in

g
tim

e

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 9 Empirical probability distribution of sampling times selected
in 500 simulated trials of 10 sheep for Example 2 under Bayesian A-
optimality. Note: Only the first sampling time has been plotted

123

Stat Comput (2016) 26:1121–1136 1133

0 0.5 1 1.5

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Utility value

Bayesian A−optimality
Random

Fig. 10 Utility values for each simulated trial for Bayesian A-
optimality and the random design for Example 2

selected sampling times in each sheep. There appears to
be differences in the selected sampling times when one
allows for the possibility of a two-compartment model being
responsible for data generation. There is still a perference
for early sampling times, however, there are more sampling
times closer to the peak concentration and sampling times
far beyond this point can be observed from the first sheep
(rather than from the fourth sheep as seen in the first exam-
ple). The different sampling times selected betwen the two
examples could highlight potential sub-optimalities that may
be observed if one were to simply design for a single model
when model uncertainty exists.

Figure 10displays density plots of utility values for eachof
the 500 completed trials for when the Bayesian A-optimality

utility was used for design selection compared to the ran-
dom design. Despite the introduction of more uncertainty, in
particular around the true model, one can see that Bayesian
A-optimality is generally performing better than the random
design. There is potentially around a threefold improvement
in the (inverse of the) total or average variance of the para-
meters when using the Bayesian A-optimality utility. Again,
there are occassions where the random design may have per-
formed better, and this is by chance. In comparison with
Example 1, the distributions of utility values, as given by
Bayesian A-optimality and the random design, appear to
overlap more. Presumably, this is a consequence of having
more variability to deal with when constructing the designs.

This example was also re-run with the two compartment
model used to generate the sequential data. This yielded simi-
lar results to those presented here when the one compartment
model was used for data generation, but are omitted. This
suggests that the Bayesian A-optimality utility is selecting
designs that are robust to model uncertainty. Indeed, this is
how the utility was constructed to perform. Robustness to
such uncertainty is obviously an important characteristic of
an optimal design, and our methodology extends straightfor-
wardly to the consideration of more than twomodels for data
generation.

Table 1 and Fig. 11b show similar run time results for
the two compartment model when compared with the one
compartment model, with the benefits of CUDA when com-
pared to C reduced slightly. In this example, the CUDA
code is only roughly ten times faster than the C implementa-
tion. This reduced improvement may be due to the increased
model complexity, or more precisely the larger size of the

(a) (b)

Fig. 11 Log base 10 of average computing times (s) for evaluating the likelihood under different implementations in: a Example 1 and b
Example 2

123

1134 Stat Comput (2016) 26:1121–1136

instructions set required to compute the likelihood for the
two compartmentmodel. TheGPUconsists of a large number
of light-weight processors with limited memory or register
space to store instructions. When the size of the instruction
set exceeds a certain limit, the GPU is no longer able to use
all its processors at once, reducing the number of available
processors for parallel operations; in turn reducing the com-
putational advantages of the GPU.

6 Conclusion

In this paper, we have proposed a new pseudo-marginal SMC
algorithm for sequentially designing experiments that yield
batch or block data in the presence of model and parameter
uncertainty when the likelihood is not analytic and has to be
approximated. Our work was motivated by the need for an
efficient Bayesian inference and design algorithmwhere data
are observed sequentially, and the SMC algorithm served this
purpose well. Our developments of a new pseudo-marginal
algorithm have extended the use of SMC to random effects
models, where we can achieve efficient estimates of impor-
tant statistics such as the model evidence. With respect to
implementation, a nice feature of the idealised and our new
SMC algorithm is that it can be implemented in either a
coarse-grained way or a fine-grained way. Thus with little
effort, it can performwell on bothmulti-core CPUs or GPUs.
In our work, computational efficiency was achieved via the
use of a GPU when evaluating the approximation of the like-
lihood for a given model. This GPU implementation was
up to 18 times faster than the C implementation, and made
this research possible in a reasonable amount of time. We
argue that the run time comparisons between C and CUDA
are reasonably fair comparisons as the code and computing
language for running both implementations is essentially the
same.

Weconsidered standardMC,RQMC,LISandLIS+RQMC
integration techniques for approximating the likelihood. All
approaches produced comparable results for design selec-
tion, however, differences were observed in the estimated
likelihood weights. These differences were explored fur-
ther where it was found that, under certain implementations,
RQMC provides the larger ESS values overall. As such,
RQMC was proposed for use in the examples, and we note
that this method is generally faster to implement when com-
pared with LIS and LIS+RQMC. However, other approaches
may prove more useful here. Indeed, in terms of optimal
experimental design, it may not be necessary to consider
an exact-approximate algorithm for design selection. For
example, one could consider deterministic approaches for
fast posterior approximations such as those given by an
integrated-nested Laplace approximation (Rue et al. 2009)

or variational methods (Beal 2003). We plan to investigate
this in future research.

We considered an important PK study in sheep being
treated with ECMO, and results suggested that prolonged
use of ECMO may not be required for the estimation of PK
parameters. Reduced trial lengths may provide more ethical
studies while not compromising experimental results.

In our PK examples, the experimental aims reflected
precise parameter estimation with the possibility of model
uncertainty but other aims (and therefore utility functions)
may be of interest. For example, experimenters may be
more interested in determining the form of the model, that
is, model discrimination, and a utility function based on
mutual information has been considered in previous research
for this purpose (Drovandi et al. 2014). However, imple-
mentation was shown to be computationally challenging,
even for fixed effects models. We note that the method-
ology presented here can be applied to find designs for
this purpose within a mixed effects setting, and is an
avenue for future research. It may also be of interest to
not only derive designs for model discrimination, but also
for the precise estimation of parameters. Dual objective or
compound utility functions could be considered for this pur-
pose.

A limitation of our implementation is the discretisation
of the design space. On-going research in this area is in the
consideration of Gaussian Processes to model the expected
utility surface/s (Overstall and Woods 2015). Such models
are known to be powerful nonlinear interpolation tools, and
therefore could prove useful here. The choice of design points
to ‘observe’ the expected utility is a design problem within
itself. Of further interest would be the choice of covariance
function.

Wewould also like tomention that there are further oppor-
tunities to reduce run times. In particular, running the actual
SMC (inference) algorithm in parallel would certainly sig-
nificantly reduce computing times. Moreover, as proposed
designs are independent, then the design selection phase of
the algorithmcould be run in parallel (for example, one thread
per proposed design). This may also prove useful in over-
coming the limitation of discretising the design space. One
could also potentially improve run times by adopting a dif-
ferent kernel in the move step. For example, Liu and West
(2001) propose a kernel which, by accepting all proposed
parameters, preserves the first two moments of the target dis-
tribution. In our implementation, this would therefore reduce
our move step iterations from Rm to one, and has been used
in sequential design previously (Azadi et al. 2014). This
approximation would work well if the posterior distributions
were well approximated by mixtures of Gaussian distribu-
tions. The number of likelihood evaluations could also be
reduced by considering a Markov kernel (Del Moral et al.
2006). For this kernel, the normalising constant needs to be

123

Stat Comput (2016) 26:1121–1136 1135

estimated yielding an O(N 2) algorithm (as opposed to the
O(N) algorithm proposed here). However, using this kernel
would reduce the number of evaluations of the likelihood by
a factor of Rm . The Liu andWest (2001) kernel could be cor-
rected for non-Gaussian posteriors by this approach or using
a Metropolis-Hastings step.

Acknowledgments Thisworkwas supportedby theAustralianResearch
Council Centre of Excellence for Mathematical & Statistical Frontiers.
The work of A.N. Pettitt was supported by an ARC Discovery Project
(DP110100159), and the work of J.M. McGree was supported by an
ARC Discovery Project (DP120100269). We would also like to thank
the two referees who offered helpful comments to improve the article.

References

Amzal, B., Bois, F.Y., Parent, E., Robert, C.P.: Bayesian-optimal design
via interacting particle systems. J. Am. Stat. Assoc. 101, 773–785
(2006)

Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient
Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)

Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum experimental
designs, with SAS. OxfordUniversity Press Inc., NewYork (2007)

Azadi, N.A., Fearnhead, P., Ridall, G., Blok, J.H.: Bayesian sequen-
tial experimental design for binary response data with application
to electromyographic experiments. Bayesian Anal. 9, 287–306
(2014)

Beal, M.J.: Variational algorithms for approximate inference. Ph.D.
thesis. University of London (2003)

Bernardo, J.M., Smith, A.: Bayesian Theory. Wiley, Chichester (2000)
Chopin, N.: A sequential particle filter method for static models. Bio-

metrika 89, 539–551 (2002)
Chopin, N., Jacob, P., Papaspiliopoulos, O.: SMC∧2: an efficient algo-

rithm for sequential analysis of state space models. J. R. Stat. Soc.
75, 397–426 (2013)

Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing mul-
timodal functions of continuous variables with the ‘simulated
annealing’ algorithm. ACM Trans. Math. Softw. 13, 262–280
(1987)

Cranley, R., Patterson, T.: Randomisation of number theoretic methods
formultiple integration. SIAMJ.Numer.Anal.13, 904–914 (1976)

Davies, A., Jones, D., Bailey, M., Beca, J., Bellomo, R., Blackwell,
N., Forrest, P., Gattas, D., Granger, E., Herkes, R., Jackson, A.,
McGuinness, S., Nair, P., Pellegrino, V., Pettilä, V., Plunkett, B.,
Pye, R., Torzillo, P., Webb, S., Wilson, M., Ziegenfuss, M.: Extra-
corporeal membrane oxygenation for 2009 influenza A(H1N1)
acute respiratory distress syndrome. J. Am. Med. Assoc. 302,
1888–1895 (2009)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers.
J. R. Stat. Soc. 68, 411–436 (2006)

Dick, J., Sloan, I.,Wang, X.,Wozniakowski, H.: Liberating the weights.
J. Complex. 5, 593–623 (2004)

Drovandi, C.C., McGree, J.M., Pettitt, A.N.: Sequential Monte Carlo
for Bayesian sequentially designed experiments for discrete data.
Comput. Stat. Data Anal. 57, 320–335 (2013)

Drovandi, C.C., McGree, J.M., Pettitt, A.N.: A sequential Monte Carlo
algorithm to incorporate model uncertainty in Bayesian sequential
design. J. Comput. Gr. Stat. 23, 3–24 (2014)

Durham, G., Geweke, J.: Massively parallel sequential Monte Carlo for
Bayesian inference. Manuscript, URL http://www.censoc.uts.edu.
au/pdfs/gewekepapers/gpworking9.pdf (2011)

Faure, H.: Discrkpance de suites associkes b un systkme de numeration
(en dimension s). Acta Arith. XLI, 337–351 (1982)

Gerber, M., Chopin, N.: Sequential-quasi Monte Carlo. Eprint
arXiv:1402.4039 (2014)

Gilks, W.R., Berzuini, C.: Following a moving target—Monte Carlo
inference for dynamic Bayesian models. J. R. Stat. Soc. 63, 127–
146 (2001)

Gordon, N.J., Salmond, D.J., Smith, A.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In: IEE Pro-
ceedings F Radar and Signal Processing, vol. 140, pp. 107–113
(1994)

Gramacy, R.B., Polson, N.G.: Particle learning of Gaussian process
models for sequential design and optimization. J. Comput. Gr.
Stat. 20, 102–118 (2011)

Halton, J.H.: On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numer. Math. 2,
84–90 (1960)

Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen
& Co Ltd, London (1964)

Han, C., Chaloner, K.: Bayesian experimental design for nonlinear
mixed-effects models with application to HIV dynamics. Biomet-
rics 60, 25–33 (2004)

Hastings, W.K.: Monte carlo sampling methods using markov chains
and their applications. Biometrika 57, 97–109 (1970)

Kiefer, J.: Optimum experimental designs (with discussion). J. R. Stat.
Soc. 21, 272–319 (1959)

Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian non-
linear state space models. J. Comput. Gr. Stat. 5, 1–25 (1996)

Kuk, A.: Laplace importance sampling for generalized linear mixed
models. J. Stat. Comput. Simul. 63, 143–158 (1999)

L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag.
Sci. 46, 1214–1235 (2000)

Liu, J., West, M.: Combined parameter and state estimation in simula-
tion based filtering. In: Doucet, A., de Freitas, J.F.G., Gordon, N.J.
(eds.) Sequential Monte Carlo in Practice, pp. 197–223. Springer,
New York (2001)

Liu, J.S., Chen, R.: Blind deconvolution via sequential imputations. J.
Am. Stat. Assoc. 90, 567–576 (1995)

Liu, J.S., Chen, R.: Sequential Monte Carlo for dynamic systems. J.
Am. Stat. Assoc. 93, 1032–1044 (1998)

MATLAB.: version 8.2.0.701R2013b. TheMathworks Inc,Natick,MA
(2013)

McGree, J.M., Drovandi, C.C., Thompson, M.H., Eccleston, J.A., Duf-
full, S.B., Mengersen, K., Pettitt, A.N., Goggin, T.: Adaptive
Bayesian compound designs for dose finding studies. J. Stat. Plan.
Inference 142, 1480–1492 (2012)

Mentré, F., Mallet, A., Baccar, D.: Optimal design in random-effects
regression models. Biometrika 84, 429–442 (1997)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equation of state calculations by fast computing
machines. J. Chem. Phys. 21, 1087–1092 (1953)

Morokoff,W.J., Caflisch, R.E.: Quasi-Monte Carlo integration. J. Com-
put. Phys. 122, 218–230 (1995)

Müller, P.: Simulation-based optimal design. Bayesian Stat. 6, 459–474
(1999)

Munger, D., L’Ecuyer, P., Bastin, F., Cirillo, C., Tuffin, B.: Estimation
of the mixed logit likelihood function by randomized quasi-Monte
Carlo. Transp. Res. Part B 46, 305–320 (2012)

Niederreiter, H.: Quasi-Monte Carlomethods and pseudo-randomnum-
bers. Bull. Am. Math. Soc. 84, 957–1041 (1978)

NVIDIA.: NVIDIA CUDA C Programming Guide 4.1. NVIDIA (2012)
Overstall, A., Woods, D.: The approximate coordinate exchange

algorithm for Bayesian optimal design of experiments
arXiv:1501.00264v1 [stat.ME] (2015)

Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM
J. Numer. Anal. 34, 1884–1910 (1997a)

123

http://www.censoc.uts.edu.au/pdfs/gewekepapers/gpworking9.pdf
http://www.censoc.uts.edu.au/pdfs/gewekepapers/gpworking9.pdf
http://arxiv.org/abs/1402.4039
http://arxiv.org/abs/1501.00264v1

1136 Stat Comput (2016) 26:1121–1136

Owen, A.B.: Scramble net variance for integrals of smooth functions.
Ann. Stat. 25, 1541–1562 (1997b)

Owen, A.B.: Latin supercube sampling for very high-dimensional sim-
ulations. ACM Trans. Model. Comput. Simul. 8, 71–102 (1998a)

Owen, A.B.: Scrambling Sobol’ and Niederreiter-Xing points. J. Com-
plex. 14, 466–489 (1998b)

Patterson, H.D., Hunter, E.A.: The efficiency of incomplete block
designs in National List and Recommended List cereal variety
trials. J. Agric. Sci. 101, 427–433 (1983)

Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for
latent Gaussianmodels by using integrated nested Laplace approx-
imations (with discussion). J. R. Stat. Soc. 71, 319–392 (2009)

Ryan, E., Drovandi, C., McGree, J., Pettitt, A.: A review of modern
computational algorithms for Bayesian optimal design. Int. Stat.
Rev. Accepted for publication (2015)

Ryan, E., Drovandi, C., Pettitt, A.: Fully Bayesian experimental design
for Pharmacokinetic studies. Entropy 17(3), 1063–1089 (2014)

Shekar, K., Roberts, J., Smith, M., Fung, Y., Fraser, J.: The ECMO
PK project: an incremental research approach to advance under-
standing of the pharmacokinetic alterations and improve patient
outcomes during extracorporeal membrane oxygenation. BMC
Anesthesiol. 13, 7(2013)

Sobol’, I.M.: On the distribution of points in a cube and the approximate
evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–
112 (1967)

Stroud, J.R., Müller, P., Rosner, G.L.: Optimal sampling times in popu-
lation pharmacokinetic studies. J. R. Stat. Soc. Ser. C 50, 345–359
(2001)

Tran, M.N., Strickland, C., Pitt, M.K., Kohn, R.: Annealed impor-
tant sampling for models with latent variables. arXiv:1402.6035
[stat.ME] (2014)

Vergé, C., Dubarry, C., Del Moral, P., Moulines, E.: On parallel imple-
mentation of sequential Monte Carlo methods: the island particle
model. Statistics and Computing. To appear (2015)

Weir, C.J., Spiegelhalter, D.J., Grieve,A.P.: Flexible design and efficient
implementation of adaptive dose-finding studies. J. Biopharm.
Stat. 17, 1033–1050 (2007)

Woods, D.C., van de ven, P.: Blocked designs for experiments with cor-
related non-normal response. Technometrics 53, 173–182 (2011)

123

http://arxiv.org/abs/1402.6035

	A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design
	Abstract
	1 Introduction
	2 Inferential framework
	3 Sequential Monte Carlo algorithm
	3.1 Idealised sequential Monte Carlo algorithm
	3.2 Pseudo-marginal sequential Monte Carlo algorithm for random effect models
	3.3 Implementation of the pseudo-marginal sequential Monte Carlo algorithm

	4 Experimental design
	5 Examples
	5.1 Example 1: Comparison of approximations to the likelihood
	5.2 Example 1 continued: Bayesian A-optimality for one compartment pharmacokinetic model
	5.3 Example 1 continued: Comparison of run times
	5.4 Example 2: Bayesian A-optimality for one and two compartment pharmacokinetic models

	6 Conclusion
	Acknowledgments
	References

