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Abstract
Lung cancer is a high-risk disease that affects people all over the world, and lung 
nodules are the most common sign of early lung cancer. Since early identification of 
lung cancer can considerably improve a lung scanner patient’s chances of survival, 
an accurate and efficient nodule detection system can be essential. Automatic lung 
nodule recognition decreases radiologists’ effort, as well as the risk of misdiagnosis 
and missed diagnoses. Hence, this article developed a new lung nodule detection 
model with four stages like “Image pre-processing, segmentation, feature extrac-
tion and classification”. In this processes, pre-processing is the first step, in which 
the input image is subjected to a series of operations. Then, the "Otsu Thresholding 
model" is used to segment the pre-processed pictures. Then in the third stage, the 
LBP features are retrieved that is then classified via optimized Convolutional Neural 
Network (CNN). In this, the activation function and convolutional layer count of 
CNN is optimally tuned via a proposed algorithm known as Improved Moth Flame 
Optimization (IMFO). At the end, the betterment of the scheme is validated by car-
rying out analysis in terms of certain measures. Especially, the accuracy of the pro-
posed work is 6.85%, 2.91%, 1.75%, 0.73%, 1.83%, as well as 4.05% superior to 
the extant SVM, KNN, CNN, MFO, WTEEB as well as GWO + FRVM methods 
respectively.
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Abbreviations
CAD  Computer-aided detection
CNN  Convolutional neural network
CT  Computed tomography
DCNN  Deep CNN
FDR  False discovery rate
FMS  F-measure
FNR  False negative rate
FPR  False positive rate
GGO  Ground glass opacity
GWO + FRVM  Grey wolf optimizer + fuzzy relevance vector machine
LBP  Local binary pattern
KNN  K nearest neighbour
MCC  Matthews correlation coefficient
MFO  Moth flame optimization
NPV  Net predictive value
PNN  Probabilistic neural network
SVM  Support vector machine
TP  Training percentage
US  United States
WTEEB  Whale with tri-level enhanced encircling behavior

1 Introduction

Recently, lung cancer and COVID-19 [1] are two drastic pulmonary diseases, which 
cause millions of death globally each year. Lung cancer is said to be the 2nd most 
widespread form of cancer in both women as well as men and it is the primary cause 
of deaths occurring due to cancer in US [2–4]. The finest possibilities of survival 
emerge from earlier detection and diagnosis that could be aided by enhanced auto-
mated malignant nodule recognition techniques. A lung nodule will be round and 
it is a smaller growth of tissue found in the cavity of the chest. Nodules are usually 
below 30 mm in size, and outsized growths are termed as masses and are assumed 
to be malignant [5, 6]. Nodules among 5–30 mm might be malignant or benign, with 
the probability of malignancy rising with size. Spiculated or lobulated nodule edges 
might specify malignancy whereas Smooth nodules with indications of calcifica-
tions are expected to be benign.

There are two most important chest imaging methods, fundamental X-ray imag-
ing and CT [7, 8]. Radiographs or chest X-ray images offer a single outlook on the 
chest cavity. Poster anterior analysis, where the X-ray beam passes over the chest 
of the patient from back to front is general. CT scans are 3-D images generated 
by means of X-ray images obtained from several orientations and it could offer an 
entire view of the internals parts of the chest and can, therefore, be exploited for eas-
ily detecting the shapes, sizes, locations, and densities of lung nodules [9, 10]. Nev-
ertheless, CT scan equipment is highly-priced and is often not obtainable in rural 
areas or minor hospitals. Moreover, radiographs are comparatively fast and cheap, 
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and the patients are exposed to minute radiation, hence they are typically the initial 
diagnostic step for identifying any abnormalities in the chest [11, 12].

CAD methods were deployed to identify the lung nodules more precise and 
quicker. Nodule recognition approaches [13–15] are modeled by conventional image 
processing schemes to discover areas of the chest radiograph, which encloses a 
brighter object of the expected texture, shape, and size of a lung nodule [16]. With 
current enhancements in CNNs, certain researchers have aimed at exploiting these 
techniques to categorize lung nodules. Unluckily, the accessible datasets are com-
paratively low in medical imaging [17].

The literature on detecting and diagnosing lung nodules is extensive. To date, the 
general technique for lung nodule diagnosis in all existing CAD systems has been to 
utilize a candidate identification stage. While some of these researches use low-level 
appearance-based variables to drive this identification task [18], others use shape 
and size information. Ypsilantis et al. proposed using recurrent neural networks in 
a patch-based strategy to improve nodule detection [19], which is related to deep 
learning-based methodologies. A 2D multi-step segmentation approach was pre-
sented by Krishnamurthy et  al. to discover candidates [20]. There have also been 
in-depth studies of high-level discriminatory information extraction employing deep 
networks to improve FP minimization. Setio et al. employed a fusion technique to 
conduct FP reduction after training 9 independent 2D convolutional neural networks 
on 9 different perspectives of candidates [21]. For candidate detection, another study 
used a modified version of Faster R-CNN, which was the state-of-the-art object 
detector at the time, and a patch-based 3D CNN for the FP reduction step [22]. 
All of these approaches, however, are computationally ineffective (e.g., exhaustive 
deploy of sliding windows over feature maps).

Thus, the contributions of the research work are as follows:

• In this study, an Otsu Thresholding based segmentation process is introduced for 
detecting the lung nodules.

• An optimized CNN is used for classification, where the activation functions and 
convolutional layers are fine-tuned with the aid of a new IMFO algorithm.

• To enhance the global exploration capability of classic MFO algorithm, an 
improved MFO (IMFO) algorithm is proposed.

The structure of the article is given as below: The existing schemes on lung can-
cer are reviewed in Sect. 2. Section 3 depicts a development of novel lung nodule 
detection model and it discusses the segmentation and feature extraction stages. Sec-
tion 4 briefs the optimal CNN-oriented classification for precise lung nodule detec-
tion and it clearly portrays the process of proposed IMFO algorithm. In addition, 
Sects. 5 and 6 discusses the results as well as conclusion.
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2  Literature Review

In the existing works, an image processing approach to identify solid nodules, part 
solid, as well as GGO within CT of chest was established in [23]. The major proce-
dures are, “lung segmentation, candidate detection, nodule enhancement, reduction 
of false positives and image pre-processing”. Furthermore, deep learning approach 
based lung nodule identification was presented in [24] and in this the characteristics 
were retrieved via utilizing patch-based multi-resolution convolutional networks as 
well as 4 fusion approaches are employed for classification. Gu et al. [25] designed a 
unique CAD structure via employing 3D DCNN combined with multi-scale predic-
tion scenario. Additionally, for the identification of lung nodule in high & low reso-
lution CT pictures, a DeepLN scheme was provided in [26].

A unique categorization model for lung carcinomas is introduce in [27] and a 
probabilistic neural network was deployed as a classifier for discriminating the true 
nodules. In [28], a unique CAD system with CNN was utilized in CT image segmen-
tation scheme. Moreover, a 4-channel CNN model was introduced for identifying 
the lung nodules on the basis of multi-group patches of lung images [29]. A multi-
resolution CNN based lung nodule patient’s categorization is established in [30] as 
well as the scheme was splitted into 3 stages through the knowledge transfer usage.

Table  1 reviews lung nodule recognition systems. The major drawbacks of the 
existing lung nodule detection system are listed as follows: In SVM, choosing the 
appropriate kernel function is tricky [23], CNN in [24] requires on optimization 
concept for further efficiency, DCNN has to concern more on FP reduction [25], 
robustness needs to be enhanced with more attention [26], more memory space was 
needed [27], insufficient detection sensitivity [28], and higher computational cost 
[29]. To tackle these limitations, a new lung nodule detection approach is intro-
duced. The detailed explanation of the process is provided in underneath passages.

3  Development of Novel Lung Nodule Detection Model

The framework of the lung nodule recognition scheme is specified in Fig.  1. It 
encompasses “(1) pre-processing, (2) segmentation, (3) feature extraction and (4) 
classification”. At first, pre-processing is conducted. Then, segmentation is done uti-
lizing Otsu Thresholding model. After that feature extraction performed via LBP 
model. The LBP features are then classified via optimized CNN model, wherein, 
activation function and convolutional layer counts are tuned via IMFO scheme.

3.1  Pre‑processing

At first, the input images are subjected to the pre-processing phase and this process 
includes four steps. The detailed explanations are given below:

(a) Read image: At first, storing the path to image dataset in a variable and then 
constructed a function to load folders containing images into arrays.
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(b) Resize image: Some times, the images from the dataset are varying in size, so 
a base size for all images is established.

(c) Noise removal: In this step, the unwanted noises are removed from the resized 
images. In this work, a Gaussian smoothing is utilized for noise removal opera-

Fig. 1  Structural design of the adopted lung nodule detection scheme
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tion. The outcome of blurring an image with a Gaussian function is Gaussian 
smoothing.

(d) Morphological operation: In this step, first segment the image to separate the 
background from the foreground objects, and then refine our segmentation with 
more noise removal.

3.2  Otsu Thresholding Based Segmentation

Following pre-processing, the images are submitted to an Otsu thresholding [31] seg-
mentation algorithm. As a result of this idea, Otsu sets the threshold value, which 
reduces overlapping. As a result, dark as well as light zones ( T1,T0 ) are segmented. 
With T1 as well as T0 , the background and object were integrated. The lowest value of 
pixel level has been measured after scanning all of the thresholds. Consider the prob-
ability of histogram with the noted gray value as hp(i),i = 1, ......, l as well as shown in 
Eq. (1). 

Here, “index image for row and column is given by r and c , in that order, and the 
count of rows and columns of the image is expressed by R and C , respectively.

The weight, variance, and mean of class T0 with intensity value lies amongst 0 to th 
is indicated as �

b
(th) , �

b
(th) and �

b
(th) , respectively. The weight, variance and mean of 

class T1 with intensity value fall among th + 1 to 1 and are explicated by �
f
(th) , �

f
(th) 

and �
f
(th) , correspondingly. Weighed sum of cluster variances is referred to �2

�
”.

The values with the lowest class variances are referred to as the best threshold value 
th ∗ . The class variance is depicted in Eq. (2).

(1)hp(i) =
no{(r, c)

|||image(r, c) = i}

R.C

(2)�2
�
= �

b
(th) ∗ �2

b
(th) + �

f
(th) ∗ �2

f
(th)

(3)�
b
(th) =

∑th

i=1
hp(i)

(4)�
f
(th) =

∑l

i=th+1
hp(i)

(5)�
b
(th) =

∑th

i=1
i ∗ hp(i)

�
b
(th)

(6)�
f
(th) =

∑l

i=th+1
i ∗ hp(i)

�
f
(th)
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3.3  LBP Based Feature Extraction

LBP [32] LBP is used to extract typical characteristics, which are constantly encoded 
via “binomial concatenation” between the reference pixel Kc and its neighborhoods 
with radius R̂ as shown in Eq. (9). The neighbours of reference pixel are specified KG,R̂ 
as well as the neighborhood index in a given local sub-region Q , which surrounds Kc 
is indicated as ĝ . The coding function s1

(
′,′
)
 is calculated for discovering the labels. 

Equation  (10) illustrates the threshold function, where the coding function output 
s1
(
′,′
)
 denotes the binary gradient direction [32].

The features derived via LBP are signified as fe that is classified via CNN model.

4  Optimized CNN‑oriented Classification for Precise Lung Nodule 
Detection

4.1  Optimized CNN for Classification

“CNN are a biologically inspired trainable architecture that can learn invariant fea-
tures”. In CNN [33], the input feature fe is modelled as revealed in Eq. (11), with a 
dimension of m1 × m2

Consider filter L ∈ ℜ2g1+1×2g2+1 and “discrete convolution with filter” L is repre-
sented via Eq. (12), in which L is modelled as in Eq. (13).

(7)�2

b
(th) =

∑th

i=1
(i − �

b
(th))2 ∗ hp(i)

�
b
(th)

(8)�2

f
(th) =

∑l

i=th+1
(i − �

f
(th))2 ∗ hp(i)

�
f
(th)

(9)

LBPG,R̂
(

Kc
)

=

⎧

⎪

⎨

⎪

⎩

s1

(

Q
(

K1,R̂
)

,

,Q
(

Kc
)

)

, s2

(

Q
(

K2,R̂
)

,

,Q
(

Kc
)

)

, ...., s1
⎛

⎜

⎜

⎝

Q
(

Kĝ,R̂

)

,

Q
(

Kc
)

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

|

|

|

ĝ = 1, 2, ...,G;R̂ = 1

(10)s1

(
(Q(Kĝ,R̂),

,Q(Kc)

)
=

{
1 if

(
1 −

(
Kĝ,R̂

)
− Q

(
Kc

))
≥ 0

0 else

(11)ImSe ∶
{
1, ...m1

}
×
{
1, ...m2

}
→ A ⊆ ℜ, (i, j) ↦ fei,j
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The “discrete Gaussian filter LH(�) ” is exposed as per Eq.  (14), in which, � 
signifies “standard deviation of Gaussian distribution”.

Consider the “layer s be assumed as a convolutional layer that includes n(s)
1

 
feature maps with n(s)

2
× n

(s)

3
 dimension at its output. Equation  (15) demonstrate 

ith feature map in s layer and W (s)

i
 points out bias matrix and L(s)

i,j
 indicates filter 

size of 2g(s)
1

+ 1 × 2g
(s)

2
+ 1 that links the ith feature map in s layer with jth feature 

map in the layer (s − 1)”.

Accordingly, the output feature map has a specific size as revealed as per 
Eq. (16).

The convolutional layer function is evaluated as per Eqs. (17) and (18). Sub-
sequently, Eq.  (18) shows output, accomplished via the calculation of unit at 
position (p, r) . Here, L(s)

i,j
 indicates trainable weights and W (s)

i
 indicates bias 

matrix.

Equation  (19) is formed if the layer s − 1 is not regarded as fully connected, 
where, Wes

i,j,p,r
 denotes the “weight that associates the unit at the position (g, h) in 

the jth feature map of layer s − 1 and the ith unit in s”.

(12)
(
fei ∗ L

)
p,r

∶=

g1∑
v=−g1

g2∑
u=−g2

Lv,ufep+v,r+u

(13)L =

⎛
⎜⎜⎜⎝

L−g1,−g2

⋮

Lg1,−g2

...

L0,0

....

L−g1,−g2

⋮

Lg1,g2

⎞
⎟⎟⎟⎠

(14)
�
LH(�)

�
p,r

=

�
1√
2��2

exp

�
p2 + r2

2�2

��

(15)X
(s)

i
= W

(s)

i
+

ns−1
1∑
j=1

L
(s)

i,j
∗X

(s−1)

j

(16)n
(s−1)

2
− 2g

(s)

1
= n

(s)

2
& n

(s−1)

3
− 2g

(s)

2
= n

(s)

3

(17)
(
X
(s)

i

)
p,r

=

(
W

(s)

i

)
p,r

+

n1(s−1)∑
j=1

(
L
(s)

i,j
∗ X

(s−1)

j

)
p,r

(18)
(
W

(s)

i

)
p,r

+

n1(s−1)∑
j=1

gs
1∑

v=−gs
1

gs
2∑

u=−gs
2

(
L
(s)

i,j

)
v,u

(
L
(s)

i,j

)
p,r

(
X
(s−1)

j

)
p+v,r+u
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The general diagram of the optimized CNN model is depicted in Fig. 2.

4.2  Solution Encoding

This study focuses on the exact detection of lung nodules, for which optimization 
logic is used. In particular, the activation function � is fine-tuned for choosing 
proper functions such as sigmoid, softmax, linear, relu, or tanh. Along with, the 
number of convolutional layers indicated as L is optimally described using a new 
IMFO approach. Figure 3 shows the input to the suggested method. Further, the 
objective of the research is given in Eq. (20), in which acc indicates accuracy.

(19)x
(s)

i
=
[
f (vs

i
) with vs

i

]
=

[
n1(s−1)∑
j=1

n2(s−1)∑
p=−1

n3(s−1)∑
r=1

Wes
i,j,p,r

(
X
(s−1)

j

)
p,r

]

(20)obj = max(acc)

Fig. 2  General architecture of CNN model

Fig. 3  Solution encoding
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4.3  Proposed IMFO Algorithm

The extant MFO comprise a variety of advantage; it meets with drawbacks and 
to overcome those drawbacks, certain enhancements were made in extant MFO. 
Usually, self- enhancement is established to be capable in conventional optimiza-
tion schemes [34–38]. MFO [39] include three phases.

4.3.1  Generation of Initial Moth Populace

Every moths flies in hyper-dimensional spaces as identified as per Eq. (21), wherein, 
the moth count is indicated by n and d denotes the dimension count of solution 
spaces.

Equation (22) illustrates the fitness values of moths.

Equations (23) and (24) demonstrate the flame in D-dimensional spaces.

4.3.2  Moth’s Position Update

The MFO algorithm is a three-tuple that computes the global optima of optimization 
difficulties, as shown as per Eq.  (25), wherein, “ I ∶ � → {R,OR} specifies initial 
random location, the motion of moth in search space is depicted as P̈ ∶ R → R and 
the concluding search process is stated as T ∶ R → {true, false}”.

(21)R =

⎡
⎢⎢⎢⎣

r1,1 r1,2 ... r1,d
r2,1 r2,2 r2,d

...

r
n,1 r

n,2 ... r
n,d

⎤
⎥⎥⎥⎦

(22)OR =

⎡
⎢⎢⎢⎢⎣

OR1

OR2

...

ORn

⎤⎥⎥⎥⎥⎦

(23)H =

⎡⎢⎢⎢⎣

H1,1 H1,2 ... H1,d

H2,1 H2,2 H2,d

...

Hn,1 Hn,2 ... Hn,d

⎤⎥⎥⎥⎦

(24)OH =

⎡
⎢⎢⎢⎢⎣

OH1

OH2

...

OHn

⎤⎥⎥⎥⎥⎦
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The arbitrary distribution is represented by Eq. (26), wherein, ub and lb specifies 
upper and lower bounds.

As per IMFO algorithm, a random number ′r′ is generated and a threshold value 
( � ) of 0.5 is fixed. If r is less than the threshold � , (i.e. if r < � ), then the logarithmic 
spiral update takes place as given by Eq. (27), where Di is computed as mean dis-
tance of ith moth with jth flame (i.e.Di =

|||Hj − Ri
||| ), b symbolize logarithmic spiral 

shape and t lies between [− 1, 1].

On the other hand, if r > � , a new logarithmic spiral with new distance evaluation 
takes place by Eq. (28). In Eq. (28), the distance parameter Di is determined as per 
Eq. (29), where C = 2.a , a represents the random number, which lies among [0, 1] 
as well as H∗

j
 denotes the current position of jth moth and Ri denotes current position 

of ith flame.

4.3.3  Update the Flames Count

Here, the exploitation stage has been is improved via lessening the count of flames 
as in Eq. (30), wherein, G depicted maximal flame count, l and GI delineates current 
and maximum iteration counts.

The flowchart of the adopted IMFO algorithm is given in Fig. 4 and the pseudo-
code is provided in algorithm 1.

(25)MFO = (I, P̈, T)

(26)R(i, j) =
[
(ub(i) − lb(j)) ∗ rand() + lb(i)

]

(27)S
(
Ri, Hj

)
= Die

bt cos(2�t) + Hj

(28)S
(
Ri, Hj

)
= Die

bt cos(2�t)

(29)Di =
|||H

∗
j
− Ri

||| × C

(30)flamecount = round

(
G − l ∗

G − l

GI

)
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Fig. 4  Flowchart of the proposed IMFO algorithm
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5  Results and Discussion

5.1  Simulation Settings

The presented lung nodule detection system employing the CNN + IMFO + LBP 
model was conducted in Python. Here, the performances of offered method 
was evaluated over SVM [1], KNN [26], CNN [2], MFO [32], WTEEB [41] and 
GWO + FRVM [42] models. Moreover, the performance analysis was performed 
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with respect to “accuracy, sensitivity, specificity, precision, FPR, FNR, FMS, NPV, 
MCC, and FDR respectively by varying the training percentages from 40, 50, 60, 70, 
80 and 90”. Based upon the confusion matrix, the performance metrics are defined 
and it is given as follows:

(a) Accuracy “It is the closeness of the measured value to a standard true value” 
and it is expressed as per Eq. (31).

(b) Sensitivity “Sensitivity is the proportion of true positives that are correctly 
predicted by the model” and it is evaluated as per Eq. (32).

(c) Specificity “specificity is the proportion of true negatives that are correctly 
predicted by the model” and it is expressed as Eq. (33).

(d) Precision “It is the fraction of relevant instances among the retrieved 
instances” and it is expressed as per Eq. (34).

(e) Recall “It is the fraction of relevant instances that were retrieved” and it is 
expressed as per Eq. (35).

(f) FMS “It is the weighted harmonic mean of the precision and recall of the test” 
and it is expressed as follows.

(g) MCC “MCC is used to measure the difference between the predicted values 
and actual values” and it is given as follows:

(31)

Accuracy =
True negative + True positive

True positive + False positive + True negative + False negative

(32)Sensitivity =
True positive

True positive + False negative

(33)Specificity =
True negative

False positive + True negative

(34)Precision =
True positive

True positive + False positive

(35)Recall =
True positive

True positive + False negative

(36)FMS =
2 × Precision × Recall

Precision + Recall

(37)

MCC =
True positive × True negative − False positive × False negative√
(True positive + False positive) (True positive + False negative)

(True negative + False positive) (True negative + False negative)
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(h) NPV “The NPV is the probability  that following a negative  test  result, that 
individual will truly not have that specific disease” and it is expressed as below:

(i) FPR “A false positive is an outcome where the model incorrectly predicts the 
positive class” and it is given in Eq. (39).

(j) FNR “A false negative is an outcome where the model incorrectly predicts the 
negative class” and it is given in Eq. (40).

(k) FDR “It is a measure of accuracy when multiple hypotheses are being tested 
at once, for example when multiple metrics, or variations, are being measured in a 
single experiment” and it is expressed as per Eq. (41).

For clear understanding,
True positive “The image results are those that detecting a disease when there is 

disease”.
True negative “The image results are those in which no nodule is detected as well 

as no disease is diagnosed”.
False positive “The images results are those that detect a disease even when it is 

not present”.
False negative “The image results are those that detect a disease when it does not 

already exist”.

5.2  Dataset Description

The dataset used in this study has been downloaded from [40]. The lung computed 
tomography (CT) images in the Lung Image Database Consortium image collec-
tion (LIDC-IDRI) are marked-up annotated lesions from diagnostic and lung cancer 
screening CT scans. It is a worldwide resource that is available online for the crea-
tion, instruction, and assessment of computer-assisted diagnostic (CAD) techniques 
for the early identification and diagnosis of lung cancer. This public–private part-
nership, which was started by the National Cancer Institute (NCI), advanced by the 
Foundation for the National Institutes of Health (FNIH), and supported by the Food 
and Drug Administration (FDA) through active participation, shows the effective-
ness of a consortium built on a consensus-based method.

(38)NPV =
True negative

True negative + False negative

(39)FPR =
False positive

True negative + False positive

(40)FNR =
False negative

False negative + True positive

(41)FDR =
False positive

True positive + False positive
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This data set, which includes 1018 instances, was produced in collaboration with 
seven academic institutions and eight medical imaging businesses. Images from a 
clinical lung CT scan are included for each individual, together with an attached 
XML file that contains the findings of a two-phase image annotation process carried 
out by four qualified thoracic radiologists. Each radiologist individually assessed 
each CT image during the initial blinded-read phase and labelled lesions as "nod-
ule > or = 3  mm," "nodule 3  mm," or "non-nodule > or = 3  mm." Each radiologist 
independently assessed their marks and the anonymized marks of the three other 
radiologists to form a conclusion during the subsequent unblinded-read phase. This 
procedure was designed to identify every lung lesion in every CT scan as completely 
as feasible without resorting to forced consensus.

5.3  Performance Analysis: Varying Learning Percentage

Figure  5 demonstrates the performance of the CNN + IMFO + LBP model over 
the traditional approaches via different TP. The suggested model achieves better 
value than the extant ones. Due to the shortcomings of the state-of-art methods (for 
instance, the training time of SVM is too high, KNN is suffered from memory inten-
sive and slow estimations, and overfitting issue in CNN), the performance of the 
related works are low. Compared to CNN [24], the adopted CNN model utilizes the 
IMFO algorithm and it provides better value than the other.

From Fig. 5a, the accuracy of the suggested CNN + IMFO + LBP model at  90th 
TP is 3.42%, 2.21%, 1.46%, 0.73%, 1.84%, and 3.34% better than SVM, KNN, 
CNN, MFO, WTEEB and GWO + FRVM models. On concerning Fig.  5c, the 
suggested approach specificity is 3.04%, 2.26%, 1.49%, 0.74%, 1.84% as well as 
13.87%, superior to SVM, KNN, CNN, MFO, WTEEB as well as GWO + FRVM 
models at  40th TP. The recall of the suggested CNN + IMFO + LBP approach at 
 90th TP is 4.04%, 2.21%, 2.07%, 0.73%, 1.84%, & 3.33% superior to SVM, KNN, 
CNN, MFO, WTEEB & GWO + FRVM approaches. On analysing the MCC, the 
adopted CNN + IMFO + LBP scheme is 45.12%, 20.31%, 3.75%, 0.72%, 1.85%, and 
20.98% better than SVM, KNN, CNN, MFO, WTEEB and GWO + FRVM models 
at  80th TP. Also, on examining the FDR of suggested method at  90th TP is 54.18%, 
46.99%, 37.15%, 22.81%, 41.81%, and 50.79% better than SVM, KNN, CNN, MFO, 
WTEEB and GWO + FRVM models Thus, the supremacy of CNN + IMFO + LBP 
method was confirmed from outcomes.

5.4  Statistical Analysis

The statistical analysis of the suggested CNN + IMFO + LBP model is given by 
Table 2 in terms of accuracy. Hence, the statistical measure of the adopted model is 
should be higher than the existing works. The proposed method with respect to best 
performance is 7.35%, 2.99%, 1.78%, 0.73%, 1.85%, and 3.34% better than SVM, 
KNN, CNN, MFO, WTEEB and GWO + FRVM models. The mean performances 
of implemented model for accuracy is 15.79%, 6.82%, 1.73%, 0.74%, 1.85%, 
and 5.73% better than SVM, KNN, CNN, MFO, WTEEB and GWO + FRVM 
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approaches. Additionally, the median of the proposed method is 9.81%, 3.01%, 
1.73%, 0.74%, 1.71%, and 5.72% better than SVM, KNN, CNN, MFO, WTEEB and 
GWO + FRVM models. Hence, the betterment of suggested model is established 
from the results.

5.5  Overall Performance Analysis

The overall performance analysis of the suggested as well as extant methods 
in terms of various measures is discussed in this section. From Table  3, the sug-
gested scheme for accuracy is 7.35%, 2.99%, 1.78%, 0.73%, 1.84% and 4.05% bet-
ter than SVM, KNN, CNN, MFO, WTEEB and GWO + FRVM models. On con-
sidering sensitivity, the adopted CNN + IMFO + LBP model is 10.96%, 2.99%, 
1.78%, 0.73%, 2.26%, and 4.46% better than SVM, KNN, CNN, MFO, WTEEB and 
GWO + FRVM approaches. On considering recall, the adopted CNN + IMFO + LBP 
model is 10.96%, 2.99%, 1.78%, 0.73%, 1.84%, and 3.35% better than SVM, KNN, 
CNN, MFO, WTEEB and GWO + FRVM approaches. On considering the negative 
measures (FPR, FDR, FNR), the adopted model acquires less value than the exist-
ing ones. As a result, the total analysis shows that the CNN + IMFO + LBP design is 
superior.

5.6  Computational Time Analysis

The computation time of the adopted & extant works is determined as well as the 
values are tabulated in Table 4. The proposed CNN + IMFO +  + LBP model achieves 
small execution time that is 134.5963254 s and it is 22.66%, 1.77%, 10.26%, 7.85%, 
19.05%, and 5.48% better than the existing SVM, KNN, CNN, MFO, WTEEB, and 
GWOFRVM approaches respectively. Therefore, this analysis proves the superiority 
of the adopted model.

6  Conclusion

In this study, the pre-processed images were segmented utilizing the Otsu Thresh-
olding approach, which resulted in a new lung cancer detection method. Fur-
ther, the LBP characteristics were extracted from the segmented images. As the 
next process, classification takes place for which the CNN model was exploited. 
In addition, an enhanced version of the traditional MFO algorithm named as 
IMFO model was presented for optimizing the activation function and count 
of convolutional layers. Finally, an examination was done to evaluate the per-
formance of the offered scheme. The adopted approach in terms of accuracy is 
7.35%, 2.99%, 1.78%, 0.73%, 1.85%, and 3.34% better than SVM, KNN, CNN, 

Fig. 5  Performance analysis of the proposed and conventional models on concerning performance meas-
ures such as a accuracy b sensitivity c specificity d Precision e Recall f NPV g FMS h MCC i FPR j 
FNR and k FDR

▸



1 3

Sensing and Imaging (2023) 24:11 Page 19 of 24 11



 Sensing and Imaging (2023) 24:11

1 3

11 Page 20 of 24

MFO, WTEEB and GWO + FRVM models. On analyzing the statistical analy-
sis, the mean performances of implemented model for accuracy was 15.79%, 
6.82%, 1.73%, 0.74%, 1.85%, and 5.73% better than SVM, KNN, CNN, MFO, 
WTEEB and GWO + FRVM approaches. Thus, the betterment of the suggested 
CNN + IMFO + LBP model was proven from outcomes. However, the computa-
tion time of the mode is not too much better. In the future, we want to compre-
hend the features retrieved by the networks for classification by deploying various 
visualization tools and see if they are consistent with features utilized by radi-
ologists for diagnosis and also utilize the proposed system for other pulmonary 
diseases.

Fig. 5  (continued)

Table 2  Statistical analysis: Proposed vs. traditional approaches

Metrics SVM [23] KNN [32] CNN [24] MFO [32] WTEEB [41] GWO + FRVM 
[42]

CNN + IMFO + LBP

Best 90.28 91.36 92.03 92.70 91.65 90.26 93.3768
Worst 62.78 68.73 89.38 90.72 89.71 77.68 91.3968
Mean 79.79 86.49 90.82 91.71 90.68 87.10 92.39
Median 84.14 89.69 90.90 91.71 90.68 88.64 92.39
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Data Availability The data that support the findings of this study are openly available in https:// wiki. 
cance rimag ingar chive. net/ displ ay/ Public/ LIDC- IDRI.
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