Skip to main content
Log in

Wavelet kernel penalized estimation for non-equispaced design regression

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The paper considers regression problems with univariate design points. The design points are irregular and no assumptions on their distribution are imposed. The regression function is retrieved by a wavelet based reproducing kernel Hilbert space (RKHS) technique with the penalty equal to the sum of blockwise RKHS norms. In order to simplify numerical optimization, the problem is replaced by an equivalent quadratic minimization problem with an additional penalty term. The computational algorithm is described in detail and is implemented with both the sets of simulated and real data. Comparison with existing methods showed that the technique suggested in the paper does not oversmooth the function and is superior in terms of the mean squared error. It is also demonstrated that under additional assumptions on design points the method achieves asymptotic optimality in a wide range of Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovich F., Bailey T. and Sapatinas T. 2000. Wavelet analysis and its statistical applications. The Statistician—Journal of the Royal Statistical Society, Ser. D 49: 1–29.

    Article  Google Scholar 

  • Amato, U. and Vuza, D.T. 1997. Wavelet approximation of a function from samples affected by noise. Rev. Roumaine Math. Pures Appl. 42: 481–493.

    MATH  MathSciNet  Google Scholar 

  • Antoniadis, A. 1996. Smoothing noisy data with tapered coiflets series. Scandinavian Journal of Statistics, 23: 313–330.

    MATH  MathSciNet  Google Scholar 

  • Antoniadis, A., Bigot, J. and Sapatinas, T. 2001. Wavelet estimators in nonparametric regression: a comparative simulation study. Journal of Statistical Software 6.

  • Antoniadis, A. and Fan, J. 2001. Regularization by Wavelet Approximations. J. Amer. Statist. Assoc. 96: 939–967.

    Article  MATH  MathSciNet  Google Scholar 

  • Aronszajn, N. 1950. Theory of reproducing kernels. Trans. Am. Math. Soc. 68: 337–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Birgé, L. and Massart, P. 2000. An adaptive compression algorithm in Besov spaces, Journal of Constructive Approximation 16: 1–36.

    Article  MATH  Google Scholar 

  • Birman, M.S. and Solomjak, M.Z. 1967. Piecewise-polynomial approximation of functions of the classes W p. Mat. Sbornik. 73: 295–317.

    Article  MathSciNet  Google Scholar 

  • Brinkman, N. 1981. Ethanol fuel - a single-cylinder engine study of efficiency and exhaust emissions. SAE Transactions 90: 1414–1424.

    Google Scholar 

  • Cai, T. 1999. Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. Statist. 27: 898–924.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, T. 2001. Discussion of “Regularization of Wavelets Approximations” by A. Antoniadis and J. Fan. J. American Statistical Association 96: 960–962.

  • Cai, T. and Brown, L. D. 1998. Wavelet Shrinkage for nonequispaced samples, The Annals of Statistics 26: 1783–1799.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, T. and Silverman, B.W. 2001. Incorporating information on neighboring coefficients into wavelet estimation. Sankhya 63: 127–148.

    MathSciNet  Google Scholar 

  • Canu, S., Mary, X., and Rakotomamonjy, A. 2003. Functional learning through kernel, in Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Suykens, J. et al., Eds. IOS Press, Amsterdam 90: 89–110.

  • Craven, P. and Wahba, G. 1979. Smoothing noisy data with spline functions. Numer. Math. 31: 377–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies, I. 1992. Ten Lectures on Wavelets. Philadelphia: SIAM.

    MATH  Google Scholar 

  • Delouille, V., Franke, J. and Von Sachs, R. 2001. Nonparametric stochastic regression with design-adapted wavelets. Sankhya, Series A, Vol 63 (3), pp. 328–366.

  • DeVore, R.A. and Popov, V. 1988. Interpolation of Besov Spaces. Transactions of the American Mathematical Society 305: 397–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho D.L., Elad, M. and Temlyakov, V. 2004. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise. Technical report, Stanford University.

  • Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. 1995. Wavelet shrinkage: asymptopia? (with discussion). Journal of the Royal Statistical Society, Series B 57: 301–337.

    Google Scholar 

  • Eubank, R.L. 1988 Spline Smoothing and Nonparametric Regression, New York: Marcel Dekker, Inc.

    MATH  Google Scholar 

  • van de Geer, S. 2000. Empirical Processes in M-Estimation. Cambridge University Press.

  • Gradshtein, I.S., and Ryzhik, I.M. 1980 Tables of Integrals, Series, and Products. Academic Press, New York.

    Google Scholar 

  • Green, P.J. and Silverman, B.W. 1994. Nonparametric Regression and Generalised Linear Models. London: Chapman and Hall.

    Google Scholar 

  • Gunn, S.R. and Kandola, J.S. 2002. Structural modeling with sparse kernels. Mach. Learning 48: 115–136.

    Article  Google Scholar 

  • Hall, P., Kerkyacharian, G. and Picard, D. 1999. On the minimax optimality of block thresholded wavelet estimators. Statist. Sinica 9: 33–50.

    MATH  MathSciNet  Google Scholar 

  • Hall, P. and Turlach, B.A. 1997 Interpolation methods for nonlinear wavelet regression with ir- regularly spaced design. Ann. Statist. 25: 1912–1925.

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. 1998. Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statistics, 129: Springer-Verlag, New-York.

  • Karlovitz, L.A. 1970. Construction of nearest points in the l p , p even and l 1 norms, Journal of Approximation Theory 3: 123–127.

    Article  MATH  MathSciNet  Google Scholar 

  • Kerkyacharian, G. and Picard, D. 2003. Replicant compression coding in Besov spaces, ESAIM: P and S 7: 239–250.

    Article  MATH  MathSciNet  Google Scholar 

  • Kimeldorf G., and Wahba, G.1971. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33: 82–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Kohler, M. 2003 Nonlinear orthogonal series estimation for random design regression. J. Stat. Plan. Infer. 115: 491–520.

    Article  MATH  MathSciNet  Google Scholar 

  • Kovac, A. and Silverman, B. 2000. Extending the scope of wavelet regression methods by coefficient-dependent thresholding. J. Am. Stat. Assoc. 95: 172–183.

    Article  Google Scholar 

  • Lin, Y. and Zhang, H.H. 2003. Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models, Technical report, University of Wisconsin—Madison.

  • Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R. and Klein, B. 2000. Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV. Ann. Statist. 28: 1570–1600.

    Article  MATH  MathSciNet  Google Scholar 

  • Loubes, J.-M. and van de Geer, S. 2002, Adaptive estimation with soft thresholding penalties, Statistica Neerlandica 56: 454–479.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallat, S.G. 1999. A Wavelet Tour of Signal Processing. 2nd ed. San Diego: Academic Press.

    MATH  Google Scholar 

  • Meyer, Y. 1992. Wavelets and Operators. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nason, G. 1998. WaveThresh3 Software. Department of Mathematics, University of Bristol, Bristol, UK.

  • Nason, G. 2002 Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage. Statistics and Computing 12: 219–227.

    Article  MathSciNet  Google Scholar 

  • Sardy, S., Percival, D.B., Bruce A., G., Gao, H.-Y. and Stuelzle, W. 1999. Wavelet shrinkage for unequally spaced data, Statistics and Computing 9: 65–75.

    Article  Google Scholar 

  • Silverman, B.W. 1985 Some aspects of the spline smoothing approach to non-parametric curve fitting. Journal of the Royal Statistical Society series B. 47: 1–52.

    MATH  Google Scholar 

  • Tapia, R. and Thompson, J. 1978. Nonparametric Probability Density Estimation. Baltimore, MD, Johns Hopkins University Press.

    MATH  Google Scholar 

  • Tibshirani, R. J. 1996. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society, B 58: 267–288.

    MATH  MathSciNet  Google Scholar 

  • Triebel, H. 1983. Theory of Function Spaces. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Vidakovic, B. 1999. Statistical Modeling by Wavelets. New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Wahba, G. 1990. Spline Models for Observational Data, SIAM. CBMS-NSF Regional Conference Series in Applied Mathematics, 59.

  • Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. 1995 Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann. Statist. 23: 1865–1895.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, H., Wahba, G., Lin, Y., Voelker, M., Ferris, M., Klein, R. and Klein, B. 2002. Variable selection and model building via likelihood basis pursuit. Technical report, University of Wisconsin—Madison.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Pensky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amato, U., Antoniadis, A. & Pensky, M. Wavelet kernel penalized estimation for non-equispaced design regression. Stat Comput 16, 37–55 (2006). https://doi.org/10.1007/s11222-006-5283-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-006-5283-4

Keywords

Navigation