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Abstract
Mutation testing is an important technique able to evaluate the bug-detection effectiveness 
of existing software test suites. Mutation testing tools exist for several languages, e.g., Java 
and JavaScript, but no solutions are available for managing the mutation testing process for 
entire web applications, in the context of end-to-end (E2E) web testing. In this paper, we 
propose Mutta, a novel tool able to automate the entire mutation testing process. Mutta 
mutates the various server source files of the target web application, runs the E2E test suite 
against the mutated web applications, and finally collects the test outcomes. To evaluate 
Mutta, we designed a case study using the mutated versions of the target web application 
with the aim of comparing the effectiveness of two different approaches to E2E web test-
ing: (1)  test cases based on classical assertions and (2)  test cases relying on differential 
testing. In detail, Mutta has been executed on two web applications, each equipped with 
different test suites to compare assertions with differential testing. In this scenario, Mutta 
generated a large number of mutants (more than 15k overall), took into account the cover-
age information to consider only the mutants actually executed, deployed the mutated web 
app, ran the entire E2E test suites (about 87k tests runs overall), and finally, it correctly  
saved the test suite results. Thus, results of the case study show that Mutta can be success-
fully employed to automate the entire mutation testing process of E2E web test suites  
and, therefore, can be used in practice to evaluate the effectiveness of different test suites 
(e.g., based on different techniques, E2E frameworks, or composed by a different number 
of test scripts).

Keywords Mutation testing · End-to-end web testing · Web application · Selenium 
WebDriver · Recheck · Assertions

1 Introduction

Ensuring the quality of web applications is of paramount importance since these appli-
cations are used across many industries and businesses (e.g., commerce, entertainment, 
banking, work, study, etc.). Among the various approaches and methods used, the most 

 * Maurizio Leotta 
 maurizio.leotta@unige.it

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), 
Università di Genova, Genoa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09616-6&domain=pdf


6 Software Quality Journal (2024) 32:5–26

1 3

adopted in practice is End-to-End (E2E) testing  (Cerioli et  al., 2020), realized with 
testing frameworks such as, e.g., Selenium WebDriver  (García et  al., 2020), Cypress, 
Katalon, Serenity, and TestRigor.

E2E testing of web applications is a type of black-box testing based on the concept 
of test scenario, which is a sequence of steps/actions performed on the web application 
under test (e.g., insert username, insert password, click the login button, etc.). One or 
more test cases can be derived from a single test scenario by specifying the actual data 
to use in each step and the expected results (i.e., defining the assertions). The execution 
of the test cases produced can be automated by implementing them in a programming 
language (e.g., Java or Python) and adopting a specific E2E testing framework able to 
drive a browser similar to how a human would (Leotta et al., 2016).

However, when it is possible to employ different E2E test suites to test a web appli-
cation or testing frameworks to produce them, it becomes essential to have a method to  
objectively evaluate the effectiveness in detecting bugs and support the choice of which 
type of test suite or framework to adopt  (Leotta et  al., 2013, 2014, 2022). This often 
happens in practice; in fact, managers often find themselves in such a situation, for 
example, (1) when different E2E techniques/tools have to be evaluated to select the 
most suitable one in detecting bugs, or (2) when it is necessary to reduce a test suite 
because  it is too long to run  (Olianas et al., 2021, 2022), and thus finding a trade-off 
between execution time and ability to detect bugs.

Mutation testing is a technique used from many years to evaluate the effectiveness of 
test suites in detecting bugs (Jia & Harman, 2011; Offutt & Untch, 2001). Basically, the 
application’s under test source code is  automatically modified by inserting variations 
of the original software code simulating typical errors a developer could make during 
development and maintenance activities. For this reason, each mutated line is conceptu-
ally equivalent to a possible bug introduced accidentally by a developer into the code. 
After the generation of mutants, the test suite is run against each mutated version of the 
application in order to evaluate how many mutants are killed (i.e., the original version 
differs from the mutant). Mutants are traditionally used in testing to evaluate the quality 
of the produced test suites, hence the name of mutation testing. Indeed, the mutants can 
be used to identify the weaknesses of the test suites, e.g., by determining the parts of a 
software that are poorly or never checked.

While mutation testing tools exist for several languages used in the web context, no 
turnkey solutions are available to manage the mutation testing process for entire web 
applications in the context of E2E web testing.

In this paper, we propose and describe Mutta, a novel tool able to automate the 
entire mutation testing process for a web application. Mutta is able to mutate the vari-
ous server-side sources of a web application creating different mutated web applications 
containing each only a single mutation. Once the mutations are produced, Mutta is able 
to run the E2E test suites (to be evaluated) against the target web application and collect 
the test outcomes.

To evaluate the effectiveness of Mutta, we devised and executed a case study with 
the goal of comparing two different approaches to E2E web testing: (1) test cases based 
on classical assertions vs (2) test cases relying on differential testing. Differential test-
ing  (Gulzar et  al., 2019; McKeeman, 1998) of web applications compares the current 
web page under test with a snapshot considered correct taken from a previous version. 
This technique appears to be promising and an alternative to assertions in catching 
regressions due to the evolution of the web application under test (Leotta et al., 2022).
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This paper extends a previous conference paper  (Leotta et  al., 2022) even if it has 
a completely different goal. Indeed, the aim of the previous conference paper was to 
empirically compare classical assertions and differential testing considering several fac-
tors: test script development time, test script execution time, and bug-detection capabil-
ity. During the execution of that experiment we realized the importance of building and 
delivering a tool able to support mutation testing of web applications (which, to the best 
of our knowledge, is not yet available). For this reason, we have decided to extend, refine, 
generalize, and make freely available the tool that, in a preliminary version, we used 
to compare classical assertions and differential testing (Leotta et  al., 2022). This way, 
using Mutta, anyone (both from academia and industry) can perform comparative stud-
ies between E2E test suites realised in differently and with different frameworks/tools.

This paper is organized as follows: Sect. 2 describes the details of Mutta. Section 3 
describes the empirical study we carried out to evaluate the effectiveness of Mutta in 
supporting mutation testing of E2E web test suite and also introduces the approaches 
to implement oracle mechanisms (i.e., classical assertions and differential testing) used 
to implement the test suites analyzed with Mutta. Section 4 reports the results of the 
study. Sect. 5 summarizes the related literature while Sect. 6 concludes the paper.

2  Mutta: a tool for mutation testing of E2E web test suites

Implementing a mutation testing tool tailored to the E2E web testing context requires 
automating several procedures. Indeed, the specific kind of artefact under test, repre-
sented by an entire web application, makes the problem much more challenging than, 
for example, the classic mutation testing at the unit testing level involving functions or 
class methods.

2.1  Mutation testing

Now we briefly recap the concept of mutation testing and mutants. Mutants are varia-
tions of the original software code simulating typical errors a developer could make during 
development and maintenance activities  (Jia & Harman, 2011; Offutt and Untch, 2001). 
For this reason, each mutated line (a line containing a mutant) is conceptually equivalent to 
a possible bug. Mutants are traditionally used in testing to evaluate the quality of the pro-
duced test suites, hence the name of mutation testing. Indeed, the mutants can be used to 
identify the weaknesses in the verification artefacts by determining the parts of a software 
that are poorly or never checked  (Kochhar et  al., 2015). As a consequence, if a test can 
detect the mutants is likely to have a good chance of catching bugs.

Mutation operators are the core of the mutation phase. They affect small portions of 
code, simulating several kinds of typical programming mistakes, like a change in a logical/
mathematical operator (e.g., AND/+ instead of OR/-), a boolean substitution (e.g., from 
true to false), or a conditional removal (e.g., an IF condition statement is set to true). Man-
ually generating the mutants in a realistic scenario is clearly infeasible (and possibly biased 
in the context of an experiment). However, there exist automated tools (used in the context 
of mutation testing, such as Pitest, as we will see in the next of the paper) that provide 
operators for generating a large number of mutants starting from the original code.
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2.2  Mutta overview

A tool for mutation testing of E2E web test suite should be able to:

– Define the actual source code mutations for the various server-side source files com-
posing the web application under test

– Apply each mutation to the source code (one at a time)
– Deploy the modified web application on the Web Server
– Run the modified web application under test
– Run the test suites against the modified web application
– Collect, elaborate and save all the test results
– Stop the web application and restore the original app and return to the second step if 

other mutations have to be considered

Mutta is the tool we developed to automate all these procedures and so to implement 
E2E web mutation testing effectively. The name stands for “automatic MUTator for web 
e2e Test Automation”. Our tool can be downloaded from the following repository: https:// 
sepl. dibris. unige. it/ MUTTA. php.

The high-level goal of our tool is to enable the tester to compare the bug-detection  
capability of different test suites: from those, for instance, differing only for the number of 
test scripts they contain (helpful in evaluating the trade-off between test suite complete-
ness and execution time), to those implemented with different E2E test approaches (useful 
to compare the bug-detection capability of different technical solutions in the context of 
E2E web testing). Our tool allows to automatically analyze how many mutants are killed 
by the considered test suites, and thus it provides an estimation of the capability of the dif-
ferent test suites in detecting actual bugs in the web application when such test suites are 
employed in production, for instance, in regression testing. Mutta is actually formed by a 
set of different components that automate various steps and operations, such as the source 
code mutation of the web application under test, the execution of test suites against (hun-
dred or even thousands) versions of the mutated web application, and finally the retrieval 
of test results. A high-level overview of the architecture of Mutta is summarized in Fig. 1. 
The Mutta orchestrator supervises the execution of the various components of the tool 
(depicted in green). Mutta requires in input the test suites to compare with mutation 

Fig. 1  Diagram of the Mutta high-level architecture

https://sepl.dibris.unige.it/MUTTA.php
https://sepl.dibris.unige.it/MUTTA.php
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testing, the corresponding web application under test and provides in output the mutation 
testing results in the form of a report.

The current version of Mutta has the following requirements concerning the Web appli-
cations (and the test suites):

– Open source: clearly all the source code files of the web application must be accessible 
by Mutta since it has to mutate them;

– Java-based: since in this preliminary version of Mutta we targeted web applications 
implemented server-side in Java, we employed a specific source code mutator able to 
operate on this programming language;

– Apache Maven as build automation tool: to automatize the application of the muta-
tions to the source files, we relied on Maven, so the web app should be manageable 
with such a tool.

2.3  Mutta execution steps

In the following, we provide an overview of the steps performed by Mutta to implement 
mutation testing of E2E web application.

The first step consists in manually extracting the web application’s source code and providing it  
to Pitest (additional details on this tool are in Sect. 2.3.1). Pitest executes mutation testing 
at the unit level (so it mutates the code inside class methods) and produces for each muta-
tion a detailed description. Thus the output of this first step is a detailed list of Mutation 
descriptions. The Pitest Manager is the Mutta component that is responsible for managing 
the execution of Pitest and collecting the mutation logs.

At this point, the main procedure of Mutta can start. It is graphically summarized in Fig. 2.

Fig. 2  Diagram of the Mutta main operations and pseudocode of the mutation testing loop process



10 Software Quality Journal (2024) 32:5–26

1 3

As said before, Mutta is composed of a set of components (highlighted in green in the 
figure) implementing specific functionalities (details on them are provided in the following 
of the section).

First, Mutta analyzes the mutation log descriptions provided by Pitest, interprets and 
transforms them into actual statements in order to be applicable to the original source code. 
This step is carried out by the Mutations Creator component.

At this point, the main loop implementing the mutation testing process is executed. Basi-
cally, for each mutation originally generated by Pitest and concretely defined by the Muta-
tions Creator, Mutta applies it to the source code, deploys the mutated web app, executes the 
entire E2E test suite, saves the test suite results, and finally reverts to the original version of 
the web app. This is done by the several components highlighted in green in the figure.

In conclusion, the results of the entire mutation testing process are provided to Mutta user.

2.3.1  Source code mutations with Pitest

As aforementioned, to actually define the mutations to apply to the source code of the web 
application Mutta relies on the Pitest1 mutator that is called by the Pitest Manager com-
ponent. Pitest is a Maven plug-in that can create code mutations working at the bytecode 
level. Pitest currently provides many built-in mutators able to modify the bytecode in many 
ways; the complete list of mutators, all supported by Mutta, can be found in the tool web 
site2. Since Pitest was thought as an independent and complete mutation testing tool at 
unit level3, it does not provide in output the mutated source files but only a detailed log 
description of the mutations it applied during the mutation testing process. The description 
is provided at the unit level, detailing which kind of change has been applied to the class 
method source code. This is reasonable since the source code mutation can be considered 
an internal step in a standard mutation testing process, and it is unnecessary to save all the 
mutant versions of the source code generated.

Listing 1 shows a real example of mutation information for the Shopizer web application 
source code. We can see that Pitest provides information concerning the source file, the 
class, and the specific method mutated as well as the description of the mutation applied.

1 https:// pitest. org/
2 https:// pitest. org/ quick start/ mutat ors/
3 Unit testing is a method which tests individual units of source code.

https://pitest.org/
https://pitest.org/quickstart/mutators/
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2.3.2  Mutations creator

Starting from the logs generated by Pitest and collected by the Pitest Manager, Mutta 
converts the description of mutations to actual mutations in the source code of the AUT  
(application under test). For each mutation description, this component searches for the 
original version of the statement line in the source code, interprets the mutation descrip-
tion, and produces a novel mutated statement line ready to be inserted in the source code. 
This process is repeated for each mutation described in the Pitest logs. The final output is 
a json file with all the information about mutations ready to be used by the following com-
ponents of Mutta. The Mutations Creator is able to generate the exact mutated statement 
ready to be inserted in the source code. The precise meaning of the original Pitest textual 
descriptions, in terms of actual source code mutations, are defined in the Pitest documenta-
tion: this allowed us to implement the Mutations Creator covering the mutations that Pitest 
can generate. To actually define the novel mutated statements, the Mutations Creator uses 
strings replacement using regular expressions (regex). From our analysis on the various 
web applications used to evaluate Mutta we discovered that about 95% of the mutations 
are supported using this kind of solution that has the merit to be extremely fast compared 
with more advanced syntax-based changes (note that the mutations to manage can be in the 
order of tens of thousands, as for one of the considered web apps in the empirical evalua-
tion, but even potentially more for large industrial applications).

The example reported in Listing 2 is a piece of real mutation information created in json 
format by Mutta.

In case the number of mutations generated is too high, we implemented an optional 
selection rule in Mutta to limit the number of mutants to consider. This is important (as 
we will see in the empirical evaluation) since, for every mutant generated, all the entire 
E2E test suites under comparison must be run. This process typically requires an execu-
tion time in the order of several minutes for each mutation, making the evaluation over 
thousands (or tens of thousands) of mutants simply infeasible. The optional selection rule 
applies a cap to the number of mutants to consider sampling the entire set while maintain-
ing (as much as possible) invariant the proportion of the various types of mutants gener-
ated and their distribution among different methods.
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2.3.3  Mutation replacer

This component applies the mutations to the source code, one at a time. Basically, it 
replaces the original line of code with the mutated one. Moreover, when necessary, it is 
able to modify other parts of the source code to make the mutated code correct for the 
Java compiler.

2.3.4  Mutated application manager

This component is in charge of controlling and managing the application under test. It 
exposes methods to the rest of Mutta to easily control the web application execution life 
cycle. Thus it can run and stop the application using Maven, capturing the console output, 
especially to know when the application is ready and has completed the boot-up: in this 
way, Mutta can be aware of when the test suite execution can be started. Further, this com-
ponent has also to reset the state of the application under test and remove any evidence of 
previous runs: this is a fundamental feature that allows running the test suite against each 
mutation in isolation, without any influence due to the previous runs.

2.3.5  Test suite manager

This component is in charge of controlling and managing the Test Suite execution. Basically, 
it provides methods to run the test suite against a specific web application and to save detailed 
test suite execution results. Additionally, it is able to save the output of the plug-in “Surefire”.

2.3.6  Result extractor/CSV result writer

This component provides methods to extract additional information from the output of 
Surefire plug-in. It reads the xml file and gets the field needed by Mutta: the number of 
tests passed and failed with error and skipped, details for each test executed (name and 
detailed result), and test suite execution time. This component also provides the cover-
age of the test suites against the mutants: it analyzes whether each mutated line in the 
web application is executed or not for each test suite execution. This information is fun-
damental to compute the actual bug-detection effectiveness: indeed, all mutants gener-
ated but that are not covered during the test suite execution should not be considered in 
the final evaluation. Indeed, it is impossible for a test suite to kill a mutant on a specific 
source code line (i.e., detect the corresponding bugs) if that specific line of the web 
application is not triggered (and thus covered) by the test suite execution.

3  Empirical evaluation of Mutta

This section describes the definition, design, and settings of the case study we con-
ducted following the guidelines by Wohlin et  al. (2012) and  Runeson et  al. (2012) to 
design experimental studies.

The goal of the study is to investigate the effectiveness of Mutta in supporting 
mutation testing of E2E web test suites and its applicability to real case studies. The 
results of the experiments are interpreted from two perspectives: (1) researchers inter-
ested in empirically evaluating the effectiveness of Mutta in implementing mutation 
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testing for E2E Web test suites, and (2) software quality managers who want to under-
stand whether Mutta can be used in practice to evaluate and compare the bug-detection  
capability of different test suites (e.g., implemented using different technical solutions 
or having different sizes).

To evaluate if the mutation testing process implemented by Mutta is actually able 
to effectively highlight differences in the bug-detection capability of different E2E web 
test suites, we need a set of different test suites. To provide a comparison that could 
be considered valuable by itself, and not only for evaluating Mutta, we have decided 
to compare the effectiveness in detecting bugs of test suites based on different oracle 
mechanisms. The following Sect. 3.1 briefly describes the two approaches to implement 
oracle mechanisms (i.e., classical assertions and differential testing) while Sect.  3.2 
briefly describes the tools and frameworks implementing the three test suites to com-
pare for each web application.

3.1  Classical assertions and differential testing

Assertions The classical way for evaluating tests’ results is to employ assertions. A test 
assertion is a boolean expression that asserts if the output of the system under test is correct 
(i.e., assert expression is true) or not (i.e., assert expression is false). Usually, a single asser-
tion verifies a chunk of independent information and asserts if the expected information is 
the actual output information of the AUT. Some examples of value-based assertions taken 
by JUnit are the following: assertTrue, assertFalse, assertNull, assertNotNull, assertEqual, 
assertNotEqual. Some, like the equality ones, need two values (expected and actual), while 
others need only one. To create an assertion, a human tester must have a good knowledge of 
the AUT because they must know the expected result to be checked in advance.

Differential testing (or diff testing) is a testing technique formally introduced by McKeeman as 
a new method for regression testing of large software systems (Gulzar et al., 2019; McKeeman, 
1998). Differential testing consists of a comparison of outcomes: these are generated by the execu-
tion of two different systems’ versions, both using the same system under test and the same inputs. 
One is the test version, modified and needing to be tested, and the other is the base version that is 
previously verified and guaranteed to produce a correct outcome (Gulzar et al., 2019). The base 
version could be a live version of the software that can be executed whenever the testing proce-
dure is launched; alternatively, it can be just statically stored in case of a fixed expected outcome. 
In practice, this approach verifies that the behavior of the software remains unchanged. Thus, a 
difference between the two versions (test and base) highlights a likely bug in the new version. 
Differential testing is generally closely associated with regression testing due to the natural ability 
to catch bugs introduced in newer software versions. The main peculiarity of diff testing is that 
no manually created oracle is required: the base version of the system under test, that is verified 
to be correct, represents the oracle itself. “A base version is chosen with the assumption that it 
is bug-free” (Gulzar et al., 2019) is an ambitious assumption and maybe either the strong or the 
weak point of diff testing. On the contrary, the assertions created by test developers play the role 
of the oracle. Diff testing attempts in part to solve the problem of the generation of the oracle; due 
to the issue about its generation, differential testing is more applicable to software whose quality 
is already under control, with few known errors (McKeeman, 1998). Indeed, applying differential 
tests to software with many active development bugs and changes between two versions is harm-
ful to the testing process. When a tester approaches the creation of a new test suite, they usually 
analyze the “functional requirements”, considering them a complete and correct specification, 



14 Software Quality Journal (2024) 32:5–26

1 3

like an “oracle”. The following step is to “translate” the requirements specification in a test suite 
that checks and validates them. The assertions can be more or less thorough, but the procedure 
is always the same: i.e., asserting if the application implements the described functionality cor-
rectly. A fundamental difference between differential testing and assertions in the web application 
context concerns “what is tested”. With assertions, usually, only the functional part of the SUT is 
verified. On the contrary, differential testing also considers other aspects, not only functional ones, 
such as the style or GUI-related changes, since it compares the entire web pages.

3.2  Testing tools and framework considered to implement the test suites

Here we describe the tools and frameworks we used to actually implement the test suites ana-
lyzed by Mutta and following the two approaches: classical assertions vs differential testing.

Selenium WebDriver4 is a testing framework belonging to the Selenium ecosystem5 
which “drives a browser natively, as a user would” (Project, 2021); more specifically, it is 
an object-oriented API that allows test developers to write test scripts able to drive brows-
ers effectively. This framework is used to automate web-based application testing to verify 
that the AUT performs as expected (Unadkat, 2021).

The great success of this framework is mainly due to two aspects: 

1. it is open-source and thus freely modifiable and usable;
2. test scripts can be written in any programming language (e.g., Java or Python); therefore 

a test suite can be developed and maintained like every other software project.

We chose Selenium WebDriver in our experiment because it is a mature, open-source, and 
widely used state-of-the-art framework for web application testing (García et  al., 2020; 
Leotta et al., 2016). The assertions were produced using JUnit 5.

Differential Testing with Recheck Recheck is a testing framework supporting differential  
testing in the context of web testing. It is proposed by Retest, a company6 based in  
Germany founded in 2017 that provides a specific set of tools for test automation. Recheck 
is constituted by four different software products. In our experiment, we used Recheck-web 
Maven plug-in, which integrates with Selenium WebDriver and replaces assertions with 
differential testing7.

In practice, Recheck is a library written in Java that is importable in any JVM-based test 
suite project. It provides methods to apply differential testing on Selenium Web Elements. 
Given a Selenium Web Element (or also the entire driver), Recheck does the following: (1) 
generates a snapshot if one does not already exist, (2) compares the snapshot previously 
generated with the current one. Recheck fails the test if (1) no snapshot is present, so there 
is nothing to compare with (it happens in the very first run of the test); and (2) at least one 

4 www. selen ium. dev/ docum entat ion/ webdr iver/
5 www. selen ium. dev/
6 https:// retest. de
7 https:// github. com/ retest/ reche ck- web

http://www.selenium.dev/documentation/webdriver/
http://www.selenium.dev/
https://retest.de
https://github.com/retest/recheck-web
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difference is found between the previously stored snapshot and the current one. Golden 
Master is the name chosen to call the stored snapshots of a web element (or a whole web 
page). This snapshot is elaborated exclusively from the HTML and CSS code. Recheck 
creates the Golden Master with its own format (in xml language), storing all the informa-
tion that is needed to represent the page itself. The Golden Master is generated the first 
time the test script is executed, or more generally, whenever the execution does not find the 
corresponding Golden Master to compare with. A single test can have one or more Golden 
Masters associated; every check required in the test has its own Golden Master. This is the 
oracle mechanism of Retest’s differential testing.

Recheck provides two differential testing approaches8 inside Selenium tests: 

1. Explicit check. By means of the Recheck object, it is possible to explicitly call the 
Recheck check in the Java test method at any point of the test. With it we can create an 
instance of Recheck, e.g., via Recheck re = new RecheckImpl() and check 
the complete current webpage via re.check(driver, “check-name”) or indi-
vidual web elements via re.check(webElement, “check-name”);

2. Implicit check. Using the Recheck WebDriver that wraps the Selenium WebDriver, 
Recheck implicitly performs automatic checks inside the test, basically one check after 
each WebDriver action.

3.3  Context

The context of the study is constituted by a professional software tester that developed the 
three different test suites and then executed Mutta, and two open-source web applications. 
The professional tester conducted the experiment under the supervision of the research-
ers. He is a full-stack developer and software tester with more than five years of experience 
in the E2E web testing field. He has good knowledge of developing Selenium WebDriver 
test suites. Moreover, before performing the experiment, he practiced with Recheck by cre-
ating several sample test suites for various web applications.

3.4  Web applications

The two web applications included in the study are: Petclinic and Shopizer. Both applica-
tions have common technical properties important for our experiment, such as: being open-
source, written in Java programming language, based on Spring Boot framework9, rely on 
Apache Maven as build automation tool, are bootable by Maven command locally, support 
the Pitest Maven plug-in (important for applying mutations automatically with Mutta), 
support the Surefire Maven plug-in (important for collecting testing reports automatically 
with Mutta). Some of these characteristics were fundamental to automate the mutation test 
with Mutta as described in Sect. 2.

Petclinic (@spring-projects/spring-petclinic on GitHub10) is a sample application of 
Spring. It is the official application built by the developers of Spring Boot framework to 
demonstrate how to use it. It allows managing basic data simulating a veterinary clinic.

8 https:// retest. de/ featu re- unbre akable- selen ium/
9 https:// stack ify. com/ what- is- spring- boot/
10 https:// github. com/ spring- proje cts/ spring- petcl inic

https://retest.de/feature-unbreakable-selenium/
https://stackify.com/what-is-spring-boot/
https://github.com/spring-projects/spring-petclinic
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Shopizer (@shopizer-ecommerce/shopizer on GitHub11) is a customizable e-commerce 
web application. It provides the creation of accounts and several functionalities about 
e-commerce. The HTML forms are rich and dynamic: there are actions with animations, 
therefore delayed, and there is a loading overlay in many parts of the app.

3.5  Research questions

The research questions of the study are the following:

RQ1 (Mutants Generated) How many mutants are generated by Mutta?
RQ2 (Mutants Coverage) How many of the generated mutants are actually covered by 
the test suite execution?
RQ3 (Test Suite Execution Time against Mutants) Which is the execution time required 
to execute the test suites against the generated mutants?
RQ4 (Bug-detection assessment) Is Mutta able to effectively highlight differences in 
the bug-detection capability of different E2E web test suites?

The metrics used to answer the RQs are: the overall number of mutants generated (RQ1), 
the coverage analysis of the generated mutants (RQ2), the execution time of the test suites 
against the mutants (RQ3), and the number of bugs detected by the different test suites 
(RQ4). The three test suites developed for each web app contain the same test cases (i.e., 
steps) but different test oracle mechanisms (i.e., assertions, Recheck with explicit checks, 
and Recheck with implicit checks).

3.6  Experimental procedure

Since Mutta requires test suites to evaluate, we asked the professional tester to develop 
three test suites for each of the two applications under test; one for the assertions, one for 
differential testing using the explicit checks of Recheck, and one using the implicit checks 
of Recheck. This means that there are six test suites in total. We, therefore, have three test 
suite types: (1) Assertions, (2) Recheck explicit, and (3) Recheck implicit. There are 53 test 
scripts in each Shopizer test suite type, whereas Petclinic has 31 test scripts. The test suites 
are realized as ’Java 8’ projects using JUnit 5 as unit testing framework. Web element loca-
tors have been created using ChroPath12, a Chrome plug-in that automatically generates 
XPaths inspecting the web element using the browser’s developer tools. Selenium Web-
Driver has been adopted to perform the actions in the web browser for all three test suite 
types. To develop the three kinds of test suites for each web app, the developer applied the 
following procedure: 

1. Analyze the AUT and select the functionalities to be tested, trying to reach a good cover-
age of the most important features available for a user;

2. Describe the test cases in Gherkin language;
3. Develop the test cases in Selenium WebDriver test scripts without any oracle mechanisms;
4. Forking the test suite in three different test suites (one for each treatment) and: 

11 https:// github. com/ shopi zer- ecomm erce/ shopi zer
12 https:// www. auton omiq. io/ deviq- chrop ath. html

https://github.com/shopizer-ecommerce/shopizer
https://www.autonomiq.io/deviq-chropath.html
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(a) Add the specific test oracle mechanism to each test script in order to have three 
distinct test suites (i.e., one with Assertions, one using Recheck implicit, and one 
using Recheck explicit). Assertions typically check a value on the current page, 
such as the total value of a cart, while the other test oracle mechanisms check 
multiple values as described in Sect. 3.2;

(b) Validate the application with the test suite; all test scripts must pass.

For Recheck tool, the tester tuned the ignore files (i.e., ignore-rule) so that the mini-
mum number of rules is used to pass the tests. An ignore-rule13 is a filter used to ignore 
volatile elements, attributes, or sections, using a Git-like syntax. This mechanism is very 
useful for avoiding false positives in the testing phase. For example, the portion of a page 
showing the current time changes from one snapshot to another, thus without an ignore-
rule Recheck would highlight the difference causing the test script to fail without the pres-
ence of a real bug.

To answer RQ1, RQ2, and RQ3, the tester executed Mutta and noted down 
respectively: (1) the number of generated mutants per Web app; (2) the coverage analy-
sis of the generated mutants; and (3) the execution time required to run the considered 
test suites against the generated mutants (we report the average times computed on five 
repeated executions to mediate any fluctuations).

To answer RQ4 the tester employed Mutta to measure the bug-detection capability 
of the three considered test suites (for each app) as the number of mutants detected by  
each test suite over the total number of mutants generated by Mutta. In particular, the met-
ric we used to evaluate the overall test suite quality is the percentage of mutants killed out  
of the total (i.e., the higher, the better).

4  Results

The following sections report the results for answering the research questions of this study. 
In particular, to answer RQ1, RQ2, and RQ3, we analyzed respectively three main factors: 
(1) the number of generated mutants per Web app; (2) the coverage analysis of the gener-
ated mutants; and (3) the execution time required to run the considered test suites against 
the generated mutants. These analyses will provide (1) an overview of how the various 
components of Mutta work in a realistic mutation testing scenario and (2) some considera-
tions on the applicability of Mutta to web applications of different sizes. Then, with RQ4, 
we provide an overview of the bug-detection assessment supported by Mutta that enables 
the comparison between different kinds of test suites: to this end, as a case study, we com-
pared test suites differing for the adopted oracle mechanism (i.e., Assertions, and Recheck 
Explicit and Implicit).

4.1  RQ1 (Mutants Generated) How many mutants are generated by Mutta?

Concerning the two considered web applications, Mutta managed the generation through 
Pitest of 107 mutants for the Petclinic application: in total, the web app is composed of 

13 https:// github. com/ retest/ reche ck- web

https://github.com/retest/recheck-web
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1932 lines of code, not counting blank lines and comments (overall about 5.5% of the 
lines have been mutated). Instead, in the case of Shopizer, 15025 mutants were gener-
ated since the web app is by far larger: 86333 lines of code, not counting blank lines and 
comments (overall, about 17.4% of the lines have been mutated). The reason why, in pro-
portion, for Shopizer more mutants have been created (i.e., 5.5% vs 17.4%) is that when 
dealing with more complex code (as in the case of Shopizer) the number of statements 
that can be actually mutated increases: indeed, the standard boilerplate code is usually 
not mutated, so simple functions provide only a few mutants in general.

As an example, Table 1 provides an overview of the types of mutations actually gen-
erated for the Petclinic web application. We can observe that most mutations involve 
returning empty strings in class methods, removing calls to methods, and negating con-
ditions (for instance, in conditional statements or loops). We highlight that Pitest can 
be configured to generate different types of mutations. In this study, we adopted the 
Pitest “default” settings, but it is possible to apply more mutation types by activating 
the “stronger” or “all” configurations; clearly, these choices led to a higher number of 
generated mutations and so higher execution time for the entire mutation testing process 
as we will discuss in RQ3.

Summary RQ1. From the execution of Mutta on the two considered web applications, 
we can observe that Mutta is able to correctly manage the execution of Pitest on each 
source file composing the web apps, and finally, to generate a reasonably large number 
of mutants that can be employed for a detailed analysis of the difference in bug-detection 
capability among the considered test suites associated with the web applications.

4.2  RQ2 (Mutants Coverage) How many of the generated mutants are actually 
covered by the test suite execution?

Thanks to the coverage analysis functionality implemented in Mutta, we analyzed the 
effective mutation coverage reached by the test suites developed in the context of the 
empirical evaluation. Basically, Mutta labelled (in the original version of the app) all 
the lines mutated as covered if they were executed during the test suite execution against 
the original version of the app. Note that the coverage is the same for all three ver-
sions of each test suite (Assertions, and Recheck explicit and Implicit) since the Sele-
nium WebDriver actions are the same and only the final check changes. During the 
evaluation, Mutta was able to provide a detailed analysis of the coverage from the test 
suites execution. In detail, the mutation coverage for Petclinic is 98 mutants out of 107 

Table 1  Distribution of the type 
of mutations generated for the 
Petclinic web application

Mutation type %

RTN_EMPTY_STR 31%
REMOVE_CALL 24%
NEGATE_COND 21%
RTN_NULL 9%
RTN_EMPTY_COLLECTION 8%
RTN_TRUE 2%
RTN_ZERO_INTEGER 2%
RTN_ZERO_INT 1%
RTN_FALSE 1%
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(91.6%). On the contrary, for Shopizer we found that the coverage is lower: only 1882 
mutants were covered (12.5%) by the test suites. We analyzed the reasons behind this 
difference and found that the low percentage is due to the fact that (1) Shopizer is very 
complex and (2) the developer of the test suites focused only on the main features of the 
Shopizer web application; thus, the test suites cover a limited number of functionalities 
and cases managed in the mutated source code. This means that several mutate state-
ments are not executed when running the test suites against the Shopizer application.

Summary RQ2. The obtained results highlight that for some applications the coverage of 
the generated mutant can be really low (as in the case of Shopizer, which is 12.5%). From 
this, it appears evident the importance of the coverage analysis functionality implemented 
in Mutta: in large real web applications, it could be pretty hard to reach a high level of cov-
erage of all the mutated lines of code: without a coverage analysis mechanism, like the one 
implemented in Mutta, the mutation testing results can be unreliable since the majority of the 
mutants (that are actually never executed) are labelled as not killed, thus incorrectly standard-
izing the performances of the different approaches compared through mutation testing.

4.3  RQ3 (Test Suite Execution Time against Mutants) Which is the execution time 
required to execute the test suites against the generated mutants?

We analyzed the execution of the test suites against the mutated versions of the considered 
web applications generated by Mutta, to better understand the feasibility and the poten-
tial costs of the mutation testing process implemented by our tool. In the case of the Pet-
clinic test suites (composed of 31 test scripts), the execution against the 98 mutants (i.e., 
the mutants covered by the test suites) took about 6 hours: this is a reasonable value since 
the average time required for each test suite execution (i.e., against each mutated version of 
the web app) exceeds a minute.

On the other hand, in the case of Shopizer, the execution of the test suites (composed 
of 53 test scripts) against all the 1882 covered mutants generated would have taken too 
long: estimated at about 220 hours per test suite. This result highlights the importance of 
implementing an optional selection rule in Mutta, in order to limit the number of mutants 
to consider. The application of the rule discarded a relevant part of the mutants by reduc-
ing the set of considered mutants to 491 (we set up the rule to select up to three mutations 
for each Java method, and therefore we have eliminated about the 74% of the mutations 
covered by the test suite). At this point, executing 491 mutants still took about 62 hours of 
computation to run the test suites. So, we decided to use virtual machines in order to paral-
lelize the computation and speed up the evaluation. To this end, we set up a cluster of 10 
virtual machines (based on Oracle VirtualBox) on which we executed Mutta starting from 
the result of the selection rule. For each instance of Mutta, executed on a virtual machine, 
we manually selected about 50 mutants in order to reduce the execution time to about 6 
hours. Clearly, this solution requires to have several physical machines available or, as an 
alternative, a cluster on the cloud.

Summary RQ3. From the results obtained, we can say that the execution time required 
to complete the mutation testing process can be very high, in particular when consider-
ing real web applications since the number of generated mutants grow a lot (e.g., 220h 
estimated time for the Shopizer web application). These results highlight the importance 
of (1) the “selection rule” mechanism implemented in Mutta and of (2) the possibility 
provided by Mutta of executing in parallel, on different machines, disjointed partitions 
of the entire set of mutants.
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4.4  RQ4 (Bug‑detection assessment) Is Mutta able to effectively highlight 
differences in the bug‑detection capability of different E2E web test suites?

After having collected the result of the execution of Mutta for the two considered applica-
tions and for each of them of the three test suites implementing different oracle mechanisms 
(i.e., the case study comparing Assertions, and Recheck Explicit and Implicit), we are able to 
analyze the effectiveness of Mutta as mutation testing tool for E2E web test suites.

More in detail, see Fig. 3, we discovered that of the 98 considered mutants for the Pet-
clinic web application (i.e., the bugs artificially inserted by mutation and covered by the 
original test suite), the test suite based on the classic assertions killed 80 (about 82%) of 
them, the one based on Recheck explicit 88 (about 90%), and finally the one based on 
Recheck implicit 89 (about 91%). In the case of Shopizer, 491 of the generated mutants 
were finally considered after applying the selection rule and the coverage analysis. The test 
suite for this web application based on classical assertions killed 190 of them (about 39%), 
the one based on Recheck explicit 249 (about 51%), and finally, the one based on Recheck 
implicit 255 (about 52%). From the figure, it is also evident how computationally intensive 
can be the execution of an E2E test suite against a quite large number of mutants: for exam-
ple, in the case of Shopizer, for each oracle mechanism, a total of 26023 test scripts runs 
have been performed (53 tests compose each test suite repeated for each of the 491 mutants).

In the last column, Fig.  3 shows the percentage difference in the number of mutants 
killed with respect to the classical assertions. There is a clear advantage from using dif-
ferential testing (both Recheck implicit and explicit) with respect to the assertions. Recheck 
implicit is slightly better at killing mutants than Recheck explicit, which is reasonable 
given the much higher number of differential checks. It is worth noting that for Shopizer, 
a realistic and complex web app, Recheck’s differential testing methods have been able to 
kill a much higher amount of mutants, about 31–34% more compared to assertions. This 
can be explained why often a bug in complex code can unpredictably affect the behavior 
of the app — for instance, causing a slight modification of a web page — and being that 
differential testing checks the entire web page content (and not just a web element as asser-
tions usually do) it has been found to be more effective.

Thus, thanks to the application of Mutta we can say that from this preliminary analysis, 
Recheck implicit appears to be the most effective solution; alongside the other techniques, 
it performs more checks during the test case actions, which makes it the most effective in 
finding bugs. However, Recheck explicit is also effective.

Summary RQ4. From the results obtained with the execution of our tool, we can say 
that Mutta can be considered an effective solution to the mutation testing problem 
of E2E test suites. To propose an interesting case study, in this work we compared test 
suites where the test cases perform exactly the same steps, but the final oracle mechanism 

Fig. 3  Petclinic and Shopizer test suites effectiveness computed with Mutta 
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for each of them differs (we considered Classical Assertions, and Recheck Explicit and 
Implicit). However, Mutta can be used in more standard comparison to analyze, for 
instance, the effectiveness in the bugdetection capability of test suites implemented using 
the same technical solutions (e.g., Assertions only) but differing, for example, in the num-
ber of test scripts: this can be very helpful for the testers working in the industry to find a 
reasonable trade-off in a test suite reduction scenario, between the number of test scripts to 
run (the lower, the better) and the number of bugs that can be actually detected (the higher, 
the better).

4.5  Threats to validity

The main threats to validity affecting our empirical study are as follows: Internal, External, 
Construct, and Conclusion validity (Wohlin et al., 2012).

Internal Validity threats concern confounding factors that may affect a dependent vari-
able. Concerning RQ1, the number of generated mutants can be influenced by the char-
acteristics of the source code of the two web applications considered. For this reason, we 
employed two existing open-source web apps providing a realistic scenario for the applica-
tion of Mutta. Concerning RQ2, the actual coverage of the mutations that can be reached 
depends on the completeness of the test suites and, also in this case, the characteristics of 
the source code of the considered web apps. To reduce this threat as much as possible, we 
developed the test suites independently from the mutation process implemented in Mutta 
and followed a precise procedure as described in the empirical study. Concerning RQ3, 
the execution time of the test suite against the mutants mainly depends on the number of 
mutants generated (and clearly also the time required to execute the entire test suite once). 
In the case of Petclinic, we showed the total execution time against all the covered mutants, 
while in the case of Shopizer, given the very high number of such kind of mutants (1882), 
we decided to apply the “selection rule” inserted in Mutta that can help to maintain the 
total execution time required by the mutation testing process at reasonable values. Finally, 
concerning RQ4, the main threat is probably related to the choice of the mutation tool 
adopted by Mutta (i.e., Pitest). Indeed, different tools could be potentially able to gener-
ate different set of mutants. This could change the mutant-detection capability of the three 
considered approaches. To reduce this threat as much as possible, we decided to adopt Pit-
est for Mutta, a mature mutation tool already used in other scientific works (Coles et al., 
2016; Laurent et al., 2017; Papadakis et al., 2018). In fact, Pitest is capable of generating a 
variety of possible mutations in the web apps’ source code, mimicking realistic bugs.

External Validity threats are related to the generalization of results. It is well-known that 
case study research is criticized mainly for two reasons: for lacking scientific rigour and 
providing little basis for generalization (Hollweck, 2014). In our case study, there could be 
two threats of this type. The limited number of web apps and the fact that only one devel-
oper was involved in the study. However, both the web apps employed in our research are 
examples of real systems, and the involved developer is very experienced in developing 
Selenium WebDriver test suites. This makes the context quite realistic, even though further 
studies with existing, more complex applications and more developers will improve the 
generalizability of the results.

Construct validity threats concern the relationship between theory and observation. 
Concerning our RQs, they are due to how we measured the results. To minimize this threat, 
we decided to measure all the results provided objectively, thanks to automated procedures 
that do not involve human intervention.
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Threats to conclusion validity concern issues that may affect the ability to draw a cor-
rect conclusion, for example, using non appropriate statistical methods. This threat does 
not apply to our experiment because we did not use statistical tests.

5  Related works

To the best of our knowledge Mutta is the first tool with the goal of automatizing the 
mutation testing process of E2E test suites completely. In the literature, several research-
ers proposed mutation operators especially tailored for the web context and mutation 
approaches for web applications.

For instance, Praphamontripong and Offutt (Praphamontripong & Offutt, 2010) present 
a solution to the problem of integration testing of web applications by using mutation anal-
ysis. In their work, they first define new mutation operators specific for web applications, 
then present a tool called webMuJava, implementing these operators, and finally describe 
the results from a case study applying the proposed tool to a small web application. The 
results show that mutation analysis can help to produce tests that are effective at finding 
web application faults. WebMuJava differs from Mutta from many perspectives: (1) the 
testing level is different, its focus is on integration testing while Mutta supports the evalu-
ation of functional test suites at “system level’’; (2) webMuJava provides novel mutation 
operators while Mutta supports the entire mutation testing process and relies on the state 
of the art mutator Pitest to mimic realistic bugs in the web app source code.

In another work, Praphamontripong et al. (2016) define a set of web mutation operators 
targeting interaction faults in web applications. They carried out an experimental study on 
11 web applications using 15 novel web mutation operators. In that study, they analyze the 
effectiveness of 12 independently developed test suites in terms of the capability of killing 
web mutants. The authors found that none of the manually created tests was able to kill a 
high percentage of mutants (the mutation scores ranged from 17% to 75%, with a mean 
of 47%). On the contrary, the mutation-based tests killed all the mutants generated in the 
experiment. The authors also analyze which mutants and mutation operators are difficult 
to be detected by traditional tests. We too have experienced in our experiment that it is dif-
ficult to kill all mutants with test cases designed starting from the functionalities offered by 
the application.

Mirshokraie et  al. (2015) face the problem of the equivalent mutants in mutation test-
ing of Javascript code that leads to high computational costs associated with a large pool 
of generated mutants. They propose a guided mutation testing technique that leverages 
dynamic and static characteristics of the system under test to selectively mutate portions of 
the code that exhibit a high probability of (1) being error-prone, or (2) affecting the observ-
able behavior of the system, and thus being non-equivalent. In this way, the proposed tech-
nique can minimize the number of generated mutants. Even if the proposed mutation testing 
approach can be adopted with any programming language, the authors implemented and 
evaluated it for JavaScript code in the context of web applications. This kind of work could 
be useful in the near future to make the mutation testing process implemented in Mutta 
more efficient since it can benefit from an optimized selection of the mutants to consider.

Always in the context of Javascript, Rodríguez-Baquero and Linares-Vásquez (2018) 
propose Mutode, an open-source tool which leverages the npM package ecosystem to per-
form mutation testing for JavaScript and Node.js applications. The authors empirically 
evaluated the tool’s effectiveness by running it on 12 of the top 20 npM modules that have 
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automated test suites. This proposal is very different from ours: different target of the 
mutation (npM modules vs web applications) and different kinds of tests considered (test 
scripts for npM modules vs E2E functional test scripts).

Habibi and Mirian-Hosseinabadi (2015) face the problem of testing Event-Driven Soft-
ware (EDS), a class of software whose behavior is driven by incoming events. Web and 
desktop applications that respond to user-initiated events on their Graphical User Inter-
face (GUI) are examples of EDS. Testing EDS poses great challenges to software testers. 
One of these challenges is the need to generate a huge number of possible event sequences 
that could sufficiently cover the EDS’s state space. In particular, in their work, the authors 
adopted mutations to create variations of the functional graphs describing the structure of 
the application under test. This type of mutations is different from the source-based one we 
use in Mutta, which mimics the standard error of web developers.

The problem of enhancing the set of mutations applicable to the specific type of appli-
cation has also been investigated for Mobile applications. In fact, mutation testing is 
considered effective in detecting defects for this type of application as well (Deng et al., 
2017). For instance, Moran et al. (2018) proposed MDroid+, an automated framework for 
mutation testing of Android apps that includes 38 mutation operators from ten empirically 
derived types of Android faults. The tool has been applied to generate over 8,000 mutants 
for more than 50 apps.

Petrović et al. (2022) analyzed the problem of applying mutation testing in real indus-
trial scenarios. Indeed, mutation testing has long been considered intractable since the 
high number of mutants that are usually generated by mutators. Such a number of mutants 
represent an insurmountable problem, both in terms of human and computational effort. 
This has hindered the adoption of mutation testing as an industry standard. The authors 
report the example of Google having a codebase of two billion lines of code, and more than 
150 million of tests are executed on a daily basis. In this context, the traditional approach 
to mutation testing does not scale. Even existing solutions to speed up mutation analysis 
are insufficient to make it computationally feasible at such a scale. To address these chal-
lenges, the authors present a scalable approach to mutation testing based on the following 
main ideas: (1) mutation testing is performed incrementally, mutating only changed code 
during code review, rather than the entire code base; (2) mutants are filtered, removing 
mutants that are likely to be irrelevant to developers, and limiting the number of mutants 
per line and per code review process; (3) mutants are selected based on the historical per-
formance of mutation operators, further eliminating irrelevant mutants and improving 
mutant quality. Finally, the authors show that the proposed approach produces orders of 
magnitude fewer mutants and that context-based mutant filtering and selection improve 
the results. This work supports our choice of introducing a “selection rule” for the mutants 
generated by Pitest and suggests a future improvement direction for Mutta, making such 
selection more advanced and based on more complex criteria.

6  Conclusions and future work

In this paper, we presented a novel tool named Mutta able to automate the entire mutation 
testing process for web applications. It mutates the various server-side sources of a web 
application using the state of the art mutation testing system Pitest, runs the E2E test suites 
against the mutated web applications, and finally collects the test outcomes. We evaluated 
Mutta with an empirical study involving three different techniques for implementing E2E 
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test suites (and thus three different test suites) and two different applications. This case 
study helped us understand that (1) Mutta performs the steps necessary to implement the 
complex process of mutating testing of E2E test suites for web applications, and (2) Mutta 
can be adopted in practice to evaluate and compare different test suites (e.g., composed 
by a different set of test scripts) or test suites built with different frameworks (e.g., using 
assertions or differential testing, as in our case study).

As future work, we plan to extend Mutta in order to support web applications imple-
mented with different languages. Indeed, Mutta currently relies on Pitest, a mutation testing 
system for Java. The modular architecture of Mutta allows us to replace Pitest with other 
mutation testing systems able to manage different languages. Moreover, we plan to add a 
module to automatically support the parallel execution of the test suites against the mutants 
on the cloud. Although this can be done manually (as shown in the empirical study), we 
believe it can be considered a useful feature to promote the adoption of Mutta in an indus-
trial context where applications and test suites are large. Finally, we plan to refine the “selec-
tion rule” mechanism in order to further reduce the number of mutants considered.
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