Stat Comput (2012) 22:93-106
DOI 10.1007/s11222-010-9208-x

Bayesian semiparametric modeling and inference with mixtures

of symmetric distributions

Athanasios Kottas - Gilbert W. Fellingham

Received: 28 January 2009 / Accepted: 11 October 2010 / Published online: 30 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We propose a semiparametric modeling approach
for mixtures of symmetric distributions. The mixture model
is built from a common symmetric density with different
components arising through different location parameters.
This structure ensures identifiability for mixture compo-
nents, which is a key feature of the model as it allows ap-
plications to settings where primary interest is inference for
the subpopulations comprising the mixture. We focus on
the two-component mixture setting and develop a Bayesian
model using parametric priors for the location parameters
and for the mixture proportion, and a nonparametric prior
probability model, based on Dirichlet process mixtures, for
the random symmetric density. We present an approach to
inference using Markov chain Monte Carlo posterior simu-
lation. The performance of the model is studied with a sim-
ulation experiment and through analysis of a rainfall precip-
itation data set as well as with data on eruptions of the Old
Faithful geyser.

Keywords Dirichlet process prior - Identifiability - Markov
chain Monte Carlo - Mixture deconvolution - Scale uniform
mixtures

1 Introduction

In seeking to extend the scope of standard parametric fam-
ilies of distributions one is naturally led to mixture models.
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Continuous mixture models, arising through a parametric
continuous family of mixing distributions, typically achieve
increased heterogeneity but are still limited to unimodality
and usually symmetry. Finite mixture distributions provide
more flexible modeling, since with appropriate mixing, and
sufficiently large number of mixture components, they can
approximate a wide range of density shapes.

Hence, mixture models are commonly utilized to provide
a flexible framework for modeling distributions with non-
standard features. Under this setting, inferential interest fo-
cuses on the mixture distribution rather than the individual
components that comprise the mixture. In this context, key
Bayesian modeling approaches build on discrete mixtures
with an unknown number of components or nonparametric
mixture models based mainly on Dirichlet process (DP) pri-
ors (see, e.g., the respective reviews in Marin et al. 2005,
and Miiller and Quintana 2004).

The methodology proposed in this paper is concerned
with mixture deconvolution problems, which provide an-
other important application area for finite mixture mod-
els. We consider univariate continuous distributions on the
real line, for which the density of a general finite mixture
model can be denoted by le;l 7 fj(-), where the f;()
are densities on R, and the mixture weights 7; > 0 with
Zl;=] 7j = 1. For mixture deconvolution settings, of pri-
mary interest is inference for the subpopulations f;(-) com-
prising the mixture population model, which thus shifts the
focus to mixtures with a specified, typically small, number
of components, k, each one of which has a specific inter-
pretation under the particular application. For instance, in
epidemiological studies, the subpopulations of interest may
correspond to non-diseased and diseased subjects (and thus
k = 2), or the entire mixture may model an infected popula-
tion with components corresponding to k distinct stages of
infection.
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It is well known that the mixture components f;(-) in
the general mixture model Z];: 17 fj(-) are not identifi-
able without restrictions on the model parameters. Various
forms of identifiability results are possible when the f;(-)
are assumed to correspond to specific parametric families of
distributions (e.g., Titterington et al. 1985). Addressing the
nonidentifiability issue is more challenging under a semi-
parametric mixture model setting where the f;(-) are left
unspecified under a classical nonparametric approach, or as-
signed nonparametric priors under Bayesian nonparametric
modeling. Recent work of Bordes et al. (2006) and Hunter
et al. (2007) provides identifiability results for a more struc-
tured semiparametric version of the general finite mixture
discussed above. Specifically, Z];=1 i f(- — uj), where
f () is a density on R, which is symmetric about 0, and the
wj are component-specific location parameters. In particu-
lar, Bordes et al. (2006), and, independently, Hunter et al.
(2007) proved identifiability when k = 2. Moreover, Hunter
et al. (2007) established also identifiability for k = 3, al-
though under complex constraints on the location parame-
ters and mixture weights. In addition to the estimation ap-
proaches in Bordes et al. (2006) and Hunter et al. (2007),
classical semiparametric estimation techniques have been
proposed by Cruz-Medina and Hettmansperger (2004) and
Bordes et al. (2007).

Our objective is to develop a fully inferential Bayesian
modeling framework for such mixtures of location-shifted
symmetric distributions. We focus on the two-component
mixture setting, 7 f (- — 1)+ (1 —m) f (- — n2), and propose
a Bayesian semiparametric probability model based on para-
metric priors for w1, (> and 7, and a nonparametric prior
model for the symmetric density f(-), which is further taken
to be unimodal. The additional assumption of unimodality
for f(-) is natural for deconvolution problems, and in our
context, facilitates the choice of the prior for the nonpara-
metric component of the mixture model. In particular, we
employ a nonparametric scale uniform DP mixture prior for
f () that supports the entire class of symmetric unimodal
densities on R. We argue that the combination of the the-
oretical identifiability results discussed above with flexible
probabilistic modeling for f(-) provides a practically use-
ful framework for inference in mixture deconvolution prob-
lems.

The outline of the paper is as follows. Section 2 presents
the modeling framework, including approaches to prior
specification and methods for posterior inference, with tech-
nical details on the latter deferred to the Appendix. Section 3
illustrates model performance through a simulation study
and through analysis of data on eruptions of the Old Faithful
geyser. We also consider comparison with a two-component
normal mixture model, using a rainfall precipitation data set.
Finally, Sect. 4 concludes with a summary and discussion of
possible extensions.
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2 Methodology

Section 2.1 presents the modeling approach. Prior specifi-
cation is addressed in Sect. 2.2, and posterior inference is
discussed in Sect. 2.3.

2.1 Semiparametric modeling for the two-component
mixture

We develop an approach to modeling and inference under
the following two-component mixture setting,

af(y—p)+A-m)f(y—p), yekR, (D

where f(-) is a density on R assumed to be unimodal and
symmetric about 0, 7 is the mixing proportion, and w1 and
o are location parameters associated with the two mixture
components. We build a semiparametric modeling frame-
work working with parametric priors for 7, ;1 and u;, and
a nonparametric prior model for f(-).

The foundation for constructing the probability model
for f(-) is the representation of non-increasing densities on
the positive real line as scale mixtures of uniform densi-
ties. Specifically, a density i(-) on R* is non-increasing if
and only if there exists a distribution function G on R™
such that h(t) = h(t; G) = [0 1[04 (1)dG(9), t € RT
(see, e.g., Feller 1971, p. 158). Using this result, we
have a representation for f(-) through a scale mixture of
symmetric uniform densities, that is, f(y) = f(y; G) =
fO.SéV1 1(—6,6)(y)dG(0), y € R, where the mixing distrib-
ution G is supported on R™. This one-to-one mapping be-
tween f and G enables a nonparametric model for f(-)
through a nonparametric prior for G. In particular, placing
a DP prior on G, a scale uniform DP mixture emerges for
f(; G). We refer to Brunner and Lo (1989), Brunner (1992,
1995), and Hansen and Lauritzen (2002) for related work
as well as Lavine and Mockus (1995), Kottas and Gelfand
(2001), and Kottas and Krnjaji¢ (2009) for DP-based mod-
eling involving variations and extensions of the above rep-
resentation leading to f(-; G).

As developed by Ferguson (1973), the DP serves as a
prior model for random distributions (equivalently, distri-
bution functions) G, which, in our context, have support
on R". The DP is defined in terms of two parameters, a para-
metric base distribution G (the mean of the process) and a
positive scalar parameter o, which can be interpreted as a
precision parameter; larger values of « result in DP realiza-
tions G that are closer to Go. We will write G ~ DP(«, Gg)
to indicate that a DP prior is used for the random distrib-
ution G. In fact, DP-based modeling typically utilizes mix-
tures of DPs (Antoniak 1974), i.e., a more general version of
the DP prior that involves hyperpriors for o and/or the para-
meters of G¢. The most commonly used DP definition is its



Stat Comput (2012) 22:93-106

95

constructive definition (Sethuraman 1994), which character-
izes DP realizations as countable mixtures of point masses
(and thus as random discrete distributions). Specifically, a
random distribution G generated from a DP(«, Go) is (al-
most surely) of the form

G() = wby, () )

=1

where §,(-) denotes a point mass at a. The locations of
the point masses, vy, are i.i.d. realizations from Gy; the
corresponding weights, wy, arise from a stick-breaking
mechanism based on i.i.d. draws {{; : k= 1,2,...} from
a beta(l, o) distribution. In particular, w; = {1, and, for
each £ =2,3,..., wg = & ]_[i;i(l — ). Moreover, the
sequences {U¢, £ =1,2, ...} and {¢x : k=1,2,...} are in-
dependent.

Utilizing the representation theorem discussed above
with a DP prior for the mixing distribution G, our proposed
nonparametric prior probability model for the density f(-)
in (1) is given by

f=r G)=/R+u(y;9)dG(9), yeR;

G |a, g~ DP(a, Go)

3

where u(-; 0) = 0.50! 1(—p,6)(:) denotes the density of the
uniform distribution on (—6, ). We take an inverse gamma
distribution for Go with mean 8/(c — 1) (provided ¢ > 1).
We work with fixed shape parameter ¢ (with ¢ > 1) and ran-
dom scale parameter 8 with prior density denoted by p(8).
We also place a prior p(«) on the DP precision parameter .
(Note that we retain the more common “DP prior” terminol-
ogy even though the prior for G is, in fact, a mixture of DPs.)
The model is completed with priors p(u1), p(u2) and p(r)
for w1, up and w. Parameters w1, (2, m, o and B are as-
sumed independent in their prior. We discuss prior choice
and specification in Sect. 2.2.

Hence, the semiparametric model for the data = {y; : i =
1,...,n}is given by

yilmw, ui, u2, G

ind. 7f(yi —p1;G)+ A —=m) f(yi —u2; G),
i:l,...,l’l, (4)

G |a, B ~DP(a, Go(-; B)),
7T, 1, w2, o, B~ p() p(ur) p(u2) p(e) p(B)

where f(-; G) is the scale uniform DP mixture defined
in (3).

The model can be expressed hierarchically by introduc-
ing two sets of latent mixing parameters for the observ-
ables y;, i = 1,...,n. The first set of binary mixing pa-
rameters, say, {z; :i = 1,...,n}, can be used to break the

two-component mixture 7 f(y; — u1; G) + (1 — ) f(yi —
w2; G), so that the y;, given z; and u, pu2, G, are inde-
pendent f(y; — uz; G), and the z;, given 7, are i.i.d. with
Pr(zi=1|7w) =7 and Pr(z; =2 | #) = 1 — & (denoted
below by Pr(z; | w)). The second set of mixing parame-
ters, {6; :i = 1,...,n}, is added to break the DP mixture
f(vi — g5 G), where now the y;, given z;, i1, 2 and 6; are
independent u(y; — 114;; 6;), and the 6;, given G, are i.i.d. G.
Therefore, the full hierarchical model can be written as

ind. .
yilpr, mo,0i,zi ~ u(Qyi — g3 0:), i=1,...,n,

il P ), i=1,....n,

¢-..- 5
0,16 G i=1.....n )
G |, p~DP(a, Go(-; B)).

7T, M1, p2, o, B~ p() p(ur) p(u2) pla) p(B).

It is straightforward to show that if we integrate over the 6;
and then over the z; in (5), we obtain (4).

2.2 Prior specification

To apply the model developed in Sect. 2.1, we work with
Nar, b,%) priors (with standard deviation by) for ug, k =
1,2, abeta(ay, by ) prior for 7, a gamma(ay, by) prior (with
mean ay/by) for @, and an exponential prior (with mean
1/bg) for B.

If prior information is available on the modes of the mix-
ture distribution and their relative weights, it can be used to
specify the priors for @1, o and 7. Less informative prior
specification is also possible, and indeed results in robust
and accurate posterior inference, as illustrated with the data
examples of Sect. 3. Specifically, we use the same normal
prior for ;1 and @, with mean set equal to a guess at the cen-
ter of the data, and variance defined through a guess at the
data range. Note that such an approach may be too uninfor-
mative for a general parametric mixture, as shown with the
rainfall data in Sect. 3.3, but worked well under model (4)
for all the data sets we considered. Moreover, a uniform dis-
tribution on (0, 1) is the natural noninformative prior for .

To specify the priors for the DP hyperparameters o and
B, based on weak prior information, we can use the role they
play in the DP mixture prior model. The DP precision para-
meter « controls the number, n* < n, of distinct DP mixture
components, i.e., the number of distinct 8; in (5) implied
by the discrete random mixing distribution G (e.g., Anto-
niak 1974; Escobar and West 1995). For instance, for mod-
erately large n, E(n* | ) ~ alog{(e + n)/a}, which can
be averaged over the gamma prior for o to obtain E(n*).
Hence, prior beliefs about n* can be converted into particu-
lar prior choices for «. We note that applications of DP mix-
ture models involve mainly location or location-scale mix-
ing with unimodal kernels, in which case n* would typically
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be small relative to n. In contrast to location DP mixtures,
model (3) involves scale uniform mixing, which typically
implies a large number of mixture components, i.e., large n*,
to model the underlying symmetric unimodal density f(-).

Regarding the scale parameter 8 of the inverse gamma
distribution Gy, a practically useful approach to prior
specification emerges by considering the limiting case of
model (5) as @ — 0o, which implies a distinct 6; for each
observation y; (i.e., n* = n). As discussed above, this is
a natural limiting case of DP mixture model (3). Then,
the 6; are i.i.d. Go(-; B), and thus E(6;) = E{E(; | )} =
EB(c— 1D H= b/g](c — 1)~L. Therefore, 2b/§1(c — !
can be used as a proxy for the range of the mixture kernel.
Finally, based on the guess at the data range, say, R, we
use R/2 as a guess at the range of each mixture component,
and specify bg through Zblgl(c — 1)~! = R/2. Recall that
the shape parameter c is fixed; for all the data examples of
Sect. 3, c is set to 2, yielding an inverse gamma distribution
for G with infinite variance, and mean f.

Finally, for any particular prior specification it is straight-
forward to estimate the associated prior predictive den-
sity, p(yo), which corresponds to model (5) for a single
generic yg. The corresponding mixing parameter 6y arises,
given B, from the Go(6p; ) distribution. Moreover, for the
associated binary mixing parameter zo, we have Pr(zo =1 |
) =m and Pr(zo =2 | w) = 1 — =. Hence, marginalizing
over zo, p(yo) is given by

//{ﬂu(yo — 115 00) + (1 — m)u(yo — p2; 6o)}

x g0(0o; B)p(m) p(iu1) p(u2) p(B) dbpdmrdrduadp,

where go is the density of Go. Note that p(yp) is defined
through only the center Go of the DP prior, i.e., the DP
precision parameter does not enter its expression. The prior
predictive density reveals the combined effect of four of the
five priors that need to be specified in order to implement in-
ference under model (4). Moreover, as shown with the data
examples of Sects. 3.1 and 3.2, comparison of the prior pre-
dictive with the posterior predictive density (the latter de-
veloped in Sect. 2.3) indicates the amount of learning from
the data for Bayesian density estimation under the semipara-
metric mixture model (4).

2.3 Posterior inference

To develop inference under the model of Sect. 2.1, we
employ a Markov chain Monte Carlo (MCMC) algorithm
for posterior sampling from the marginalized version of
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model (5) that results by integrating G over its DP prior,

ind. .
yll,u/17l1'2791721 Nu()’t_ﬂz,§91), l=17-"’na

(le"-yen)|a7ﬁNp(017'-'76n|a7ﬁ)a (6)

il S P |7, i=1....n,
T, 11, h2, o, B~ p(r)p(1) p(ua) p(@) p(B).

The induced joint prior for the 6; can be developed using the
Pélya urn characterization of the DP (Blackwell and Mac-
Queen 1973). Specifically,

p@1,...,6, o, B)

= 80(01; ﬁ)]_[{ﬁgo(@'; )
i=2

i—1
1
+m§50@(90}- )

As the above expression indicates, the discreteness of the DP
prior induces a partition of the vector of DP mixing parame-
ters, 0 = (01, ..., 0,), into n* (< n) distinct components 9;‘,
j=1,....,n* The 67 along with configuration indicators
(s1,...,58,),defined by s; = j if and only if 6; = 9;‘, provide
an equivalent representation for #. Denote by ¥ the full pa-
rameter vector consisting of z = (z1,...,2,), 0, 7w, K1, U2,
a, and B. The Appendix provides the details of the MCMC
method for sampling from the posterior of ¥. We note that
key to the good performance of the MCMC algorithm are
joint updates for each pair, (z;,6;), of mixing parameters
corresponding to the i-th observation.

The samples from p(y¥ | data) can be used to obtain pos-
terior predictive inference for yp, a generic new observa-
tion with corresponding latent mixing parameters zg and 6.
Adding yo, zo, and 6y to the model structure in (5), and ob-
taining next the induced marginalized version (which thus
extends (6)), we have

p(y0. 20, 6o, ¥ | data)
=u(yo — Kz 00)p 0o | 8, . B)Pr(zo | ) p(¥ | data)

where the form of the conditional posterior, p(6g | 0, «, B),
for 6 arises from the DP Pdlya urn structure. Specifically,

P00, )=

o R
0o; —_— i80%(60).
0 ﬁ)+a+n;n, o1 (60)

Therefore,

p(yo | data) = / / > w0 — tzg: 00)p (@0 | 8, . )
20

X Pr(zo | w) p(¢ | data) dGpdyr
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or, evaluating the sum over zg,

p(yo | data)
= //{ﬂu(yo — 113 600) + (I — m)u(yo — u2; 6o)}
x p(6o10,a, B)p(y¥ | data) ddpdy.

Based on this last expression, we can estimate the poste-
rior predictive density as follows. For each posterior sam-
ple ¥,, r =1,...,B (where B is the posterior sample
size), we can draw 6y, from p(6gy | 0,,«,, B,), and then
yor from m.u(yo — p1r; 6or) + (1 — 7 )u(yo — war; bor).
A (smoothed) histogram of the posterior predictive sample,
{vor : ¥ =1,..., B}, yields the posterior predictive density
estimate.

The posterior predictive density is a point estimate for
the two-component mixture density, in particular, it can
be shown that p(yg | data) = mE(f(yo — n1; G) | data) +
(1 = m)E(f(yo — n2; G) | data). Therefore, for any x € R,
a posterior point estimate for the underlying symmetric den-
sity f(x) = f(x; G) in (3) is given by

E(f(x: G) | data)

=//M(X:90)p(90 10, c, B)p(¥ | data) dfody,

and this can be obtained similarly to the posterior predictive
density estimate, using the posterior samples for (0, «, B)
and the additional draws from p(6y | 6, «, B).

Finally, we note that the approaches to posterior infer-
ence discussed above utilize only the posterior expectation
of the random mixing distribution G. Although not needed
for the data illustrations considered in Sect. 3, the posterior
distribution for G can be sampled by augmenting each re-
alization from p (¥ | data) with an additional draw from the
conditional posterior distribution for G, given (0, «, 8). This
distribution is given by a DP with precision parameter o + n
and base distribution (o + n)~'[aGo(; B) + 31—, 84, ()]
(Antoniak 1974). The draw from the conditional posterior
distribution of G can be obtained using a truncation approxi-
mation to the DP based on its stick-breaking definition given
in (2) (e.g., Gelfand and Kottas 2002; Kottas 2006).

3 Data illustrations

We first study in Sect. 3.1 the performance of the semipara-
metric model with simulated data. Next, Sect. 3.2 illustrates
posterior predictive inference under the model with data on
eruptions of the Old Faithful geyser. Finally, in Sect. 3.3,
we consider comparison with a parametric mixture model,
using a data set on rainfall precipitation.

3.1 Simulation study

The simulation study involved four data sets. In the first
three cases, the data were drawn from a mixture of two nor-
mal distributions with means of —1 and 2, and standard de-
viations of 1. The probability associated with the N(—1, 1)
component was 0.15 for the first data set, 0.25 for the sec-
ond, and 0.35 for the third. To study results under an un-
derlying symmetric density with heavier tails, we also con-
sidered a data set generated from a mixture of two #, dis-
tributions (¢ distributions with 2 degrees of freedom) with
location parameters —1 and 2, common scale parameter 1,
and probability 0.15 for the first component. The sample size
was n = 250 for all four simulated data sets.

Regarding the priors for the model parameters, for all
four data sets, we used a N(O, 102) prior for both w; and
W2, a uniform prior for 7, and a gamma(50, 0.1) prior for o
(with mean 500). The shape parameter ¢ of the base distri-
bution G was set to 2, and  was assigned an exponential
prior with mean 2, based on a data range of 8 for the ap-
proach of Sect. 2.2.

We used the MCMC posterior simulation method of
Sect. 2.3 to obtain inference for the model parameters and
to estimate the symmetric density and the posterior predic-
tive density. For all the parameter estimates, convergence
was tested using a criterion from Raftery and Lewis (1995).
Specifically, we computed I = (M + N)/N,,in, where M is
the number of burn-in iterations, N is the number of itera-
tions after burn-in, and Ny, is the size of a pilot sample. M,
N, and N, were all calculated using the gibbsit pro-
gram (available at http://lib.stat.cmu.edu/general/gibbsit).
Raftery and Lewis (1995) appeal to empirical evidence to
suggest that values of I greater than 5 are problematic.
In general, this diagnostic measure can be used to indicate
problems in the chain due to a bad starting value, high pos-
terior correlation, or “stickiness” in the chain. In no instance
did any [ value in the analysis of the simulated data sets
exceed 2. Regarding autocorrelations in the sampled chains
for the model parameters, @1 and pp were the more chal-
lenging parameters requiring about 200 iterations for the
autocorrelations to drop to small values. This was also the
case for the real data discussed in Sects. 3.2 and 3.3. The
results discussed below were based on 20000 burn-in iter-
ations, followed by 600000 iterations taking output every
200th to obtain the final posterior sample of size 3000.

Figures 1-4 show for each of the four simulated data sets
the prior and posterior predictive density overlaid on the his-
togram of the raw data, as well as prior and posterior density
plots for 7, 1, and u;. Also plotted in each figure is the es-
timate of the underlying symmetric density overlaid on the
corresponding density that was used to generate the data,
that is, the N (0, 1) density for Figs. 1-3 and the standard #,
density for Fig. 4.
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Fig. 1 Simulated data from
mixture of normals with true
7 = 0.15. The top row includes
prior densities (dashed lines)
and posterior densities (solid
lines) for 7, 1, and py. The
bottom left panel plots the
symmetric density estimate
(solid line) overlaid on the true
underlying standard normal
density (dashed line). The
bottom right panel shows the
prior and posterior predictive
densities (dashed and solid
lines, respectively) overlaid on
the data histogram

Fig. 2 Simulated data from
mixture of normals with true

7 =0.25. The top row includes
prior densities (dashed lines)
and posterior densities (solid
lines) for , (1, and wo. The
bottom left panel plots the
symmetric density estimate
(solid line) overlaid on the true
underlying standard normal
density (dashed line). The
bottom right panel shows the
prior and posterior predictive
densities (dashed and solid
lines, respectively) overlaid on
the data histogram
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Fig. 3 Simulated data from o | <
mixture of normals with true ©
7 = 0.35. The top row includes 0 |
prior densities (dashed lines) o © -
and posterior densities (solid o |
lines) for 7, 1, and py. The o
bottom left panel plots the 0 | ~
symmetric density estimate T
(solid line) overlaid on the true o |
underlying standard normal -
density (dashed line). The pig
bottom right panel shows the
prior and posterior predictive I (SR S S,
densities (dashed and solid LI N R B B | T T T T T T T T T T
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We note that in all simulation cases, the true values of i1,
n2 and 7 are recovered successfully by their correspond-
ing posteriors. In Figs. 1-3, the posterior uncertainty for
and o changes with the true value of , which should be
anticipated, since the amount of information from the data
for each mixture component depends on the mixing weight.
In all four examples, the estimated posterior predictive den-
sity follows closely the shape of the data histogram, thus
indicating that posterior predictive inference resulting from
the model is accurate. Moreover, the symmetric density esti-
mate recovers quite well the underlying symmetric density,
especially, noting that in the bottom left panels of Figs. 1-4
we are comparing the model posterior point estimate with
the true standard normal or #, density from which a sin-
gle data set was generated for each case of the simulation
study. Finally, as is evident from Figs. 14, the priors used
for all simulated data sets were very uninformative. Hence,
it is noteworthy that, at least based on this simulation experi-
ment, the excellent performance of the model with regard to
posterior inference and posterior predictive estimation does
not rely on strong prior information, but is rather driven by
the data.

3.2 Old Faithful eruptions data

We consider two data sets on eruptions of the Old Faithful
geyser in Yellowstone National Park, USA (both included as
part of the datasets R library). The first data set records
the duration of the eruption in minutes, and the second the
waiting time in minutes between eruptions. In both cases,
the sample size is n = 272. Histograms of the eruption time
and waiting time data are plotted in Figs. 5 and 6, respec-
tively, indicating a bimodal shape for the underlying distrib-
utions.

To further illustrate robustness of posterior inference to
the prior choice, for both data sets, we obtained results un-
der two distinct prior specifications, one inducing fairly dif-
fuse priors, and one implying more informative priors. In all
cases, the shape parameter ¢ of the inverse gamma base dis-
tribution was set to 2, and thus the mean of G is given by 8.
As in Sect. 3.1, we checked convergence of the MCMC al-
gorithm using the criterion from Raftery and Lewis (1995).
In no case did the I value exceed 4. All results reported
below were based on a burn-in period of 20,000 iterations,
followed by 600,000 iterations taking output every 200th to
obtain the 3000 posterior samples used for inference.
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Fig.5 (Color online) Old Faithful eruption time data. In all panels, the
solid and dashed lines denote results under the diffuse and the more in-
formative prior choice, respectively (see Sect. 3.2 for details). The top
row includes prior densities (in red color) and posterior densities (in
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green) for m, w1, and py. The bottom left panel plots the symmetric
density estimates, and the bottom right panel shows the prior and pos-
terior predictive densities (red and green lines, respectively) overlaid
on the data histogram
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Fig. 6 (Color online) Old Faithful waiting time data. In all panels, the
solid and dashed lines denote results under the diffuse and the more
informative prior choice, respectively (see Sect. 3.2 for details). The
top row includes prior densities (in red color) and posterior densities

Table 1 Old Faithful eruption time data. 95% posterior intervals for
model parameters under the diffuse and the more informative prior
choice discussed in Sect. 3.2

Parameter Diffuse Diffuse Informative Informative
Lower Upper Lower Upper

b4 0.30 0.42 0.30 0.42

1 1.94 2.06 1.95 2.07

7% 4.28 4.40 4.28 4.40

B 0.71 0.94 0.69 0.97

o 361 634 109 206

Focusing first on the eruption time data, the diffuse set
of prior specifications corresponds to a N(4, 10%) prior for
1 and o, a uniform prior for 7, a gamma(50, 0.1) prior
for o (with mean 500), and an exponential prior for § with
mean 10. For the more informative prior specification we
used a N(2, 0.22) prior for 11, a N(4.3, 0.22) prior for uo, a
beta(6, 12) prior for 7, a gamma(40, 0.25) prior for o (with
mean 160), and an exponential prior for § with mean 10.
Figure 5 shows results for parameters m, p1 and wo, the
underlying symmetric density, and the posterior predictive
density, under both sets of priors. Moreover, Table 1 reports

(in green) for m, 11, and wy. The bottom left panel plots the symmetric
density estimates, and the bottom right panel shows the prior and pos-
terior predictive densities (red and green lines, respectively) overlaid
on the data histogram

95% posterior intervals for all model parameters. The ro-
bustness of the estimates for the symmetric density and the
posterior predictive density, as well as of posterior inference
results for the practically important model parameters 7, (41
and p is particularly noteworthy. The prior sensitivity for
the DP precision parameter « is typical with DP mixture
models, since this DP prior hyperparameter is, in general,
more difficult to inform from the data. However, this aspect
of the DP mixture prior model does not affect substantially
posterior predictive inference even with small sample sizes;
in our example, note that the two posterior predictive den-
sities (bottom right panel of Fig. 5) are essentially indistin-
guishable.

Turning to the waiting time data, the diffuse prior specifi-
cation involved a N(70, 1002) prior for ©1 and o, a uniform
prior for v, a gamma(50, 0.1) prior for o (with mean 500),
and an exponential prior for 8 with mean 100. The more in-
formative prior specification was based on a N(50, 52) prior
for 11, a N(80, 52) prior for w,, a beta(6, 12) prior for 7, a
gamma(40, 0.25) prior for « (with mean 160), and an expo-
nential prior for § with mean 14.3. Results under both prior
choices for parameters m, pu; and po, for the underlying
symmetric density, and for the posterior predictive density
are shown in Fig. 6. Table 2 includes 95% posterior intervals
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Table 2 Old Faithful waiting time data. 95% posterior intervals for
model parameters under the diffuse and the more informative prior
choice discussed in Sect. 3.2

Parameter Diffuse Diffuse Informative Informative
Lower Upper Lower Upper

T 0.28 0.41 0.29 0.40

I3 52.6 55.6 52.6 55.5

o 79.0 80.7 79.0 80.7

B 12.2 16.5 11.7 16.6

o 358 634 104 203

for all model parameters, again, under both sets of priors. As
with the eruption time data, posterior inference for all model
parameters (other than precision parameter «¢) was robust to
the very different prior specifications. This is also the case
for the symmetric density estimates, and for the posterior
predictive density estimates (bottom right panel of Fig. 6)
that capture well the bimodal density shape suggested by
the data for the waiting time distribution.

3.3 Rainfall precipitation data

Here, we study the performance of the semiparametric DP
mixture model with one more standard data set (available
from the reldist R library), which records the average
amount of rainfall precipitation in inches for each of n =
70 United States (and Puerto Rico) cities. The histogram of
the data (included in Fig. 8) suggests bimodality, albeit with
components that are not as well separated as the ones for the
Old Faithful data of Sect. 3.2.

The main objective with this example is to draw com-
parison with a parametric mixture model. To this end, we
consider the two-component mixture of normals

aN(y; u1, 0% + (1 = 0N(; pa, 0%) ®)

which is a special case of (1) with parametrically speci-
fied symmetric density f(y) given by a N(y;0,0?) den-
sity.

We center the comparison around label switching, a
key challenge for Bayesian analysis of mixture models
(e.g., Celeux et al. 2000; Stephens 2000; Jasra et al. 2005;
Frithwirth-Schnatter 2006). Label switching arises because
the likelihood under a finite mixture distribution is invari-
ant under permutations of the mixture model parameter vec-
tor. Hence, unless the prior distribution includes information
that distinguishes between mixture components, the poste-
rior distribution will be invariant to permutations of the la-
beling of the parameters. A problematic implication of la-
bel switching is that, for data sets that correspond to weakly
separated mixture components, the standard MCMC algo-
rithms will encounter the symmetry of the posterior distri-
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bution resulting in switching of the labels for the compo-
nent specific parameters. But then, for instance, for a data
set supporting a bimodal distribution, the posterior densi-
ties of w1 and o under model (8) will be bimodal and
identical. Although this will not affect the posterior pre-
dictive density for the mixture distribution, it renders in-
ference for the individual mixture components impracti-
cal.

Here, we compare inference under the DP mixture model
and the normal mixture model in (8) without the use of
any particular method to avoid label switching. Hence, we
implemented posterior inference under the normal mixture
model using the standard Gibbs sampling approach based
on data augmentation with latent binary mixing parameters.
We used a relatively informative inverse gamma prior for '
with shape parameter 2 and mean 50 (results were similar
under both less and more dispersed priors for o2). For the
DP mixture model, we used a gamma(50, 0.1) prior for o
(with mean 500), and an exponential prior for § with mean
10 (as before, the shape parameter ¢ of the base distribution
G was set to 2). For both models, we used a uniform prior
for , and three different specifications for the independent
normal priors for ;1 and po: a N(10, 10%) prior for p; and
a N(50, 10%) prior for py (Prior A); a N(10, 302) prior for
w1 and a N(50, 30) prior for iy (Prior B); and a N(35, 30%)
prior for both w1 and wy (Prior C).

Under each of the two models, Fig. 7 plots the posterior
densities for @1, up and  for prior choices A, B and C.
The capacity of the parametric mixture model to identify the
two components depends on the prior choice for ;1 and wo.
The normal mixture successfully distinguishes 11 and w7 in
their posterior distributions under informative prior A, but
yields bimodal posteriors under the other priors. We note
that assigning distinct informative prior means to w1 and po,
as in prior B, does not suffice to identify the parameters (in
fact, prior B results in unbalanced label switching). The re-
sults for prior C correspond to typical label switching where
the posterior densities for ©; and u; are practically identi-
cal; this was also the case under a common N (35, 10?) prior
for w1 and wy (results not shown). In contrast, the DP mix-
ture model yields robust inference for 11, wy and & under
the three priors, with posterior densities that seem plausible
for the rainfall data. Prior C was the most challenging for the
semiparametric model requiring careful tuning of the vari-
ances for the Metropolis-Hastings proposals for p1 and u;
in the MCMC algorithm. Increasing further the prior vari-
ance for w1 and w, results in label switching under the DP
mixture model.

The posterior predictive densities under both models cap-
ture the general shape of the rainfall data histogram (see
Fig. 8). However, under all three priors, the DP mixture
model is more successful in capturing the first mode. This
can be attributed to the shape of the underlying symmetric
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Fig. 7 Rainfall precipitation data. Posterior densities for 7, ©1, and po under the DP mixture model (solid lines) and the normal mixture model
(dashed lines). Each row corresponds to one of the three prior choices discussed in Sect. 3.3

density; as shown on the left panels of Fig. 8, the tail behav-
ior of the symmetric density, as estimated by the DP mixture
model, is evidently non-Gaussian.

We note that, when applied to the Old Faithful data of
Sect. 3.2, the normal mixture model in (8) yields similar
results with the DP mixture model, also without facing is-
sues with label switching. Hence, the superior performance
of the semiparametric mixture model with the rainfall data
is likely due to a combination of the more challenging mix-
ture structure for these data and the shape of the underlying
symmetric density. Regardless, the ability of the DP mix-
ture model to avoid label switching even under fairly unin-
formative prior specifications is encouraging with respect to
its potential for application to mixture deconvolution prob-
lems.

4 Discussion

We have developed a Bayesian semiparametric modeling
approach for mixtures of symmetric unimodal densities on
the real line. The mixture is based on a common symmetric
density, which defines all mixture components through dis-
tinct location parameters. This structure ensures identifiabil-
ity of mixture components rendering the model an appeal-
ing choice for mixture deconvolution problems. We have ar-
gued for the utility of a nonparametric prior model for the
symmetric density that defines the structured mixture. The
prior probability model is based on scale uniform Dirich-
let process mixtures and it supports all unimodal symmetric
(about 0) densities on the real line. Compared with existing
estimation methods for the model, a distinguishing feature
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Fig. 8 Rainfall precipitation data. Estimates for the symmetric density
and the posterior predictive density (the latter overlaid on the data his-
togram) under the DP mixture model and the normal mixture model,

of our work is that it is based on a fully inferential prob-
abilistic modeling framework. Moreover, the additional as-
sumption of unimodality for the underlying symmetric den-
sity can be an asset for certain classes of mixture deconvo-
lution problems. Finally, as illustrated with the rainfall pre-
cipitation data of Sect. 3.3, a promising feature of the semi-
parametric mixture model is that it is more robust to label
switching than standard parametric mixture models.

For simpler exposition of the modeling approach, we
opted to focus on the two-component mixture setting. How-
ever, it is straightforward to extend the Bayesian semipara-
metric modeling framework to mixtures of the form in (1)
with more than two components, i.e., ZI;-=1 i f(y—uj),

y € R, for fixed k > 2, with ; > 0 such that Z];:I mi=1,
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denoted by the solid and dashed lines, respectively. Each row corre-
sponds to one of the three prior choices discussed in Sect. 3.3

and with f(-) a density on R, which is unimodal and sym-
metric about 0. This is because the nonparametric compo-
nent of the model, i.e., the Dirichlet process mixture prior
for f(-), remains the same. Moreover, the structure of the
MCMC posterior simulation method would be similar, now
requiring updates for the additional location parameters and
mixture weights. Current work studies the practical utility
of the three-component extension of (1) for mixture decon-
volution problems from epidemiological research.
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Appendix: Posterior simulation method

Here, we present the MCMC posterior simulation method
for the model of Sect. 2.1. Again, let ¥ denote the full para-
meter vector comprising z = (z1,...,2), 0 = (61, ...,6y),
T, 1, U2, o, and B. To sample from the posterior of ¥, it
is possible to use the standard Gibbs sampler (e.g., Escobar
and West 1995), which samples directly from the posterior
full conditionals for the 6;, or, in our case, the joint full con-
ditional for (z;, 6;). However, the following method based
on Metropolis-Hastings steps (in the spirit of the posterior
simulation algorithms for DP mixtures considered in Neal
2000) results in an easier to implement algorithm, which has
proved to be sufficiently efficient in terms of mixing for all
the data sets we considered.

First, note that the MCMC algorithm starting values for
1, o and the 6; need to be chosen taking into account the
restrictions of the uniform kernel of the DP mixture.

For each i = 1,...,n, we update the DP mixing para-
meter, 0;, and the mixing parameter for the two-component
mixture, z;, as a pair with a Metropolis-Hastings step. For
eachi =1, ..., n, the joint posterior full conditional is given
by

p(zi,0; | p1, w2, {0p - £ #£i}, m, a, B, data)
ocu(y; — phz;; 0))pO; [ {0 : L # 1}, a0, B)Pr(z; | )

where

pO; |{0¢: L #i}, . B)

o 1
(1Y) —— S
a+n—1g0(lﬂ)+a+n—le7&i 9[(1)

is the prior full conditional for 6; arising from (7). The
Metropolis-Hastings update details are as follows.

o Let (zl@d), Gl@d)) be the current state of the chain. Repeat
the following update R times (R > 1).

e Draw a candidate (z;, éi) from the proposal distribution,
which is given by the product of the prior full conditionals
for z; and 6;. Hence, z; and 9~,~ are drawn independently,
where Z; = 1 with probability 7, and 6; ~ p(6; | {6 :
L#£i},a,pB). }

e Set (z;,0;) = (Z;, 6;) with probability p = min{1, u(y; —
Wz, 00 /u(yi—pow: 0V} and (z;, 6) = 1V, 6,°'V)
with probability 1 — p.

Once all the 6; are updated, we can compute: n*, the
number of distinct elements of vector (61, ..., 0,); 9;‘, j=
1,...,n*, the realizations of the distinct 6;; the vector of
configuration indicators s = (sq, ..., s,) such that s; = j if
and only if 6; = 9;‘; and n; = |{i : 5; = j}|, the size of the
j-th distinct component. These posterior realizations are
used in the updates for « and B as well as in sampling
from the posterior predictive distribution. Moreover, given
the currently imputed n* and vector s, we can re-sample the
values for the distinct 07 to improve mixing of the MCMC
algorithm (Bush and MacEachern 1996). Specifically, for
each j =1,...,n*, the posterior full conditional for 9]*.‘ is
given by

P | k1, 2,2, s, B, data)

ocgo@5:B) [ wli—nz:67)
{izsi=j}

D exp(—p/60)1(07 > max_ |y — py ),
J J I {isi=)) ’

x 6
which is therefore a truncated inverse gamma distribution
with shape parameter ¢ + n; and scale parameter B, with
the constraint over the interval (maxy;.;;=jy|yi — tz; 1, 00).
After drawing from the full conditionals for all the 97, we
update the values for the 6; using their definition through
the (re-sampled) 9;‘ and the vector s.

With the z;, i = 1,...,n, updated, we obtain m, = |{i :
zi = £}, £ = 1,2 (with m; + mo = n). Then,
p(r | z,data) o« 7% ~1(1 — m)b==Ig™ (1 — 7)™, and
thus the posterior full conditional for 7 is beta(a, + mq,
by +m»).

The posterior full conditional for p; is given by

p(u1z,0,data)

ocp(un) [T i — w60 o p(u)
{i:zi=1}

x 1( () Oi—6 < <)’i+9i)>

{i:zi=1}

o p(un)1( max (v —6) < < min (3 +6)).
{i:zi=1} {i:zj=1}

iizi=
Hence, with the N(a1,b%) prior for w1, the posterior full
conditional is given by a N(ay, b%) distribution truncated
over the interval (max;.;;=1y(y; — 6;), ming.;;,=1(y; + 6;)).
Similarly, the posterior full conditional for u; is a N(az, b%)
distribution truncated over the interval (maxy;.;;—2)(y; —
0;), miny;.;,—2)(y; +6;)). Therefore, 11 and p, could be up-
dated with Gibbs steps. A more numerically stable alterna-
tive involves the following Metropolis-Hastings updates for
each ur, k=1,2:

o Let ug’]d) be the current state of the chain.
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e Draw a candidate fi; from a normal proposal distribution
with mean u,((‘)ld) and variance that is tuned to obtain ap-
propriate acceptance rates. (For all the data sets we con-
sidered, acceptance rates for the ui, k = 1,2, were be-
tween 20% and 40%.)

e Set ur = [ with probability ¢ = min{1, p(fix)1 (i €
A0/ € AY)),  where A
(maxyj.z;=ky (yi — 6i), ming.z;, =y (vi + 6;)), and g

' with probability 1 — g.

Finally, regarding the DP prior hyperparameters, we use
the augmentation technique of Escobar and West (1995) to
update «. Moreover, the posterior full conditional for 8 is

given by p(B | 0, data) &< p(B) ]_[;’*:1 go(G;.‘; B) resulting in
a gamma distribution with shape parameter cn* + 1 and rate
parameter bg + ) ;_, 9;‘_1.
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