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Abstract
Collecting and analyzing data about developers working on their development tasks can 
help improve development practices, finally increasing the productivity of teams. Indeed, 
monitoring and analysis tools have already been used to collect data from productivity tools. 
Monitoring inevitably consumes resources and, depending on their extensiveness, may sig-
nificantly slow down software systems, interfering with developers’ activity. There is thus 
a challenging trade-off between monitoring and validating applications in their operational 
environment and preventing the degradation of the user experience. The lack of studies 
about when developers perceive an overhead introduced in an application makes it extremely 
difficult to fine-tune techniques working in the field. In this paper, we address this chal-
lenge by presenting an empirical study that quantifies how developers perceive overhead. 
The study consists of three replications of an experiment that involved 99 computer science 
students in total, followed by a small-scale experimental assessment of the key findings with 
12 professional developers. Results show that non-negligible overhead can be introduced 
for a short period into applications without developers perceiving it and that the sequence 
in which complex operations are executed influences the perception of the system response 
time. This information can be exploited to design better monitoring techniques.

Keywords Monitoring · User studies · Empirical software engineering

1 Introduction

Modern approaches to software development consider the boundary between development-
time and runtime as fading away (Baresi & Ghezzi, 2010), and several analysis solutions now-
adays exploit the operational environment as a testbed to analyze and test software (Hosek & 
Cadar, 2015; Arnold et al., 2011; Orso, 2010; Gazzola et al., 2017; Ceccato et al., 2020).

In this context, monitoring solutions can be used to obtain data about the behaviors of 
developers while working on their development tasks, to support the continuous improve-
ment of the development process  (van  der Aalst,  2012; Rubin et  al.,  2014; Couceiro 
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et al., 2019; Meyer, Barton et al., 2017; Meyer, Murphy et al., 2017; Züger et al., 2017). 
Indeed, the collected data can be used to improve many aspects, such as development prac-
tices  (Meyer, Barton et al., 2017), software tools  (Meyer, Murphy et al., 2017), and col-
laboration between developers (van der Aalst, 2012).

Running monitoring and analysis activities in parallel with development activities may 
annoy developers. Since the available resources are shared between all the processes run-
ning in a same environment, the analysis processes may introduce slowdowns in the user 
processes, negatively affecting the user experience of the developers. This is particularly 
true for desktop interactive applications, that is, applications that continuously interact 
with users (differently from background applications, to make an example), such as the 
integrated development environments (IDEs) typically used by developers to implement 
their software. Unfortunately, little is known about the actual user perception of any slow-
down introduced in interactive applications, and thus, embedding analysis strategies in 
software programs without annoying the developers can be challenging.

There are studies about the absolute perception of time  (Seow,  2008; Killeen & 
Weiss,  1987), about the capability to perceive small deviations in durations  (Killeen & 
Weiss,  1987), and studies investigating the impact of slowdowns in specific situations, 
especially while browsing the Web (Nah, 2004; Hoxmeier & Cesare, 2000). However, the 
capability to tolerate and detect slowdowns in desktop interactive applications has never 
been studied systematically, neither in the context of software development nor in broader 
contexts. Identifying to what extent developers can recognize slowdowns is extremely 
important because it can be used to quantify the amount of resources that can be consumed 
by any additional analysis process embedded in a program running in the field, including 
development and productivity tools.

This paper extends the initial evidences reported in Cornejo et al. (2017a, 2020a) with 
an extensive study based on human subjects about the impact of monitoring on system 
response time. In particular, this paper presents an empirical study that quantifies if and 
to what extent the overhead introduced in an interactive application is perceived by users, 
considering the specific case of developers interacting with their IDE (please note that in 
the remaining of the paper, we use the terms user and developer in an interchangeable way, 
since the users of the considered applications are developers), to finally discover how much 
the monitored software can be unnoticeably slowed down.

This is a key contribution that can perspectively allow the definition of more efficient, 
in particular less detrimental for the system response time, monitoring solutions, as pre-
liminary investigated later on in this paper too.

The study consists of three replications of the same experiment (that is, a family of 
experiments), involving a total of 99 computer science students who provided information 
on their perception of the system response time while using Eclipse. Since a user might 
execute different kinds of operations of different complexity and different durations while 
the system is slowed down, ranging from opening a menu to compiling a program, we 
expect that the perception of the overhead may depend on the nature of the operation that is 
executed and on its context. For this reason, we consider multiple categories of operations 
and sequences of operations executed in different order, investigating whether these vari-
ables influence one another.

Our study produces findings that can be exploited to carefully design monitoring and 
analysis procedures running in the field, within development tools (e.g., IDEs). In particu-
lar, we observed that (1) developers are unlikely to recognize significant overhead levels, 
up to 80%, if introduced for a small number of interactions (about 4 in our experiment); 
(2) developers might be slightly more sensitive to overhead introduced in operations that 
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require a significant processing time (between 5 and 10 s in our experiment); and (3) the 
context of execution of an operation (e.g., the operations recently executed) may impact 
the perception of the overhead. We assessed these findings with a small-scale experiment 
involving 12 professional developers. The results of this study confirm the initial findings 
while suggesting a stronger dependence on the context of execution of the operations for 
professionals compared to students.

Our study focuses on developers who use IDEs, but it represents an instance of a 
more general case, that is, the case of users who interact with applications while having 
an expectation on the system response time based on experience. Our findings might also 
be useful to fine-tune monitoring techniques when the monitored applications are used by 
knowledged users.

The presentation of the study is organized as follows. Section  2 describes the opera-
tions that can be performed by users and their categorization from the point of view of the 
expected system response time. Section 3 presents the setting of our experiment, including 
the goal and the research questions. Sections 4 and 5 describe the design alternatives and 
the final design that we adopted for our family of experiments. Section 6 presents the anal-
ysis of the results. Section 7 summarizes the main findings of our study, which are assessed 
in a small-scale experiment involving 12 professional developers described in Section 8. 
Section 9 discusses threats to validity. Section 10 illustrates how the reported results can 
be translated into actionable findings. Finally, Sections 11 and 12 discuss related work and 
provide final remarks, respectively. We also shared online at https:// github. com/ danie labri 
olaUn imib/ SRTov erhea dExpe riment all the collected data and the documents used in the 
experiments.

2  Operation categories

How the overhead introduced in an application is perceived is likely dependent on the kind of 
operation that is affected by the overhead. For instance, users may perceive the delay on the 
opening of a menu compared to the delay on the processing time of a longer operation differ-
ently. For this reason, we explicitly considered the type of operation as a factor in the study.

To classify operations, we relied on existing studies from the human-computer interaction 
community. In particular, there are some interesting studies (Seow, 2008; Shneiderman, 1987; 
Shneiderman et  al.,  2009) that correlate the nature of the operation to its expected system 
response time or SRT for short, that is, the time elapsed between the user request and the 
response of the application. For the purpose of our study, we used the categorization defined 
by Seow (2008) because he designed his study considering the interaction between the users 
and the computer as a conversation, that is consistent with the behavior of interactive software 
applications like the ones we considered.

We thus used the following categories:

• Instantaneous: These are the most simple operations that can be performed on an appli-
cation, such as entering inputs or navigating throughout menus (SRT, 200 ms at most).

• Immediate: These are operations that are expected to generate acknowledgments or 
very simple outputs (SRT, 1 s at most).

• Continuous: These are operations that are requested to produce results within a short 
time frame to not interrupt the dialog with the user (SRT, 5 s at most).

https://github.com/danielabriolaUnimib/SRToverheadExperiment
https://github.com/danielabriolaUnimib/SRToverheadExperiment
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• Captive: These are operations requiring some relevant processing for which users will 
wait for results, but will also give up if a response is not produced within a certain time 
(SRT, 10 s at most).

Some operations may last longer than 10  s. However, long computations, such as 
operations requiring 15  s or more, are not normally perceived as part of a dialog by 
users (Nielsen, 1999; Miller, 1968); we thus do not consider them.

It is important to remark that operations belonging to these categories are not executed 
in random order. In fact, interactions with interactive applications typically consist of a 
sequence of short and simple operations (e.g., operations on menu items to reach a given 
window and interactions with input fields to enter data) followed by the execution of a 
complex operation (e.g., an operation that executes significant business logic). This inter-
action pattern is repeated many times while using an application. If we map this to Seow’s 
classification, we obtain interactions composed of a sequence of instantaneous and imme-
diate operations, followed by either a continuous or a captive operation. We consequently 
consider this pattern when studying how the order of execution of the operations may 
influence the perception of the SRT.

3  Experiment setting

This section provides detailed information about the experiment goals, experimental sub-
jects, and research questions, according to Juristo and Moreno (2013). The next sections 
discuss the specific design that we adopted.

3.1  Goal and research questions

The goal of this experiment is to evaluate if and when developers perceive delays in the 
SRT for different operation categories, as discussed in Section 2. The study is conducted 
under the perspective of software developers and designers interested in investigating how 
much overhead can be introduced in the applications without modifying the perception of 
the response time. This quantification is useful to design appropriate monitoring, analysis, 
and testing procedures running in the field within development tools (but more in general, 
might be of interest for anyone who needs to design tools that may affect the SRT of inter-
active applications).

Our study is organized into three research questions:

RQ1: To what extent do different overhead levels impact developers’ perception?

This research question investigates if and when developers recognize the overhead in a 
software application.

RQ2: Is the perception of the overhead dependent on the operation category?

This research question investigates whether, and when, the perception of the response 
time depends on the type of operation categories defined in Section 2.

RQ3: Does the order of execution of complex operations affect the developer’s per-
ception of the response time?
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This research question investigates whether the perception of the overhead introduced in 
complex operations may depend on their order of execution.

Since we specifically study how delays are perceived by software developers, and thus 
developers are the users of the application considered in our study, we interchangeably use 
the terms users and developers in the rest of the paper.

3.2  Hypotheses, factors, and treatment levels

We study as factors of our experiment how developers perceive the response time when 
exposed to different levels of overhead, considering multiple types of operations executed 
in different orders.

Since reasoning about the human perception of the durations of phenomena requires 
relative measures, as supported by Weber’s law (Killeen & Weiss, 1987; Seow, 2008), we 
study the relative time overhead introduced in a certain operation as one of the factors to 
measure the perception of the response time. We define overhead as the computation time 
in excess an operation takes to complete, in comparison to its original computation time, 
when delay is introduced.

As treatment levels for the overhead level factor, we selected the values from the results 
we obtained in Cornejo et  al. (2017a, 2020a), where we investigated how progressively 
slowing down a system may affect the resulting system response time. These previous stud-
ies identify 20% , 80% , and 140% as interesting overhead values based on in-vitro experi-
ments and the analysis of specific scenarios (e.g., tracing function calls). Here, we study 
how developers react to overhead introduced in actual operations, exploiting these prelimi-
nary results to design the experiment. We include the overhead value 0% in the study to 
have a baseline to compare to.

In addition to considering the impact of relative overhead values on the perceived sys-
tem response time, we also consider the total SRT of the operations in our analysis. That 
is, since the overhead increases the response time of an operation to a value which might 
exceed the expected SRT (slow operation) or not (in time operation), the analysis of the 
total SRT offers an additional perspective on the experience of the subjects and helps us 
deriving sound conclusions.

To cover different types of operations, we selected the four operation categories 
described in Section 2 as treatment levels for the operation category factor: instantaneous, 
immediate, continuous, and captive. As described later in Section 4, we need the subjects 
of the experiment to perform a sequence of operations, a task (see Section 5.2), on a real 
application, that is, we have to specify a sequence of concrete operations, each one belong-
ing to a specific operation category. Since usually the complex operation in a task imple-
ments the functionality that the user intends to finally perform in an interaction sequence, 
we investigated how task order may affect the perception of complex operations. In par-
ticular, we considered the perception of the response time when a task ending with a con-
tinuous operation (long operation, requiring till 5 s to produce a result) is followed by a 
task ending with a captive operation (longer operation, requiring from 5 to 10 s to produce 
a result), and vice versa. These two orders are the treatment levels for the operation catego-
ries order factor.

More details regarding the rationale and the adopted values for the experiment are 
reported in Section 4.

We use the following null and alternative hypotheses for our research questions:
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The null hypothesis tested to address RQ1 is as follows: H
0
 : different overhead levels 

do not impact developers’ perception of the system response time. The alternative 
hypothesis is as follows: H

1
 : different overhead levels do impact developers’ percep-

tion of the system response time.

To answer RQ2, we analyze if the category of an operation relates to the resulting 
perception of the response time when the operation is exposed to overhead. The null 
hypothesis tested to address RQ2 is as follows: H

0
 : The perception of the SRT does 

not depend on the operation category when the operation is exposed to overhead. 
The alternative hypothesis is as follows: H

1
 : The perception of the SRT does depend 

of the operation category when the operation is exposed to overhead.

To answer RQ3, we considered how the order of execution of complex operations 
may affect the perception of the overhead. For instance, running a long operation (a 
captive operation) followed by a slightly shorter operation (a continuous operation) 
may make the perception of the SRT of these operations different from the percep-
tion generated by the opposite order. The null hypothesis tested to address RQ3 is  
as follows: H

0
 : The order of execution of tasks ending with continuous or captive 

operations does not influence the developer’s perception of the SRT of these opera-
tions. The alternative hypothesis is as follows: H

1
 : The order of execution of tasks 

ending with continuous or captive operations influences the developer’s perception 
of the SRT of these operations.

In Sections 4 and 5, we describe how we limited the number of possible factors and 
treatment combinations to get a manageable configuration.

3.3  Experimental subjects

For all the replications, our subjects were first-year bachelor students from the CS depart-
ment of the University of Milano–Bicocca who have previously taken the same Java pro-
gramming course, although not all students took the exact same edition of the course.

We recruited a total of 99 computer science students who all completed a demographic 
questionnaire before of the actual experiment (reported online at https:// github. com/ danie 
labri olaUn imib/ SRTov erhea dExpe riment). All students participated on a voluntary basis, 
and no specific incentive was in place.

Almost the entire population of students have used Eclipse. In fact, 99% of the students 
used Eclipse, and 35% of them exactly the same version used in the experiments, and they 
are all already familiar with the operations performed in the tasks of the experiment. The 
participants are mostly males (93 males and 6 females) with an average age of 21 years. 
According to these characteristics, the subjects can be considered to be representative of a 
population of young developers of software applications.

3.4  Response variables and metrics

All research questions require a response variable that can measure the perception of 
response time  (Juristo & Moreno, 2013): since we are studying how users “perceive the 
System Response Time,” we choose the perceived response time (PRT) as our response 
variable, which has already been widely used in empirical studies as a quality measure of 

https://github.com/danielabriolaUnimib/SRToverheadExperiment
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usability (Song et al., 2014; Tu et al., 2001). This response variable can be interpreted to 
answer all the RQs.

We measure PRT using a Likert scale, where participants can express their perception 
with respect to the system response time. This scale goes from “Too slow” to “Too fast” 
divided into five levels, with the third level corresponding to “Normal” (even if it may 
appear unlikely that a user perceives an application as running “Too fast,” this value has to 
be included in the responses to have a balanced set of options that do not suggest to sub-
jects that we were slowing down the application under test).

The response variable is measured after executing a task (a sequence of operations) with 
the object program, so that the users can actually express their opinion about the system 
they just interacted with.

To replicate the case of a user who interacts with a known application with a known SRT 
affected by overhead, we selected Eclipse, since our subjects have been using this IDE regu-
larly during their programming classes in the same laboratory where the study took place.

4  Design decisions

In this section, we discuss the design of the experiment, made of three exact replications 
(needed to involve the 99 participants), all performed in the same laboratory over 2 years, 
involving students after they just completed the same Java Programming course (with the 
same exercises and teachers).

The factors we are studying are as follows:

• Overhead level
• Operation category
• Operation categories order

Note that we need concrete tasks to be executed by the subjects: nevertheless, concrete 
tasks are not factors in this study, and we thus selected four tasks comparable in the 
sequence of operations that are executed (considering the operation categories in Sec-
tion 5.2), duration, and complexity, and we made each participant perform all of them only 
once so that to avoid the learning effect during the experiment. In the remaining of this 
section, we discuss the possible designs of the experiment and our decisions to control the 
factors and their combinations, to reach the final design we adopted for the experiment 
(fully described in Section 5).

4.1  Design decision 1: two operation categories orders studied

We consider Seow’s four SRT categories as operation categories, so tasks are composed of 
operations each one belonging to one out of four possible categories. For the purpose of the 
design, a task can be represented as a sequence of operation categories. For example, a task 
can be represented with the sequence “Instantaneous, Captive, Immediate, Continuous,” 
while another task could be represented with the sequence “Instantaneous, Immediate, 
Captive.” If we assume to have tasks with four operations, covering every possible combi-
nation of SRT operation categories requires covering 128 cases, which is not feasible.

As preliminary discussed in Section 2, not all the operation categories orders are rel-
evant in practice. Users typically interact with applications by executing an initial sequence 
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of simple operations, such as clicking on menu items and browsing between windows, 
to reach an operation of interest, which is typically a complex operation. So, to resemble 
reality, we should consider tasks composed of simple operations at the beginning and a 
complex operation at the end. This is also consistent with our practical experience on the 
definition of tasks in Eclipse (the selected application for the experiment) where it was 
almost impossible to reach a complex operation (a continuous or captive operation) with-
out first executing a sequence of simple operations (instantaneous or immediate ones) from 
any state of the system. Note that the shortcut commands in Eclipse are fast operations, and 
they usually open windows where the user can perform the desired (complex) operation. 
Online at https:// github. com/ danie labri olaUn imib/ SRTov erhea dExpe riment, we report the 
concrete tasks executed by the subjects.

These considerations led us to define two main sequences of operation categories to 
be used for our study, concretized into two main types of tasks: a task with some simple 
operations at the beginning (both instantaneous and immediate) and a continuous opera-
tion at the end, and another task also with simple operations at the beginning but a captive 
operation at the end.

4.2  Design decision 2: multiple concrete tasks

The two types of tasks that we identified can be mapped into many concrete tasks by 
choosing different concrete operations of the right operation category each time. To keep 
the study small, while still considering more than one concrete operation for each operation  
category, we consider two concrete tasks for each categories order chosen, obtaining four 
concrete tasks in total (detailed in Section 5.2 and shared online at https:// github. com/ 
 danie labri olaUn imib/ SRTov erhea dExpe riment).

4.3  Design decision 3: overhead orders not studied

We selected four overhead levels to be studied (as discussed in Section 3.2).
If we consider that every operation in a task can be exposed to a different overhead level 

and we consider every combination, we obtain 256 combinations of overhead levels to be 
investigated.

We decided to block the overhead orders, so instead of applying a different overhead to 
each operation in the task, we apply the same overhead to all the operations in each task. In 
this way, we reduce the cases to be considered to four: one for each overhead value we use 
in the experiment.

This overhead order limitation is reasonable. If we consider that tasks are made of 
four operations, with a total duration of less than 10 s, it makes little sense to continu-
ously change the overhead level, while it makes sense to change the overhead level in a 
different task.

4.4  Possible setups

Based on these design decisions and using the factors of Table 1, we identified two main 
options for the setup of the study, discussed below.

https://github.com/danielabriolaUnimib/SRToverheadExperiment
https://github.com/danielabriolaUnimib/SRToverheadExperiment
https://github.com/danielabriolaUnimib/SRToverheadExperiment
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Between overhead levels, within operation categories, and operation categories 
orders In this setup, every group of participants performs all the tasks (and consequently 
executes operations belonging to all the categories) while being exposed to the same over-
head level.

In this way, we eliminate any issue about exposing the same participant to multiple 
overhead levels (it is a between overhead level setup). Since we expose each group to the 
same overhead level, we need enough participants in each group to be sure that the results 
do not depend on the group.

This design addresses the “operation categories order” factor by having half of the 
groups performing the tasks ending with a captive operation first and the other half execut-
ing the tasks ending with continuous operation first.

Within overhead levels and operation categories, between operation categories order 
and overhead levels In this alternative setup, each group of participants performs all the 
tasks (and consequently all the operation categories) in one of the two orders, while each 
task is exposed to a different overhead. Since we study four overhead levels and we have 
four tasks, we have 64 possible combinations. This number of combinations requires the 
involvement of a huge number of participants in the experiment, which makes the design 
infeasible in practice.

We thus finally decided to adopt the first setup, which is presented in greater details in 
the next section.

5  Experiment design

This section describes the design of the experiment that we adopted for each of the three 
replications.

5.1  Experimental groups

Based on the objective of the study and the design decisions discussed in Section 4, we 
have clear constraints on the experiment. In particular, the study has to cover the following 
items: 

1. Four overhead levels
2. Four operation categories
3. Two operation categories orders

Table 1  Factors and treatment levels

Factors Treatment levels

Overhead level 0%, 20%, 80%, 140%
Operation category Instantaneous, immediate, continuous, captive
Operation categories order Continuous-captive, captive-continuous
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Table  1 summarizes the chosen factors and treatment levels that we considered in our 
experiment, while the design is shown in Table 2.

During each replication of the experiment, all the subjects have been homogene-
ously distributed in eight groups G1–G8 (to finally have in the overall at least 12 sub-
jects for each group): groups G1, G3, G5, and G7 first perform the two tasks termi-
nating with a continuous operation and then the two tasks terminating with a captive 
operation, while groups G2, G4, G6, and G8 do the opposite. This allows to study the 
impact of complex operations order on the perception of the overhead. In addition to 
continuous and captive operations, the tasks include enough instantaneous and imme-
diate operations (see description of the tasks in next subsection) to be able to study the 
operation category factor.

Each group works with the same overhead level for all the performed tasks.
Since the design is between overhead levels, that is, each group performs all the tasks 

with the same overhead, we might confound the effect of the overhead with the effect of 
the group. To mitigate this threat, we assigned people to groups randomly, avoiding any 
bias in the definition of the groups.

5.2  Tasks

The experimental objects are the tasks that the subjects perform during the experiment, 
reflecting some of the different studied treatments   (Juristo & Moreno,  2013). In our 
case, the experimental objects are the four concrete tasks that the participants have to 
perform on Eclipse. We included in the Eclipse workspace the JXSEConsolidation Java 
project that implements a P2P sharing platform. The project consists of 12 packages and 
650 Java classes.

The students regularly use Eclipse for their programming tasks, so they know the 
IDE well. We gave the students access to the documentation of the project and gave 
them time to look at the structure of the code and understand the size of the project (the 
knowledge of the implementation is not needed to understand the tasks). Students did 
not resolve any compilation or build problem, since the project was pre-loaded in the 
Eclipse environment.

To design these four tasks, we first identified the operations implemented in Eclipse 
that are either continuous or captive according to Seow’s classification, and we also 
identified the shortest sequence of operations that must be performed to reach the iden-
tified operation and run it. Among these tasks, we finally selected the cases with the 
most balanced presence of operations of the other categories (instantaneous and imme-
diate). In the ideal case, we would like to have one instantaneous and one immediate 
operation in each task. However, this was not always possible, and we had to tolerate 
the presence of two instantaneous operations in two tasks.

Table 2  Design Tasks Operation category order Applied overhead level

0% 20% 80% 140%

T3 T4 T1 T2 Continuous-captive G1 G3 G5 G7
T1 T2 T3 T4 Captive-continuous G2 G4 G6 G8
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The resulting four tasks are as follows:

• Task1 - Clean &Build: Click on Project menu and wait for the sub-menu being visu-
alized (instantaneous), click on Clean and open the dialog window (immediate), and 
click on Ok to start the Clean &Build operation, and wait for the progress window to be 
automatically closed (captive).

• Task2 - Search: Open the search window by clicking on the keyboard Ctrl + H (imme-
diate), click on Java Search tab (instantaneous), enter the string C* (instantaneous), 
and click on Ok to start the search and wait for the automatic closing of the dialog win-
dow (captive).

• Task3 - Type Hierarchy: enlarge the project tree with a double click (instantaneous), 
select the src package with one click (Immediate), and press F4 to start the creation of 
the Type Hierarchy (continuous).

• Task4: Sort Members: Click on the arrow near the name of the project to expand its 
structure (instantaneous), select the working package with a click (immediate), click on 
the Source menu (instantaneous), and click on Sort Members and wait for the end of the 
sorting operation (continuous).

The total set of operations executed by performing the four tasks are six instantaneous oper-
ations, four immediate operations, two continuous operations, and two captive operations.

The operation category order factor is exercised by running the tasks in two different 
ways: (1) to achieve the continuous-captive order, participants execute tasks in the order 
Task3 - Task4 - Task1 - Task2, and (2) to cover the captive-continuous order, participants 
execute tasks in the order Task1 - Task2 - Task3 - Task4.

To make sure the entire procedure and the tasks are clear, we had a pilot study with 
colleagues, Ph.D. students, and students who directly collaborated with the authors of this 
paper, who accepted to help us with the design of the experiment. We had multiple ses-
sions, collecting feedback useful to improve the material at each session. We experienced 
no issues with the design of the experiment and the chosen tasks, and we mainly received 
feedback that helped us improve the experimental material, and the descriptions and ques-
tionnaires shared with the students.

5.3  Experiment procedure

The experimental procedure resembles the general structure represented in Fig. 1 and the 
detailed design shown in Table 2. In particular, all the participants to the study have been 
invited to join an experimental session in the lab they use for their courses, which hosts 100 
HP ProDesk 600 G1 SFF equipped with an Intel i3-4130 and 4GB of RAM. We invited 
students who have taken part to Java Programming courses in our department: participation 
was purely based on volunteers, and no specific incentive was promised.

To have a balanced number of people in each group, we asked the students to subscribe 
for the experimental session in advance. We then randomly distributed the students among 
the eight groups.

The lab session started with a profiling questionnaire, then we distributed an instruc-
tion sheet giving general information about the structure of the experiment and a general 
description of the tasks that will be performed with Eclipse. Subjects were not told about 
the real aim of the experiment (to avoid introducing any bias in the evaluation), nor about 
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the fact that tasks had overheads; they were simply told that we were studying the system 
response time of some functionalities in Eclipse.

Each participant performed the four tasks presented in Section  5.2 but in a different 
order (tasks 3, 4, 1, 2 for the odd groups and tasks 1, 2, 3, 4 for the even groups) and 
exposed to a different overhead level according to the design shown in Table 2.

Each participant incrementally accessed the four sheets describing the specific tasks to 
be performed with Eclipse, that is, the sheet with the description of the next task was acces-
sible only once the previous task was completed. Each task is carefully described with text 
and screenshots to avoid misunderstandings. Once a task is completed and before moving 
to the next task, the participant evaluated the perceived response time of each operation in 
the task according to five possible levels: “Too slow,” “Slower than Normal,” “Normal,” 
“Faster than Normal,” “Too Fast.”

The subjects finally compiled an exit questionnaire to check whether the performed 
operations were clearly explained.

We report online at https:// github. com/ danie labri olaUn imib/ SRTov erhea dExpe riment  
all the documents we gave to the participants.

To expose each instance of Eclipse to the right overhead, we used AspectJ and Equinox 
Weaving (Eclipse Community, 2019) to monitor the original SRT of the Eclipse function-
alities and to modify the SRT of each operation under analysis based on the group of the 
participant. In particular, we computed the average SRT time requested by each operation 
from five automatic executions of the tasks, obtained by repeating the execution of a Siku-
liX1 script in the same lab used for the experiments with the participants. We introduce a 
specific overhead for each user by adding a delay that depends on the group of the user. We 
report data about the resulting runtime and its variance in Section 6.1.

Fig. 1  Experiment overview

1 SikuliX homepage http:// sikul ix. com/

https://github.com/danielabriolaUnimib/SRToverheadExperiment
http://sikulix.com/
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6  Family analysis

This section provides descriptive data about the SRT of the operations in the tasks, when 
affected by the various overhead levels, presents the techniques used to study the experi-
mental data, and finally describes the achieved results. The next section interprets the 
results distilling the key findings of the paper.

6.1  Descriptive data about the SRT of the operations in the tasks

The category assigned to each operation in each task depends on its mean SRT computed 
from five executions of the tasks. We show the distribution of the collected samples in 
Fig. 2. Table 3 reports the variance, median, mean, and relative standard deviation of the 
execution time collected of each operation. Note that we named each operation with a two-
digit number TO, where T is the number of the task and O is the number of the operation 
inside the task (e.g., operation 23 is the third operation of the second task).

All the values are below the boundary of their category. The noise in the measurements, 
measured as the relative standard deviation, is also low. In fact, it is always below 16%, with 
the exception of two operations. The relative variance is high for operation 43, but this is 
caused by the extremely small values of the execution time of the operation. Indeed, it is a 

Fig. 2  SRT values for all the considered operations. The horizontal red line shows the maximum expected 
time for the operations in that category
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click on a menu with an almost 0 ms execution time and with a variance that approximates 
to 0. Thus, its behavior is pretty consistent and it is not likely to represent a problem for the 
study. The immediate operation 32 is the only operation showing a relatively significant 
variability in the measurement. We take this into account in the discussion of the results.

These operations have been exposed to three overhead values: 20%, 80%, 140%. Fig-
ure 3 shows the mean value of the resulting SRT for all the operations.

Depending on the resulting SRT, an operation can be in time, that is, its SRT is below 
the threshold for its category, or slow, that is, its SRT is above the threshold for its cate-
gory. In the next sections, we analyze the impact of the overhead and how it is perceived by 
the users both considering the relative increment of the SRT and the total SRT distinguish-
ing between in time and slow operations. We however exclude immediate operations from 
the analysis of the total SRT because too few operations are slow after the introduction of 
the overhead.

6.2  Data analysis techniques

Even though at the family level there is a third level of clustering (i.e., experiment), the 
experiments’ intra-class correlation coefficient (ICC) was equal to 0 at family level, and 
therefore, results would not be affected by the higher level of clustering (i.e., subjects 
within experiments)  (McNeish et  al.,  2017). Consequently, we move on to analyzing all 
the data from the three replications as a unique one (a family), without the need of keep-
ing the replication as a factor. By using this analysis strategy, we can gain evidence out 
of a family of experiments, deriving stronger results than with the analysis of the indi-
vidual experiments. All the answers collected during the experiments, and the R2 scripts 
used to analyze them, are available online at https:// github. com/ danie labri olaUn imib/ 
 SRTov erhea dExpe riment.

Table 3  Absolute times (seconds) of executed tasks

Name Operation Cat Variance Median Mean Relative Std Dev

Click on Project menu 11 Inst. 0.0000000 0.0006000 0.0006000 11.79%
Click on Clean 12 Imm 0.0021601 0.7305446 0.7549467 6.16%
Click on Ok 13 Cap 1.2957357 6.7954000 6.9248000 16.44%
Ctrl + H 21 Imm 0.0014068 0.2337275 0.2310553 16.23%
Click on Java search tab 22 Inst 0.0001257 0.1297000 0.1303200 8.6%
Enter C* string 23 Inst 0.0000000 0.0000300 0.0000300 0%
Click on Ok for search 24 Cap 0.2390960 6.4777000 6.2862060 7.78%
2click on Project tree 31 Inst 0.0005775 0.1511000 0.1445400 16.63%
Select SRC package 32 Imm 0.0359490 0.3560412 0.3957981 47.90%
Press F4 33 Cont 0.0074012 2.1710000 2.1535800 3.99%
Click on name project 41 Inst 0.0000175 0.1026900 0.1041167 4.02%
Select working package 42 Imm 0.0018230 0.2848290 0.2636078 16.20%
Click on Source menu 43 Inst 0.0000000 0.0001000 0.0001400 39.12%
Click on Sort Members 44 Cont 0.0180414 2.6316000 2.6412524 5.09%

2 https:// www.r- proje ct. org/

https://github.com/danielabriolaUnimib/SRToverheadExperiment
https://github.com/danielabriolaUnimib/SRToverheadExperiment
https://www.r-project.org/
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The experiment has been replicated three times: the first replication involved 48 par-
ticipants, the second 19, and the third 32. The three replicas were performed at the same 
institution, in the same laboratory, and following exactly the same procedure. Besides, in 
Table 4, we show how participants were distributed in the different experimental groups 
within the different replicas.

We analyzed the data of the group of replications with generalized estimating equa-
tions (GEEs) (Ghisletta & Spini, 2004). GEEs are parametric statistical models tradition-
ally used in biology and epidemiology to analyze longitudinal and clustered data (such as 
patients over time, or patients within hospitals). GEEs can be seen as traditional multiple 
regression models where parameter estimates and standard errors are corrected taking into 
account the clustering structure of the data (McNeish et al., 2017).

We chose parametric statistical models (such as GEEs), rather than non-parametric sta-
tistical models (such as the Wilcoxon test (Field, 2013)) because we are interested in ana-
lyzing the effect of the interaction of various factors (i.e., operation category, overhead 
level, and operation category order) on results—rather than the effect of single factors as in 
traditionally used non-parametric models (Field, 2013).

We relied on GEEs, rather than on other typically used parametric statistical models 
for analyzing longitudinal data, such as repeated-measures ANOVA because GEEs allow 
assessing the effect of various variance-covariance matrices (e.g., such as exchange-
able, autoregressive, unstructured  (Wang, 2014)) on results. In other words, GEEs allow 

Fig. 3  SRT when various overhead levels are applied. The horizontal red line shows the maximum expected 
time for the operations in that category
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assessing the effect of assuming different types of relationships across the participants’s 
scores over time. This allows assessing the robustness of the results to different specifica-
tions and, thus, increasing the reliability of the results.

Finally, we preferred GEEs over linear mixed models (LMMs (Verbeke, 1997)) because 
GEEs provide accurate results despite misspecifications in the variance-covariance matrix 
(contrary to LMMs  (McNeish et  al.,  2017; Zorn,  2001)) and also because GEEs make 
fewer distributional assumptions than LMMs (e.g., the normality assumption of the ran-
dom effects in LMMs (McNeish et al., 2017)), that eases the interpretation of results (e.g., 
in case data transformations were necessary with LMMs). For an introductory text on 
GEEs and their main advantages and characteristics, we refer to McNeish et al. (2017).

We fitted a GEE with the following factors: overhead levels, operation category order, 
and operation category. In particular, we fitted a GEE with the main effects of such factors, 
their two-way and three-way interactions. We included all the interactions among the fac-
tors because a priori any of them may alter the values of the others. In other words, there is 
no current evidence in SE to suggest that the factors are independent as it may be consid-
ered if we did not include the interactions among them3.

GEEs are built on a series of assumptions (McNeish et al., 2017): 

1. All relevant predictors are included. This assumption is satisfied as we want to assess the 
three-way interaction between overhead levels, operation category order, and operation 
category on a Likert scale from 1 to 5 dependent variable.4

2. Participants are not clustered within a larger unit, or the clustering at the higher level is 
negligible. This assumption is satisfied because the intra-class correlation coefficient 
at the experiment level (i.e., the higher level) equals to 0.

3. A sufficient sample size shall be available at the cluster level. A total of 99 subjects par-
ticipated in the three replications. At least ten subjects are needed for GEE’s estimates 
to be reliable (McNeish et al., 2017). Therefore, this assumption is satisfied.

4. A reasonably close covariance matrix shall be selected to represent the correlation 
among cluster-level (i.e., subject) scores. A total of 14 measurements are taken per 
subject (one measurement per each operation within the tasks, operations that belong to 
a specific operation category). An exchangeable and an unstructured covariance matrix 

Table 4  Distribution of 
participants within replicas

G1 G2 G3 G4 G5 G6 G7 G8 Total

1st replica 6 6 6 6 6 6 6 6 48
2nd replica 3 3 3 2 2 2 2 2 19
3rd replica 4 4 4 4 4 4 4 4 32
Total 13 13 13 12 12 12 12 12 99

3 Some authors suggest building statistical models following either top-down or bottom-up strategies (West 
et al., 2014). In short, factors (and their interactions) in such approaches are either added or dropped based 
on their statistical significance levels (e.g., if the interaction is not statistically significant, then drop it). How-
ever, such strategies have been lately discouraged in mature experimental disciplines such as biology due 
to their heightened risk of committing Type I errors (Colegrave & Ruxton, 2017). Besides, as p-values are 
dependent upon the sample size  (Cohen, 2016; Cumming, 2013), relevant factors (or interactions) may be 
dropped due to the presence of a small sample and not because they are not relevant in terms of effect size.
4 In this work, we consider the Likert scale as continuous. This approach has been commonly used in other 
disciplines (Norman, 2010; Wadgave & Khairnar, 2016).
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were selected to analyze the data. In view of the similarity of results, we opted to analyze 
the data with the most parsimonious covariance matrix (i.e., exchangeable structure).

We judge the statistical significance of the findings based on p-values. Particularly, we judge 
findings based on the magnitude and sign of the pairwise contrasts that we perform (i.e., the 
estimate column of Tables 6, 7 and 8). We only show the pairwise contrasts whose p-values 
are lower than 0.1 (and thus, show the largest effect sizes to focus on the main results).

We also repeated this analysis considering the Total SRT of an operation instead of the 
overhead level as a factor, to study the impact of the overhead from a complementary per-
spective. The total SRT of an operation can be either in time, if the response time of an 
operation is below its expected SRT, or slow, if the response time of an operation is higher 
than its expected SRT. The expected SRT is determined by the operation category.

The following two sections present the results obtained when considering the relative 
overhead level (Section 6.3) and the total SRT (Section 6.4) as a factor, respectively.

6.3  Results considering the overhead level as a factor

A GEE model was fitted to analyze the family of experiments. An exchangeable matrix-
covariance structure was fitted to analyze the data. According to the fitted model, the cor-
relation among the experimental subjects is 0.152.

Table 5 shows the results of the ANOVA table corresponding to the GEE fitted to ana-
lyze the family.

Table 5  ANOVA results of the family

*significant interactions are highlighted in bold

Parameter Degrees of freedom  p -value

Operation category 3 <0.001
Overhead level 3 0.330
Operation categories order 1 0.122
Operation category*overhead level 9 0.035
Operation category*operation categories order 3 0.005
Overhead level*operation categories order 3 0.105
Operation category*overhead level*operation categories order 9 0.722

Table 6  Statistical significant contrasts between operation categories order

Legend: ES effect size

Grouping variables Contrast information

Operation category Overhead 
level

Contrasts Estimate ES  p -value

Continuous 0 Capt. Cont. - Cont. Capt. 0.500 0.226 0.023
20 Capt. Cont. - Cont. Capt. 0.817 0.250 0.001
80 Capt. Cont. - Cont. Capt. 0.542 0.270 0.045

Captive 20 Capt. Cont. - Cont. Capt. 0.417 0.250 0.096
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As it can be seen in Table  5, the three-way interaction operation category*overhead 
level*operation categories order is not significant. Two two-way interactions operation 
category*operation categories order, operation category*overhead level as well as the 
factor operation category are significant with a p-value < 0.05.

The third two-way interaction overhead level*operation categories order and the factor 
operation categories order are not significant, since their p-values > 0.05.

After fitting the GEE, we provide a series of interaction plots and pairwise contrasts to 
answer our research questions (RQ1, RQ2, and RQ3). We assess the statistical significance 
of the findings based on the contrasts’ p-values (last column of Tables  6, 7  and  8). We 

Table 7  Statistical significant contrasts between overhead levels

Legend: ES effect size

Grouping variables Contrast information

Operation category order Operation category Contrasts Estimate ES  p -value

Captive - continuous Immediate 0–140% 0.300 0.123 0.069
Continuous 20–140% 0.708 0.257 0.029
Captive 20–140% 0.708 0.278 0.053

Table 8  Statistical significant contrasts between operation categories

Legend: ES effect size

Grouping variables Contrast information

Operation category order Overhead Contrasts Estimate ES  p -value

Captive - continuous 0 Instantaneous - immediate −0.140 0.044 0.007
Instantaneous - captive 0.436 0.170 0.050
Immediate - captive 0.577 0.166 0.003
Continuous - captive 0.801 0.168 < 0.001

20 Instantaneous - continuous −0.625 0.139 < 0.001
Immediate - continuous −0.583 0.173 0.004
Continuous - captive 0.708 0.216 0.006

80 Instantaneous - captive 0.736 0.229 0.007
Immediate - captive 0.708 0.218 0.006
Continuous - captive 0.667 0.160 < 0.001

140 Instantaneous - captive 0.681 0.253 0.036
Immediate - captive 0.646 0.227 0.023
Continuous - captive 0.708 0.216 0.006

Continuous - captive 20 Instantaneous - captive 0.500 0.183 0.032
Immediate - captive 0.404 0.169 0.079

80 Instantaneous - continuous 0.458 0.187 0.067
Instantaneous - captive 0.792 0.272 0.019
Immediate - continuous 0.417 0.154 0.035
Immediate - captive 0.750 0.221 0.004

140 Instantaneous - captive 1.237 0.225 < 0.001
Immediate - captive 1.186 0.194 < 0.001
Continuous - captive 0.708 0.171 < 0.001
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assess findings based on the contrasts’ effect sizes (ES column of Tables 6, 7 and 8), which 
were estimated by computing the least-squares means (predicted marginal means) for the 
specified factors of the experiment.

Table  6 shows the effect size and p-value of the statistically significant contrasts for 
operation category order (captive - continuous vs. continuous - captive), grouped by over-
head level and operation category.

Table  7 shows the effect size and p-value of the statistically significant contrasts 
between overhead levels, grouped by operation categories order and operation category.

Table  8 shows the effect size and p-value of the statistically significant contrasts 
between operation categories, grouped by operation categories order and overhead.

In Section  7, we plot the data, report statistically relevant interactions (i.e., pairwise 
contrasts whose p-values are lower than 0.1), and discuss the interpretation of these results.

6.4  Results considering the total SRT as a factor

A GEE model was fitted to analyze the family of experiments. An exchangeable matrix-
covariance structure was fitted to analyze the data. According to the model fitted, the cor-
relation among the experimental subjects scores equals to 0.152.

Table 9 shows the results of the ANOVA table corresponding to the GEE fitted to ana-
lyze the family.

As it can be seen in Table  9, the three-way interaction operation category*Total 
SRT*operation categories Order is not significant. Two two-way interactions operation 
category*operation categories order, operation category*Total SRT, and the factors oper-
ation category and Total SRT are significant at the 0.05 level.

After fitting the GEE, we provide a series of interaction plots and pairwise contrasts to 
answer our research questions (RQ1, RQ2, and RQ3). We assess the statistical significance 
of the findings based on the contrasts’ p-values. We assess the findings based on the con-
trasts’ effect sizes, which were estimated by computing the least-squares means (predicted 
marginal means) for the specified factors of the experiment.

Table 10 shows the effect size and p-value of the statistically significant contrasts for 
operation categories order (captive - continuous vs. continuous - captive), grouped by 
total SRT and operation category.

Table 9  anova results of the family considering the total SRT

*Significant interactions are highlighted in bold

Parameter Degrees of freedom  p -value

Operation category 3 < 2 × 10−16

Total SRT 1 0.0017
Operation categories order 1 0.1244
Operation category*total SRT 3 0.0129
Operation category*operation categories order 3 0.0018
Total SRT*operation categories order 1 0.4322
Operation category*total SRT*operation categories order 3 0.1635
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Table 11 shows the effect size and p-value of the statistically significant contrasts 
between total SRT, grouped by operation categories order and operation category.

Table 12 shows the effect size and p-value of the statistically significant contrasts 
between operation categories, grouped by operation categories order and total SRT.

7  Findings

This section discusses the findings related to the three research questions introduced 
in Section 3 based on the results reported in Section 6. For each research question, we 
first discuss the results obtained considering the overhead level factor, then we discuss 
the results for the Total SRT, and we conclude by answering the research question.

7.1  RQ1: to what extent do different overhead levels impact developers’ 
perceptions?

7.1.1  Overhead levels

Figure 4 shows how the overhead levels have been perceived by the subjects depending on 
the order of execution of the operation category order (captive - continuous vs continuous - 
captive) and depending on the operation category that is performed (instantaneous, imme-
diate, continuous, captive). The circles capture groups with statistically significant differ-
ences according to the analysis presented in Table 7, where immediate, continuous, and 
captive operations are perceived differently for overhead values equal to 20% and 140%.

In all the cases, an overhead level until 80% had a negligible impact based on the feed-
back provided by the subjects involved in the study for immediate, instantaneous, and 
continuous operations. The fact that users can tolerate a non-trivial overhead is extremely 

Table 10  statistical significant contrasts between operation categories order

Legend: ES effect size

Grouping variables Contrast information

Operation category Total SRT Contrasts Estimate ES  p -value

Continuous 0 Capt. Cont. - Cont. Capt. 0.5 0.226 0.023

Table 11  Statistical significant contrasts between slow and in time operations

Legend: ES effect size

Grouping variables Contrast information

Operation category order Operation category Contrasts Estimate ES  p -value

Continuous - captive Captive In time - slow 0.471 0.2067 0.0230
Captive - continuous Captive In time - slow 0.377 0.1851 0.0420
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interesting since it suggests that the field can feasibly accommodate analysis procedures 
running concurrently with applications, even when applications are actually interactive.

Overhead levels up to 140% have been in some cases distinguished by the users com-
pared to lower overhead levels. This indicates that overhead levels between 80 and 140% 
represent boundary values and higher overhead levels may impact the user experience in a 
significant way.

It is important to remark that this result has been obtained in the context of overhead 
levels introduced for a limited number of operations, between 3 and 4 in our study, and 
that we cannot conclude anything about overhead levels persisting for a higher number of 
operations, such as dozens of operations.

7.1.2  Total SRT

Figure 5 shows the box plot of the perceived SRT for the various categories of operations, dis-
tinguishing the case the operation is in time or slow. We do not report results for immediate 

Table 12  Statistical significant contrasts between operation categories

Legend: ES effect size

Grouping variables Contrast information

Operation category order Total SRT Contrasts Estimate ES  p -value

Captive - continuous In time Instantaneous - continuous −0.307 0.1102 0.0280
Continuous - captive 0.620 0.1390 < 0.0001

Slow Instantaneous - captive 0.617 0.1874 0.0050
Continuous - captive 0.671 0.2000 0.004

Continuous - captive In time Instantaneous - captive 0.522 0.1525 0.003
Slow Instantaneous - captive 0.938 0.1830 < 0.0001

Continuous - captive 0.523 0.2010 0.0460

Fig. 4  Interaction plot divided by operation categories order and operation category, and colored by over-
head level
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operations since they are seldom slow in our experiment, as discussed in Section 6.1. The red 
circles highlight the statistically significant difference as reported in Table 11.

The result is quite clear. Slow actions are mostly not recognized as such by the partici-
pants to the experiment with the exception of captive operations, which are the operations 
with the longest duration. This confirms the intuition that non-trivial overhead levels can 
be tolerated by users of interactive applications, as long as the executed operation is not a 
long-lasting operation.

7.1.3  Answer to RQ1

The two perspectives of the analysis show that the participants can hardly perceive over-
head levels below 80%, especially for operations that are not captive. Significantly increas-
ing the duration of captive operations (e.g., increasing the duration by more than 80% 
reaching a total execution time beyond 10 s, so turning it into a slow operation) should be 
done carefully because it has a non-negligible probability to annoy users.

7.2  RQ2: is the perception of the overhead level dependent on the operation 
category?

7.2.1  Overhead levels

Figure 6 shows how the operation category impacted on the perception of the overhead, 
depending on the overhead level (0%, 20%, 80%, 140%) and the operation category order 
(continuous - captive and captive - continuous). The circles capture statistically significant 
differences according to the analysis presented in Table 8.

We reported significant differences in all the groups and for all the cases, but mainly the 
differences involve either a captive or a continuous operation and an operation in another 
category. The plot clearly shows that the overhead introduced in captive and continuous 
operations is systematically perceived as worse than the overhead introduced in immediate 
and instantaneous operations. On the contrary, little differences are reported between sim-
ple operations (instantaneous and immediate). This suggests that techniques working in the 

Fig. 5  Perceived SRT with respect to a slow or in time total SRT
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field should consider the nature of the operation that is executed to control their impact on 
the perceived system response time.

7.2.2  Total SRT

Figure  7 shows how the operation category impacted the perception of the SRT 
depending on the total SRT of the operations (in time or slow) and the operation cat-
egories order (continuous - captive and captive - continuous).

The figure shows that the overhead does not impact all the operations equally. 
In particular, captive operations are impacted more heavily (the slope of the line is 
higher) compared to continuous and instantaneous operations. Indeed, this results in 
statistically significant differences between captive operations and the rest of the oper-
ations, as reported in Table  12. Finally, continuous operations also show a different 
trend than the simplest operations, overall confirming that operations that last longer 
are perceived more negatively than quick operations.

Fig. 6  Interaction plot divided by operation categories order and overhead level, and colored by operation 
categories

Fig. 7  Perceived SRT considering the total SRT of the operations
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7.2.3  Answer to RQ2

The analysis of RQ2 shows that users better tolerate the overhead introduced in simple 
operations compared to the overhead introduced in complex operations, with captive oper-
ations being the ones more sensitive to overhead.

7.3  RQ3: does the order of execution of complex operations affect the developer’s 
perception of SRT?

7.3.1  Overhead levels

Figure  8 shows how the operation categories order (captive - continuous vs continuous 
- captive) impacts on the perception of the SRT of continuous and captive operations, 
depending on the overhead level (0%, 20%, 80%, 140%). The circles capture statistically 
significant differences according to the analysis presented in Table 6.

The most significant results have been obtained for continuous operations. In fact, 
the same operations exposed to the same overhead levels are perceived in a radically 
different way if executed before or after captive operations. A continuous operation is 
perceived better when executed after a captive operation, which takes longer than the 
continuous operation, and may potentially ease the acceptance of the time required by 
the continuous one. We hypothesize that the execution of a captive operation, which 
may require multiple seconds to complete, puts the user in a rather negative mood 
about the response time of the system and this affects the evaluation of the follow-
ing operations. On the contrary, when the continuous operation is executed without 
the bias of the captive operation, its response time is perceived as worse. Finally, note 

Fig. 8  Interaction plot divided by operation category and overhead levels, colored by operation categories 
order
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that when the overhead is as high as 140%, the response time is too long in both cases 
and there is no significant difference in the responses of the users (they dislike both). 
This is consistent with the results for RQ1 that show that when the overhead increases 
above 80%, its effect can be recognized by users.

Regarding captive operations, they are long-lasting operations whose perception of 
the SRT does not change much whether they are executed before or after a continuous 
operation, although it is consistently worse to execute the captive operation (i.e., a 
long-lasting operation) after the continuous operation (i.e., a reasonably fast opera-
tion) making the user perceive the long-running operation even worse than it is. A 
significant difference is however present only for overhead equals to 20%. With no 
overhead or higher overhead levels, the response time is perceived as slow regardless 
of its context.

7.3.2  Total SRT

Figure 9 shows how the SRT is perceived by the subjects when the complex operations 
are in time or slow, considering their order of occurrence. Results are coherent with 
the analysis based on the overhead levels. The order of execution of the operations 
impacts on continuous operations only. When the SRT increases, both because of the 
overhead (see the case of slow continuous operations and slow captive operations) and 
because of the nature of the operation (see the case of in time captive operations), the 
order does not produce significant differences.

The significant difference is in the continuous operations that are perceived faster 
when executed after the captive operation, that is, the captive operation sets up a bad 
expectation about the SRT of the application that makes the subjects perceive positively 
the SRT of the following continuous operation (since it is faster than they expected).

Fig. 9  Interaction plot divided by operation category and slow or in time operations, colored by operation 
categories order
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7.3.3  Answer to RQ3

Based on the reported results, the perception of the overhead can be affected by the execu-
tion of captive operations, especially for the following continuous operations, which might 
be perceived as executing faster than they are. On the contrary, captive operations are not 
significantly influenced by their context of execution.

8  Study with professional developers

8.1  Design and setup of the experiment

The results obtained with computer science students may not generalize to professionals. 
We thus designed an additional small-scale study involving 12 professionals aimed at vali-
dating the obtained findings. We recruited professionals on a volunteer basis from our con-
tacts working in companies in Milan and Luxembourg.

Since involving professionals in a fully controlled in-lab experiment, as done with stu-
dents, is practically infeasible due to the strong time and organizational constraints profes-
sionals are subject to, we designed a shorter online study targeting the key observations 
reported in the answers to RQs1–3. Still, the online study has the same structure of the 
study with students.

The key findings obtained with students that we want to validate are the following ones:

• RQ1: Developers can hardly perceive overhead levels below 80%, especially for captive 
operations, while increasing the overhead over 80% for captive operations may easily 
annoy them.

• RQ2: Developers better tolerate the overhead introduced in simple operations com-
pared to the overhead introduced in complex operations, with captive operations being 
the ones more sensitive to overhead.

• RQ3: Continuous operations following captive operations might be perceived as exe-
cuting faster than they are, while captive operations are not significantly influenced by 
the context of execution.

To be as similar as possible to the original experiment, while making sure to expose the 
professionals to the right overhead, we used recorded videos of the tasks. In particular, we 
recorded the executions of the exact four tasks presented in Section 5.2, using GUI interac-
tions rather than keyboard interactions to let professionals clearly perceive when each inter-
action starts, and also making sure each recorded action matches with the expected category.

We then edited the videos to introduce the required overhead: we only used two over-
head levels (20% and 140%), since they are sufficient to validate the key findings listed 
above. We preserved the category order as a factor for the experiment, thus exposing sub-
jects to the two tasks ending with captive operations followed by the two tasks ending with 
continuous operations, or vice versa.

In a nutshell, to validate the main findings, the design still has to cover two overhead 
levels, four operation categories, and two operation categories orders, as summarized in 
Table 13.

We consistently used the same design, between overhead levels, for both the students 
and the professionals. All the professionals have been homogeneously distributed across 
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four groups G1–G4 (see Table 14). Groups G1 (20% overhead) and G3 (140% overhead) 
first experienced the two tasks terminating with a continuous operation and then the two 
tasks terminating with a captive operation, while groups G2 (20% overhead) and G4 (140% 
overhead) experienced the opposite order.

When doing the experiment, each subject used a link to access an online form, where 
he/she can download the instructions, the videos, and the guide to perform the activity. We 
used a different link for each group, to prevent any risk a subject may perform the tasks 
in the wrong order. Professionals submitted their assessment through an online form. We 
include all the documents and artifacts needed for this study in the material shared online 
at https:// github. com/ danie labri olaUn imib/ SRTov erhea dExpe riment.

8.2  Results

We first discuss the results for RQ1. Figure 10 shows the interaction plot divided by opera-
tion categories order and operation category and colored by overhead level. Professionals 
confirmed that small overhead levels (e.g., overhead equals to 20%) can be hardly per-
ceived (values close to normal in seven cases out of eight). They also confirm that higher 
overhead levels can often be tolerated (overhead levels equal to 140% are perceived as nor-
mal in six cases out of eight). Also, in this case, high overhead applied to captive opera-
tions may annoy the subjects, but this phenomenon is context-dependent, that is, captive 
operations are perceived slower if executed after continuous operations. The context is par-
ticularly relevant in this case, because an overhead of 20% has been perceived as annoying 
for captive operations again only when executed after continuous operations. In a nutshell, 
professionals confirm the findings for RQ1, while reporting a stronger dependence on the 
context for captive operations.

The results for RQ2 show that simple actions are less sensitive to overhead than com-
plex actions, captive operations in particular. This is also confirmed by professionals, with 
captive being the only type of operation assessed as too slow for both an overhead of 20% 

Table 13  Factors and treatment 
levels for the validation 
experiment

Factors Treatment levels

Overhead level 20%, 140%
Operation category Instantaneous, 

immediate, 
continuous, 
captive

Operation categories order Continuous - 
captive, captive 
- continuous

Table 14  Design for the 
validation experiment

Tasks Operation category order Applied overhead 
level

20% 140%

T3 T4 T1 T2 Continuous - captive G1 G3
T1 T2 T3 T4 Captive - continuous G2 G4

https://github.com/danielabriolaUnimib/SRToverheadExperiment
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and 140% (see the right plot in Fig. 10). Again, contrarily to students, this result is context-
dependent, since we have not observed the same for captive operations executed before 
continuous operations.

The results for RQ3 show that continuous operations are perceived faster when executed 
after captive operations. Professionals report a result that is conceptually similar, although 
practically different. That is, they perceived captive operations executed after continuous 
operations slower than they are. This means that the order of the operations tends to influ-
ence professionals negatively (captive operations perceived slower when executed after 
continuous ones) rather than positively (continuous operations perceived faster when exe-
cuted after captive operations), as observed for students.

In a nutshell, professionals confirm the results obtained with students with two caveats: 
(1) the operation order plays a bigger role on perception, and (2) the operation order tends 
to bias the perception negatively rather the positively. We may explain these differences as 
the likely stronger expectations that professionals have on the performance of the executed 
operations, thus being slightly more sensitive to overhead, especially for specific orders of 
operations.

9  Threats to validity

In this section, we discuss the threats to the validity of our study.
The main threat to conclusion validity concerns the possible lack of causality for the 

significant relationships that have been identified. To mitigate this risk, we considered the 
strength of the reported evidence in the discussion of the results. Moreover, to mitigate the 
risk that an interference is produced by the organization in groups of the participants, we 
assigned people to groups randomly.

Fig. 10  Interaction plot divided by operation categories order and operation category and colored by over-
head level. See Table 15 for the Y axis number conversion. The value of the y axis indicates how the opera-
tion is perceived (5=too fast, 4=faster than normal, 3=normal, 2=slower than normal, 1=too slow)

Table 15  Y axis number 
conversion for Fig 10.

How the operation is perceived Value

Too fast 5
Faster than normal 4
Normal 3
Slower than normal 2
Too slow 1
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The main threats to construct validity concern the way the overhead has been introduced 
in the software and the clarity of the tasks performed by the subjects. We controlled the 
overhead introduced in the software by carefully designing the aspects based on the perfor-
mance of the machines in the lab used for the experiment. Note that all the machines have 
exactly the same hardware and software. We tested the consistency of the behavior of our 
software on every machine of the lab.

Some participants might be relatively confident with experimented applications and 
tasks. To mitigate this threat, we asked the participants to indicate if the activity they per-
formed was clear in the exit questionnaire: 96.3% of the answers were positive, and only 
3.7% of the participants found some unclear aspects. We can thus assume that the values 
collected for the response variable were sufficiently accurate.

The internal validity threats have been addressed in Section 4 with the careful discus-
sion of the design decisions that motivated our final design.

The main threat to the external validity is the representativeness of the participants and 
the application we used. The computer science students we recruited acted as regular com-
puter programmers, so their student status mitigates any threat on the external validity of 
the experiment. To further mitigate this threat, we designed a small-scale study involving 
12 professional developers to assess the key findings obtained with students. On the other 
hand, it is known that the perception of time can be different for young people, adults, and 
elderly people (Duncan et al., 2005). Our study is thus representative of the perception of 
young people.

We studied the perceived SRT for interactive desktop applications considering the case 
of IDE tools, Eclipse in particular, while covering multiple categories of operations. While 
the results are informative on how the overhead is perceived for this kind of computer 
application by developers, they are not guaranteed to hold for different applications, dif-
ferent interaction sequences and above all for Web applications, where the network may 
play a relevant role on the SRT, and mobile applications, where the different hardware and 
interaction modalities may have an impact. Additional studies are necessary to extend our 
findings to these other domains.

10  Actionable results

In this section, we summarize the main actionable findings of our study and discuss their 
impact on analysis strategies working in the field within development tools. To give con-
crete evidence of their actionability, we also exemplify how they can be used to improve 
two monitoring techniques designed for the field.

10.1  Main actionable findings

F1: monitoring and analysis routines can consume non‑trivial resources for a lim‑
ited number of interactions Developers seldom perceived the variations in the SRT 
even for the largest overhead levels. This implies that applications can be safely slowed 
down to support field analysis and monitoring, at least for sequences of limited length 
(about four operations). This result opens to the design of families of monitoring and 
analysis solutions that can opportunistically consume significant resources for a limited 
amount of time.
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F2: monitoring and analysis routines should control the overhead introduced in 
long‑lasting operations Developers tolerated well the overhead introduced in simple 
operations (instantaneous and immediate) and also in continuous operations but revealed 
to be quite sensitive to the overhead introduced in captive operations, especially if executed 
after continuous operations. This introduces a significant risk of annoying the developers 
if the operation that is slowed down requires between 5 and 10 s to complete. As a conse-
quence, monitoring and analysis solutions working in the field could be more effective if 
activated selectively, avoiding to overlap with captive operations as much as possible.

F3: monitoring and analysis routines should be aware of the execution context Based 
on our study, the recent history of execution influences the perceived SRT. In particular, 
we studied this phenomenon for continuous and captive operations, and we discovered that 
continuous operations are perceived faster by students if executed after captive operations, 
and dually captive operations are perceived slower if executed after continuous operations. 
This introduces the challenge of having monitoring and analysis strategies that keep track 
of the recent history of the execution and exploit the context to opportunistically increase 
or reduce their activity.

10.2  Improving monitoring strategies: two examples

The reported findings can be exploited to improve field monitoring techniques, for exam-
ple, controlled burst recording (CBR)  (Cornejo et  al., 2017b, 2020b) and delayed sav-
ing (Cornejo et al., 2019).

CBR  (Cornejo et  al., 2017b, 2020b) is a monitoring technique that can record bursts 
(sequences) of function calls whose activation and deactivation are controlled by the opera-
tions performed by the users on the target application: when a new user operation is started 
(e.g., the user clicks on a button), the monitor records, with a given probability, every func-
tion call that is executed until the application returns a feedback to the user. CBR also 
records information about the state of the application before and after the burst is collected, 
to finally obtain a finite state model that represents how the monitored application is used 
by its users, adding no more than 125% of overhead on average.

The results obtained with the study described in this paper can be used to improve CBR 
in at least two ways. First, since users can hardly perceive an overhead up to 140% when 
introduced for a limited number of interactions (findings F1 and F2), bursts could be now 
obtained from multiple (four from this paper) operations performed sequentially instead of 
being limited, as in the current version, to record the execution of only one single operation 
with a given probability.

Second, CBR can be extended to be aware of the nature of the operation that is executed 
(finding F2) and of the context (finding F3) to adjust the sampling rate and the data record-
ing behavior with respect to it.

The discussed set of improvements can lead to more accurate and complete traces 
extracted faster, improving the overall capability of the monitoring technique to discover 
up-to-date information about the behavior of developers.

Delayed saving (Cornejo et al., 2019) is a technique that allows to save extensive amount 
of data in memory while waiting for computer inactivity to save the data to disk without 
annoying users. To inexpensively keep data in memory while waiting to be saved, delayed 
saving does not copy values but maintains reference to live objects. As a consequence, 
some variables may change their values by the time they are saved to disk, introducing data 
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inconsistencies. Experiments with the Eclipse IDE show that delayed saving can limit the 
overhead to about 5% while saving 85% accurate data.

The results in this paper show that higher overhead levels can be definitely introduced, 
at least sporadically, without impacting on developers (findings F1 and F2). This suggests 
that the percentage of inaccurate data could be reduced by saving data to files for longer 
time, not only during computer inactivity but also partially overlapping with the user activ-
ity, trading a slightly higher overhead for more accurate data. Again, the saving strategy 
could be also sophisticated taking the nature of the operation that is performed into account 
(finding F3).

11  Related work

In this section, we frame our work in the context of related areas. In particular, we dis-
cuss how it relates to studies about the perception of the system response time, about field 
monitoring and analysis, and more specifically about monitoring developers while working 
in their environment.

11.1  Perception of SRT

There are multiple studies related to the perception of the SRT in the context of the 
research in HCI and psychology. For instance, the perception of time is a complex subject 
of study in psychology, and several researchers investigated it. Relevant to our experiment, 
Duncan et al. (2005) studied how the perception of time changes with age discovering that 
young people, adults and elderly people perceive time differently. This is why we selected 
subjects of similar age. Our study is thus representative of how young developers perceive 
the overhead.

In the HCI area, there are a number of studies about the satisfaction of the user concern-
ing the SRT of an application. For example, Ceaparu et al. (2004) studied the interactions 
with a personal computer that causes frustration. In their experiment, users were asked to 
freely work at home for at least an hour on a computer and then to compile a questionnaire 
about what was frustrating. Although this experiment is different in both the design and 
the aim from ours, the results show that SRT delays (e.g., a too slow Web browser) might 
be the cause of a bad user experience. Some studies stressed the tolerance of the users in 
specific settings. For example, Nah (2004) investigated how long users are willing to wait 
for a Web page to be downloaded. Results show that users start noticing the slowdowns 
after 2-s delays and that do not tolerate a slow down of more than 15 s. A threshold of 15 s 
has been reported as the maximum that can be tolerated before perceiving an interruption 
in a conversation with an application also in other studies (Nielsen, 1999; Miller, 1968). 
Hoxmeier and Cesare (2000) studied how users react to overhead introduced in the tran-
sitions between Web pages and discovered that users can tolerate up to a 12-s delay. Yet 
other studies considered the impact of response delays and latency in crowd-powered con-
versational systems (CPCS)  (Abbas et al., 2022), mobile searches (Arapakis et al., 2021), 
and conversational agents (Funk et al., 2020).

While these findings are interesting, they focus on complementary aspects compared to 
our experiment. In fact, we are not interested in identifying the maximum overhead that a 
user can tolerate, but we are interested in the overhead that users cannot even recognize. 
In other words, we are not interested in stressing up to the limit the users, but rather to 
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seamlessly introduce analysis and monitoring routines in software applications. Moreover, 
our study covers different classes of operations, including operations to move across win-
dows and menus and also the execution of domain functionalities, instead of focusing on 
specific operations (e.g., transitions between Web pages). Finally, our experiment consid-
ers the specific case of developers working on their IDE.

Some studies demonstrated that perception might be affected by psychological factors, 
such as motivation and interest (Luo et al., 2017). Also, the animations visualized during 
the waiting time might have an impact on the perception of time (Söderström et al., 2018). 
Extending the study considering these factors is part of our future work.

11.2  Field monitoring and analysis

Field monitoring and analysis solutions can significantly improve verification and valida-
tion methods since they can work with production data and can exploit the knowledge of 
the real interaction patterns between users and applications. In particular, field monitoring 
has been used to collect data that can support the reproduction and analysis of failures (Jin 
& Orso, 2012; Clause & Orso, 2007; Liblit et al., 2003; Jin et al., 2010), but also to collect 
additional evidence about the correctness of software systems, such as residual coverage 
data (Ohmann et al., 2016; Pavlopoulou & Young, 1999). Field data can also be exploited 
to validate software in-house according to patterns consistent with the usage scenarios 
observed in the field  (Gazzola et  al.,  2023; Elbaum & Diep,  2005). Finally, data about 
correctness can be also collected proactively, by running tests in the field, rather than only 
observing the software passively  (Bertolino et  al.,  2022; Ceccato et  al.,  2020; Hosek & 
Cadar, 2015).

Although these solutions can be beneficial for the quality of the software, they may 
degrade the performance of the applications and consequently affect the quality of the user 
experience if not carefully designed. So far the research focused on the design of mech-
anisms that can work in the field, possibly limiting their intrusiveness, but with limited 
understanding of the possible reaction of the users to the experienced overhead.

Some monitoring and data collection techniques have been specifically designed to limit 
the overhead introduced in the target application. Existing strategies include distributing the 
monitoring activity among the many instances of a same application (Bowring et al., 2002; 
Orso et  al.,  2002), collecting events probabilistically  (Liblit et  al.,  2003; Jin et  al.,  2010;  
Bartocci et al., 2012), and collecting subsequences of events with ad-hoc strategies (Hirzel 
& Chilimbi, 2001; Cornejo et al., 2017b). While these approaches may reduce the overhead, 
how and if the overhead is perceived by users is not investigated in these papers.

11.3  Monitoring developers

Improving the development process, and consequently, the productivity of developers and 
development teams, is indeed an objective of many software engineering practices. Improv-
ing the process normally requires collecting information about the behavior of the partici-
pants to the process, so that appropriate actions can be taken. Monitoring solutions target-
ing software developers can collect data of different types and at different granularity levels. 
For instance, the collected information might be about the development process  (van  der 
Aalst, 2012; Rubin et al., 2014) or about the individual operations performed by the develop-
ers while completing technical tasks (Meyer, Barton et al., 2017; Meyer, Murphy et al., 2017; 
Züger et al., 2017). The collected data can finally be used to take corrective actions about 
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practices (Meyer, Barton et al., 2017), tools (Meyer, Murphy et al., 2017), and collaboration 
mechanisms (van der Aalst, 2012). Interestingly, a recent stream of work investigated the col-
lection of behavioral data jointly with bio-metric data to support a number of software engi-
neering tasks (Laudato et al., 2023; Couceiro et al., 2019).

In all these cases, suitable monitoring mechanisms must be in place to collect accurate 
data that can support decisions. However, there is also a need to collecting data transpar-
ently without annoying developers, possibly with developers not even noticing any slow-
down in their systems. The study presented in this paper offers a first quantification of 
the amount of overhead that can be introduced into development tools without developers 
noticing the increased SRT. These results can be used to optimize the data collection strate-
gies, as preliminary discussed in this paper.

12  Conclusions

Development and operation are nowadays tightly integrated phases that are sometimes hard 
to distinguish one from the other. The operational environment is not only designed to pro-
vide services to users but is also conceived as a monitoring, analysis, and testing platform 
that can produce useful data to improve produces and processes. In particular, monitor-
ing solutions can be used to obtain data directly from the workstations used by develop-
ers to optimize development practices, enhance software tools, and improve collaboration  
between developers.

So far, the research focused on how to enrich the operational environment paying lim-
ited attention on how the generated overhead may impact on the perception of SRT. In this 
paper, we presented an empirical study about how developers perceive delays introduced in 
their IDEs, distilling findings useful to design and tune solutions that operate in the field. 
For instance, our results indicate the levels of overhead that can be transparently introduced 
into the target application and the factors that should be controlled to make monitoring non-
intrusive, such as the nature of the operation that is executed and its context of execution.

Even if the presented results primarily target developers, they represent a starting point for 
studying a broader set of situations where users of software applications have an understand-
ing of the response time expected for the application they are using. Investigating the poten-
tial validity of our results in other domains is part of our future work. An additional direction 
of our future work consists of studying both how developers react to an overhead that persists 
for a long time and how developers react to an overhead introduced intermittently (e.g., the 
system is slowed down for a while, then it goes back to normal operation, then it is slowed 
down again, and so on). Results will allow us to elaborate an initial set of requirements and 
recommendations about how analysis and monitoring solutions should work in the field.
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