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Abstract
Magnetic Particle Imaging (MPI) is a promising tracer-based, functional medical 
imaging technique which measures the non-linear magnetization response of mag-
netic nanoparticles to a dynamic magnetic field. For image reconstruction, system 
matrices from time-consuming calibration scans are used predominantly. Finding 
modeled forward operators for magnetic particle imaging, which are able to com-
pete with measured matrices in practice, is an ongoing topic of research. The exist-
ing models for magnetic particle imaging are by design not suitable for arbitrary 
dynamic tracer concentrations. Neither modeled nor measured system matrices 
account for changes in the concentration during a single scanning cycle. In this paper 
we present a new MPI forward model for dynamic concentrations. A static model 
will be introduced briefly, followed by the changes due to the dynamic behavior of 
the tracer concentration. Furthermore, the relevance of this new extended model is 
examined by investigating the influence of the extension and example reconstruc-
tions with the new and the standard model.

Keywords Magnetic particle imaging · Model-based reconstruction · Dynamic 
inverse problems · Motion artifacts · Motion compensation

1 Introduction

Magnetic Particle Imaging (MPI) is a relatively new medical imaging modality 
invented by Weizenecker and Gleich in 2005 [9]. In this tomographic imaging tech-
nique, the non-linear magnetization response of the superparamagnetic tracer mate-
rial to an external magnetic field induces a potential in the receive coils of the scan-
ner. The spatial distribution of the magnetic particles is reconstructed from these 
measurements. MPI allows for a rapid data acquisition with high temporal resolution 
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which makes it a promising imaging device for different imaging applications, see 
[21] for an overview. In many of these applications, visualization of tracer dynamics 
is highly relevant, such as physiological diagnosis like stroke detection [24], visuali-
zation of blood flow [31] or localization of medical instruments in vascular interven-
tions [14].

The MPI forward operator can be described by model- or measurement-based 
approaches [13]. In a measurement-based approach the forward operator is rep-
resented by a calibration scan [27, 30]. Therefore, the signal generated by a delta 
sample of tracer material is measured for a finite number of spatial positions. The 
modeling approach describes the measurement process with physical laws [22]. 
Unfortunately, models usually idealize the physical setting to limit the complexity of 
the model. These simplifications can lead to large modeling errors and give reasons 
for the time consuming measurement approach being still dominant in practice.

The state of the art model underlies the assumption of a (nearly) static concen-
tration during the signal acquisition. This assumption is not always fulfilled. MPI 
is able to visualize the distribution of a liquid tracer. It can accumulate, dissipate 
or move e.g. with the blood flow. The behavior of the particle concentration is not 
static in these cases. Also time-series measurements imply a dynamic tracer distri-
bution such that the static model is only true for piecewise constant concentrations. 
The same problem is valid for the measurement approach. Since the delta sample 
is static during each cycle of the calibration scan, the measured system matrix does 
not cover dynamic behavior. Currently, the only way to reconstruct non-periodic 
dynamic concentrations is to reconstruct a time-series of images under the assump-
tion of static behavior during the scan [14, 28]. Reconstruction of periodic dynam-
ics in magnetic particle imaging is investigated in [8] in order to reduce of artifacts 
induced by cardiac- or respiratory motion in multi-patch MPI. The authors use the 
measurement-based approach and assume limits on the velocity and periodicity of 
the motion. By rearranging measurements from the same motion phase into virtual 
frames, dynamic tracer distributions can be reconstructed by static reconstructions 
from the virtual frames.

The model-based approach gives rise to various directions of research covering 
all components of the signal generation chain and analyses of the models. One of 
these directions is modeling of the magnetic behavior of magnetic nanoparticles 
which was studied by Kluth [17, 19] and Weizenecker [29]. The most frequently 
used magnetization model is the Langevin- or equilibrium model, which is also the 
basis for the derivations in the following articles. The equilibrium model does not 
respect magnetic relaxation effects. In [17], the model is extended for different kinds 
of relaxation. The author presents forward models incorporating either Brownian 
rotation or Néel relaxation in the cases of mono- and polydisperse tracers under the 
assumption of single domain particles with uniaxial anisotropy.

Based on the equilibrium model the authors of [26] derive analytical recon-
struction formulae as well as numerical reconstruction schemes for two- and three-
dimensional MPI. They examine and compare the ill-posedness of the reconstruc-
tion problem for different dimensions. A mathematical analysis of the 1D model 
is provided by Erb, Weinmann et  al. [7]. They investigate properties like the ill-
posedness and discover an exponential singular value decay of the reconstruction 
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problem. Goodwill and Conolly [10] follow the X-space approach. They consider 
the dependence of the spatial position of the field free point (FFP), which is the 
time-dependent volume of vanishing magnetic field strength, and the drive field of 
the scanner. As a result the forward operator of 1D MPI can be identified as a con-
volution operator. The authors extend their approach to multiple dimensions in [11]. 
The more analytically focused article by Maass and Mertins deals with closed-form 
expressions for the Fourier transform of the system function for multiple dimensions 
[25]. The system function is related to tensor products of Chebychev polynomials of 
the second kind and tensor products of Bessel functions. This result might allow for 
analytical insights into the system function and more efficient reconstruction tech-
niques in the future.

Another common model simplification is the assumption of ideal magnetic 
fields. In practice magnetic fields can be distorted which is influencing spatial sig-
nal encoding. In [5], the authors use spherical harmonics to achieve more realistic 
representations of magnetic fields for FFP and field free line (FFL) scanners. A 3D 
forward model for non-ideal magnetic fields which can be reconstructed with the 
algebraic reconstruction technique (ART) is presented. Artifacts caused by distorted 
magnetic fields have also been investigated in the context of the X-space approach 
[32]. These distortions especially affect multi-patch MPI, since distortions increase 
with the distance from the center. In the case of measurement-based reconstruction, 
compensation methods for displacement artifacts in multi-patch scans are studied in 
[3, 4].

In this paper we present an extended MPI forward model for dynamic tracer dis-
tributions, in the discrete and continuous case, both in time- and Fourier domain. 
While the initial theoretical setup presented in Sect. 3 is identical to the one in [8], 
our model is not limited to periodic motion and covers dynamic tracer distributions 
with high velocities. Furthermore, we provide simulation experiments to show the 
importance of the extension relative to the tracer dynamics and the impact on recon-
struction quality compared to the static model. The presented approach is of special 
interest for blood flow measurements [16] because the speed of the motion is part of 
the model and can be reconstructed simultaneously.

The remainder of this paper starts with a brief introduction to the principles of 
an ideal MPI system in Sect. 2 and is followed by presenting the standard modeling 
approach in Sect. 2.1 which we will extend to arbitrary dynamic tracer distributions 
in Sect. 3. Based on the Langevin model, FFP scanners and Lissajous trajectories we 
investigate the influence of the extension to the signal for different kinds of dynam-
ics in Sect.  4, while we compare reconstructions of simulated dynamic measure-
ments with the standard and the extended model in Sect. 5. We close with a discus-
sion of the results in Sect. 6.

2  Basic Principles of Magnetic Particle Imaging

The aim of magnetic particle imaging is the reconstruction of the multi-
dimensional spatial concentration of the particles. Spatial encoding of the sig-
nal is realized by applying a spatially and temporally varying magnetic field 
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H ∈ L2(� ×ℝ
+,ℝ3) where 𝛺 ⊂ ℝ

3 denotes the field of view (FOV). While there 
also exist other scanner topologies, such as field free line, we describe the basic 
principles of an ideal field free point scanner. The magnetic field

consists of a spatially inhomogeneous selection field HS and a temporally vary-
ing drive field HD . The selection field is a gradient field that has a point of zero 
field strength in the center, the so-called field free point (FFP), and a lin-
early increasing field strength to the periphery (see Fig.  1a). The drive field 
HD(t) = [al sin(2�flt + �l)]l=1,…,3 is spatially constant but changes its magnetization 
over time according to a sine function in each dimension. It has three parameters 
per dimension, the amplitude al ∈ ℝ determining the size of the field of view, the 
frequency fl ∈ ℝ defining the density of the scan trajectory and a phase shift �l ∈ ℝ 
setting the starting point of the scan trajectory. Choosing the parameters appropri-
ately, the overlay of HS and HD forms the field H which has a FFP moving through 
the volume of interest along a so-called Lissajous curve (see Fig. 1b).

Superparamagnetic means that the magnetic nanoparticles behave like tiny 
magnets, while an external magnetic field is applied. They have their own mag-
netic moments which are larger than their atomic moments. There is no remanent 
magnetization after the applied magnetic field is removed [2].

The magnetic moment of the particles responds to temporal changes of mag-
netic fields. There are different models describing the magnetic behavior of the 
particles which where studied in [17, 19, 29]. In Sects. 4 and 5 the Langevin or 
equilibrium model is used but could be replaced by more complex models. When 
the field free point moves over a position r, it causes a change in the mean mag-
netic moment at this location. The magnitude of the magnetization

H(r, t) = HS(r) + HD(t)

(a) The selection field Hs is a static gradient field
with vanishing field strength in the center and lin-
early increasing field strength to the border of the
field of view.

(b) The trajectory of the field free
point forms a Lissajous curve dur-
ing a single scan cycle.

Fig. 1  Setup of the magnetic field
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is proportional to the tracer concentration c ∶ � ↦ ℝ
+ and the mean magnetic 

moment m̄ ∶ 𝛺 ×ℝ
+
↦ ℝ

3 . In practice, slight magnetization changes can be 
observed throughout the whole FOV. The Sobolev space

denotes the space of L2-functions whose first weak derivatives are also functions in 
L2 on the domain D ⊂ ℝ

d with � ∈ ℕ
d being a multi-index with ��� =

∑d

i=1
�i , see 

[1]. The change in magnetization induces a current in the receive coils of the scan-
ner. Due to the construction of the magnetic field, a measured voltage at time point t 
can be connected to a magnetization change and thus to a certain concentration at a 
position r. The measurement process is described by a forward model in the follow-
ing section.

2.1  MPI Forward Model

The static forward model

describes the magetic particle imaging process in time domain [20]. The sensitivity 
of the receive coils p ∶ � ↦ ℝ

3×3 is multiplied with the permeability constant �0 
and the change in magnetization which is caused by the superparamagnetic particles 
and the applied magnetic field H from the send-coils.

Assuming that the signal generated by the excitation field is removed by a filter 
yields

As defined in the previous section, the excitation field is multi-dimensional which 
means that the system function S(r, t) maps to ℝ3 , thus u(t) ∈ ℝ

3 is a voltage vector, 
where each value is measured by the respective receive coil. In the discrete models 
in the remainder of this paper we will refer to a single component of u(t) since the 
computations are analogous for all channels.

Discretization The formulation of discrete forward models is motivated by meas-
ured system matrices and the use of numerical reconstruction methods. Therefore, 
we use a basis {𝜙i}i=1,…,R ⊂ L2 of a finite-dimensional subspace XR ⊂ L2 . An intui-
tive choice are piecewise constant basis functions on equisized, pairwise disjoint 
quadratic or cubic domains as they are a reasonable representation of both the pixels 
or voxels in an image and the delta probe used for the calibration scans.

Using the basis functions, we obtain piecewise constant approximations of the 
concentration and system function

(1)M(r, t) = c(r)m̄(r, t), M ∈ H1(𝛺 ×ℝ
+), c ∈ L2(𝛺),

H1(D) = {f ∈ L2(D) ∶ D𝛾 f ∈ L2(D) for 0 ≤ |𝛾| ≤ 1, 𝛾 ∈ ℕ
d,D ⊂ ℝ

d}

(2)u(t) = −𝜇0

d

dt ∫𝛺

p(r)⊤
(
c(r)m̄(r, t) + H(r, t)

)
dr

(3)u(t) = ∫𝛺

S(r, t)c(r) dr, with S(r, t) = −𝜇0 p(r)
⊤ 𝜕
𝜕t
m̄(r, t).
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evaluated at equidistant time sampling points {tj}j=1,…,nT
 with tj = (j − 1)Tc∕(nT − 1) 

and Tc being the repetition time for one Lissajous cycle. Insterting c̃ in (3) yields the 
following discrete forward problem

It can also be written as a matrix vector multiplication of a concentration vector and 
the system matrix �

 Reconstructing the concentration vector � from a given measurement vector � is a 
classic inverse problem. In [18, 26], it was shown that the multidimensional MPI 
reconstruction problem is severely ill-posed. Thus, computing a stable and unique 
solution requires regularization. Two common regularization methods in MPI are 
Tikhonov- and iterative regularization. The former defines a Tikhonov functional by 
adding a penalty term with a regularization parameter. The resulting minimization 
problem can then be solved by the Kaczmarz algorithm or other iterative schemes 
adapted to the applied regularization term. The latter option regularizes the iterative 
method directly by choosing a maximum number of iterations. In both cases, the 
standard iterative method used in MPI is the Kaczmarz algorithm [15]. The informa-
tion from reconstructions of several channels can be combined to improve image 
quality.

3  Dynamic Forward Model

The forward model presented in the preceding section underlies the assumption of 
a (nearly) static concentration during the signal acquisition which might be violated 
in case of dynamically changing tracer distributions. MPI is able to visualize the 
distribution of a liquid tracer which can accumulate, dissipate or move e.g. with the 
blood flow. In these situations, the behavior of the particle concentration is clearly 
not static.

In practice oftentimes measured system matrices are used for MPI reconstruction. 
These matrices are the results of calibration scans which measure the induced volt-
age of a delta sample during a scanning cycle for each spatial position. This approach 
yields good results for static concentrations because the matrices also incorporate 
the transfer function of the system. Since the delta sample is static during the com-
plete cycle the measured system matrix does not cover dynamic behavior.

In order to adapt the model to dynamic tracer concentrations, the magnetization 
function (1) is modified such that it contains a time-dependent concentration

c̃(r) =

R∑

i=1

ci𝜙i(r) and S̃(r, t) =

R∑

i=1

Si(t)𝜙i(r) ∈ XR ,

(4)u(tj) =

R∑

i=1

Si(tj)ci, j = 1,… , nT .

(5)� = �� with � ∈ ℝ
nT , � ∈ ℝ

nT×R, � ∈ ℝ
R.
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Thus, the forward model (2) changes to

Assuming a constant coil sensitivity p and that the signal generated by the excitation 
field is removed by a filter results in the dynamic forward model

It describes a measurement u ∶ ℝ
+
↦ ℝ

3 in time domain and contains a sum of 
two system functions S1, S2 ∶ � ×ℝ

+
↦ ℝ

3 multiplied with the tracer concentra-
tion c ∶ � ×ℝ

+
↦ ℝ

+ and its time derivative. The derivatives �c
�t

 , S1 =
𝜕m̄

𝜕t
 and the 

measurement u are L2-functions because the concentration c and S2 = m̄ are in the 
Sobolev space H1(� ×ℝ

+).
Dynamic forward model in frequency domain  MPI measurements are usually 

given in frequency domain. Due to the time dependence of the concentration the 
static model

in frequency domain changes to

The measurement in frequency space û ∶ ℝ
+
↦ ℂ

3 and the deriva-
tives �̂c

�t
∶ � ×ℝ

+
↦ ℂ , Ŝ1 ∶ 𝛺 ×ℝ

+
↦ ℂ

3 are L2-functions because 
ĉ , Ŝ2 ∈ H1(𝛺 ×ℝ

+) . The convolution is only applied to the frequency components.
Discretization  Using the same pixel-basis {𝜙i}i=1,…,R ⊂ L2 for discretization as 

in Sect.  2.1 yields the following representation of a piecewise constant dynamic 
concentration

(6)M(r, t) = c(r, t)m̄(r, t) , c ∈ H1(𝛺 ×ℝ
+), M, m̄ ∈ H1(𝛺 ×ℝ

+) .

u(t) = −𝜇0

d

dt ∫𝛺

p(r)⊤
(
c(r, t)m̄(r, t) + H(r, t)

)
dr.

(7)u(t) = 𝜂
d

dt ∫𝛺

c(r, t)m̄(r, t) dr, with 𝜂 ∶= −𝜇0p ∈ ℝ

(8)
= 𝜂 ∫𝛺

𝜕m̄
𝜕t

(r, t)

���
=S1

c(r, t) + m̄(r, t)
���

=S2

𝜕c
𝜕t
(r, t) dr

(9)= � ∫�

S1(r, t)c(r, t) + S2(r, t)
�c
�t

(r, t) dr , c, S2 ∈ H1(� ×ℝ
+).

û(k) = 𝜂 ∫𝛺

c(r)F
{
𝜕m̄
𝜕t

}
(r, k) dr

(10)

û(k) = 𝜂 ∫𝛺

F
{
c
}
(r, k) ∗ F

{
𝜕m̄
𝜕t

}
(r, k) +F

{
𝜕c
𝜕t

}
(r, k) ∗ F

{
m̄
}
(r, k) dr ,

(11)= 𝜂 ∫𝛺

ĉ(r, k) ∗ Ŝ1(r, k) +
�𝜕c
𝜕t

(r, k) ∗ Ŝ2(r, k) dr , ĉ, Ŝ2 ∈ H1(𝛺 ×ℝ
+).
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and analogously for the derivative �c
�t

 and system functions S1 and S2 . Together with 
the time sampling points {tj}j=1,…,nT

 from Sect. 2.1, we get the discretized dynamic 
forward problem

For measurements with F ≥ 1 cycles the time sampling for the measurement and 
concentration changes to {�j}j=1,…,FnT

 with �j = (j − 1)FTc∕(FnT − 1) while the sys-
tem functions are evaluated at tj mod nT

 . Eq.(12) is no longer a matrix-vector multipli-
cation as in (5) but a sum of element-wise matrix multiplications

with � ∈ ℝ
nT , �,�c ∈ ℝ

nT×R, �1, �2 ∈ ℝ
nT×R, �R = [1,… , 1]⊤ ∈ ℕ

R and ⊙ being 
an element-wise matrix multiplication, e.g. �⊙ � = [aijbij]

j=1,…,m

i=1,…,n
 , with matrices 

�,� ∈ ℝ
n×m.

In frequency space the same approach yields the following discrete forward 
problem

with �̂ ∈ ℂ
nK , �̂, �̂c ∈ ℂ

nK×R, �̂1, �̂2 ∈ ℂ
nK×R, �R = [1,… , 1]⊤ ∈ ℕ

R . Again the con-
volution is only applied to the frequency components, i.e. the respective matrix col-
umns. Note that a frequency domain reconstruction computes ĉ . To see the behav-
ior of the concentration in time, the inverse Fourier transform needs to be applied. 
Reconstruction becomes a deconvolution problem in frequency space. A typical 
solution approach for this ill-posed inverse problem is to make use of the convo-
lution theorem of the Fourier transform which in this case results in time domain 
reconstruction.

The dynamic model (8) is also mentioned in [8] but followed by strong restric-
tions of the dynamics such that there are no further consequences in the reconstruc-
tion process. In contrast, the models proposed in this section are valid for a broad 
range of dynamics, e.g. rapid changes or non-periodic behavior. The tracer distribu-
tion is required to be differentiable in time and integrable in space.

4  Relevance of the Dynamic Model

As mentioned in Sect. 2.1, the concentration is usually assumed to be constant. The 
time derivative of the concentration would therefore be nearly zero and the sec-
ond summand of the extended model (9) would thus be small such that it can be 
neglected.

c̃(r, t) =

R∑

i=1

ci(t)𝜙i(r) ∈ XR

(12)u(tj) = �
R∑

i=1

S1,i(tj)ci(tj) + S2,i(tj)
(
�c
�t

)

i
(tj), j = 1,… , nT .

� = 𝜂
[
�1 ⊙ � + �2 ⊙ �c

]
⋅ �R

�̂ = 𝜂
[
�̂1 ∗ �̂ + �̂2 ∗ �̂c

]
⋅ �R
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We investigate the structure of S2 in comparison to S1 and consider a set of 
simulated dynamic concentrations to survey whether neglecting the second term 
in the new model may be justified. Before looking at example reconstructions to 
compare reconstructions with the old and extended model in Sect. 5, we are look-
ing at the influence of the new summand in the dynamic model.

For the simulation, the system functions with 19 × 19 × 1 voxels and 1632 
sampling points in time are modeled according to the Langevin model using the 
parameters listed in Table 1.

Langevin model In the Langevin model the particles are assumed to be in ther-
mal equilibrium and the applied magnetic fields to be static. The mean magnetic 
moment at spatial position r and time point t is given by

with L�,� ∶ ℝ ↦ ℝ being the Langevin function

with �, � ∈ ℝ being particle dependent parameters.
Equation  (11) shows a sum of two convolutions. In a first step, we are inter-

ested in the shape of the convolution kernels. Therefore, we compute

m̄(r, t) = L𝛼,𝛽(‖H(r, t)‖2)
H(r, t)

‖H(r, t)‖2
, m̄ ∈ H1(𝛺 ×ℝ

+), L𝛼,𝛽 ∈ H1(ℝ),

L�,�(z) =

{
� coth(��z) − 1

�z
, if z ≠ 0

0, if z = 0

Table 1  Physical parameters used for the simulations

Parameter Value cf.

Constants
Permeability constant �0 4� ⋅ 10−7 N/A

2

Boltzmann constant kB 1.38064852 ⋅ 10−23 J/K

Particles
Temperature T 310 K [22]
Saturation magnetization MC

0.6

�0

 T [22]

Particle core diameter D 20 ⋅ 10−9 m [6]
Particle core volume VC

1

6
�D3 m3 [22]

Particle magnetic moment � MCVC Am
2 [22]

Parameter of Langevin function � (kBT)
−1 N−1

m−1 [22]
Scanner [23]
Excitation frequencies [fx, fy, fz] [2.5/102, 2.5/96, 2.5/99] MHz
Excitation amplitudes [ax, ay, az] [0.012, 0.012, 0.0] T

Excitation phase shifts [�x,�y,�z] [
�

2
,
�

2
,
�

2
]

Gradient strengths [gx, gy, gz] [−1,−1, 2] T/m

Excitation repetition time Tc 652.8 ⋅ 10−6 s
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which are shown in Fig.  2 together with an approximation of their convex hulls. 
The approximation of the convex hull was calculated by determining and connecting 
the maximum values within the next 15 frequency steps to include all peaks of the 
function. Both matrices exhibit a similar structure. The peaks have the same dis-
tances ( ≈ 15 frequency steps) and the convex hull (orange line) has a similar shape. 
The full-width-at-half-maximum (FWHM) of the convex hull is the same ( ≈ 33 fre-
quency steps) while the maximum of the second system matrix Ŝ2 is 104 smaller than 
the maximum of the first system matrix Ŝ1 . Thus, on a first view, the assumption that 
the second term S2 in the dynamic model is negligible might be reasonable.

In a second step, we looked at four types of dynamic concentrations during one 
cycle for a single voxel. The plots in Fig. 3 show the concentration over the scan 
time, its time derivative and the respective Fourier transforms for each example 
concentration.

Example concentration 1 is depicted in Fig.  3a which shows one peak at the 
beginning of the scan. The tracer is flowing through the voxel for a short period 
of time. This could be a small tracer bolus moving fast through the volume of the 
voxel. In the second example, shown in Fig. 3b, the concentration increases strongly 
in the beginning, remains constant for a short period of time and decreases again. 
The tracer flows through the voxel for a longer period of time. Example 2 represents 
a larger bolus moving fast through the voxel. Example 3, shown in Fig. 3c, shows a 
slow increase and decrease of the concentration. This represents a slowly moving 
small bolus. Example 4 is a periodic version of the first example. Fig. 3d shows two 
peaks within the scan time. The tracer flows two times through the voxel with a high 
velocity. This represents a small bolus with fast periodic motion.

Looking at the Fourier transformations shows that the maximal absolute values 
of the Fourier transformed concentrations ĉ are about 104 smaller than the maximal 

max
r∈𝛺

{|Ŝl(r, k)|}, l ∈ {1, 2}

(a) Shape of system matrix 1 in Fourier
space

(b) Shape of system matrix 2 in Fourier
space

Fig. 2  Comparing the influence of the two system matrices by analyzing the maximum over all voxels of 
the absolute values of the matrices in Fourier space. The orange line is an approximation of the convex 
hull
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(a) Example 1: The tracer flows through the voxel for a short period of time

(b) Example 2: The tracer flows through the voxel for a longer period of time

Fig. 3  Example concentrations and their time derivatives in time and frequency domain. The dynamics 
appear within one scanning cycle
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absolute values of the Fourier transformed time derivatives d̂c
dt

 for all 4 examples. 
This demonstrates that for these dynamic concentrations the magnitude of the two 
summands of the new dynamic model is the same.

The imaging process in Fourier space is a convolution of the Fourier transformed 
system matrices with the Fourier transformed concentration and its time derivative. 
Thus, the concentration is smoothed by the system matrix. The kernels S1 and S2 
have the same width meaning that the concentration and its derivative are smoothed 
equally.

(c) Example 3: The tracer accumulates and dissipates slowly in the voxel

(d) Example 4: The tracer flows through the voxel for a short period of time for two times

Fig. 3  (continued)
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To further examine these effects, we split up the discrete forward model such 
that the signal

is now the sum of A and B, where A denotes the signal component generated by the 
first system matrix S1 and B the signal component generated by the second system 
matrix S2 . The convolution of the frequency components of system matrix 1 and 
the tracer distribution is named a and the convolution of system matrix 2 with the 
derivative of the concentration is named b.

Using the dynamic example concentration 3 shown in Figs. 3c, 4 shows a and b 
for each voxel. As expected, one can see that the shape and the maximum values 
of both terms are similar. Both plots show maximum values of about 1.2 ⋅ 10−4 . 
Fig. 5 shows the plots of A and B for the frequencies k ∈ [0.08, 1.25]MHz. Again, 
both terms have the same order of magnitude. For A the frequencies with high 
amplitudes have a small variance while for B high amplitudes can be observed 
in the whole frequency range. This shows that even for this example with slower 
dynamics the second component of the forward model has a significant impact on 
the signal. While the second summand in Eq.(9) is negligible for static concentra-
tions, for dynamic concentrations it should not be neglected in general. A practi-
cal threshold on the velocity or other characteristics remain to be studied.

û(kj) = 𝜂
R∑

i=1

Ŝ1(ri, kj) ∗ ĉ(ri, kj)
���������������������

=a(i,j)

+𝜂
R∑

i=1

Ŝ2(ri, kj) ∗
�𝜕c
𝜕t
(ri, kj)

�������������������������
=b(i,j)

= 𝜂
R∑

i=1

a(i, j)

�����
A

+𝜂
R∑

i=1

b(i, j)

�����
B

, j = 1,… , nK ,

(a) (b)

Fig. 4  Absolute values of the convolution of the system matrices with the concentration and its deriva-
tive. Each curve shows the frequency amplitudes for one of the 192 voxels
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5  Comparing Reconstructions with the Dynamic and Static Model

The challenge in solving the dynamic inverse problem (12) is the high number of 
degrees of freedom. We therefore use a minimalist setup with a grid of 3 × 3 × 1 vox-
els. We use two computational phantoms to simulate an MPI measurement with the 
dynamic model and reconstruct it with the dynamic and the static model. They are 
named one-peak phantom and three-peak phantom and their spatial setup can be seen 
in Fig. 6.

5.1  Parameterized Concentration Curve

To reduce the degrees of freedom and computational cost, the tracer concentration of 
the one-peak phantom is described by parametric curves

for i = 1,… ,R , with parameter set �B = [bm,ri]
m=1,…,M

i=1,…,R
 , M ∈ ℕ and basis functions 

�m which are cubic B-splines. This means that for each voxel ri there is a set of 

c(ri, t) =
∑

m

bm,ri�m(t) = �(�B(ri), t) ∈ L2(ℝ3) × C2(ℝ)

(a) (b)

Fig. 5  Comparison of the two summands of the dynamic forward model û(kj) = 𝜂(A + B) . A frequency 
selection with k ∈ [0.08, 1.25]MHz is shown

Fig. 6  Spatial setup of the 
One- and three-peak phantom. 
They consist of 3 × 3 × 1 voxels 
indexed from 1 to 9
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coefficients bm which together with the spline basis form a continuous concentration 
curve in time. Consequently, we assume that the concentration is twice differenti-
able with respect to t which is a stronger condition than previously assumed in the 
dynamic model.

Cubic B-spline curves are well suited to model the dynamics of the magnetic 
tracer. In [12], the authors deal with the reconstruction of spatiotemporal tracer 
distributions in Single Photon Emission Computed Tomography (SPECT). Cubic 
B-spline curves are used to describe and reconstruct the dynamic distribution of the 
radioactive tracer from gated cardiac SPECT sequences. We generate three variants 
of the one-peak phantom 1F, 2F and 4F. For one-peak phantom 1F the coefficients 
for all R = 9 voxels except r5 are zero. The concentration is non-zero within the scan 
time of one frame. Figure 7a shows the development of the tracer distribution for the 
total scan time where each curve describes the concentration within one voxel. The 
plot shows a peak at t = 0.4128 ms with a concentration of 2.67 for voxel r5 . Versions 
2F and 4F differ only in the width of the concentration peak. The concentration peak 

Table 2  Reconstruction parameters

Parameter Value

Voxel size (phantoms and system matrices) 0.0107 × 0.0107 × 0.0107 m3

Field of view [0.0320, 0.0320, 0.0107] m

Time sampling per cycle nT 408
Transition time between frames �f 0 s
Number of frames Sect. 5.1 F 4
Number of frames Sect. 5.2 F 10

(a) The tracer distribution of the central
voxel r5 of one-peak phantom 1F changes
during the scan of the first frame. The remain-
ing voxels have a constant tracer concentra-
tion of zero.

(b) The tracer distribution of the central
voxel r5 of the three versions of the one-peak
phantom.

Fig. 7  The three versions of the one-peak phantom differ only in the width of the concentration peak of 
voxel r5 , while the remaining voxels have a constant tracer concentration of zero
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for r5 lasts for the scan time of 2 frames in version 2F and 4 frames in version 4F 
(see Fig. 7b). The three variants can be related to boluses with different velocities. 
The bolus in version 1F is twice as fast as in 2F and four times faster than in version 
4F. Measurements with 4 frames which are each sampled at 408 time points and the 
dynamic forward model with S1 =

𝜕m̄

𝜕t
 and S2 = m̄ are simulated according to (12). 

The parameters used for the simulations are listed in Tables 1 and 2. There is no 
transition time in between the frames.

We reconstruct the concentrations by minimization with respect to the parameter 
set �B so that we get continuous concentration curves. The solution set is restricted 
to parametric spline curves in L2(ℝ3) × C2(ℝ) which is an implicit regularization. 
The curves are reconstructed with two different settings. In the first experiment both 
matrices are used for reconstruction which corresponds to minimizing

with � ∈ ℝ
nT . The problem is minimized with 200 iterations of a conjugate gradi-

ent algorithm and no further regularization. Figure 8a shows the average of recon-
structions of the x- and y-channel of one-peak phantom 1F. The peak for voxel r5 is 
located at t = 0.4448 ms with a concentration of 2.96 which is very close to ground 
truth. In the same period of time also the concentration of the remaining voxels is 
non-zero. The peaks of the voxels with even indices have concentration values of 
about 0.9 and the peaks of the voxels with odd indices have even smaller values 
of about 0.4. Even if these voxels have a non-zero concentration, it is significantly 
lower than the value of r5 , so that we can expect sufficient contrast in the recon-
structed images. The values for the off-diagonal voxels (voxels with even indices, 
cf. Figure 6) show higher concentration values than the ones on the diagonal. The 
x-channel reconstruction locates the concentration correctly in x and the y-channel 
reconstruction locates the concentration correctly in y. Thus, the off-diagonal voxels 
are masked by the high concentration in the central voxel.

In the next experiment the same measurement is reconstructed only with S1 which 
corresponds to minimizing

with � ∈ ℝ
nT . The problem is again minimized with 200 iterations of a conjugate 

gradient algorithm and no further regularization. The result for the average of x- and 
y-channel reconstructions is shown in Fig. 8b. The reconstruction shows a peak for 
voxel r5 at t = 0.3808 ms which is close to the ground truth but with a significantly 
smaller concentration of 0.85. Again there are concentration peaks for all remaining 
voxels with values of about 0.4. This means that the reconstructed images will show 
reduced contrast. And the true concentration is underestimated.

To get a more intuitive impression of the impact of the discussed curves on the 
reconstruction quality, Fig.  9 shows a frame of the phantom and the two recon-
structed time-series at the time point of the maximum concentration ( t = 0.4128

min
�B

‖‖‖‖

[ R∑

i=1

S1(ri, tj)�(�B(ri), tj) + S2(ri, tj)
��
�t
(�B(ri), tj)

]

j=1,…,nT

− �
‖‖‖‖

2

2

min
�B

‖‖‖‖

[ R∑

i=1

S1(ri, tj)�(�B(ri), tj)
]

j=1,…,nT

− �
‖‖‖‖

2

2
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(a) Reconstruction of 1F with the dynamic
model using S1 and S2.

(b) Reconstruction of 1F using only S1.

(c) Reconstruction of 2F with the dynamic
model using S1 and S2.

(d) Reconstruction of 2F using only S1.

(e) Reconstruction of 4F with the dynamic
model using S1 and S2.

(f) Reconstruction of 4F using only S1.

Fig. 8  Measurements of the dynamic one-peak phantoms 1F, 2F and 4F are simulated with the dynamic 
forward model (12). They are reconstructed with either both S1 and S2 (left) or only S1 (right). All plots 
show averages of x- and y-channel reconstructions. The dashed lines outline the true concentration in 
voxel r5 and the vertical grid lines mark the start and end of frames
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ms). Looking at the image of the first experiment in Fig. 9b one can observe a good 
contrast and slightly higher concentration values for the off-diagonal voxels. As dis-
cussed above, the image from the second experiment shown in Fig. 9c exhibits poor 
contrast and significantly lower concentration values compared to the phantom.

Version 2F and 4F of the one-peak phantom are reconstructed analogously to ver-
sion 1F. While also for version 2F reconstructed with both matrices the concentra-
tion peaks show the correct location and 83% of the true amplitude (see Fig. 8c), 
the peak in the reconstruction using only S1 is less than 50% of ground truth (see 
Fig. 8d). The reconstructions for version 4F with and without S2 are shown in Fig. 8e 
and 8f. The location is correct for both reconstruction methods and the amplitude of 
the peak for r5 reaches 87% of the ground truth for reconstruction with both matrices 
and 73% for using only S1 . Also the concentrations for the remaining voxels are suf-
ficiently low in both cases. Looking at a frame of one-peak phantom 4F and the two 
reconstructed time-series at the time point of the maximum concentration ( t = 1.304

ms) in Fig. 10, one can see that the contrast in the reconstruction without S2 (see. 
Figure  10c) is improved compared to version 1F and almost comparable to the 
reconstruction using S1 and S2 (see. Fig. 10b).

(a) Phantom (b) Reconstruction
using S1 and S2

(c) Reconstruction using
only S1

Fig. 9  Reconstructions of the one-peak phantom 1F at the time point of the concentration peak 
t = 0.4128ms

(a) Phantom (b) Reconstruction
using S1 and S2

(c) Reconstruction using
only S1

Fig. 10  Reconstructions of one-peak phantom 4F at the time point of the concentration peak t = 1.304ms
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In order to get an impression on the strength of the dynamics in one-peak phan-
tom 4F, we relate these values to a 2 × 2 × 2 mm3 bolus with constant concentration 
cmax moved through a 2 × 2 × 2 mm3 voxel with a constant velocity v (see Fig. 11). 
The one-peak phantom has a maximum concentration of cmax = 2.667 and a maxi-
mum time derivative of ċmax = 3065 . The average change rate yields a bolus veloc-
ity of vav = 2 ⋅ 10−3∕(2 ⋅ Tc) = 1.53 m/s and the maximum change rate results in a 
velocity of vmax = 2 ⋅ 10−3∕(cmax∕ċmax) = 2.3 m/s . Thus, we state vdyn = 1.53 m/s as 
a preliminary threshold velocity. For reconstructions with an average flow v > vdyn 
the dynamic model will improve the reconstruction quality in comparison to the 
static model.

5.2  Frame‑by‑Frame Reconstruction

Another way to investigate the impact of the new model is to reconstruct a dynamic 
measurement frame-by-frame with the assumption of a static concentration within 
each frame. Therefore we use the three-peak phantom.

As the one-peak phantom, the tracer concentration of the three-peak phantom is 
described by parametric curves c(ri, t) =

∑
m bm,ri�m(t) = �(�B(ri), t) with parameter 

set �B and basis functions �m which are cubic B-splines meaning that for each voxel 
ri there is a set of coefficients bm which together with the spline basis form a continu-
ous concentration curve in time.

For the three-peak phantom only the coefficients for the voxels r4 , r5 and r6 are 
non-zero. The tracer distribution during the total scan time is shown in Fig.  12a 
where each curve describes the concentration within one voxel. There is a concen-
tration peak of 6.67 for voxel r4 , r5 and r6 . The peaks are shifted in time, such that 
this dynamic can be seen as an object or tracer bolus that moves from voxel r4 to 
voxel r6 considering the location of the voxels in Fig. 6. The peaks are located in the 
scan time of frame 3, 4 and 5 and have a temporal width of about 4 frames. The con-
centration of the remaining voxels is zero.

A measurement with F = 10 frames which are each sampled at 408 time points 
and the dynamic matrix model (12) with S1 and S2 is simulated. The parameters used 
for the simulation can be found in Tables 1 and 2.

The dynamic tracer distribution is reconstructed with two different settings. The 
first one uses information about the tracer dynamics from the reconstructions of pre-
vious frames and the second one reconstructs each frame independently. In fact the 
reconstructions are piecewise constant functions over time. For better comparison 
the results depicted in Fig. 12 show linear interpolations of the static reconstructions 
of 10 frames.

Fig. 11  Simplified bolus moving 
through a voxel with constant 
velocity v 
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In the first experiment both matrices are used for reconstruction of each frame 
while the time derivative ��

�t
=

�f−�f−1

�t
 is the divided difference of the concentration 

vector of the current and the preceding frame. This corresponds to minimizing

 with �f ∈ ℝ
nT , �f ∈ ℝ

R , �1, �2 ∈ ℝ
nT×R . Figure  12b shows the average of x- and 

y-channel reconstructions which were reconstructed in time domain with 100 

min
�f

‖‖‖
(
�1�

f + �2
�f − �f−1

�t

)
− �

f‖‖‖
2

2
, f = 1,… ,F

(a) The concentration of the three-peak phan-
tom changes in time only in voxel r4, r5 and
r6. In the remaining voxels the concentration
is zero. The time-shifted concentration peaks
form a motion from r4 to r6.

(b) Average of x- and y-channel frame-
by-frame reconstructions with the dynamic
model using S1, S2

(c) Average of x- and y-channel frame-by-
frame reconstructions with the static model
using only S1

Fig. 12  A measurement of the dynamic three-peak phantom is simulated with the dynamic forward 
model (12). Each frame is reconstructed separately assuming a static tracer distribution within each 
frame. The frames are reconstructed with the dynamic and the static model
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iterations of a gradient descent algorithm and no further regularization. It can be 
seen that the peaks are correctly located in frame 3, 4 and 5. The amplitude of the 
peaks is slightly lower than the ground truth and decreasing, 5.41 for r4 , 4.96 for r5 
and 4.82 for r6 . There is a non-zero concentration for the remaining voxels in the 
first 5 frames of less than 0.5. So the reconstructed images will exhibit sufficient 
contrast.

In the next experiment the same measurement is reconstructed using only S1 , i.e. 
minimizing

with �f ∈ ℝ
nT , �f ∈ ℝ

R , �1 ∈ ℝ
nT×R in time domain with 100 iterations of a gradi-

ent descent algorithm and no further regularization. The result is shown in Fig. 12c. 
Again the peaks are located correctly in frame 3, 4 and 5. The amplitudes 5.47 for 
r4 , 5.07 for r5 and 5.49 for r6 are also slightly lower than in the phantom and differ 
less than in the first experiment. The remaining voxels show non-zero concentra-
tions up to 1.2 being more than twice as high as for the first experiment.

6  Discussion and Conclusion

We introduced a new extended forward model for dynamic magnetic particle imag-
ing. It was shown that the standard forward model does not account for dynamic 
tracer distributions which is corrected by the extended model presented in this paper.

One of the main differences is that the dynamic model contains a second sum-
mand with a second system matrix. For different kinds of dynamic concentrations 
the two summands have been examined. The order of magnitude of the summands is 
the same for the chosen dynamic examples. This emphasizes the importance of the 
new model for dynamic tracer distributions.

Furthermore, we simulated measurements from dynamic concentrations with the 
extended model and reconstructed them with both the dynamic and the static model. 
In the experiments in Sect. 5.1 three simple phantoms with different change rates 
are examined. For one-peak 4F, the phantom with the lowest change rates, the static 
approach using only one system matrix provided an acceptable reconstruction qual-
ity. For the phantoms with higher change rates, one-peak phantom 2F and 1F, the 
static approach resulted in reconstructions with low contrast and significantly lower 
amplitudes than ground truth while the dynamic approach performed well on all 
three phantoms. While a quantitative study of this is beyond the scope of this article, 
we can state that for higher change rates than in one-peak phantom 4F the dynamic 
model should be considered for reconstruction.

The presented dynamic model is more general than existing approaches for 
dynamic concentration reconstruction as it is not limited to periodic motion and 
can be applied to motions with high velocities. While in this paper the equilibrium 
model is used, the dynamic model allows to incorporate more advanced magnet-
ization models which could improve the reconstruction quality in the future. The 
reconstruction approach with parametric concentration curves features an implicit 

min
�f

‖‖�1�
f − �

f‖‖
2

2
, f = 1,… ,F
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dynamic regularization. Additional spatial or temporal regularization, like spar-
sity in time and space, can be included easily. Moreover, the model allows for joint 
reconstructions of the particle concentration and its time-derivative which might be 
of special interest for blood-flow diagnostics.

It remains future research to develop new reconstruction techniques for dynamic 
tracer distributions based on this model and extend it to multi-patch imaging 
sequences for larger volumes. Furthermore, the methods need to be evaluated for 
simulations with phantoms of realistic size and physical phantom measurements. 
Practice-oriented scenarios might require improved minimization schemes for 
reconstruction. The dynamic model might also be combined with measurement-
based reconstruction. While using a calibration scan for S1 , the second system 
matrix can be modeled and corrected with the transfer function. Alternatively, S2 
might be learned from its measured time-derivative S1 . In addition to our prelimi-
nary statement, a quantitative study of phantoms with different velocities is required 
for a more precise proposition about when the dynamic model is necessary based on 
the level of dynamics and the desired reconstruction quality. A further theoretical 
research direction is the analysis of features like the ill-posedness of the dynamic 
reconstruction problem.
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