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Abstract
Just-in-time defect prediction (JITDP) research is increasingly focused on program changes 
instead of complete program modules within the context of continuous integration and 
continuous testing paradigm. Traditional machine learning-based defect prediction mod-
els have been built since the early 2000s, and recently, deep learning-based models have 
been designed and implemented. While deep learning (DL) algorithms can provide state-
of-the-art performance in many application domains, they should be carefully selected and 
designed for a software engineering problem. In this research, we evaluate the performance 
of traditional machine learning algorithms and data sampling techniques for JITDP prob-
lems and compare the model performance with the performance of a DL-based predic-
tion model. Experimental results demonstrated that DL algorithms leveraging sampling 
methods perform significantly worse than the decision tree-based ensemble method. The 
XGBoost-based model appears to be 116 times faster than the multilayer perceptron-based 
(MLP) prediction model. This study indicates that DL-based models are not always the 
optimal solution for software defect prediction, and thus, shallow, traditional machine 
learning can be preferred because of better performance in terms of accuracy and time 
parameters.
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1  Introduction

Google Play Store hosts 3.48 million Android applications as of the first quarter of 2021 
(Statista Research Department, 2021b). In 2020, approximately 112.6 thousand Android 
applications were released monthly on average through Google Play Store (Statista 
Research Department, 2021a). If not all, most of these applications are being updated fre-
quently for corrective or perfective maintenance reasons, including the need for adding 
new features, removing outdated features, fixing bugs, and improving performance. As a 
good practice, developers tend to release frequent updates to obtain quick feedback from 
users and keep their applications up to date. This practice adds additional complexity to the 
software development process since frequent changes may lead to more defects and require 
additional effort for developing new test cases. However, there are many other reasons, 
such as complicated internal logic, why defects still occur in software systems (Wang et al., 
2021). Time to market pressure, tight deadlines, and a limited budget for testing are some 
of the other potential causes of software defects.

To efficiently allocate resources to defect-prone components in software systems, soft-
ware defect prediction models have been developed using statistical techniques and mostly 
machine learning algorithms since the 1990s by software engineering researchers (Alan 
& Catal, 2011). Most of the machine learning models assumed that there is a sufficient 
number of labeled data points for building supervised machine learning models; however, 
in some cases, there might be very few labeled data (a.k.a., semi-supervised defect predic-
tion) or even no labeled data exists (a.k.a., unsupervised defect prediction). In these cases, 
supervised machine learning models cannot be applied because of the missing labels in the 
data. Researchers built different kinds of models to address these cases (Catal, 2014; Catal 
& Diri, 2008, 2009; Catal et al., 2010; Li et al., 2020; Sun et al., 2021; Zhang et al., 2017). 
Some researchers also aimed to utilize data from other companies to build their defect pre-
diction models (a.k.a., cross-project defect prediction) (Jin, 2021; Wu et al., 2017).

Researchers working on software defect prediction aim to help developers in improv-
ing software quality and testing efficiency by building machine learning models to predict 
defect-prone units timely (Lessmann et al., 2008). While such models provide some ben-
efits in some contexts, they also have the following drawbacks (Kamei et  al., 2012): (1) 
developers should explore defect-prone units to identify defects; (2) a developer should 
be assigned to a defect identification task; (3) developers may forget the details about the 
changes they made before. To overcome these drawbacks, researchers proposed to predict 
the code changes that may lead to defects, a.k.a., just-in-time defect prediction (JITDP) 
(Kamei et al., 2012; Kim et al., 2008; Mockus & Weiss, 2000). Change-level predictions 
are expected to help the developer, who made a code change, in identifying defects by 
only reviewing the change at an early stage without forgetting details (Kamei et al., 2012). 
Recently, many models have been developed to address JITDP and some of them focused 
on deep learning (DL) algorithms (Yang et al., 2015; Zeng et al., 2021; Zhao et al., 2021a, 
b, c).

To build a defect prediction model, a dataset including data about the changes (e.g., 
lines of codes added/modified and the number of modified files) and associated defect data 
(e.g., defective module and non-defective module) is required. As in many available data-
sets (Mahmood et al., 2015; Wang et al., 2021), defect data for Android applications are 
imbalanced (Zhao et al., 2021c). In other words, the number of changes leading to defects 
is much fewer than those not leading to any defect. Imbalanced datasets cause learning dif-
ficulty (Wang & Yao, 2013), and prediction performance decrease (Mahmood et al., 2015). 
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Sampling methods are the dominant approaches to tackle imbalanced learning problems 
(He & Ma, 2013).

Since recently DL algorithms have achieved remarkable results in many different appli-
cation domains, there is a tendency among software engineering researchers to apply them 
for all kinds of relevant problems (Giray, 2021), often without considering the scale of the 
available datasets and applicability of the algorithm in the context. In this research, our 
objective is to evaluate the performance of shallow learning algorithms (i.e., traditional 
machine learning algorithms) and the effect of sampling methods on defect prediction 
models and also compare these results with the performance of DL algorithms. If accept-
able performance can be achieved with traditional algorithms, we can conclude that there 
is no need to deal with DL algorithms because they require extra computing power, train-
ing time, and human effort to find the optimal model. Therefore, we evaluate three high-
performance machine learning algorithms and eight sampling methods in this study. We 
report our findings on the comparison of the prediction performance of three machine 
learning algorithms (i.e., MLP, TabNet, and XGBoost) using eight sampling methods (i.e., 
ROS, RUS, SMOTE, SMOTEN, SMOTESVM, SMOTET, BSMOTE, and ADASYN). 
Experiments were performed on 12 publicly available datasets built based on Android apps 
(Catolino et al., 2019).

The contributions of this study are four-fold:

•	 We demonstrated that DL algorithms using sampling methods perform significantly 
worse than the decision tree-based ensemble method.

•	 We proposed a new XGBoost-based prediction model using the StandardScaler nor-
malization and SVMSMOTE data balancing approaches and evaluated its performance 
on 12 publicly available Android datasets.

•	 The XGBoost-based model is 116 times faster than the MLP method and has a 32% 
higher MCC (Matthews correlation coefficient) than the baseline method. This study 
showed that DL-based models are not always the answer for building highly accurate 
prediction models and XGBoost-based models can even provide better performance in 
terms of computational time complexity and performance.

•	 Our experiments are reproducible and improvable, as our code is publicly available at 
https://​github.​com/​rvdin​ter/​JIT-​defect-​predi​ction-​Andro​id-​apps.

The rest of the paper is organized as follows: Section  2 introduces the related work. 
Section 3 explains the research methodology. Section 4 presents the results. Section 5 dis-
cusses our findings and reports the threats to validity. Section 6 concludes the paper.

2 � Related work

Kamei et al. (2012) proposed predicting defects by analyzing changes instead of files or 
packages. They conducted a large-scale study involving six open-source and five commer-
cial non-mobile applications to predict defects just-in-time.

Scandariato and Walden (2012) focused on developing a vulnerability model specific 
to Android applications. Their prediction model is based on object-oriented metrics, 
like the number of superclasses, depth of inheritance tree, cumulative Halstead bugs, 
and Halstead volume, to name a few. Kaur et al. obtained better prediction performance 
for mobile applications by using process metrics (i.e., number of lines added/deleted, 

https://github.com/rvdinter/JIT-defect-prediction-Android-apps
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number of developers, number of revisions) instead of code metrics (Kaur et al., 2015, 
2016). Malhotra (2016) compared the prediction performance of 18 machine learning 
algorithms using object-oriented metrics as the feature set. Ricky et  al. (2016) built a 
prediction model for the games developed for Android and Windows Phone using soft-
ware metrics.

Catolino et al. (2019) analyzed the relevant metrics useful for predicting defects just-
in-time in mobile applications. They applied information gain for feature selection with a 
threshold of 0.1, as suggested by previous studies (Catolino et al., 2018; Quinlan, 1986). 
For coping with imbalanced dataset problem, they applied Synthetic Minority Over-sam-
pling Technique (SMOTE), proposed by Chawla et al. (2002). They identified the follow-
ing six metrics that contributed to defect prediction with an information gain value exceed-
ing 0.1: number of unique changes to modified files (nuc), number of lines added (la), 
number of lines deleted (ld), number of modified files (nf), number of modified directories 
(nd), and number of developers working on the file (ndev). Zhao et al. (2021b) proposed 
an imbalanced DL (IDL) methodology for JIT defect prediction in Android applications 
through applying a cost-sensitive cross entropy loss function to a deep neural network. 
They compared their model against the sampling-based imbalanced learning methods 
(ROS, RUS, SMOT, SMOTEN, SVMSMOT, SMOTT, SMOTB, and ADASYN) by con-
ducting experiments on a benchmark dataset involving 12 Android applications and found 
out that their model performed better than the other imbalanced learning methods in terms 
of Matthews correlation coefficient performance indicator.

Bennin et  al. (2017) state the drawbacks of sampling approaches: (1) the possibility of 
generating erroneous or duplicated data instances, (2) the tendency to generate less diverse 
data points within the minority class. To overcome these drawbacks, they propose an over-
sampling approach called MAHAKIL. Their approach outperformed four other over-sampling 
approaches (ROS, SMOTE, Borderline-SMOTE, and ADASYN) using five classification 
models (C4.5, NNET, KNN, RF, SVM) on 20 imbalanced datasets consisting of non-mobile 
applications. Tantithamthavorn et al. (2018) investigated the impact of four resampling meth-
ods (over-sampling, under-sampling, SMOTE, and ROSE) by building defect prediction mod-
els based on seven classification techniques (random forest, logistic regression, Naive Bayes, 
neural network (AVNNet), C5.0 Boosting (C5.0), extreme gradient boosting (xGBTree), and 
gradient boosting method) and 101 publicly available datasets. Bennin et al. (2019) conducted 
an experiment on six sampling methods (SMOTE, Borderline-SMOTE, Safe-level SMOTE, 
ADASYN, random over-sampling, random under-sampling), five prediction models (KNN, 
SVM, C4.5, RF, and NNET), and 20 open-source projects.

Researchers have been utilizing DL for defect prediction, more densely as of 2019 
(Giray et al., 2023). Two recent surveys report the increasing use of DL in JITDP (Zhao 
et al., 2023) and specifically for mobile apps (Jorayeva et al., 2022a). Jorayeva et al. (2022b) 
investigated the performance of DL and data balancing approaches on cross-project defect 
prediction for mobile apps. Cheng et al. (2022) proposed a method for cross-project JITDP 
in the context of Android mobile apps. Huang et al. (2023) used multi-task learning and 
deep neural network to alleviate limited labeled data problem JITDP on mobile apps.

In this study, we replicated the experiments conducted by Zhao et al. (2021b). Also, we 
investigated the performance of sampling methods when used with a base deep neural net-
work (MLP), a neural network designed for tabular data (TabNet), and a traditional machine 
learning algorithm designed for tabular data (XGBoost) in JIT defect prediction for Android 
applications. We compare the results of our algorithms against the IDL methodology by Zhao 
et al. (2021b). To the best of our knowledge, this is the first study that evaluates the relative 
performance of shallow learning algorithms against DL algorithms in the case of JITDP.
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3 � Research methodology

In the following, we describe the steps of the method. First of all, we describe the adopted 
datasets necessary for JIT prediction. This is followed by the models that are used for JIT 
prediction. Since we are dealing with unbalanced datasets, we will also elaborate on the 
sampling-based imbalanced learning methods. Finally, we describe the adopted methods 
and the flowchart for the experiments.

3.1 � Dataset

We have used 12 publicly available benchmark datasets from Android apps built by 
Catolino et al. (2019). Catolino et al. (2019) also provide an in-depth description of each 
of these apps. Table 1 provides an overview of the 12 Android apps that have been used to 
evaluate the algorithms. The table shows for each app the lines of code (#LOC), total num-
ber of commit instances (#TC), total number of defective instances (#DC), total number of 
clean instances (#CC), and the ratio of defective instances (%DR). An instance is deemed 
as defective when the committed instance introduces the defect; otherwise, it is deemed as 
clean. The ratio of defective instances varies greatly between 14 and 40%. Also, the scale 
of the apps varies, as the code lines of these apps are between 9506 and 275,637. The num-
ber of samples in the dataset is equal to the total number of commit instances. This means 
that for Turner, there are only 164 samples to learn from. Catolino et al. (2019) analyzed 
several features that could be of interest for classifying defective commit instances. They 
identified six features that could be categorized into three scopes: history, size, and diffu-
sion (Zhao et al., 2021b). 

Table 2 provides a brief description of the six features deemed most informative for JIT 
defect prediction for Android apps.

Table 1   Metadata of the 12 
Android apps

Project #LOC #TC #DC #CC %DR

Firewall 77,243 1025 414 611 40.4%
Alfresco 152,047 1004 214 790 21.3%
Sync 275,637 209 62 147 30.0%
Wallpaper 35,917 588 94 494 16.0%
Keyboard 114,784 2971 819 2152 27.6%
Apg 151,204 3780 1304 2476 34.5%
Secure 98,768 2579 853 1726 33.1%
Facebook 103,802 548 180 368 32.8%
Kiwix 32,598 1373 350 1023 25.5%
Cloud 115,169 3700 830 2870 22.4%
Turner 30,943 164 23 141 14.0%
Reddit 9506 222 60 162 27.0%
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3.2 � Models

In this study, we evaluate three models: a vanilla deep neural network, a neural network 
designed for tabular data, and a traditional machine learning algorithm designed for tab-
ular data. We focus our models on tabular data, as the datasets by Catolino et al. (2019) 
are of tabular form.

3.2.1 � Multilayer perceptron

We make use of a multilayer perceptron model based on the studies from Zhao et  al. 
(2021b) and Xu et  al. (2019). The multilayer perceptron (MLP) is a class of feedfor-
ward artificial neural networks (ANN). It makes use of three network layer types: (1) 
the input layer, (2) the hidden layer, and (3) the output layer. The first layer is the input 
layer, which uses as many units as the number of features in the dataset. The last layer is 
the output layer, which outputs the requested result. In our case, as shown in Fig. 1, the 
input layer is of size 6, and the output layer is of size 1, as the model classifies whether 
the commit does (i.e., the output is 1) or does not (i.e., the output is 0) contain a defect 
using a Sigmoid activation function. There can be multiple hidden layers in an MLP. 
Also, the number of units in a hidden layer can vary. If more than one hidden layer is 
used in an ANN, nowadays, the model is called deep neural network (DNN). Our MLP 
makes use of 2 hidden layers with 10 units leveraging the ReLu activation function. For 
the hyperparameters, we apply the RMSProp optimization algorithm with a batch size 
of 16 and 10,000 iterations. We use an adapted learning rate of 0.001 without weight 
decay to keep the model as simple as possible. We did not apply early stopping for 
regularization.

3.2.2 � TabNet

A major downside to MLP and other DL models is that their predictions cannot be 
explained. However, TabNet attempts to break this assumption (Arık & Pfister, 2020). 
This DL algorithm attempts to combine the best of both worlds: the performance of DL 
algorithms while being explainable like decision tree-based classifiers. Being developed 
by Google Cloud AI, it is already widely rolled out in Google Cloud Platform (Arık & 
Le, 2020). As Arık and Pfister (2020) describe: “TabNet uses sequential attention to 
choose which features to reason from at each decision step, enabling interpretability and 

Table 2   Description of six 
features for JIT defect prediction

Scope Feature Description

History NUC Number of unique changes to modified files
NDEV Number of developers working on the files

Size LD Lines of code deleted
LA Lines of code added

Diffusion NF Number of modified files
ND Number of modified directories
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more efficient learning as the learning capacity is used for the most salient features” 
(Arık & Pfister, 2020).

We optimized TabNet’s model hyperparameters using sklearn’s RandomizedSearchCV 
on the Reddit dataset, as the TabNet model contains many hyperparameters, which makes 
GridSearchCV very resource-intensive. In this search, we used mostly default hyperparam-
eters, while applying a clip value of 1, and a learning rate of 2e-3. Additionally, we used 
a maximum of 150 epochs, and a patience of 20 epochs with no improvement in the loss 
after which the model stops training, which also required the use of a validation set, which 
is a 10% partition of the training set.

3.2.3 � XGBoost

To solve class imbalance challenges, one could use sampling methods, ensemble-based algo-
rithms, or cost-based methods (Zhao et al., 2021b). XGBoost, or eXtreme Gradient Boosting, 
is a decision tree-based ensemble method developed by Chen et al. (2015). It is based on gra-
dient boosting machines, such as AdaBoost, which has been used often to compare classifiers 
in this domain (Catolino et al., 2019; Zhao et al., 2021a, b, c). A gradient boosting machine 
uses a loss function, many weak learners, and an additive model to add weak learners to mini-
mize the loss (Brownlee, 2019). XGBoost’s advantage over other gradient boosting machines 
is its speed and performance. As Brownlee (2019) notes, XGBoost has been the go-to model 
for tabular machine learning challenges on Kaggle for years.

Fig. 1   The multilayer perceptron model architecture adapted from Zhao et al. (2021b) and Xu et al. (2019)
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We used GridSearchCV to find XGBoost’s optimal hyperparameters on the Red-
dit dataset. We search to find the optimal maximum depth, number of estimators, and 
learning rate. This resulted in a maximum depth of 3100 estimators, and a learning rate 
of 0.1.

3.3 � Sampling‑based imbalanced learning methods

In general, imbalanced learning methods are based on sampling, ensembles, or cost 
functions. We evaluate our models described in the previous section against eight sam-
pling methods to analyze whether the models can gain significant performance apart 
from hyperparameter tuning. Table  3 lists the eight imbalanced learning methods we 
evaluated. RUS is the only under-sampling method, SMOTET is a combination of over- 
and under-sampling methods, while all other methods use an over-sampling method.

3.4 � Metric

In the JITDP, AUC, F-measure, and MCC metrics are often reported to synthesize the 
results of a study. However, Ng (2017) describes that adding multiple metrics in a paper 
can confuse which metric is most important. Therefore, he recommends using an all-
encompassing metric. Previous studies have proven that the MCC is the most appropri-
ate metric for JIT defect prediction (Song et al., 2018; Yao & Shepperd, 2020).

The MCC, or Matthews correlation coefficient, is a metric used for binary and multi-
class classification. It is designed for imbalanced datasets, such as software defect pre-
diction. MCC is derived from the Pearson correlation coefficient and takes all terms 
from the confusion matrix. MCC’s formula is expressed as

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false neg-
ative, respectively. The MCC is a correlation coefficient value between − 1 and + 1. This 
statistic is also known as the phi coefficient. As such, a coefficient of + 1 is a perfect pre-
diction, 0 is an average random prediction, and a coefficient of − 1 is an inverse prediction.

(1)
TP×TN−FP×FN

√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
#

Table 3   Imbalanced learning methods

Abbreviation Description

ROS Random over-sampling
RUS Random under-sampling
SMOTE Synthetic Minority Over-sampling Technique
SMOTEN Synthetic Minority Over-sampling Technique for Nominal
SMOTESVM Over-sampling using SVMSMOTE
SMOTET Over-sampling using SMOTE and cleaning using Tomek links
BSMOTE Over-sampling using Borderline-SMOTE
ADASYN Oversample using Adaptive Synthetic (ADASYN) algorithm
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3.5 � Experiments

As in the experiments by Zhao et  al. (2021b), we evaluate a set of model and sam-
pler configurations. To do so, we have generated nested iterations. Figure 2 shows the 
detailed visualization of the procedure.

First, we iterate over the models to evaluate: MLP, TabNet, and XGBoost. Then, we 
iterate over the eight sampling methods. For each of these model-sampler configura-
tions, we perform twofold cross-validation, which we repeat 25 times (i.e., N*M cross-
validation, N = 2, M = 25). If the repeated cross-validation is finished, we move to the 
next sampler until all samplers have been evaluated against one model. Then, we move 
to the next model and repeat the process.

Fig. 2   Visualization of the experiment
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4 � Results

In this section, we evaluate the results from our models and each of the sampling-based 
learning methods. We included the results from Zhao et al. (2021b) in Table 4 as a baseline 
for comparison. The results show the mean and the corresponding standard deviation of 
each sampling-based method for the twelve datasets. The last row shows the average for the 
sampling-based method for all datasets. The highest mean values for Table 4 are shown in 
bold. Table 4 shows that the IDL method gained the highest score on 8 out of 12 datasets. 
Additionally, the IDL method gained the highest score on average.

Tables 5, 6 and 7 show the results from our study. As with Table 4, the highest means 
are in bold. Additionally, if the highest mean value is higher than the highest mean value 
from the baseline in Table 4, we added an asterisk. Table 5 shows the MCC results for the 
MLP model. The MLP outperforms the IDL method on 7 out of 12 datasets. Even though 
our MLP is based on the MLP from Zhao et  al. (2021b), hyperparameter optimization 
resulted in large performance gains. Additionally, the average result for the MLP model 
with SVMSMOTE sampling-based method was higher than the baseline IDL method. 
Table 6 shows the average MCC results for the TabNet model. As its hyperparameters have 
been optimized for the Reddit dataset, we see that the TabNet model gained the highest per-
formance on that dataset. Unfortunately, the hyperparameter settings are not dataset-inde-
pendent, as the average MCC results for the other datasets and sampling-based methods are 
not outperforming the baseline. Table 7 shows the results for the XGBoost model with the 
eight sampling-based methods. We see that the MCC results for this method are higher on 
average than the baseline and DL models. Additionally, SVMSMOTE outperformed the 
baseline’s highest average values on 5 out of 12 datasets, and SMOTET achieved the high-
est average MCC of all methods.

We performed a Scott-Knott ESD (SKESD) test to statistically verify which sampling 
method performs best per model. Figures 3, 4 and 5 show the SKESD results for the MLP, 
TabNet, and XGBoost models respectively. For the MLP and XGBoost, SVMSMOTE has 
been ranked highest overall, while it has been ranked third for the TabNet model. TabNet, 
however, has ranked SMOTET as the overall best sampling method. SMOTET is ranked 
second for the XGBoost model and sixth for the MLP model. Overall, SVMSMOTE has 
been ranked as the best sampling-based method among the models. The SVMSMOTE 
method for XGBoost has improved the MCC results by 32% over the IDL baseline method. 
Additionally, we performed a SKESD test for the machine learning methods per dataset for 
all sampling methods. In Fig. 6, MLP and TabNet have been ranked closely together, while 
XGBoost has been ranked first for eleven out of twelve datasets.

Lastly, we share our observations of the time consumption of the MLP, TabNet, and 
XGBoost algorithms. The TabNet model utilized the GPU, as it has been optimized for 
GPU processing. The MLP and XGBoost utilized a CPU. The experiments have been run 
on the Kaggle Kernels free cloud computing service. Figure 7 shows the time consumption 
of each of the machine learning algorithms for the full experiment. We see that the MLP 
took 1860  min (31  h) to complete the experiment. The TabNet algorithm took 414  min 
(6.9  h), while XGBoost took just 16  min to complete the experiment. This means that 
XGBoost completed the experiment over 116 times faster than the MLP algorithm and 
over 25 times faster than the TabNet algorithm.
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5 � Discussion

This study presents a comparison between a baseline study, a slightly adapted deep neural 
network, a state-of-the-art DL method for tabular data, and a decision trees-based ensem-
ble method. Our results show that the XGBoost decision tree-based ensemble method 
is the fastest and statistically highest ranked method. XGBoost in combination with the 
SVMSMOTE over-sampling method shows an improvement over the IDL baseline method 
of 32% of the MCC results. Furthermore, our XGBoost method is 99% faster than the MLP 
method. If the time consumption of the baseline method can be assumed to be like the 
MLP method, we would also cut the time cost of the IDL method by 99%.

Our results also show that the differences between various sampling methods are 
minimal in comparison to the results between various machine learning algorithms. 
SMOTESVM and SMOTET have shown to be good sampling methods, however, to 
increase the performance of a machine learning algorithm.

This study is subject to threats to validity that can be classified as construct, internal, 
and external.

Fig. 3   SKESD test for sampling-based methods for MLP
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Construct validity  As Ng (2017) described, having multiple-number evaluation metrics 
(e.g., precision and recall) makes it challenging to compare algorithms. Having single-
number evaluation metrics allows us to sort all models according to their performance. 
An all-encompassing single-number evaluation metric for the JIT defect prediction domain 
is the Matthews correlation coefficient. The MCC is appropriate for imbalanced datasets. 
Additionally, to verify the statistical validity of our results, we apply a state-of-the-art sta-
tistic test method. The Scott-Knott effect size difference has been designed for JIT defect 
prediction. It was used for “significant difference” analysis.

Internal validity  In our work, we carefully implemented the sampling methods and 
machine learning algorithms using the DMLC XGBoost, DreamQuark TabNet, and 
PyTorch library. The optimal parameters have been obtained using RandomSearchCV for 
the TabNet algorithm and GridSearchCV for the XGBoost library. The MLP was based 
on previous studies (Zhao et al., 2021b, c); however, more optimal settings could be found 
through hyperparameter optimization algorithms. For comparative methods, we imple-
mented third-party libraries with default parameters.

Fig. 4   SKESD test for sampling-based methods for TabNet
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External validity  The datasets we applied our methods on are publicly available. The data-
sets are 12 Android apps developed in the Java programming language. As described by 
Zhao et al. (2021b), we have not evaluated whether the methods are suitable for Android 
apps developed in other languages (i.e., Kotlin) or IoS apps. Additionally, further stud-
ies must investigate whether our methods can be applied to other domains of JIT defect 
prediction. Our study also assumes the adoption of models with unbalanced datasets. If 
balanced datasets are adopted, other metrics, such as precision at recall, might be preferred. 
Furthermore, the TabNet model might perform significantly better with a balanced data-
set. Additionally, as more and more data is collected, the use of DL methods will become 
increasingly relevant with increasing dataset sizes.

Fig. 5   SKESD test for sampling-based methods for XGBoost
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Fig. 6   SKESD test for XGBoost vs. DL models
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6 � Conclusion and future work

In this study, we propose that deep neural networks are not always the optimal solution to 
a tabular dataset challenge. To test our hypothesis, we compare a baseline method, MLP, 
Tabular Network, and XGBoost. We also tested whether using eight different sampling-
based methods would create significant improvements. To evaluate the effectiveness of our 
methodologies, we conducted experiments on 12 Android apps and used the Matthews cor-
relation coefficient (MCC) and a Scott-Knott effect size difference statistical test.

Our results show that DL algorithms leveraging sampling methods perform signifi-
cantly worse than a decision tree-based ensemble method. The XGBoost method is 116 
times faster than the MLP method and has a 32% higher MCC than the baseline method. 
Our XGBoost pipeline takes the six input features, normalizes the features based on the 
training data using the StandardScaler method, and over-samples the training data using 
the SVMSMOTE algorithm to overcome the class imbalance challenges.

In our future work, we plan to adapt our methodology for different data sizes and dif-
ferent software applications. Recently, many deep learning algorithms have been devel-
oped (e.g., the transformer algorithm). These algorithms are combined in a different way 
for building numerous types of deep learning models. We plan to evaluate the effective-
ness of these hybrid models in this problem and also investigate the efficiency of them. In 
addition, we will focus on the interpretable machine learning models, which are crucial in 
understanding the decision process of the models. Many feature engineering techniques 
that are available in machine learning and some of them will be also evaluated in the future 
work. Building deep learning models is time consuming and requires a lot of human effort; 
therefore, we will also focus on neural architecture search (NAS) and AutoML fields to 
minimize the efforts of building deep learning models. While shallow learning looks prom-
ising in this research, for different datasets, the case might be different, and therefore, sev-
eral research dimensions are planned for the future.
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