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Abstract
Boundary value analysis (BVA) is a common technique in software testing that uses input 
values that lie at the boundaries where significant changes in behavior are expected. This 
approach is widely recognized and used as a natural and effective strategy for testing soft-
ware. Test coverage is one of the criteria to measure how much the software execution 
paths are covered by the set of test cases. This paper focuses on evaluating test coverage 
with respect to BVA by defining a metric called boundary coverage distance (BCD). The 
BCD metric measures the extent to which a test set covers the boundaries. In addition, 
based on BCD, we consider the optimal test input generation to minimize BCD under the 
random testing scheme. We propose three algorithms, each representing a different test 
input generation strategy, and evaluate their fault detection capabilities through experimen-
tal validation. The results indicate that the BCD-based approach has the potential to gener-
ate boundary values and improve the effectiveness of software testing.

Keywords  Software testing · Boundary value analysis · Test input generation · Boundary 
coverage · Random testing

1  Introduction

Software testing is the execution of software systems for the purpose of detecting defects, 
which is of great importance for verifying the reliability of software systems. The main 
activity of software testing is to generate test cases consisting of test inputs and their 
expected behavior (outputs) of the software. In a testing phase, the test cases are executed, 
i.e., we obtain the actual outputs of the implemented software with the test inputs and com-
pare them with the expected ones, so that the behavior of the software is validated. To 
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ensure the reliability of the software, it is important to design a set of test cases that can 
find all the inherent bugs in the software.

There are several approaches to test case design. Test coverage plays the most impor-
tant role in test case design. Test coverage is one of the criteria to measure how much the 
software execution paths are covered by the set of test cases. For example, statement cover-
age, called C0 coverage, is defined as the percentage of program statements executed by 
the test cases overall program statements. Test coverage criteria (Zhu et  al., 1997), such 
as statement coverage (SC), path coverage (PC), branch coverage (BC), decision cover-
age (DC), decision/condition coverage (D/CC), and modified condition/decision coverage 
(MC/DC) (Chilenski & Miller, 1994), are commonly used in software testing. And the test 
cases are designed to achieve a test coverage that reaches a predefined level. On the other 
hand, boundary value analysis (BVA) is also commonly used for the design of effective test 
cases. The BVA is to identify the boundaries of program paths, i.e., the values that change 
the program paths with a small amount of input changes, and to design the test cases using 
the boundary values. Since it is empirically known that software bugs exist around the 
boundaries (Dobslaw et al., 2020), the test cases with BVA are those capable of finding 
bugs with high probability.

Traditionally, BVA follows a manual approach where a human developer analyzes a 
specification to identify partitions and their associated boundary values. Test cases are then 
written to ensure correct behavior at these boundaries (Reid, 1997). Several authors have 
contributed to the development and improvement of boundary value analysis and testing 
since its initial introduction and extension by White and Cohen (1980) and Clarke et  al. 
(1982). Jeng and Forgacs (1999) proposed a semi-automatic method that mixed dynamic 
search and algebraic manipulation of boundary conditions to more efficiently generate test 
data for boundary value testing (BVT). Zhao et al. (2010) focused on the handling of string 
inputs and proposed an innovative approach to automatically generate test points to iden-
tify problems at the boundaries of code with string predicates. In addition, Ali et al. (2016) 
extended their search-based test data generation method to model-based testing, using a 
solver to automatically generate boundary values based on a set of heuristics. More recently, 
Feldt and Dobslaw (2019) applied the idea of derivatives in mathematical parlance to detect 
the maximum “change” region by combining the input and output distances, known as the 
detection boundary. This method uses program derivatives as a fitness function in search-
based software testing for automated BVA. BVA was originally used in black-box testing. 
Recently, researchers have proposed several approaches to apply BVA in white-box test gen-
eration (Pandita et al., 2010; Jamrozik et al., 2013; Zhang et al., 2015; Guo et al., 2023). 
Zhang et al. (2015) proposed a new definition for boundary conditions based on mutation. 
The authors use a constraint to constrain the input to the boundary and use a constraint 
solver to solve it. The study in Guo et al. (2023) presents a test case generation approach that 
focuses on BVA in white-box testing. It combines a machine learning approach to bounds 
detection and MCMC (Markov chain Monte Carlo) to generate test inputs.

BVA is a systematic testing technique used in software testing to design test cases that 
focus on the boundaries of input domains. The primary goal of BVA is to identify potential 
defects or errors that may occur at or near the edges or limits of the input space. To make 
BVA more effective, proposing a boundary coverage metric is important. By defining 
boundary coverage metrics, we can measure how thoroughly we test these critical areas, 
evaluate the quality of the test suite, and ensure we do not miss critical test scenarios. 
Moreover, BVA is particularly useful for uncovering off-by-one errors, boundary-related 
exceptions, and other issues that often escape less focused testing. A boundary coverage 
metric allows to quantify the coverage of these high-risk areas, reducing the chances of 
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releasing software with critical defects. At the same time, testing can be time-consuming 
and resource-intensive. By establishing boundary coverage metrics, we can prioritize test-
ing efforts. Focusing on achieving full coverage of the boundary during testing while con-
ducting less exhaustive testing in non-boundary areas helps optimize resource allocation 
and testing efficiency. In summary, proposing a boundary coverage metric for boundary 
value analysis in software testing is essential for enhancing the precision, efficiency, and 
effectiveness of the testing process.

Evaluating the test coverage intending BVA is difficult since the boundaries are defined 
as continuous values. Li and Miao (2012) propose a series of model-based logic boundary 
coverage criteria, combining the boundary coverage criteria and the logic coverage criteria. 
Kosmatov et al. (2004) focus on the development of boundary coverage criteria for test gen-
eration from formal models and formalize the boundary coverage criteria, the rational for 
the (BZ-TT) method, and toolset. Utilizing the aforementioned techniques, it is necessary 
to have the specification that clearly states the boundary formally. However, many software 
development projects lack formal specifications in their development process. Identifying 
the exact boundaries within the input space of a software system can be complex.

Software applications often operate within multidimensional input domains. These 
domains might involve intricate data structures and interactions between various inputs. 
The complexity of these structures and interactions complicates the identification of 
boundaries, as they may not always align with conventional notions of limits or edges. 
Software behavior is not always static. Dynamic behavior can lead to shifting or evolv-
ing boundaries, making it challenging to define and cover them adequately. The dynamic 
nature of software adds an extra layer of complexity in identifying and testing boundaries 
effectively. Complex data structures, interactions between inputs, and dynamic software 
behavior can complicate boundary identification.

Additionally, creating a comprehensive set of test cases to cover all boundaries can be 
resource-intensive. As the number of input variables or dimensions increases, the number 
of potential boundary combinations can grow exponentially. This results in a combinato-
rial explosion of test cases, requiring significant time and resources to create and execute. 
Achieving complete boundary coverage might not always be the most efficient or cost-
effective strategy. Finding a balance between comprehensive testing and resource con-
straints is a challenge.

Overall, the lack of formal specifications, navigating the complexities of software 
behavior, multidimensional input spaces, and the trade-offs between thorough testing and 
resource constraints pose significant challenges in proposing effective boundary coverage 
metrics and associated test generation algorithms. Finding solutions involves a balance 
between the ideal of comprehensive testing and the practicalities of resource management 
in software testing endeavors.

In this paper, we attempt to define alternative measures, called boundary coverage 
distance (BCD). BCD introduces a metric that evaluates test inputs’ quality concerning 
boundary coverage in BVA. It focuses on distance measurements and considerations of 
lower and upper limits to gauge test inputs’ proximity to the boundaries, ensuring compre-
hensive boundary coverage for more reliable software testing. In addition, based on BCD, 
we consider the optimal test input generation to minimize BCD under the random test-
ing scheme. This method addresses the resource-intensive nature of generating exhaustive 
boundary tests by efficiently selecting critical test cases that contribute the most to the 
BCD metric. In summary, the contributions of this paper include (i) the definition of the 
boundary coverage distance to measure how much the test cases cover the boundary and 
(ii) developing test generation algorithms based on BCD.
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This paper is organized as follows. In Section 2, we introduce concepts associated with 
BVA. Section  3 is a definition of boundary coverage distance (BCD). In Section  4, we 
illustrate our method for generating test input. Section 5 is devoted to experiences with real 
programs. Finally, in Section 6, we summarize this paper and discuss future work.

2 � Boundary value analysis

Boundary value analysis (BVA) is one of the most popular approaches to generating test 
inputs. It is empirically known that the probability of introducing bugs is higher around the 
program path changes, i.e., the boundary. BVA finds the boundary from specifications or 
programs and generates test inputs around the boundary.

Consider the formal definition of boundary. Let f and I be a software under test and an input 
domain of software, respectively. The output of software is defined as O ∶= {y ∣ y = f (x), x ∈ I} . 
Suppose that the output of software is divided into several categories. Let O1,… ,Om be m- 
categorized outputs of software where O = ∪m

i=1
Oi and Oi ∩ Oj = � for all i ≠ j . The outputs in 

a category are considered to be equal in a sense. Then, the input domain can be divided by the 
equivalent partitions, i.e.,

Intuitively, the boundary is the input of software that crosses two equivalent partitions.
To define the boundary, we consider the functions that change the input of software. Let 

g be the bijection function from the input domain to the input domain: g ∶ I → I . Let G be 
a set of the functions with the following properties:

•	 For any g ∈ G , g−1 ∈ G where g−1 is the inverse function of g.
•	 There exists at least one composite function of G from any x ∈ I to any y ∈ I.

A function in G is regarded as a minimal operation that changes inputs. The first prop-
erty corresponds to the existence of an inverse operation. The second one means that any 
input in I can be generated by a chain of the operations. Therefore, the boundary of equiva-
lent partitions is given by

Consider the software for judging whether the English examination passed. The English 
examination has two kinds of scores: listening and reading. Each of listening and reading 
is scored out of 100. The conditions to get the credit are as follows: (i) both listening and 
reading scores exceed 50, and (ii) the total of listening and reading scores exceeds 120. The 
input of software is a pair of the listening and reading scores for a student, and the output is 
one of (1) “the input is invalid,” (2) “the student gets the credit,” and (3) “the student does 
not get the credit.”

For such software, we consider four functions to represent four operations changing 
inputs: ( g1 ) increasing the listening score by one, ( g2 ) decreasing the listening score by 
one, ( g3 ) increasing the reading score by one, and ( g4 ) decreasing the reading score by one. 
In function set G = {g1, g2, g3, g4} , (g1)−1 = g2 . The boundary sets are

(1)Ii ∶= {x ∈ I ∣ y = f (x), y ∈ Oi}.

(2)Bi ∶= {x ∈ Ii ∣ There exists g ∈ G such that y = f (g(x)), y ∉ Oi}.
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where (x, y) means the scores for listening and reading, respectively. Figure 1 shows the 
input domain and the boundaries of this software. The x-axis and y-axis correspond to the 
listening and reading scores, respectively. There are three equivalent partitions, I1 , I2 , and 
I3 , and the boundaries are located on the edges of equivalent partitions. It should be noted 
that the input (−1,−1) is not the boundary, because the input (−1,−1) cannot be the input 
belonging to I2 or I3 even if we apply any operations.

Remark 1  Any operations can be used if it holds the two properties. For example, we can 
add the operations: (v) increasing both the listening and reading scores by one and (vi) 

(3)

B1 ∶= {(−1, 0),… , (−1, 100),

(101, 0),… , (101, 100),

(0,−1),… , (100,−1),

(0, 101),… , (100, 101)},

(4)

B2 ∶= {(100, 50),… , (70, 50),

(50, 100),… , (50, 70),

(100, 51),… , (100, 100),

(51, 100),… , (99, 100),

(69, 51), (68, 52),… , (52, 68), (51, 69)},

(5)

B3 ∶= {(0, 0), (0, 1),… , (0, 100),

(100, 0),… , (100, 49),

(1, 0),… , (100, 0),

(0, 100),… , (49, 100),

(99, 49),… , (70, 49),

(49, 99),… , (49, 70),

(69, 50), (68, 51),… , (51, 68), (50, 69)},

Fig. 1   The input domain and the 
boundaries of the Eng- 
lish software
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decreasing both the listening and reading scores by one. In this case, the input (−1,−1) 
becomes the boundary because (0,  0) is generated by the operation (v) from the input 
(−1,−1) . In other words, the boundaries depend on the definitions of operations in the 
formal definition.

Remark 2  The outputs of software can be defined arbitrarily. If we focus on the execution 
paths on the program, the inputs (49, 50) and (50, 49) can be the different execution paths. 
In this example, we define the equivalent partitions only from the result of the judgment 
for the English examination by ignoring the execution paths, which is like a black-box 
approach. On the other hand, if the output of software, the behavior of software, is defined 
by the execution paths, as in a white-box approach, the equivalent partitions are changed. 
That is, the boundaries are also changed.

3 � Boundary coverage distance

3.1 � Definition

In this paper, we propose a metric to evaluate the quality of test inputs from the perspective 
of BVA, called boundary coverage distance (BCD). First, we define the boundary coverage.

Definition (boundary coverage)  Boundary coverage is the percentage of boundary values 
that are executed by a test suite.

Ideally, the boundary coverage is also achieved by a test suite to ensure highly reliable 
software. However, it is not easy to cover all the boundary values, because there are a huge 
number of boundary values and sometimes the number of boundary values becomes infi-
nite. For example, even in the example of English examination, although it is a simple pro-
gram, there are 963 boundary values.

Instead of the boundary coverage, we consider the distance from a given test suite to the 
test suite that achieves the boundary coverage. Let d(x, y) be the function that returns the 
distance from x to y. Based on the formal definition of boundary, the distance is defined by 
the number of minimum operations from x to y, i.e.,

For example, in English program mentioned in Section 2, the number of minimum oper-
ations from input x = (−1,−1) to input y = (0, 0) is 2.

Suppose that Ti is the test input (test suite) belonging to the equivalent partition Ii . The 
basic idea is the expansion of test inputs. The expansion means that each test input covers the 
test inputs that are within a given distance. The distance from Ti to Ii is defined as the mini-
mum expansion distance for the test inputs in Ti until they cover all the boundary values Bi.

where d(Ti,Bi) = ∞ when Ti is empty.
Finally, the distance from the suite S = ∪m

i=1
Ti to B = ∪m

i=1
Bi is given by

(6)d(x, y) = min
n
{n ≥ 0 ∣ y = g1(g2(⋯ gn(x))), g1,… , gn ∈ G}.

(7)d(Ti,Bi) = max
y∈Bi

min
x∈Ti

d(x, y),

(8)d(T ,B) = max
i=1,…,m

d(Ti,Bi).
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We call this distance the boundary coverage distance (BCD). If BCD is small, the test 
inputs are placed close to the boundaries.

3.2 � Computation of BCD

To compute BCD, we need to obtain all the boundary values. As mentioned before, it is 
not easy to get all the boundary values. Here, we consider the lower and upper limits of 
BCD. Let B

i
 be a set of test inputs which are placed on Bi , i.e., B

i
⊆ B . In this paper, B

i
 

is called the boundary points on Ii . From Eq. (21), it is clear that

Therefore, we have the lower limit of BCD as follows.

Next, we consider the upper limit of BCD. This paper focuses on components of the 
boundary, called the boundary components. For example, if the boundary is represented 
by a line segment, the boundary components are line segments that are shorter than the 
original boundary. If the boundary is a plane, the boundary components are triangles 
that cover the plane. We assume that each boundary component is defined by a set of 
points. A line segment is represented by two start and end points. In the case of a trian-
gle, it is defined by a set of three points. In general, Bi ∶= {P1,… ,Pk} is a set of bound-
ary components P1,… ,Pk that cover the boundary Bi where each boundary component 
consists of a set of points Pi ∶= {x1,… , xh} . The distance from a point x to a boundary 
component Pi is given by

This gives us the distance from Ti to Bi:

Since Eq.  (11) takes the maximum of points on the boundary, the distance of the 
boundary components is greater than the exact distance, i.e.,

The upper limit of BCD becomes

Since both B
i
 and Bi consist of the points that are the subset of Bi , they can be com-

puted without extracting all the boundary values.
For instance, we select the following subsets of B1 , B2 , and B3 in the example:

(9)d(Ti,Bi
) ≤ d(Ti,Bi).

(10)BCD(T) = max
i=1,…,m

d(Ti,Bi
).

(11)d(x,Pi) = max
i=1,…,h

d(x, xi).

(12)d(Ti,Bi) = max
p∈Bi

min
x∈Ti

d(x, p).

(13)d(Ti,Bi) ≤ d(Ti,Bi).

(14)BCD(T) = max
i=1,…,m

d(Ti,Bi).

(15)
B
1
∶= {(−1, 0), (−1, 100), (101, 0), (101, 100),

(0,−1), (100,−1), (0, 101), (100, 101)},
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It should be noted that B
i
= ∪

c∈Bi
c . Figure  2 shows the boundary points, and Fig.  3 

shows the boundary components (segments).

4 � Test input generation

In this section, we consider the test input generation that minimizes BCD. Suppose that the 
boundary points B

i
 and the boundary components Bi are given. In this situation, we obtain 

additional n test inputs minimizing BCD. Ideally, when the BCD is reduced to a minimum 
value, the n test data to be optimized move to the boundary point or to the center of the 
boundary component, since a large number of test cases cause a large amount of cost on 
software testing. In this study, we first empirically analyze all possible boundary values 
as boundary points. Then, the boundary region to be tested is selected by minimizing the 
value of the BCD of the n test data.

(16)B
2
∶= {(100, 50), (70, 50), (50, 100), (50, 70), (100, 100)},

(17)B
3
∶= {(0, 0), (0, 100), (100, 0), (49, 100), (100, 49), (49, 70), (70, 49)}.

(18)
B1 ∶= {{(−1, 0), (−1, 100)}, {(101, 0), (101, 100)},

{(0,−1), (100,−1)}, {(0, 101), (100, 101)}},

(19)
B2 ∶= {{(100, 50), (70, 50)}, {(50, 100), (50, 70)}, {(100, 50), (100, 100)},

{(50, 100), (100, 100)}, {(70, 50), (50, 70)}},

(20)

B3 ∶= {{(0, 0), (0, 100)}, {(0, 0), (100, 0)},

{(0, 100), (49, 100)}, {(100, 0), (100, 49)},

{(49, 100), (49, 70)}, {(100, 49), (70, 49)},

{(49, 70), (70, 49)}}.

Fig. 2   An example for covering a boundary point (compared with x1 and x3 , the test input x2 can cover the 
boundary point y with the minimum distance d(x2, y))
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We propose three test input generation algorithms that are very similar to the MCMC 
(Markov chain Monte Carlo) method (Chib & Greenberg, 1995).

The optimization process is shown in Algorithm 1, Algorithm 2, and Algorithm 3, respectively.
Algorithm 1 first randomly generates n test inputs from the input domain as an initial 

test set. Then, the initial test set is optimized by reducing the BCD value (lines 2–10). Dur-
ing the optimization process, the algorithm 1 first calculates the BCD of the initial test set. 
Then, it randomly selects a test input t from the initial test set and generates a new candidate 
t′ according to the proposal distribution, provided that t is given t� ∼ Q(t�;t) . If replacing t 
with the candidate t′ can reduce the value of BCD, the candidate t′ is accepted and replaces 
t in the initial data set; otherwise, the candidate t′ is rejected. After the optimization pro-
cess performs a fixed number of iterations, the initial test data is moved to the boundary. In 
the Algorithm 1, BCD can be computed as BCD or BCD mentioned in Section 3.2, or even 
as the mean of BCD and BCD , denoted as BCD_mean = mean(BCD + BCD).

Algorithm 1 only accepts candidates that can reduce the maximum distance among the 
minimum distances between the boundary point (or boundary line segment) and the test 
input. This means that the optimization goal of each iteration is only a boundary point or a 
boundary component, and the optimization process is slow.

Fig. 3   An example for covering a 
boundary component (segment) 
(the test input x2 can cover the 
boundary segment p with a 
distance of d(x2, y2))

Algorithm 1   An algorithm to generate boundary test inputs by reducing BCD
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With this in mind, we judged whether to accept the candidate by directly comparing the 
coverage distance d(Ti, y) for each boundary point or boundary component.

Let b_decrease be the number of boundary points or boundary components whose 
coverage distance is decreased by the candidate test set. Similarly, b_increase denotes the 
number of boundary points or boundary components whose coverage distance is increased 
by the candidate test set. We then get two algorithms for generating boundary test inputs, 
shown in Algorithm 2 and Algorithm 3 respectively. Algorithm 2 accepts a candidate when 
the candidate can reduce the coverage distance of one or more boundary points (or one 
or more boundary components) without increasing the coverage distance of any others. 
However, in Algorithm 3, even if the candidate increases the coverage distance of some 
boundary points (or some boundary components), it may be accepted with a certain prob-
ability. In Algorithms 2 and 3, b_decrease and b_increase can be calculated with Bi or Bi . 
Combining the three algorithms and the three BCD calculation methods, seven methods 
can be obtained, as shown in Table 1.

(21)d(Ti, y) = min
x∈Ti

d(xi, y) for y ∈ Bi.

Algorithm 2   An algorithm that considers each boundary point or each boundary component

Algorithm 3   Accept with probability
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Figures 4 and 5 demonstrate the ideal solutions generated by our algorithms when 
applying the BCD(Bi ) and BCD(Bi ) criteria, respectively. For the purpose of illustra-
tion, we assume a scenario where five boundary points are evenly spaced along a linear 
boundary, with a unit distance between each pair of adjacent points. The ideal solution 
varies based on the number of boundary points and test inputs. Figure 4a represents a 
scenario where the number of test inputs is fewer than the boundary points. Here, one 
test input is positioned at the central boundary point, while the remaining test inputs 
are placed midway between adjacent boundary points. This arrangement results in 
an optimal BCD value of 0.5. Conversely, as shown in Fig.  4b, when the number of 
test inputs exceeds the boundary points, each test input aligns with a boundary point, 
achieving an optimal BCD value of 0. Figure 5 illustrates the ideal solutions under the 
BCD criterion, which shows a different pattern compared to the BCD criterion. If the 
number of boundary points is greater than the test inputs, some test cases are likely to 
align with the boundary points themselves. However, when there are more test inputs 
than boundary points, all test inputs tend to be the middle of the boundary segments. 
The average outcomes of the BCD and BCD methods demonstrate these intermedi- 
ate tendencies. These scenarios represent ideal states in a highly simplified boundary 

Fig. 4   The ideal solutions generated by our algorithms when applying the BCD(Bi ) criteria
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context. It is important to note that in practical applications with more complex bound-
aries, the arrangement of test cases is likely to be more intricate.

5 � Experiment

This section presents experiments to investigate the fault detection capabilities of the three 
algorithms of the BCD approach and compare them with RT, ART, and concolic testing. 
We conducted experiments to generate test inputs for the previously mentioned English 
examination program and four real programs.

Fig. 5   The ideal solutions generated by our algorithms when applying the BCD(Bi ) criteria

Table 1   Combining the three algorithms with the three methods of BCD calculation results in seven 
approaches
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5.1 � Fault detection ability

To investigate the effectiveness of test sets in detecting faults, we employ mutation test-
ing. This approach involves modifying specific statements in the source code, known as 
mutations, to evaluate whether the existing test cases are capable of identifying these code 
errors. In our experiment, we deliberately introduce faults into the program by seeding 
them. Each seeded fault creates a faulty version of the program. For every test set gener-
ated during the experiment, we execute the entire set on each faulty version and tally the 
number of mutations that are detected or “killed.” We calculate the kill rate using Eq. (22).

The program under test is subjected to five types of injected faults. One category is the 
off-by-one bugs (OBOB), which occur when a computation process utilizes an incorrect 
value that is either one more or one less than the intended value. Boundary faults com-
monly fall into this category (Zhang et al., 2015). The remaining faults comprise four com-
monly used mutation operators (Jia & Harman, 2010): relational operator replacement 
(ROR), arithmetic operator replacement (AOR), scalar variable replacement (SVR), and 
logical operator replacement (LOR). To determine if a mutation is killed, we analyze the 
execution path. Specifically, if at least one test input exhibits a different execution path 
from the correct version, the mutation is killed.

In this experiment, the execution path is defined as the combination of the execution state 
of each branch in the program under a given input. Here, we refer to each atomic Boolean 
expression in the path condition as a predicate. Predicates can include Boolean variables 
and comparison predicates ( >,>=,<,<=,=,≠ ) and should not contain any Boolean opera-
tors such as ∧ , ∨ , and ¬ (Zhang et al., 2015). Each comparison predicate consists of two 
branches, and each branch has three states, denoted as “1, 0, -1.” For example, consider 
the comparison predicate (b < 0) , which has two branches: (b < 0) and (b >= 0).

We assign different states to a branch based on its execution and whether it is taken. 
If the branch is executed and taken (satisfied) one or more times, we label the state of 
this branch as “1.” If the branch is executed but not taken, we label its state as “0.” If the 
branch is not executed at all, we label its state as “-1.” For conditional branches within a 
program loop, regardless of the number of iterations, we mark the state of the branch that 
triggers the loop as “1.” This means that when a branch is taken multiple times, the actual 
execution path differs based on the number of times it is taken. However, to prevent path 
explosion from causing too many equivalence partitions, we disregard the number of times 
the branch is taken and simply consider it as “1” if it is taken.

We annotate the source code to add instrumentation and use the Gcov tool to extract 
the branch execution information. https://​gcc.​gnu.​org/​onlin​edocs/​gcc/​Gcov.​html is a source 
code coverage analysis tool that works in conjunction with GCC to implement statement 
coverage and branch coverage testing of C/C++ files. By adding instrumentation, Gcov 
accurately records the number of executions for each statement in the program. In our work, 
we use Gcov to write the branch execution frequency to an output file during program test-
ing. We then extract the branch information from the file to obtain the execution path.

For example, Fig.  6 shows a simple C program we mentioned earlier to determine 
whether the English examination was passed. Figure 7 demonstrates the result of Gcov on 

(22)kill_rate =
the number of killed mutations

total number of mutations

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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running the En_testing.c.gcov program with the input values a = 45 and b = 65 . 
We convert “taken a (a>0)” to “1” to indicate that the branch is taken at least once, 
convert “taken 0” to “0” to indicate that the branch is not taken, and convert “never 
executed” to “-1” to indicate that the branch is not executed. The execution path of the 
program En_testing.c with the input values a = 55 and b = 45 is the combination of 
all branch executions: 1,0,1,0,1,0,1,0,1,0,0,1,-1,-1.

5.2 � RT and ART​

In the RT approach, we randomly generate a test set consisting of n test inputs and execute 
each mutated program with this test set to study the fault detection ability.

The execution of ART follows the algorithm outlined in Chen et al. (2004). In the 
traditional ART algorithm, the executed set is incrementally updated by selecting ele-
ments from the candidate set until a failure is uncovered. However, to ensure com-
parability between the experimental results of ART and the BCD-based method, we 
modified the experimental stopping condition of ART to incrementally generate n test 
cases. For each mutation, the test case generation process stops if the injected fault is 
detected during the generation of the i-th ( i ≤ n ) test input, and the generated test set 
successfully kills the mutation. Conversely, if none of the n generated test inputs iden-
tify the fault, it implies that the generated test set was unable to kill the mutation.

Fig. 6   The source code of En_
testing.c 
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5.3 � Concolic testing

Concolic testing combines symbolic execution with concrete execution paths to 
improve software verification. Symbolic execution replaces normal inputs with sym-
bolic values during program execution, allowing for the maintenance of constraint sets 
for each execution path. Constraint solvers are then employed to resolve the constraints 
and identify the inputs that lead to the execution. The primary goal of this approach is 
to maximize code coverage. To achieve high program coverage and automatic test case 
generation, KLEE (Cadar et  al., 2008), a dynamic symbolic execution tool based on 
the LLVM compilation framework, is used as a comparative approach to our proposed 
BCD-based approach.

5.4 � Programs under testing

The method we have proposed is designed for generating boundary test cases in software 
testing by optimizing a set of test cases to move towards boundary points. This approach is 
suitable for programs where inputs can transition from one state to another through meas-
urable operations. The distance between two test cases, in terms of the number of opera-
tional steps required for transformation, determines the applicability of this method.

Fig. 7   Gcov writes the branch 
execution frequency to the output 
file En_testing.c.gcov 
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We select four programs used in the existing literature and English examination pro-
gram to evaluate the effect of our approach. The descriptions of these subject programs 
are shown in Table 2. And the details about all five programs are shown in Tables 3 and 4, 
such as the dimensional number of program inputs, the range of input domain, the number 
of patterns, line of code (LOC), mutation faults information, and the number of boundary 
points (num_Bpoint).

For programs other than miniSAT, we define the minimum operation as plus one and 
its opposite operation as minus one. In miniSAT (Eén & Sörensson, 2003) experiment, we 
tested the solver.cc module in miniSAT version 2.2. The problem (test cases) is fixed as a 
3-SAT problem with five variables and three clauses. This is represented in the DIMACS 
CNF format as Fig. 8. There are a total of 109 possible test patterns for this problem. In this 
problem, we define two operations: Change(x, y) and Pos(x, y). The operation “Change(x, 
y)” allows for increasing the numbers x and y (ranging from 1 to 5) in the clauses. The 
operation “Pos(x, y)” is used to make the y-th number in the x-th clause a positive value, 
for example, converting − 1 to 1. There are a total of 18 types of operations, consisting of 
nine “Change” operations and nine “Pos” operations. Each operation corresponds to how 
many times it is applied. For example, the vector representing the number of operations 
needed to change from test case A to test case B might look like this:

In this vector, the “ − 1” signifies the inverse operation, which means either “decrease 
the variable number by one” or “make it negative.” The absolute value of − 1 corresponds 
to the number of times the operation is applied. In this context, the “distance” between test 

(23)[0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Fig. 8   DIMACS CNF format

Table 2   Experimental programs

Prog name Description

triType (Williams et al., 2005) The type of a triangle
nextDate (Awedikian et al., 2009) Calculate the following date of the given day
findMiddle (Ghani, 2009) Find the middle number among three numbers
English Judge whether the English examination passed
miniSAT Minimalistic SAT solver
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cases A and B is determined by the total number of operations needed to transform one 
into the other. For example, if there are two “ − 1” operations, the distance between test case 
A and test case B is 2.

In this paper, boundary points are obtained by manual analysis of the source code. First, 
the input domain is divided into m equivalent partitions based on the output. Then, in each 
equivalent partition, boundary points are generated based on the definition in Section 2.

5.5 � Design parameters

In the experiment, we investigate the fault detection capabilities of RT, ART, BCD- 
Algorithm1 (A1), BCD-Algorithm2 (A2), and BCD-Algorithm3 (A3). First, the input 
domains of programs triType, nextDate, findMiddle, English, and miniSAT are divided 
into 5, 15, 3, 3, and 2 equivalent partitions, respectively. Then, the RT randomly generates 
test inputs for each equivalent partition. Specifically, ten test inputs are generated for each 
partition of triType, three for each partition of nextDate, ten for each partition of findMid-
dle, ten for each partition of English, and 15 for each partition of miniSAT. In total, 50 test 
inputs are generated for the program triType, 45 for nextDate, 30 for findMiddle, 30 for 
English, and 30 for miniSAT.

We then use A1, A2, and A3 to optimize the RT-generated test set. To generate the 
candidate, we use the uniform distribution as the proposal distribution. And the number of 
iterations for the optimization process is set to 10, 000.

Table 3   Details of subject programs

Program Dim Input domain Test patterns Size (LOC)

From To

findMiddle 3 (−10, −10, −10) (10, 10, 10) 9.26 × 103 36
English 2 (0,0) (100, 100) 1.02 × 104 26
triType 3 (0, 0, 0) (50, 50, 50) 1.32 × 105 41
nextDate 3 (0, 0, 0) (2018, 12, 31) 8.39 × 105 90
miniSAT 9 (1,1,1,1,1,1,1,1,1)

(-1,-1,-1,-1,-1,-1,-1,-1,-1)
(5,5,5,5,5,5,5,5,5)
(-5,-5,-5,-5,-5,-5,-5,-5,-5)

1.0 × 109 1069

Table 4   Mutation faults information and the number of boundary points

Program Fault types Total faults num_Bpoint

OBOB ROR AOR SVR LOR

triType 6 6 3 6 21 420
nextDate 16 7 8 31 685
findMiddle 15 14 5 34 1092
English 14 7 2 2 25 283
miniSAT 8 16 2 9 35 279
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5.6 � Result

Table 5 shows the kill rates for the test sets generated by different methods. KLEE gen-
erates n test inputs for each of the four programs, as shown in Table 5. In Algorithm 1, 
BCD can be computed as BCD , BCD , and BCD_mean . In the definition of the BCD cal-
culation, we use the max operation to calculate the boundary coverage distance. In this 
experiment, we also used an alternative method to replace all max operations in the BCD 
calculation process with mean operations, so that each boundary point affects the BCD 
calculation results. Under the max operation or mean operation, we denote the BCD 
calculation method of Algorithm  1 (A1) as A1_BCD

max
 , A1_BCD

mean
 , A1_BCDmax , 

A1_BCDmean , A1_BCD_meanmax , and A1_BCD_meanmean , respectively. In Table  5, the 
A2_Bi method uses Algorithm 2 to optimize the test set based on each boundary point, and 
the A2_Bi method optimizes the test set based on each boundary segment.

From the results, it can be seen that most BCD-based methods have better fault detec-
tion ability than RT and ART, and the kill rate of test inputs generated by BCD-based 
methods is better than that of concolic testing, because concolic testing is not good at 
detecting OBOB bugs. In the experiment of using the KLEE tool to generate test cases for 
the miniSAT program, we used KLEE to provide a symbolic file, and KLEE only gener-
ated one test case. It can be seen that it is difficult to test miniSAT using symbolic meth-
ods. Meanwhile, test inputs generated by A1_BCD

mean
 can kill more mutations than other 

methods. For the same number of iterations, A1 with BCDmean accepts more candidates 
than A1 with BCDmax , as shown in Table 6. Therefore, reducing the BCD computed with 
the mean operation is more helpful for test set optimization than the max operation. How-
ever, the acceptance rate of A2 and A3 is slightly higher than that of A1_BCDmean , but due 
to the large number of boundary points, judging the coverage distance of each boundary 
point does not give a good result.

Table 5   Kill rates for the test sets generated by different methods

Method Kill rate

triType
(n = 50)

nextDate
(n = 45)

findMiddle
(n = 30)

English
(n = 30)

miniSAT
(n = 30)

RT 0.66 0.54 0.61 0.36 0.65
ART​ 0.61 0.51 0.63 0.44 0.64
A1_BCD

max
0.8 0.7 0.61 0.44 0.65

A1_BCD
mean

0.95 1 0.97 0.8 0.94
A1_BCD

max
0.8 0.7 0.73 0.44 0.65

A1_BCD
mean

0.9 0.93 0.88 0.68 0.68
A1_BCD_mean

max
0.61 0.74 0.94 0.52 0.59

A1_BCD_mean
mean

0.71 0.96 0.94 0.71 0.65
A2_B

i
0.85 0.96 0.76 0.52 0.85

A2_B
i

0.8 0.9 0.85 0.59 0.62
A3_B

i
0.76 0.93 0.55 0.44 0.62

A3_B
i

0.76 0.83 0.94 0.4 0.59

KLEE 0.7 (n = 14) 0.9 (n = 56) 0.88 (n = 13) 0.6 (n = 8) 0 (n = 1)
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Figure 9 shows the distribution of the data generated by RT and the optimization results 
of A1_BCD

mean
 on the test set generated by RT in the English experiment. From the distri-

bution graph, it can be seen intuitively that most of the data in the optimized test set moved 
to the boundary.

Tables 7 and 8 show the time cost of the experiment, including the time to generate the 
test input (optimization time) and the mutation time. Since in the ART method, the detection 
of injected faults (mutation testing) is performed during the test input generation process, 
the time cost of the ART method is not presented in a table. the ART time costs of programs 
triType, nextDate, findMiddle, English, and miniSAT are 248, 572, 193, 253, and 996  s, 
respectively. Although the time cost of the BCD-based method is higher than other methods, 
the BCD-based method can generate better quality test inputs and detect more faults.

Table 6   Accept rate during optimization of each method

Method Accept rate

triType nextDate findMiddle English miniSAT

A1_BCD
max

0.0026 0.0006 0 0.0003 0.0001
A1_BCD

mean
0.0123 0.0115 0.0075 0.0081 0.00075

A1_BCD
max

0.0025 0.0009 0.0009 0.0021 0.0003

A1_BCD
mean

0.0151 0.0101 0.0075 0.0083 0.0073
A1_BCD_mean

max
0.0035 0.0011 0.0024 0.004 0.0006

A1_BCD_mean
mean

0.0133 0.0098 0.007 0.0076 0
A2_B

i
0.0043 0.0039 0.0016 0.0022 0.0023

A2_B
i

0.0053 0.0031 0.0012 0.0017 0.0035
A3_B

i
0.1807 0.2369 0.4172 0.3815 0.135

A3_B
i

0.1655 0.195 0.4125 0.3875 0.0748

Table 7   Time cost of test input generation

Method Test input generation time (sec)

triType nextDate findMiddle English miniSAT

RT 0.002 0.002 0.002 0.001 0.002
A1_BCD

max
253 769 597 236 134

A1_BCD
mean

242 799 295 154 142
A1_BCD

max
432 1163 921 319 359

A1_BCD
mean

421 1194 1043 316 382
A1_BCD_mean

max
442 1559 966 338 410

A1_BCD_mean
mean

442 1500 1004 336 404
A2_B

i
244 544 303 144 151

A2_B
i

390 541 864 298 365
A3_B

i
241 510 270 158 146

A3_B
i

389 534 830 309 387

KLEE 1 1 1 1 1
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6 � Conclusion

In this paper, we proposed a new boundary coverage metric called boundary coverage dis-
tance (BCD). Then, a set of randomly generated test inputs is optimized based on BCD to 
generate boundary values. We conducted the experiments on five programs to exhibit the 
performance of the BCD-based method. Our results showed that the BCD-based method 
can generate test inputs close to the boundary and can increase the fault detection rate of a 
randomly generated test set.

The selection of the boundary points significantly affects the performance of the BCD-
based method. In this paper, we analyze the boundaries of several programs to obtain 
boundary points. However, in the case of large programs or complex numerical computation 

Table 8   Time cost of mutation testing

Method Mutation time (sec)

triType nextDate findMiddle English miniSAT

RT 291 388 256 196 1232
A1_BCD

max
282 440 242 195 1133

A1_BCD
mean

287 420 265 201 1324
A1_BCD

max
295 392 269 196 1102

A1_BCD
mean

284 388 297 189 1309
A1_BCD_mean

max
285 420 273 198 1190

A1_BCD_mean
mean

296 405 291 198 1114
A2_B

i
287 457 259 198 1266

A2_B
i

302 399 250 197 1308
A3_B

i
284 346 246 198 1146

A3_B
i

284 359 243 212 1125

KLEE 68 469 67 56 43

Fig. 9   The data distribution generated by RT and A1_BCD
mean

 in the English experiment
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programs, the identification of the boundary becomes difficult and poses a significant prob-
lem. In this study, we manually analyze and obtain the boundary points. To improve the 
automation of our method, we will explore possibilities such as integrating existing analysis 
tools or using deep learning techniques to predict boundary points.

To generate test input for software testing, it is important to consider different types of 
input. If the program input is numerical data, such as continuous data, we can use Gauss-
ian distribution or similar techniques to infer neighboring points. Conversely, for discrete 
data, simple addition and subtraction operations can be used to determine adjacent points. 
However, when the program input consists of non-numerical data, such as an array (e.g., 
in a sorting problem) or a string of letters, the definition of boundaries and adjacent inputs 
requires further consideration for future optimization.

In summary, the primary limitations of our proposed work involve the reliance on man-
ual analysis for boundary point identification, posing challenges for larger or intricate pro-
grams. Additionally, when dealing with non-numerical data like arrays or strings, defin-
ing boundaries and adjacent inputs becomes a more complex task. In future work, we will 
work on overcoming these limitations.
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