
Vol.:(0123456789)

Software Quality Journal (2023) 31:441–469
https://doi.org/10.1007/s11219-022-09604-2

1 3

Critical scenario identification for realistic testing
of autonomous driving systems

Qunying Song1 · Kaige Tan2 · Per Runeson1 · Stefan Persson3

Accepted: 2 October 2022 / Published online: 3 December 2022
© The Author(s) 2022

Abstract
Autonomous driving has become an important research area for road traffic, whereas test-
ing of autonomous driving systems to ensure a safe and reliable operation remains an open
challenge. Substantial real-world testing or massive driving data collection does not scale
since the potential test scenarios in real-world traffic are infinite, and covering large shares
of them in the test is impractical. Thus, critical ones have to be prioritized. We have devel-
oped an approach for critical test scenario identification and in this study, we implement
the approach and validate it on two real autonomous driving systems from industry by inte-
grating it into their tool-chain. Our main contribution in this work is the demonstration and
validation of our approach for critical scenario identification for testing real autonomous
driving systems.

Keywords Critical scenario identification · Autonomous driving · Software testing · Test
scenario generation

1 Introduction

While autonomous driving is expected to improve traffic capacity and reduce road acci-
dents, testing of autonomous driving systems is a prerequisite to validate the reliability and
safety of such systems (Song, Engström, et al., 2021). Inadequate or ineffective testing

 * Qunying Song
 qunying.song@cs.lth.se

 Kaige Tan
 kaiget@kth.se

 Per Runeson
 per.runeson@cs.lth.se

 Stefan Persson
 stefan.persson@volvocars.com

1 Department of Computer Science, Lund University, Box 118, SE-221 00 Lund, Sweden
2 Department of Mechatronics, Royal Institute of Technology, Brinellvägen 83,

SE-100 44 Stockholm, Sweden
3 Volvo Cars Corporation, Assar Gabrielssons väg, SE-405 31 Göteborg, Sweden

http://orcid.org/0000-0002-8653-0250
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09604-2&domain=pdf

442 Software Quality Journal (2023) 31:441–469

1 3

could fail to discover potential defects and misbehavior in the systems and lead to severe
accidents in the road traffic (Gambi, Mueller et al., 2019). The fatal accident caused by
Uber’s autonomous vehicle is an example where a pedestrian who walked her bicycle
across the road was hit by the vehicle in Arizona, USA, in 2018 (Yang et al., 2020).

Current approaches for testing autonomous driving systems that rely on substantial
real-world driving, or collecting real driving data at scale, are considered both inefficient
and ineffective. They take an unpractical amount of time to complete and may still not
cover rare traffic situations (Ponn et al., 2019), while the regular road traffic is consid-
ered non-critical most of the time (Klischat and Althoff, 2019). New approaches for test-
ing autonomous driving systems based on critical scenario identification are increasingly
demanded (Gambi, Mueller et al., 2019; Gambi, Huynh et al., 2019). We refer to critical
scenarios here as scenarios that can lead to a collision or near-collision consequence or
situation, and are of interest for testing autonomous vehicles.

Nevertheless, existing studies mostly present parts of an end-to-end solution for critical
test scenario identification, for example, focusing on either simulation or optimization tasks
of critical driving scenarios (Klück et al., 2019; Batsch et al., 2021). Also, the reported
studies are in many cases function-specific, for example, by proposing interventions based
on a particular function module, like motion planning for highway scenarios (Ponn et al.,
2020). Therefore, the feasibility of such approaches for testing different autonomous driv-
ing functions is unclear. In addition, previous studies tend not to validate their approaches
on real driving functions from industry, but instead on basic implementations based on
existing platforms like MATLAB Simulink (Iqbal et al., 2021), or using publicly available
driving components like DeepDriving (Gambi, Mueller et al., 2019; Gambi, Huynh et al.,
2019). The effectiveness of those approaches for testing real autonomous driving systems
under real traffic conditions is not demonstrated.

To tackle the challenges mentioned above and facilitate testing of different autono-
mous driving systems, we have proposed a critical test scenario identification approach in
our previous short paper (Song, Tan, et al., 2021). We are detailing the approach in the cur-
rent work and providing two real-world cases to demonstrate the implementation and result of
this approach. The two cases involve two autonomous driving functions developed by the
automaker Volvo Cars — a parking function and a driving function. Our approach utilizes
three existing engineering tools (requirement and verification management tool, SPAS sim-
ulation platform, and modeFrontier process optimization and automation tool). We imple-
ment this approach for the two autonomous driving systems and have identified numerous
critical scenarios for them. Consequently, the identified scenarios can be used to design test
cases for those systems in both simulated and real-world testing. To clarify our scope, the
work does not aim to find the best optimization algorithm but to implement the approach
and demonstrate the feasibility of it for testing real autonomous driving functions.

The contribution of this work is the implementation and validation of said approach
for critical test scenario identification. The approach enables an end-to-end solution from
the initial analysis of the system specifications until generating critical scenarios that can
be used for testing. It is generic as the tools involved are exchangeable and is not subject
to any particular driving function, simulator or application tools. Thus, the approach can,
in principle, be used for critical scenario identification for testing any autonomous driving
system. In addition, we provide evidence showing that the approach is effective in identify-
ing critical scenarios for testing realistic autonomous driving functions. We also want to
highlight that, due to industrial confidentiality concerns, only partial data and result analy-
sis are presented, where sensitive information is removed, still demonstrating the principal
outcomes.

443Software Quality Journal (2023) 31:441–469

1 3

The rest of the paper is organized as follows. Section 2 describes concepts and terms
used in this study. Section 3 explains our the research approach. Sections 4 and 5 detail
the case studies that use the proposed approach for identifying critical scenarios for testing
two autonomous driving functions. Section 6 presents related literature on critical scenario
identification for testing of autonomous driving systems. We present discussions and limi-
tations of the study in Sect. 7, and conclude the paper in Sect. 8.

2 Terms and concepts

In this section, terms related to critical scenario identification for testing autonomous driv-
ing system are introduced. Also, we provide our definition of terms such as scenario, criti-
cal scenario, and scenario-based testing.

2.1 Scenario

According to Ulbrich et al., a scenario is defined as a temporal sequence of scenes, with
actions and events of the elements that are involved within this sequence (Ulbrich et al.,
2015). By actions and events, they mean, for example, maneuvers like cut-out and avoid
colliding with a vehicle ahead. Given this definition, a scenario consists of at least one
scene with corresponding actions and events, and a scene, in this context, is embodied as
the geo-spatially stationary environment, dynamic elements, and a self-representation of all
actors and observers.

Based on the definition proposed by Ulbrich et al. (2015), Menzel et al. further refined
the definition of scenario into three different abstraction levels — functional, logical, and
concrete scenarios (Menzel et al., 2018). Specifically, functional scenarios usually describe
the involved entities and their behaviors using a natural language. Logical scenarios spec-
ify the state space of the functional scenarios with the relevant parameters, parameter range
and distribution. Concrete scenarios are instantiated from the logical scenarios by assign-
ing concrete values for the parameters within the desired value range and distribution.

We adopt the definition of abstraction layers of scenarios in our work, proposed by
Menzel et al. (2018), where functional scenarios are retrieved from the system specifi-
cations and analyzed to derive the parameters for logical scenarios. Subsequently, con-
crete scenarios are simulated and optimized to identify the critical ones for testing autono-
mous driving systems. We have also observed that similar terms such as elements, entities,
objects, and traffic participants are often used in the literature to refer to the different road
users such as pedestrians, cyclists, and vehicles of different types. We stick with the defini-
tion from Menzel et al. (2018) to use entities for defining scenarios.

2.2 Critical scenario

There is no universal agreement as yet on what constitutes a critical scenario, although
different interpretations in the literature share a high similarity. Zhang et al. describe a
critical scenario as a dangerous road situation that may lead to an unsafe decision for the
autonomous vehicle, and appropriate countermeasures must be taken immediately to avoid
impending collision (Zhang et al., 2020). In contrast, Kluck et al. focus more on the con-
crete scenario level and consider a scenario to be critical if underlying parameter values
cause a malfunction of the autonomous driving system (Klück et al., 2019). Hallerbach

444 Software Quality Journal (2023) 31:441–469

1 3

et al. propose critical scenarios as the scenarios that need to be tested, which can be derived
from both functional and non-functional requirements (e.g., traffic efficiency, driver com-
fort) Hallerbach et al. (2018). Herein we take the interpretation from Kluck et al., and
define critical scenarios as scenarios with a parameter set that has a high probability of
revealing unintended and unsafe behavior of the systems, which may cause a collision or
near-collision situation for the vehicle and other entities in the road traffic (Klück et al.,
2019).

Furthermore, we need to differentiate critical scenarios from similar terms to avoid mis-
understanding. Gambi et al. use accident scenarios from police reports as critical scenarios
for testing autonomous vehicles (Gambi, Huynh et al., 2019), whereas Klischat et al. argue
that an accident by a human driver may not necessarily be a critical scenario and can be
avoidable by others or autonomous vehicles (Klischat & Althoff, 2019). Challenging sce-
narios and complex scenarios are often used as synonyms, and are related to critical sce-
narios. Riedmaier et al. (2020) claim that a scenario is critical if the behavior of the system
is evaluated after the scenario has been executed either in real world or in simulation and
the criticality being measured. In contrast, scenarios are challenging or complex if they are
evaluated and classified as challenging or complex without being executed. Ponn et al. point
out that challenging scenarios are not always necessarily critical ones but more often lead to
critical ones when executed (Ponn et al., 2020). Lastly, we also differentiate the concept of
critical scenarios from corner-case scenarios (also referred to as edge cases). Karunakaran
et al. define an edge case as an unknown and unsafe scenario that is hard to predict during
the test and can lead to severe results for the autonomous vehicle (Karunakaran et al., 2020).
Since critical scenarios can either be known or unknown, we believe the edge cases are a
subset of the critical scenarios that are of high interest for its identification and testing the
autonomous driving systems.

2.3 Scenario‑based testing

Scenarios are commonly used to substantiate test cases for autonomous driving sys-
tems (Erdogan et al., 2018). As stated by Kluck et al., a test case is the value assignments
of all relevant parameters of the scenario, which essentially aligns with the definition of the
concrete scenarios (Klück et al., 2019). However, a test case should entail not only a sce-
nario but also a pass-fail criterion to evaluate the resulting behavior of the system (Gambi,
Mueller et al., 2019; Menzel et al., 2018). An example test case for an autonomous lane-
keeping function, as given by Gambi, Mueller et al. (2019), is that the vehicle must follow
a navigation path on a generated road map. The test fails if the vehicle cannot get to the
destination or drives out of the lane. In this example, the test scenario consists mainly of
the generated road map, and the pass/fail criteria is whether or not the vehicle under test
gets to the destination and drives in the lane. The pass/fail criteria for a certain scenario
could be derived based on the requirements of functional, safety, or performance standards
etc. of the system.

Scenario-based testing plays a key role in safety validation of autonomous driving sys-
tems (Riedmaier et al., 2020). It tests the systems with different scenarios and examines
the resulting behavior of the vehicle in terms of interactions with the road infrastructure,
with other road entities, and compliance with the functional specifications as well as the
safety regulations (Batsch et al., 2021). The scenario-based testing approach aims to reduce
the test effort to a manageable number of scenarios by limiting the testing to meaning-
ful scenarios (Ponn et al., 2019). The number of concrete scenarios can be infinite due

445Software Quality Journal (2023) 31:441–469

1 3

to the combinatorial explosion of parameter values (Batsch et al., 2021), and identifying
all possible scenarios is difficult regardless of which approach is used (Hallerbach et al.,
2018). According to Batsch et al., scenario-based testing usually runs in simulation with
Software-in-the-Loop (SIL). Still, it can also be carried out with Hardware-in-the-Loop
(HIL), or in the real world with proving ground (also known as test tracks in some studies)
or public road traffic (Batsch et al., 2021).

Despite the remarkable benefits of using scenario-based approaches for testing autono-
mous vehicles, identifying relevant scenarios for the system under test remains the prerequi-
site, especially those critical scenarios that violate the desired safety requirements (Riedmaier
et al., 2020). Open questions still challenge us in regards to what constitutes good test sce-
narios and how to generate them systematically (Gambi, Huynh et al., 2019); how to define
and collect realistic test scenarios (Erdogan et al., 2018); and how to identify the critical sce-
narios for testing (Zhang et al., 2020). Menzel et al. propose many different sources that can
be used for deriving test scenarios, such as functional specifications, system boundaries, the
operational environment, legal requirements, and real driving data collected (Menzel et al.,
2018). While common and safe scenarios without significant actions can be easily identified
and reduced, the success of a scenario-based testing approach is highly reliant on its ability
to find more critical scenarios within a given testing budget (Porres et al., 2020). That is the
core of the current study — to implement and validate the feasibility of the approach we
developed for critical scenario identification for testing real autonomous driving systems.

2.4 Objective functions

An integral part entailed in critical scenario identification is how can we quantify and
evaluate a concrete scenario to be critical or not, thus the criticality of a scenario must
be represented in a quantifiable way. In this study, we use the term objective functions to
refer to the measurements of criticality of a scenario. Different surrogate measurements for
safety evaluation of traffic conflicts can be used as objective functions, for example, Time-
to-Collision (TTC), Post-Enchroachment Time (PET), and Time-to-Brake (Mahmud et al.,
2017). Among these surrogate indicators, TTC is used the most, according to a review
study by Laureshyn et al. (2016). As an example, Klück et al. (2019) measure and extract
scenarios with TTC less than one second as critical scenarios for an autonomous emer-
gency braking system.

Safety metrics extracted from industrial standards can also be used as objective func-
tions, for example, ISO-15622 standard for adaptive cruise control (Riedmaier et al., 2020),
ISO-26262 for general automotive development and test (Feng et al., 2020), and Responsi-
bility–Sensitive Safety (RSS) for autonomous vehicles (Karunakaran et al., 2020). Several
performance metrics, including safety, functionality, mobility, and drivers’ comfort, are
used for generating test scenarios for autonomous vehicles by Feng et al. (2020), and they
use a combination of the maneuver challenge and exposure frequency as the measurements
for evaluating critical scenarios.

Eventually, selecting objective functions must be specific to a particular driving system
and the system specifications. In this study, we have selected TTC and jerk for the autono-
mous driving function, distance to vehicles and angle of host vehicle for the autonomous
parking function, as objective functions. TTC represents the time remaining before colli-
sion, given the vehicles keep the current speed and direction. A shorter TTC means that a
collision is more imminent. Jerk measures the change of acceleration rate of the vehicle,
where a large jerk value means an aggressive change of acceleration of the vehicle and the

446 Software Quality Journal (2023) 31:441–469

1 3

opposite of smoothness. Distance to vehicles simply measures and restricts that the host
vehicle (also known as ego vehicle) should keep a safe distance (i.e., 0.3m) to the station-
ary vehicles after completing the parking maneuver, and angle of host vehicle requires the
vehicle to keep a good orientation and be within a specific boundary of angles (i.e., ±3◦) to
the parking slots.

3 Research approach

In this section, we describe the context and method we used for the current study. Overall,
we followed the design science paradigm in our research (Runeson et al., 2020). Design
science paradigm is used as a frame to guide, describe, or communicate the research using
three basic elements — problem conceptualization, solution design, and solution valida-
tion. The three elements are connected in the given order and can be performed in many
iterations (Runeson et al., 2020).

We investigated the problem of critical test scenario identification by studying the
existing literature and industrial practices in an earlier study (Song, Engström, et al., 2021).
Then, we designed the solution for critical test scenario identification in another prior
study (Song, Tan, et al., 2021). In the current work, we implement the approach we devel-
oped in an industrial context by integrating the existing engineering tools, and validate it
using two real autonomous driving functions by collaborating with Volvo Cars, which we
report in Sects. 4 and 5. Lastly, we infer the potential usage of our approach for testing autono-
mous driving systems in general, which is detailed later in Sect. 7.

3.1 Research context

The current study is based on the critical test scenario identification approach that we pre-
sented briefly in our previous work (Song, Tan, et al., 2021). As shown in Fig. 1, the approach
defines a tool-chain with three different engineering tools and a workflow for critical test
scenario identification. The approach enables an end-to-end solution from analyzing the
system specifications until critical test scenarios are identified for a given autonomous
driving system. The identified scenarios can then be used to substantiate test cases for the
system.

The three engineering tools are as follows: (1) a requirement and verification manage-
ment tool which is used for storing and analyzing the system specifications. By using this

Fig. 1 Overview of the critical test scenario identification approach, consisting of interconnected tools (left)
which are used in the workflow (right). The figure is a reprint from our previous work with minor adapta-
tion, and we refer to Song, Tan, et al. (2021) for more details of the approach

447Software Quality Journal (2023) 31:441–469

1 3

tool, relevant parameters (e.g., speed and position of vehicles) and objective functions
(e.g., TTC, PET) can be derived from the system specifications and operational environ-
ments; (2) an internal simulation platform SPAS, which is developed by Volvo Cars and
used for early verification of the active safety and autonomous driving functions. We use
SPAS to simulate the scenarios and record the simulation results; (3) a process automation
and optimization tool modeFrontier, which is a commercial tool for process and design
optimization. We create optimization models in this tool by using the parameters, objec-
tive functions, and an optimization algorithm (e.g., pilOPT), and the models explore criti-
cal scenarios based on the simulation result from SPAS.

The tools are exchangeable, meaning that we can substitute them with other similar
tools to cope with different industrial environments or autonomous driving functions
under test. For example, we can use other similar tools (e.g, SysWeaver (Bhat et al.,
2018)) to replace tool (1) as it is an independent tool for studying the system func-
tionality and extracting relevant parameters from its operational environment. We could
also select a different simulator from tool (2), such as Carla (Dosovitskiy et al., 2017)
or AirSim (Shah et al., 2018), to simulate the scenario execution. modeFrontier allows
the integration of third-party applications in its optimization models and triggers the
execution of the applications using e.g., available interfaces, command lines, or self-
developed scripts in various programming languages. Thus, we just have to adapt the
optimization flow in modeFroniter to incorporate a different simulator. Other simulators
for autonomous driving are presented by Kang et al. (2019) and Rosique et al. (2019).

The workflow includes two main phases, see Fig. 1 (right). In the first phase, we
start by analyzing the system specifications to understand the functionalities and the
operational design domain (ODD) of the system. ODD is a concept that defines the
operational environment where the system is designed to function (Gyllenhammar et al.,
2020). The system specifications can be, for example, functional specifications, design
documents, related standards or regulations. Based on that, we select relevant parame-
ters that constitute a driving scenario and the value range and distribution of the param-
eters. Also, we define objective functions that measure the criticality of the executed
scenarios and a threshold for each objective function for identifying critical scenarios.
Lastly, we generate an initial suite of scenarios by sampling through the parameter space
based on the intended distribution and size of the initial test suite.

In the second phase, we create an optimization model in modeFrontier to integrate
the selected parameters, objective functions, and the SPAS simulator. The optimization
model optimizes the scenario generation with respect to the objective functions and the
simulation results. It executes the scenarios in the initial test suites in simulation, and
continuously explores the parameter space based on the results of completed simulation.
We also configure the number of iterations for the optimization model in modeFrontier
based on the testing budget and computational resources available. Lastly, critical sce-
narios are identified if resulting objective function values surpass the thresholds. For
example, scenarios with less than 0.3 m’s distance to surrounding vehicles are critical
for the autonomous parking function, which we describe in Sect. 5.

Our study is also relying on the collaboration with our industry partner — Volvo
Cars, where they support us by providing access to the tools above and two autonomous
driving functions, namely autonomous driving function and autonomous parking func-
tion. We implement our approach on these two functions for identifying critical sce-
narios for testing such systems, and demonstrate its feasibility for testing using realistic
autonomous driving functions.

448 Software Quality Journal (2023) 31:441–469

1 3

3.2 Research method

The current study is conducted in multiple steps for implementation and validation of
the approach we proposed (Song, Tan, et al., 2021). We study each autonomous driving
function in the first step. Then, we create the optimization models for the functions in
steps 2 and 3. In the last step, we retrieve the optimization results and provide the iden-
tified critical test scenarios to the engineering teams.

1. For each autonomous driving function, we analyze the system specifications, through
the requirement and verification management tool, to understand the functionality and
the ODD of the system. The goal of this step is to identify the relevant parameters (e.g.,
speed and position of vehicles) and to define objective functions (e.g., TTC) for the
autonomous driving function.

2. We explore the tool modeFrontier and create an optimization model by integrating the
parameters and objective functions from step 1 and the SPAS simulation platform. We
also configure the optimization algorithm (i.e., a multi-strategy searching algorithm
pilOPT), size of the initial test suite, and the number of iterations based on the testing
resource available.

3. We replicate the optimization model from step 2 and select a different algorithm (i.e., a
heuristic searching algorithm MOSA) to compare how two algorithms differ in identify-
ing critical scenarios.

4. We start the optimization models in modeFrontier, and debug the errors if the process
fails or suspends, for example, the process gets timed out or software crashes due to any
environment issues. After the optimization processes finish, we export and analyze the
results such as the number of critical scenarios identified on each objective function,
and how selected parameters are related to the identified critical scenarios, which we
present in Sects. 4 and 5. The identified scenarios are provided to the engineering teams
to test the systems and investigate potential flaws as well as to improve the specification,
design, or implementation of the systems.

4 Case I: Autonomous driving function

This section describes the implementation of the approach which we present in Sect. 3
for the first case. We aim to generate critical test scenarios for an early version of an
autonomous driving function from Volvo Cars, which in this paper is referred to as the
AD function (ADF).

4.1 Analyze system specifications

ADF offers unsupervised in-lane driving in queued situations up to a specific speed
limit vmax , and enables the host vehicle to keep a safe distance to the preceding vehicle
within the lane. The cardinal functionalities of ADF can be summarized as (1) driv-
ing in a lane and (2) proactively adapting speed. These functionalities specify that the
host vehicle shall stay in lane and maintain a safe longitudinal and lateral distance to

449Software Quality Journal (2023) 31:441–469

1 3

infrastructure, other vehicles and entities on the road. In addition, the host vehicle shall
comfortably control speed to comply with the current speed limit.

Figure 2 shows snapshots in a scenario at different time steps. It is simulated in the
SPAS platform and demonstrates the functionality of ADF. The host vehicle equipped with
ADF is marked gray, while others are visualized in white. At the beginning of the scenario,
the host vehicle drives at a relatively high speed compared to other vehicles. When driv-
ing around the bend, the host vehicle detects the front vehicle in the same lane, thus ADF
drives the host vehicle to decrease the speed gradually. At the end of the scenario, the host
vehicle manages to adapt its speed to follow the front vehicle.

4.2 Select relevant parameters

With the requirement and verification management tool, the operational environment of
ADF is analyzed, where it covers different kinds of influential factors on the road, includ-
ing traffic, vehicle status, environment, infrastructure, other road users, and driver behav-
ior. We select parameters from two domains: (1) movable entities, including dynamic
behaviors of the host vehicle and other road users, and (2) road topology, including high-
way infrastructure and traffic conditions. In this section, we elaborate on the parameter
selection of movable entities as an example.

Road users include all kinds of vehicles, pedestrians, and animals. However, since the
operational environment for ADF is on the highway where pedestrians and animals rarely
appear. Thus, only vehicles are taken into consideration in this study. The vehicles in the
ADF function can be divided into three categories: host vehicle, lead vehicle, and other
vehicles. We denote the vehicle set by V = {Vh, Vl, Vo1, ..., VoN}, N ∈ ℤ , where Vh and Vl
represent the host and lead vehicle, while Vo1, ..., VoN are other vehicles on the road. The
simulation period of each scenario is set to T unless a collision happens and triggers an
early termination. In addition, parameters for each movable object are analyzed in four
aspects to define a scenario: initial position, velocity, acceleration profile, and the number
of vehicles. In what follows, we denote the position, velocity and acceleration of vehicle-i
at time step-t by �i(t) = [px

i
(t), p

y

i
(t)], vi(t) and ai(t) . Specifically, the velocity and accelera-

tion are expressed as scalars since only the longitudinal information is of interest.

Fig. 2 A series of visualized scenes of the autonomous driving function (ADF). The gray vehicle (labeled
1) represents the host vehicle with ADF installed, and the white vehicles (labeled 2–7) represent the other
vehicles on road

450 Software Quality Journal (2023) 31:441–469

1 3

4.2.1 Initial position

The initial position of vehicles is selected, including the longitudinal and lateral posi-
tions along the road. Several constraints are defined to limit value selection of the initial
position. First, each vehicle should keep a safe distance to others. The two-second rule,
which is a rule of thumb estimating for safe distance at any speed for vehicles (Breyer
et al., 2010), is set as the baseline to deduce minimal initial longitudinal distance
|px

i
(t0) − px

j
(t0)| ≥ dx

min
,∀i, j ∈ V . Also, to limit the scope of a scenario, we define a dis-

tance range between head-most vehicle and back-most vehicle in simulation, and its
upper limit is denoted by Dmax . Regarding the lateral distance, the vehicle must leave a
d

y

min
= 1.5m space when considering regular road width for a freeway of 3.5m (Mouhagir

et al., 2016), i.e., |py

i
(t) − p

y

j
(t)| ≥ d

y

min
,∀i, j ∈ V.

4.2.2 Velocity

ADF provides the nominal function only in situations when the host vehicle’s velocity is
lower than a specified limit, i.e., vVh

(t) ≤ vmax . To evaluate ADF’s performance, the host
vehicle should be able to detect and follow the lead vehicle. For this reason, the host vehi-
cle should be in the right level of proximity to the lead vehicle, which allows the lead
vehicle to be detected at the initial stage of a scenario. In addition, the initial velocity of the
lead vehicle should follow vVl

(t0) ≤ vVh
(t0) , or otherwise, the ADF will be deactivated and

switched to human maneuver mode. Moreover, to keep the traffic smooth on the highway,
the minimum speed for all vehicles is set to a specified level vmin . According to Abuelenin
et al. (2014), the traffic velocity on the road approximately complies with a normal distri-
bution, and thus normal distribution is used for velocity in scenario generation.

4.2.3 Acceleration

We restrict the acceleration of all vehicles on the road with |ai(t)| ≤ 3m∕s2, i ∈ V at each
time step during the simulation, based on real-world traffic data (Bokare & Maurya, 2017).
Besides, the longest acceleration period is restricted to 3 seconds and acceleration values
are sampled from a uniform distribution.

4.2.4 Number of vehicles

The number of vehicles on the road is jointly decided by dx
min

 , Dmax and the length of a
vehicle. Each scenario has |V| = N + 2 vehicles. For a special case when there is only one
lane in the road, the maximum number of vehicles could be placed on the road is 10, with
subject to dx

min
 , Dmax and the length of a vehicle. That is also the upper limit for the number

of vehicles. The upper limit on vehicle number also reduces the design space and acceler-
ates the scenario optimization process. To ensure there are enough vehicles on the road to
formulate a critical scenario, the minimum number of vehicles is set to 5. Thus, the number
of vehicles defined in a scenario is given as 5 ≤ |V| ≤ 10.

4.3 Define objective functions

We define the objective function from two perspectives to extract critical scenarios: vehicle
behavior and driver reaction. For vehicle behavior, criticality is defined as the closeness to

451Software Quality Journal (2023) 31:441–469

1 3

an accident, of which TTC is used as an indicator. TTC is considered an objective function
that should be minimized. A threshold time (ΔTthres) is set to distinguish critical scenarios
from non-critical ones.

Regarding the driver reaction, ADF should ensure the driving comfort as much as pos-
sible (Feng et al., 2020). For this reason, jerk, measured as the rate of change in accel-
eration, is selected as another objective function to evaluate criticality of scenarios. Jerk
value larger than ±4m∕s3 would not be acceptable for most vehicles (Bellem et al., 2016).
Thus, we try to maximize the absolute value of jerk to find the critical scenarios and set
|ȧthres| = 4m∕s3 as a threshold for the corresponding scenarios to be considered as critical.

Both TTC and jerk are evaluated at each scene and are updated by time frames. We
select the extreme values of TTC and jerk within a simulation period to represent the criti-
cality of a scenario. For this reason, the simulation will not be terminated prematurely if
the value of TTC or jerk has exceeded the threshold unless a collision is detected.

4.4 Generate initial test suite

To generate an initial test suite, we use MATLAB to translate the specifications in the
requirement and verification management tool, and send the outputs to modeFrontier for
generating a new design of experimentation (DoE) (Riedmaier et al., 2020). DoE is a sys-
tematic approach for analyzing the relationship between input parameters and output val-
ues and how the effect (output) changes over variation of the conditions (parameter sets).
The DoE generation in our work represents the selection of parameter values and the crea-
tion of new test scenarios. ModeFrontier has different approaches for design space explora-
tion, and in this case, the Space filler DoE is leveraged for test scenario generation. This
approach gives the most uniform filling of the design space, where the risk of missing
corner cases can be mitigated. Latin Hypercube Sampling (LHS) is applied to generate ran-
dom design configurations and an initial test suite (i.e., with 50 scenarios, according to the
rule of thumb for DoE (Tan, 2019)) is generated.

4.5 Create optimization models

The optimization process in modeFrontier follows the scheme as discussed in Fig. 1. First,
initial test scenarios are simulated in SPAS. Then, simulation results are recorded, saved,
and analyzed by modeFrontier. Subsequently, new test scenarios are generated with distinct
parameter values by the optimization model and executed in simulation. The entire opti-
mization process ends after the specified number of iterations, and critical scenarios can
then be extracted and analyzed. Figure 3 shows the modeFrontier optimization model for
ADF. In short, the top part is parameters for generating new scenarios. The sub-parts inside
represent sub-parameters that need to be specified for a scenario. The parameter values are
transferred to the middle part, where the SPAS simulation is performed. Lastly, the bottom
part is used to define the objective functions. The optimization is then based on the objec-
tive functions of the scenarios in SPAS simulation.

Two optimization algorithms, namely Multi-Objective Simulated Annealing (MOSA) (Ulungu
et al., 1999) and pilOPT1, are used for optimization purposes. The optimization models that use
each algorithm are created separately, and Fig. 3 is an example of such models. pilOPT is an

1 https:// engin eering. esteco. com/ modef ronti er/

https://engineering.esteco.com/modefrontier/

452 Software Quality Journal (2023) 31:441–469

1 3

in-house developed algorithm in modeFrontier, which can effectively handle the multi-strategy
searching problem and minimize the amount of time and computational resources required. It
combines the advantages of local and global search algorithms to get the optimum solutions. In
contrast, MOSA is a heuristic searching algorithm, which is regarded as the benchmark algorithm
to be compared with pilOPT.

4.6 Run simulation and optimization

After creating the optimization models, the optimization process is started in mode-
Frontier. The number of optimization iterations is determined mainly based on compu-
tational resources available and is set to 300 in this case. Higher intensive grid search
can be performed with more powerful computing resources, although the number of
available software licenses of commercial tools may also be limiting. After running
the simulation and optimization, the results are saved to extract and analyze the critical
scenarios.

Fig. 3 modeFrontier optimization model for the ADF

453Software Quality Journal (2023) 31:441–469

1 3

4.7 Identify critical scenarios

Figure 4 shows the optimization results of critical scenario identification for ADF, with
Fig. 4a using MOSA and Fig. 4b using pilOPT. A dot in the figure represents a test sce-
nario, and the two dashed lines are the criticality thresholds for the objective functions
TTC and jerk. By using these two dashed lines, we separate the scenarios into critical and
non-critical sections. Thus, we see four quadrants in each sub-figure: (1) critical jerk and
critical TTC, (2) critical jerk but non-critical TTC, (3) non-critical jerk but critical TTC,
and (4) non-critical for both jerk and TTC. Therefore, scenarios in quadrants 1, 2 and 3
in each sub-figure are critical scenarios, since at least one objective function is critical
in these quadrants. The colors merely indicate the sequence of the scenarios when they
were executed in modeFrontier, blue means the earlier scenarios, and red means the later
scenarios.

For the MOSA algorithm, we observed a clear boundary among test scenarios with very
low jerk values. In addition, another boundary exists to partition test scenarios whether
their TTC values exceed ΔTthres or not. For test scenarios with low jerk values, the TTC
values are mostly over ΔTthres , indicating that in those test scenarios, the host vehicle does
not experience a sharp acceleration, thus being obvious safe scenarios. As scenarios are
randomly distributed as in the figure, no distinct region feature and difference emerge with
the optimization process.

In Fig. 4b, there is no obvious boundary on either axis, but the figure is divided into
two groups. Test scenarios in the first group, located on the upper part of the figure, have
remarkably high jerk values. The number of critical scenarios is summarized in Table 1 to
compare the difference between MOSA and pilOPT. The number of scenarios caused by
violating TTC and jerk constraints is not summing up the total amount since there are some

Fig. 4 modeFrontier optimization results from the autonomous driving function (ADF) with (a) MOSA and
(b) pilOPT algorithms. Each dot represents a test scenario. The dashed lines are the criticality thresholds
for TTC and jerk, respectively, while the precise scale of the two axis is left out for confidentiality reasons.
Colors indicate the order of the scenario execution

Table 1 Number of critical test
scenarios with respect to the
objective functions

MOSA pilOPT

jerk 33 87
TTC 18 28
total 45 95

454 Software Quality Journal (2023) 31:441–469

1 3

scenarios where both criteria are critical. We conclude that, in this case study, pilOPT has
a better performance in finding critical scenarios than MOSA, especially with respect to
jerk. This is, however, not our primary focus, and optimization algorithms can be further
explored in future studies.

5 Case II: Autonomous parking function

In this section, we describe the implementation and result for the second case that uses the
approach we present in Sect. 3 to generate critical test scenarios for an early version of an
autonomous parking function from Volvo Cars.

5.1 Analyze system specifications

The Autonomous Parking Function (APF) aims to detect and park the vehicle into a fea-
sible parking slot between two stationary vehicles autonomously, where a driver is not
required. The function should park the vehicle in both parallel and perpendicular slots,
either reversely or forwardly.

The case study APF version supports only the rearward parking in parallel slots (i.e.,
parking slots that are parallel to the road direction) where the parking maneuver is per-
formed mainly in three steps. First, the vehicle drives at a low speed and passively scans
the empty slots using the ultrasonic sensors that are deployed on the front side of the vehi-
cle. Second, the vehicle identifies the target slot and performs motion planning to park the
vehicle in it without colliding the vehicles around. Lastly, the vehicle starts to actuate the
rearward parking maneuver by controlling the steering wheel, propulsion, shifting gear and
braking, and follows the trajectory that is computed in the previous step. When the vehicle
reaches the final position that has been planned, it sets a brake torque to stop the vehicle
and deactivates the parking function.

Figure 5 illustrates the function and operational scenes of APF. Specifically, five vehi-
cles (numbered 2–6 and in white) are parked parallel to the road direction and remain sta-
tionary. The host vehicle (i.e., numbered with 1 and marked in gray — the vehicle with
APF installed) first drives from the left and passes the stationary vehicles, it scans and

Fig. 5 A series of visualized scenes of the autonomous parking function (APF)

455Software Quality Journal (2023) 31:441–469

1 3

identifies an empty slot between the rear vehicle (4, referred as Vr) and the front vehicle (5,
referred as Vf). Then APF reversely parks the host vehicle into the slot without colliding
with other vehicles and stops at a feasible position subject to physical constraints such as
the slot length and the maximum steering angle the vehicle can perform. In an optimal situ-
ation, the host vehicle should stop at the center of the parking slot with a sufficient distance
to both Vr and Vf , and the vehicle stands parallel to the parking slot.

5.2 Select relevant parameters

After analyzing the system specifications and current design of APF by using the require-
ment and verification management tool, we identify two relevant parameters for constitut-
ing a test scenario for APF, namely slot length and angle of the stationary vehicle.

Slot length describes the actual length of the parking slot and is the primary param-
eter that determines whether a parking slot is feasible or not. Buehler and Wegener (2003)
adopted both the slot length and slot width as the two parameters that depict the parking
space and used them to explore critical test scenarios for an autonomous parking system.
Given the current design and implementation of APF, we presume a sufficient slot width in
the current study and thus select slot length as a relevant parameter for defining scenarios.

Based on the setup in Fig. 5, slot length can be quantified and adjusted by changing the
position of either Vr or Vf on the coordinate system of the simulation platform. Herein we
select the position of Vf (referred as PoVf) as the derived parameter for slot length. The
value range of slot length contains both a lower bound — the minimum slot length APF
should handle without colliding the stationary vehicles, and an upper bound — an adequate
slot length that APF manages while keeping a sufficient distance to the stationary vehicles
and a considerable yaw angle to the parking slot. Due to confidentiality concerns, we do
not report the specific values here.

The angle of the stationary vehicles represents the yaw angle rate of the stationary vehi-
cles (i.e., Vr and Vf), and is a parameter that determines the shape of the parking slot as well
as the motion planning of APF. Since we here focus on rearward parking, and the slot length
is generally larger than the standard parking slot length, we consider the yaw angle of Vf hav-
ing the most impact (referred as AnVf). The value range for this parameter is set to [−3

◦ , 3◦]
according to the ISO-16787 standard (International Organization for Standardization, 2017)
which is a standard for testing autonomous parking functions and is up to each nation to
implement. According to this standard, a vehicle should remain within [−3

◦ , 3◦] to the central
line of the parking slot after completing the parking maneuver. Thereby, we take this standard
specification as a reference for setting AnVf .

5.3 Define objective functions

The basic acceptance criterion for a parking scenario, according to ISO-16787 stand-
ard (International Organization for Standardization, 2017), includes that the host vehicle
should keep a minimal 0.3 m distance to other vehicles around and standstill with a yaw
angle within ±3◦ to the central line of the parking slot. We consider scenarios beyond these
two criteria critical and should be identified. Based on these two criteria and the setup
shown in Fig. 5, the distance to Vr (referred as DtVr) and Vf (referred as DtVf) should be
minimized through optimization to identify the scenarios with less than 0.3 m distance to

456 Software Quality Journal (2023) 31:441–469

1 3

either of them. In addition, the yaw angle of the host vehicle (referred to as AnVh) needs to
be optimized to identify the scenarios that end with an angle beyond ±3◦.

Nevertheless, we cannot have all the aforementioned objective functions in one opti-
mization model due to the natural conflicts among them. For example, minimizing DtVr
is essentially maximizing DtVf since these two vehicles are located on the two end sides
of the parking slot. Thus, these two objective functions must be separated into two differ-
ent optimization models. In addition, we cannot maximize and minimize AnVh at the same
time to identify critical test scenarios that are greater than 3◦ and those lower than −3◦ .
Thus, these two objective functions have to be separated into two different optimization
models as well. The resulting set of objectives is four, hence leading to four optimization
models with two objective functions each as shown in Table 2.

5.4 Generate initial test suite

We generate an initial set of test scenarios in modeFrontier to enable further optimiza-
tion of the parameters towards the most critical scenarios. Based on the two parameters
we select (i.e., PoVf and AnVf) and the objective functions we define, we first compute the
size of the initial test suite using the rule of thumb for DoE (Tan, 2019), as shown in Eq. 1.
Npar is the number of parameters and Nobj is the number of objective functions. As for APF,
the size of the initial test suite is eight, given two parameters are selected, and two objec-
tive functions are defined for each optimization model.

Next, an initial suite of test scenarios can be generated by sampling the parameters based
on the intended distribution. However, the real distribution for both DtVr and AnVh are
unknown and are difficult to model or predict. Hence, we generate the initial test scenarios
with the Latin Hypercube Sampling (LHS) strategy and uniform distribution. In LHS, the
parameter space is divided into equal parts with respect to the target sampling size (i.e., the
size of the initial test suite) and the sampling position is randomly chosen according to the
parameter distribution (Batsch et al., 2021). LHS is considered superior to other sampling
approaches like random sampling and ensures that the entire parameter space is covered as
evenly as possible (Batsch et al., 2021). As there is no such real distribution for the selected
parameters provided, we also use the uniform distribution to assure every parameter value
interval is equally likely.

5.5 Create optimization models

We create the optimization models in modeFrontier by integrating the selected parame-
ters, the objective functions, and the SPAS simulation platform. Similar to what has been

(1)Initial suite size = 2 ∗ Npar ∗ Nobj

Table 2 modeFrontier
optimization models and
corresponding objective
functions for APF

 Model Objective function 1 Objective function 2

1 minimize DtVr maximize AnVh

2 minimize DtVr minimize AnVh

3 minimize DtVf maximize AnVh

4 minimize DtVf minimize AnVh

457Software Quality Journal (2023) 31:441–469

1 3

presented in Fig. 3, the parameters are defined as inputs to the optimization model and are
used to generate scenarios for simulation. An initial set of values for the parameters are
sampled preliminary with LHS and are considered the initial test suite to enable further
optimization of critical test scenarios. The objective functions are the output of the optimi-
zation model and are optimized based on the completed scenario simulation.

We configure the number of optimization iterations to 80 based on the testing budget
and computational resources available. In other words, the optimization model first runs
the initial test scenarios (i.e., 8 scenarios) in the SPAS simulation platform and tracks the
objective functions’ value. Then the optimization model optimizes the selection of param-
eters for another 72 iterations based on the completed simulation results. Lastly, we select
the optimization algorithm in modeFrontier based on our previous experience (i.e., Sect. 4)
where pilOPT was used. In addition, we also replicate two optimization models (1 and 3 in
Table 2) using MOSA to compare two different optimization algorithms and demonstrate
the generality of our approach in using different optimization strategies. Thus, we create
six optimization models in total, as shown in Table 3. We do not replicate all optimization
models for MOSA, as the simulation and optimization are computationally expensive. To
clarify again, we do not aim to find the best optimization algorithm in this study but to
implement and validate the feasibility of the approach for critical test scenario identifica-
tion for real driving functions.

5.6 Run simulation and optimization

We start the optimization models in modeFrontier, and the optimization process runs auto-
matically. For each optimization iteration, the simulation result is recorded and optimized
with respect to the objective functions. After all iterations are completed, the optimization
process terminates, and full results are saved. Since scenarios are simulated in the SPAS
simulation platform and are triggered from modeFrontier, we have set a maximum time for
a single simulation session to avoid suspending the entire optimization process due to pos-
sible problems such as software crashes or environmental issues.

5.7 Identify critical scenarios

The result of the optimization models can be visualized in modeFroniter using different
charts or statistical analysis tools and be exported in many different formats. As men-
tioned earlier, we created six optimization models for APF, and each model consists of 80
evaluation iterations. By filtering the results with the criticality thresholds we define, the

Table 3 modeFrontier optimization models and results for APF. By results, we mean the number of critical
test scenarios identified with respect to the objective functions

Model Objective function 1 Objective function 2 Algorithm Iteration Result

1 minimize DtVr maximize AnVh pilOPT 80 41
2 minimize DtVr maximize AnVh MOSA 80 40
3 minimize DtVr minimize AnVh pilOPT 80 35
4 minimize DtVf maximize AnVh pilOPT 80 40
5 minimize DtVf maximize AnVh MOSA 80 29
6 minimize DtVf minimize AnVh pilOPT 80 30

458 Software Quality Journal (2023) 31:441–469

1 3

optimization models have identified 29 to 41 critical scenarios, as indicated by the last col-
umn (i.e., Result) in Table 3. The critical scenarios, as we mentioned earlier, can be used to
substantiate test cases for testing the function in different environments (e.g., in simulation,
in testing tracks, or on public roads).

The resulting critical scenarios are found exclusively on one of the objective functions
— AnVh — and no critical scenarios found for both DtVr and DtVf . As shown in Fig. 6a —
the result of optimization model 1 from Table 3 for minimizing DtVr and maximizing AnVh
using pilOPT, no critical scenario (i.e., < 0.3 m) is can be found in the DtVr dimension as
all scenarios resulted in a sufficiently large distance for DtVr , which is considered as safe
according to the industrial standard ISO-16787. That indicates the early implementation
of the function we used is conservative on the distance to other vehicles. In contrast, 41
critical scenarios are identified based on the AnVh which are greater than 3◦ to the central
line of the parking slot. An example is AnVh gets 13.28

◦ when AnVf and PoVf are at spe-
cific values. That is the considered critical since angle of host vehicle deviates too much
after the parking maneuver. These scenarios should be investigated by the development and
test teams to improve the system design, implementation, or test so it can handle them as
intended and safely.

Furthermore, Fig. 6b shows the correlation between parameter AnVf and the objective
AnVh . The result indicates that AnVf does not have a general effect on AnVh and it is ran-
domly distributed regardless the value of AnVf . In contrast, an explicit pattern is drawn on
PoVf and AnVh in Fig. 6c, in which AnVh keeps increasing when PoVf decreases. When
PoVf is lower than a specific value, AnVh is over the criticality threshold 3◦ and scenarios
are identified as critical. This observation suggests that decreasing slot length can lead to
more critical scenarios, and the smaller the slot length is, the larger deviation of the angle
of host vehicle can be. For that reason, how slot length impacts the autonomous parking
function should be analyzed and more tests by adapting the slot length may be conducted.
Based on that, the system should be enhanced and re-tested using the identified critical
scenarios.

The results are consistent when using other optimization models with different combi-
nations of objective functions. We identify critical scenarios on AnVh only, and the visual-
ized results indicate that AnVh gets larger and exceeds the criticality threshold when PoVf
declines. The observations suggest that adapting the slot length and angle of the stationary

Fig. 6 Result of minimizing DtVr and maximizing AnVh using pilOPT. The dash line in the sub-figures is
the criticality threshold for AnVh and the dots are the scenarios executed in the simulation. Scenarios on
the right side of the dashed line in sub-figure (a) and above the dashed line in sub-figures (b) and (c) are the
critical scenarios identified on with AnVh larger than 3◦ . The scale of PoVf in sub-figure (c) is removed for
confidentiality reasons

459Software Quality Journal (2023) 31:441–469

1 3

vehicle does not generate critical test scenarios for APF with respect to the distance to the
stationary vehicles. However, both of them lead to critical test scenarios where the angle
of the host vehicle exceeds 3◦ . A clear trend is observed that smaller slot length generally
increases the angle of the host vehicle, which means a bad orientation to the parking slot
and demonstrates there is a pattern of critical scenarios that the system does not meet.

Lastly, pilOPT generally identifies more critical scenarios than MOSA in this case,
although there are no significant differences between them consistently. For the optimiza-
tion models that minimize DtVr and maximize AnVh , pilOPT identifies 41 critical scenar-
ios, and MOSA identifies 40. As for the models that minimize DtVf and maximize AnVh ,
pilOPT identifies 40 critical scenarios where MOSA identifies 29. Based on the results,
pilOPT performs better than MOSA, while further comparison between these two algo-
rithms is required. Since we do not aim to address the best optimization algorithm in the
current study, we have demonstrated that our approach effectively identifies critical test
scenarios and is general to different optimization algorithms.

6 Related work

In this section, we present related literature on critical test scenario identification for auton-
omous driving. The general idea of critical scenario identification, as described by Ponn
et al., is that a concrete scenario is selected, executed, and evaluated with the criticality
metrics (Ponn et al., 2019). The identified critical scenarios are then used for testing auton-
omous driving systems in different environments, such as simulation or testing tracks. As
reported in the literature, there are different approaches for critical scenario identification,
ranging from using expert knowledge, data extraction techniques, or search-based algo-
rithms etc. We categorize the literature we surveyed based on our interpretation and com-
pare them with our work separately in the following subsections.

Our approach falls into the third category of the approaches — search-based approaches
as described in Sect. 6.3 — and uses search and optimization algorithms for identify-
ing critical test scenarios from the scenario space. Unlike other studies that use similar
approaches, we integrated tools and a workflow to provide an end-to-end approach for crit-
ical test scenario identification, and we validated our approach in an industrial context by
using real autonomous driving systems. In contrast to studies that use different approaches
such as knowledge-based approaches or data-driven approaches, our approach does not rely
heavily on expert knowledge or substantial driving data collection, which is considered
more efficient for testing autonomous driving systems.

For a complete literature overview, we refer to the systematic literature reviews by
Zhang et al. (2021) for critical scenario identification, and Rajabli et al. (2020) for software
verification and validation, as well as the survey by Riedmaier et al. (2020) for scenario-
based approaches, all for assessment of safety of autonomous vehicles.

6.1 Knowledge‑based approaches

The knowledge-based approaches leverage expert knowledge to generate, extract, or select
scenarios for testing. This approach is not frequently reported in the literature due to its
evident constraints with respect to access to experts. As an example, Ponn et al. (2020)
involved experts from the autonomous driving domain for selecting parameters of scenarios

460 Software Quality Journal (2023) 31:441–469

1 3

and assessing the weight of the parameters as well as evaluating resulting critical scenarios
for testing the autonomous driving systems.

The advantages of using this approach include the quick creation of an initial catalogue
of test scenarios (Riedmaier et al., 2020), yet the drawbacks are non-negligible. It requires
expert involvement and is labor-intensive, and may lack the diversity and complexity of
real-world scenarios, especially those accidents that impose complicated situations and
rarely happen (Zhang et al., 2020). In addition, the generation and selection of scenarios
might be subjective, where simple scenarios are ignored but can still cause severe conse-
quences. As a result, the derived scenarios are often considered lacking evidence for proof
of safety in real traffic (Ponn et al., 2019).

Compared to our approach, we do not rely on expert involvement, and identification of
the critical scenarios is automated by integrating the existing engineering tools. Specifi-
cally, the selection of scenarios is based on optimizing the parameter space and simulation
of the scenarios. Thus, it is not limited or biased by subjective knowledge acquired.

6.2 Data‑driven approaches

The data-driven approaches extract critical scenarios based on available data sets that have
been collected beforehand. The data can be presented in many different forms, for exam-
ple, scenario libraries, accident reports, or sensor data collected by test vehicles. Scenario
extraction and selection techniques and tools are then used for identifying critical scenarios
from the data.

Among the published studies, Gambi, Huynh et al. (2019) generated effective and criti-
cal test scenarios for autonomous driving by reconstructing crash accidents from police
reports in simulation, using natural language processing. Zhang et al. (2020) introduced a
toolkit for extracting critical scenarios based on real traffic accident videos and reproduc-
ing the scenarios in simulation. The extracted scenarios are then used for the safety assess-
ment of autonomous vehicles. Erdogan et al. (2018) proposed an architecture to enable
test scenario generation, where test scenarios are first extracted from a video stream that
contains real-world sensor data and then are stored in a structured database cluster with
scenario definitions and the corresponding measurements. A user interface is implemented
and included in this architecture to customize and adapt the conditions for test scenario
generation, based on the aforementioned scenario database.

Deep learning has been actively used for critical test scenario identification. Ding
et al. (2020) trained a generative model for generating safety-critical scenarios by sam-
pling through the parameters and rewarding the risky scenarios. The generative model gets
a higher reward when a riskier scenario is generated. Another study that uses reinforce-
ment learning is reported by Karunakaran et al. (2020) for automatically generating sce-
narios and optimizing the learning towards the worst-case scenarios with respect to the
RSS safety metrics. A few other studies that employ deep learning techniques include
Batsch et al. (2021) using Gaussian Processes to train and optimize the parameter selection
towards the most critical scenarios on the performance boundary, and Jenkins et al. (2018)
using a recurrent neural network to generate accident scenarios for testing the autonomous
driving systems based on the in-vehicle and vehicle-to-infrastructure data generated from
simulators. In a related application domain, Porres et al. (2020) used online supervised
learning to train a generative model for searching and selecting critical scenarios for testing
the autonomous maritime collision avoidance systems through the operation.

461Software Quality Journal (2023) 31:441–469

1 3

Even though diverse techniques for extracting or generating critical scenarios based on
real driving data have been studied, limitations are described in these studies as well. A pre-
requisite of using such techniques is a data set that is comprehensive (Riedmaier et al., 2020),
whereas it is well known that collecting real driving data at scale is both time-consuming and
expensive but still does not guarantee to include all corner cases (Karunakaran et al., 2020;
Priisalu et al., 2021). As highlighted by Hallerbach et al. (2018), the major drawback of using
recorded data is the incompleteness of the data set, thus we have to understand how the data
is acquired and how representative it is. The quality of the data can be affected by various
factors such as the type of sensors used and how they are installed (Ponn et al., 2019), the
location where the data is collected, and the fact that rare-occurring situations are difficult
to collect (Ding et al., 2020). After all, we still have to understand how to extract and select
scenarios given massive data collected (Klitzke et al., 2019).

In contrast, our work does not rely on collecting data from different sources, and thus
is not subject to the size or diversity of the data set. Instead, we first analyze the system
functionalities and operational design domain based on the system specifications. Then, we
create optimization models using the existing engineering tools. The optimization model
optimizes scenario generation towards the objective functions for critical scenarios based
on simulation results.

6.3 Search‑based approaches

The search-based approaches employ search algorithms to optimize critical scenarios from
the operational design domain of the autonomous driving system. This approach typically
requires the execution of the scenarios in simulation and an objective function that meas-
ures the criticality of the scenarios. The search process evolves based on the parameter
space and the objective function value of the executed scenarios. Also, it usually limits
the search to a certain number of iterations based on the testing budget and computational
resources available. Our approach falls into this category.

Klischat and Althoff (2019) used evolutionary algorithms to optimize the drivable area of
the vehicle to generate complex scenarios for testing the motion planning of the autonomous
vehicles. Similar work is reported by Althoff and Lutz (2018) to generate safety-critical
scenarios for collision avoidance of autonomous vehicles by optimizing the drivable area.
Buehler and Wegener (2003) also employed evolutionary algorithms for generating critical
scenarios for functional testing of an autonomous parking system. Specifically, genetic algo-
rithms are a class of evolutionary algorithms commonly used for search and optimization
problems. Gambi, Mueller et al. (2019) used genetic algorithms to evolve the generation
of virtual road networks for testing the lane-keeping function. Klück et al. (2019) proposed
an approach for test parameter optimization using genetic algorithms and have employed it
for testing an autonomous emergency braking function. Felbinger et al. (2019) compared a
genetic algorithm approach and a combinatorial testing approach for detecting critical sce-
narios for an emergency braking function.

The advantages of using a search-based approach for solving optimization of critical
scenarios for testing of autonomous driving systems are prominent, since the selection of
parameter values is rather difficult before the test and covering the entire parameter space
is costly (Ponn et al., 2019). In addition, this approach does not rely on collecting sub-
stantial driving data and is easy to implement. However, some limitations are also stated
in the existing studies. For example, generated scenarios may not be realistic in the real-
world traffic, simulation of the scenarios is often computationally expensive, and only

462 Software Quality Journal (2023) 31:441–469

1 3

low-dimensional scenarios can be handled effectively in optimization (Ding et al., 2020).
To complement the said limitations, Beglerovic et al. (2017) simulated and optimized test
scenarios based on a light-weighted surrogate model instead of the real system, Feng et al.
(2020) established a sophisticated model of relevant parameters, metrics, and searching
process for critical scenario generation, and Hallerbach et al. (2018) created a complete
tool-chain for critical test scenario identification for autonomous driving systems.

We believe that the search-based approach can well compensate for the scarcity of sen-
sor data and generate critical scenarios that can be used to substantiate test cases for autono-
mous driving systems. While most of the existing studies use either a basic implementation
of the autonomous driving function based on engineering tools like MATLAB Simulink
(e.g., Ponn et al., 2020), or publicly available driving components such as DeepDriving and
Beam.AI by Gambi, Mueller et al. (2019), and Gambi, Huynh et al. (2019), for validating
the approaches, their effectiveness on realistic autonomous driving functions is not dem-
onstrated. Besides, many of them are also function-specific, which is relevant to a particu-
lar function or operational domain for, e.g., parking system (Buehler & Wegener, 2003),
motion planning (Klischat & Althoff, 2019), or highway scenario (Beglerovic et al., 2017).
Our approach is generic in that the tools involved are exchangeable and are not determined
by the driving functions, so it can, in principle, be used for critical test scenario gener-
ation for any autonomous driving system. We also demonstrate the effectiveness of this
approach by using two real autonomous driving systems from the industry. As articulated
by Hallerbach et al. (2018) and Ding et al. (2020), there exist very few studies that provide
a complete solution for critical test scenario identification which are generic to different
autonomous driving systems. The major contribution of our work is to address such a gap
and facilitate the testing of autonomous driving systems.

7 Discussion

In this section, we first summarize the main contributions and some limitations of the cur-
rent work. Then, some future work items are included and discussed to improve or extend
the approach further.

7.1 Contributions

In this paper, we present the implementation of an approach to critical test scenario iden-
tification for pilot validation of real autonomous driving systems. We argue that testing
all possible driving scenarios in real road traffic is impractical, since it is expensive, time-
consuming, and may still not cover all the rare-occurring traffic situations (Karunakaran
et al., 2020; Zhang et al., 2020). In contrast to Kalra et al., who claim that millions or even
billions of miles of driving tests are required to demonstrate the reliability of an autono-
mous vehicle (Kalra & Paddock, 2016), testing of autonomous driving functions must be
based on a feasible number of test scenarios and focus on the most critical ones (Ponn
et al., 2019; Klück et al., 2019). Using critical scenario identification and simulation is
considered a good alternative to address the gaps as mentioned above and enable testing
of autonomous driving functions in a more efficient way (Klück et al., 2019; Rajabli et al.,
2020; Mauritz et al., 2016).

In our approach, we integrate the existing engineering tools and a workflow as an end-
to-end solution for critical test scenario identification. In contrast, existing studies mostly

463Software Quality Journal (2023) 31:441–469

1 3

present a partial solution for critical scenario identification and barely provide a complete
tool-chain (Hallerbach et al., 2018). Our approach relies on optimizing the parameter selec-
tion and simulation of the scenarios. As the tools involved are exchangeable, the approach
is flexible and generic for testing different autonomous driving functions that are not sub-
ject to specific tools, techniques, or sensors employed in the function or simulation.

We demonstrate the feasibility of our approach for critical test scenario identification,
using real autonomous driving functions in both high-speed and low-speed maneuvering
domains. This is different from the most common approach for validating proposed solu-
tions for critical scenario identification in existing studies, which use a simple implemen-
tation of the autonomous driving function or publicly available driving components like
DeepDriving (Gambi, Mueller et al., 2019). Besides, many studies demonstrate the effec-
tiveness of their approaches based on limited settings, such as a pedestrian step-out sce-
nario (Batsch et al., 2021) and certain scenarios from Carla Scenario Runner Library (Ding
et al., 2020). Even though the potential of such approaches might be extended, the connec-
tion to real autonomous driving functions and to find critical scenarios in general is not
explicitly provided.

The two cases we present in Sects. 4 and 5 include the actual work we implement and
the results achieved on real autonomous driving functions using the proposed approach.
While the results are generally effective in finding the critical test scenarios for the given
autonomous driving systems, we would like to stress that they are merely early versions
of the autonomous driving systems. Thus, the results are subject to the current design and
specifications of the systems when conducting the study. Besides, we want to clarify that
our approach can effectively generate some, but not all potential critical scenarios in the
operational design domain. The goal is to find more critical scenarios using this approach,
and possible tuning can still be performed regarding, for example, the sampling approach
for the initial suite of scenarios and the number of optimization iterations. We can expect
that the better the parameter space is sampled for the initial test suite, the more efficient
the critical scenarios could be approached later in the optimization; the more optimiza-
tion iterations can be assigned, the more critical scenarios could be identified, yet the cost
comes in parallel from the computational resources needed for it.

7.2 Future work

Future improvement and extension of our approach regarding its design and implemen-
tation are multi-fold, including, e.g., scenario composition, parameter selection, realistic
parameter distribution, and optimization algorithms.

First, the composition and representation of scenarios can be improved to include dif-
ferent driver behavior models and enable the definition of complex spatio-temporal inter-
actions between different entities within the driving maneuver. As highlighted by Feng
et al. (2020), existing studies mostly handle only low-dimensional scenarios, whereas the
actual operational design domain for the autonomous driving functions is much more com-
plicated. OpenDrive and OpenScenario, as used by Zhang et al. (2020) and Erdogan et al.
(2018), to define static and dynamic elements in a full driving scenario in a structured way
are good references to explore.

The second improvement of the approach is the comprehensive parameter selection to
ensure all relevant parameters are identified and selected. The current approach is highly
relying on analyzing the system specifications and extracting parameters based on its func-
tionalities and operational design domain. Existing models for a structural description of

464 Software Quality Journal (2023) 31:441–469

1 3

road traffic like Bagschik et al. (2018) or Scholtes et al. (2021) can be used to derive a
complete list of parameters. The model from Schotles et al. includes entities and specifica-
tions of entities on six different layers such as road network, traffic infrastructure, move-
able objects, weather conditions, and communication (i.e, information exchange between
entities). Another alternative is to involve experts to identify relevant parameters, espe-
cially the significant ones, based on prior-established knowledge. Parameter selection
could also be a continuously evolving step, where originally selected parameters might be
removed due to irrelevance to a scenario’s criticality and new identified parameters can be
selected later.

Thirdly, realistic distribution of the relevant parameters selected should be investigated
to improve the realism of the scenarios and real occurrence of the scenarios. As articulated
by Batsch et al. (2021), scenario-based testing sampling requires a true distribution of the
parameters. A shift in the distribution may impact the relevance and potential damage of
the scenarios (Riedmaier et al., 2020); thus, the distribution of parameters is important and
needs to be identified (Ding et al., 2020). Different sampling approaches such as adaptive
sampling (Mullins et al., 2017), importance sampling (Feng et al., 2020), or modelling the
distribution (Song et al., 2022) are a few candidates to be further studied.

Fourthly, we also propose to evaluate different optimization algorithms to best fit the
generation of critical test scenarios for different autonomous driving systems and use paral-
lelization to improve the efficiency of the simulation and optimization (Porres et al., 2020).
They are good directions to be sorted out in future research yet not the goals in the cur-
rent study. Especially that parallelization is already a feasible option in optimization tools
like modeFrontier; it is more about the computational resources that can be allocated for
optimization that matters. Our primary focus in this work is to implement the approach for
critical test scenario identification and demonstrate the feasibility of the approach for real
autonomous driving systems. As a preliminary step, tools and a workflow are integrated,
and critical test scenarios are generated for real autonomous driving systems from the
industry. Thus, it constitutes a basis for further exploration and refinement of the approach
in practice.

Given the enormous challenges of testing autonomous driving systems, we face (Koopman
& Wagner, 2016; Knauss et al., 2017), the importance of using simulation and critical test
scenario generation increases steeply (Jenkins et al., 2018). Further, as stated by Beglerovic
et al., selection of relevant parameters, objective functions, and appropriate evaluation criteria
is a non-trivial task since each of them comes with its own challenges, and the quality of crit-
ical test scenario generation is highly dependent on them (Beglerovic et al., 2017). Despite
that sub-components within our approach can be further expanded and improved, we believe
our work is worth the efforts and has a huge potential in the future in ensuring the safety and
reliability of autonomous vehicles. Particularly since very few studies have been reported for
presenting an end-to-end solution for critical test scenario identification that is general for
different autonomous driving systems, according to Hallerbach et al. (2018).

8 Conclusion

Safety and reliability are indispensable properties for autonomous vehicles, yet there is no
common standard way to test autonomous driving functions systematically and efficiently.
Conventional requirements-driven testing approaches are impeded due to uncertainty of

465Software Quality Journal (2023) 31:441–469

1 3

the operational environment and the complexity of the driving scenarios. Therefore, sup-
port for identifying the critical scenarios for testing autonomous driving systems is needed.

We established an end-to-end approach with integrated tools and a workflow, and we
implement it in this study to identify critical test scenarios for two real autonomous driv-
ing systems from Volvo Cars. The results suggest that our approach can effectively identify
critical test scenarios. The identified scenarios can be used to substantiate test cases for
autonomous driving systems either in simulation or in the real world.

Future extension of the approach aims to improve the scenario representation, incor-
porate the realistic distribution of the parameters, and compare the effectiveness of differ-
ent optimization algorithms. Future work also includes integrating this approach into the
practitioners’ engineering practices and to observe how effective the approach, as well as
the identified critical scenarios, could be for testing autonomous driving systems in a real
industrial context.

The study provides a feasible and complete approach for critical test scenario identi-
fication for autonomous driving and a basis for building sub-components further. Given
the widespread attention on autonomous driving and the challenges for testing the enabling
functions, we shed light on testing different autonomous driving systems efficiently and
effectively.

Acknowledgements Thanks to our colleagues in the Software Engineering Research Group at Lund Uni-
versity and Volvo Cars, and the anonymous reviewers of the journal for their review of earlier versions of
the manuscript.

Funding Open access funding provided by Lund University. This work was supported in part by the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP).

Data availability The datasets generated during and/or analyzed during the current study are not publicly
available due to company confidentiality, protected by the Swedish Secrecy Act (SFS 2009:400, Ch. 24, §5).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abuelenin, S. M., & Abul-Magd, A. Y. (2014). Empirical study of traffic velocity distribution and its effect
on VANETs connectivity. In International Conference on Connected Vehicles and Expo (ICCVE) (pp.
391–395). IEEE.

Althoff, M., & Lutz, S. (2018). Automatic generation of safety-critical test scenarios for collision avoidance
of road vehicles. In IEEE Intelligent Vehicles Symposium (IV) (pp. 1326–1333). IEEE.

Bagschik, G., Menzel, T., & Maurer, M. (2018). Ontology based scene creation for the development of auto-
mated vehicles. In IEEE Intelligent Vehicles Symposium (IV) (pp. 1813–1820). IEEE.

Batsch, F., Daneshkhah, A., Palade, V., & Cheah, M. (2021). Scenario optimisation and sensitivity analysis
for safe automated driving using gaussian processes. Applied Sciences, 11(2), 775.

http://creativecommons.org/licenses/by/4.0/

466 Software Quality Journal (2023) 31:441–469

1 3

Beglerovic, H., Stolz, M., & Horn, M. (2017). Testing of autonomous vehicles using surrogate models and
stochastic optimization. In IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC) (pp. 1–6). IEEE.

Bellem, H., Schönenberg, T., Krems, J. F., & Schrauf, M. (2016). Objective metrics of comfort: developing
a driving style for highly automated vehicles. Transportation Research Part F: Traffic Psychology and
Behaviour, 41, 45–54.

Bhat, A., Aoki, S., & Rajkumar, R. (2018). Tools and methodologies for autonomous driving systems. Pro-
ceedings of the IEEE, 106(9), 1700–1716.

Bokare, P., & Maurya, A. (2017). Acceleration-deceleration behaviour of various vehicle types. Transporta-
tion Research Procedia, 25, 4733–4749.

Breyer, G., et al. (April 2010). Safe distance between vehicles. Technical report, Conference of European
Directors of Roads, Brussels, Belgium. https:// www. cedr. eu/ docs/ view/ 60794 fa6cf 0c0- en

Buehler, O., & Wegener, J. (2003). Evolutionary functional testing of an automated parking system. In Pro-
ceedings of the International Conference on Computer, Communication and Control Technologies
(CCCT’03) and the 9th. International Conference on Information Systems Analysis and Synthesis
(ISAS’03), Florida, USA.

Ding, W., Chen, B., Xu, M., & Zhao, D. (2020). Learning to collide: An adaptive safety-critical scenarios
generating method. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(pp. 2243–2250). IEEE.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving
simulator. In Conference on Robot Learning (pp. 1–16). PMLR.

Erdogan, A., Kaplan, E., Leitner, A., & Nager, M. (2018). Parametrized end-to-end scenario generation archi-
tecture for autonomous vehicles. In 6th International Conference on Control Engineering & Informa-
tion Technology (CEIT) (pp. 1–6). IEEE.

Felbinger, H., Klück, F., Li, Y., Nica, M., Tao, J., Wotawa, F., & Zimmermann, M. (2019). Comparing two
systematic approaches for testing automated driving functions. In 2019 IEEE International Conference
on Connected Vehicles and Expo (ICCVE) (pp. 1–6). IEEE.

Feng, S., Feng, Y., Yu, C., Zhang, Y., & Liu, H. X. (2020). Testing scenario library generation for connected
and automated vehicles, part i: Methodology. IEEE Transactions on Intelligent Transportation Sys-
tems, 22(3), 1573–1582.

Gambi, A., Huynh, T., & Fraser, G. (2019). Generating effective test cases for self-driving cars from police
reports. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (pp. 257–267).

Gambi, A., Mueller, M., & Fraser, G. (2019). Automatically testing self-driving cars with search-based pro-
cedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 318–328).

Gyllenhammar, M., Johansson, R., Warg, F., Chen, D., Heyn, H.-M., Sanfridson, M., Söderberg, J., Thorsen,
A., & Ursing, S. (2020). Towards an operational design domain that supports the safety argumentation
of an automated driving system. In 10th European Congress on Embedded Real Time Systems (ERTS).

Hallerbach, S., Xia, Y., Eberle, U., & Koester, F. (2018). Simulation-based identification of critical scenar-
ios for cooperative and automated vehicles. SAE International Journal of Connected and Automated
Vehicles, 1(2018-01-1066), 93–106.

International Organization for Standardization. (2017). Intelligent transport systems – Assisted Parking Sys-
tem (APS) – Performance requirements and test procedures (ISO 16787). International Organization
for Standardization, Geneva, Switzerland.

Iqbal, M., Han, J. C., Zhou, Z. Q., & Towey, D. (2021). Enhancing Euro NCAP standards with metamorphic
testing for verification of advanced driver-assistance systems. In IEEE/ACM 6th International Work-
shop on Metamorphic Testing (MET) (pp. 37–41). IEEE.

Jenkins, I. R., Gee, L. O., Knauss, A., Yin, H., & Schroeder, J. (2018). Accident scenario generation with
recurrent neural networks. In 21st International Conference on Intelligent Transportation Systems (ITSC)
(pp. 3340–3345). IEEE.

Kalra, N., & Paddock, S. M. (2016). Driving to safety: How many miles of driving would it take to demon-
strate autonomous vehicle reliability? Transportation Research Part A: Policy and Practice, 94, 182–193.

Kang, Y., Yin, H., & Berger, C. (2019). Test your self-driving algorithm: An overview of publicly available driv-
ing datasets and virtual testing environments. IEEE Transactions on Intelligent Vehicles, 4(2), 171–185.

Karunakaran, D., Worrall, S., & Nebot, E. (2020). Efficient statistical validation with edge cases to evaluate
highly automated vehicles. In IEEE 23rd International Conference on Intelligent Transportation Sys-
tems (ITSC) (pp. 1–8). IEEE.

Klischat, M., & Althoff, M. (2019). Generating critical test scenarios for automated vehicles with evolution-
ary algorithms. In IEEE Intelligent Vehicles Symposium (IV) (pp. 2352–2358). IEEE.

https://www.cedr.eu/docs/view/60794fa6cf0c0-en

467Software Quality Journal (2023) 31:441–469

1 3

Klitzke, L., Koch, C., Haja, A., & Köster, F. (2019). Real-world test drive vehicle data management system
for validation of automated driving systems. In VEHITS (pp. 171–180).

Klück, F., Zimmermann, M., Wotawa, F., & Nica, M. (2019). Genetic algorithm-based test parameter opti-
mization for ADAS system testing. In IEEE 19th International Conference on Software Quality, Reli-
ability and Security (QRS) (pp. 418–425). IEEE.

Knauss, A., Schröder, J., Berger, C., & Eriksson, H. (2017). Paving the roadway for safety of automated
vehicles: An empirical study on testing challenges. In IEEE Intelligent Vehicles Symposium (IV) (pp.
1873–1880). IEEE.

Koopman, P., & Wagner, M. (2016). Challenges in autonomous vehicle testing and validation. SAE Interna-
tional Journal of Transportation Safety, 4(1), 15–24.

Laureshyn, A., Johnsson, C., De Ceunynck, T., Svensson, Å., de Goede, M., Saunier, N., Włodarek, P., van der
Horst, R., & Daniels, S. (2016). Review of current study methods for VRU safety. Appendix 6–scoping
review: Surrogate measures of safety in site-based road traffic observations: Deliverable 2.1–part 4.

Mahmud, S. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators
for safety evaluation: A review of recent developments and research needs. IATSS research, 41(4), 153–163.

Mauritz, M., Howar, F., Rausch, A. (2016). Assuring the safety of advanced driver assistance systems through a
combination of simulation and runtime monitoring. In International Symposium on Leveraging Applica-
tions of Formal Methods (pp. 672–687). Springer.

Menzel, T., Bagschik, G., & Maurer, M. (2018). Scenarios for development, test and validation of automated
vehicles. In IEEE Intelligent Vehicles Symposium (IV) (pp. 1821–1827). IEEE.

Mouhagir, H., Talj, R., Cherfaoui, V., Aioun, F., & Guillemard, F. (2016). Integrating safety distances with
trajectory planning by modifying the occupancy grid for autonomous vehicle navigation. In IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC) (pp. 1114–1119). IEEE.

Mullins, G. E., Stankiewicz, P. G., & Gupta, S. K. (2017). Automated generation of diverse and challenging
scenarios for test and evaluation of autonomous vehicles. In IEEE International Conference on Robotics
and Automation (ICRA) (pp. 1443–1450). IEEE.

Ponn, T., Breitfuß, M., Yu, X., & Diermeyer, F. (2020). Identification of challenging highway-scenarios for the
safety validation of automated vehicles based on real driving data. In 15th International Conference on
Ecological Vehicles and Renewable Energies (EVER) (pp. 1–10). IEEE.

Ponn, T., Gnandt, C., & Diermeyer, F. (2019). An optimization-based method to identify relevant scenarios for
type approval of automated vehicles. In Proceedings of the ESV–International Technical Conference on
the Enhanced Safety of Vehicles, Eindhoven, The Netherlands (pp. 10–13).

Porres, I., Azimi, S., & Lilius, J. (2020). Scenario-based testing of a ship collision avoidance system. In 46th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp. 545–552). IEEE.

Priisalu, M., Pirinen, A., Paduraru, C., & Sminchisescu, C. (2021). Generating scenarios with diverse pedestrian
behaviors for autonomous vehicle testing. In 5th Annual Conference on Robot Learning.

Rajabli, N., Flammini, F., Nardone, R., & Vittorini, V. (2020). Software verification and validation of safe
autonomous cars: A systematic literature review. IEEE Access, 4797–4819.

Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., & Diermeyer, F. (2020). Survey on scenario-based safety
assessment of automated vehicles. IEEE Access, 8, 87456–87477.

Rosique, F., Navarro, P. J., Fernández, C., & Padilla, A. (2019). A systematic review of perception system and
simulators for autonomous vehicles research. Sensors, 19(3), 648.

Runeson, P., Engström, E., & Storey, M.-A. (2020). In Felderer, M., & Travassos, G. H. (eds.) The Design Sci-
ence Paradigm as a Frame for Empirical Software Engineering (pp. 127–147). Springer, Cham.

Scholtes, M., Westhofen, L., Turner, L. R., Lotto, K., Schuldes, M., Weber, H., et al. (2021). 6-layer model for a
structured description and categorization of urban traffic and environment. IEEE Access, 9, 59131–59147.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics (pp. 621–635). Springer.

Song, Q., Engström, E., & Runeson, P. (2021). Concepts in testing of autonomous systems: Academic literature
and industry practice. In IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN)
(pp. 74–81).

Song, Q., Runeson, P., & Persson, S. (2022). A scenario distribution model for effective and efficient testing of
autonomous driving systems. In ACM 1st Workshop on Autonomous Software Testing (AUST). https:// doi.
org/ 10. 1145/ 35513 49. 35632 39

Song, Q., Tan, K., Runeson, P., & Persson, S. (2021). An industrial workbench for test scenario identification in
autonomous driving software. In IEEE International Conference on Artificial Intelligence Testing (AITest)
(pp. 81–82). IEEE Computer Society.

Tan, K. (2019). Building verification database and extracting critical scenarios for self-driving car testing on
virtual platform. Master’s thesis, KTH, School of Industrial Engineering and Management (ITM).

https://doi.org/10.1145/3551349.3563239
https://doi.org/10.1145/3551349.3563239

468 Software Quality Journal (2023) 31:441–469

1 3

Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., & Maurer, M. (2015). Defining and substantiating the terms
scene, situation, and scenario for automated driving. In IEEE 18th International Conference on Intelligent
Transportation Systems (pp. 982–988). IEEE.

Ulungu, E. L., Teghem, J., Fortemps, P., & Tuyttens, D. (1999). Mosa method: a tool for solving multiobjective
combinatorial optimization problems. Journal of Multicriteria Decision Analysis, 8(4), 221.

Yang, B., Cao, X., Li, X., Yuen, C., & Qian, L. (2020). Lessons learned from accident of autonomous vehi-
cle testing: An edge learning-aided offloading framework. IEEE Wireless Communications Letters, 9(8),
1182–1186.

Zhang, X., Li, F., & Wu, X. (2020). CSG: Critical scenario generation from real traffic accidents. In 2020 IEEE
Intelligent Vehicles Symposium (IV) (pp. 1330–1336). IEEE.

Zhang, X., Tao, J., Tan, K., Törngren, M., Sánchez, J. M. G., Ramli, M. R., Tao, X., Gyllenhammar, M.,
Wotawa, F., Mohan, N., et al. (2021). Finding critical scenarios for automated driving systems: A system-
atic literature review. Preprint retrieved from http:// arxiv. org/ abs/ 2110. 08664

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Qunying Song is a WASP-funded PhD student at the Department of
Computer Science, Lund University, Sweden. His primary research
interests lie in software testing of autonomous systems. Prior to his
PhD study, he received his bachelor and master degree in Software
Engineering, from Kristianstad University, in 2012 and 2013 respec-
tively, and has been working as a software engineer in software indus-
try for 6 years. Contact him at qunying.song@cs.lth.se.

Kaige Tan is a PhD student at the Mechatronics Devision, KTH Royal
Institute of Technology, Sweden. His research focus is on predictive
control and optimization of cyper-physical system using edge comput-
ing. Contact him at kaiget@kth.se.

http://arxiv.org/abs/2110.08664

469Software Quality Journal (2023) 31:441–469

1 3

Per Runeson is a professor of software engineering at Lund University, Swe-
den. He is the leader of the Software Engineering Research Group (SERG).
His research interests include empirical research in industry on software
development and management methods. He is particularly interested in stud-
ies on testing, and open source and data strategies. He is the principal author
of “Case study research in software engineering”, serves on the editorial
board of IEEE Transactions on Software Engineering and Software Testing,
Verification and Reliability. Contact him at per.runeson@cs.lth.se.

Stefan Persson is a senior engineer at Volvo Cars, Sweden. He works
within active safety and his research is related to optimization strate-
gies. He received a Ph. D. from KTH (Royal Institute of Technology),
Sweden in 2004. Contact him at: stefan.persson@volvocars.com.

	Critical scenario identification for realistic testing of autonomous driving systems
	Abstract
	1 Introduction
	2 Terms and concepts
	2.1 Scenario
	2.2 Critical scenario
	2.3 Scenario-based testing
	2.4 Objective functions

	3 Research approach
	3.1 Research context
	3.2 Research method

	4 Case I: Autonomous driving function
	4.1 Analyze system specifications
	4.2 Select relevant parameters
	4.2.1 Initial position
	4.2.2 Velocity
	4.2.3 Acceleration
	4.2.4 Number of vehicles

	4.3 Define objective functions
	4.4 Generate initial test suite
	4.5 Create optimization models
	4.6 Run simulation and optimization
	4.7 Identify critical scenarios

	5 Case II: Autonomous parking function
	5.1 Analyze system specifications
	5.2 Select relevant parameters
	5.3 Define objective functions
	5.4 Generate initial test suite
	5.5 Create optimization models
	5.6 Run simulation and optimization
	5.7 Identify critical scenarios

	6 Related work
	6.1 Knowledge-based approaches
	6.2 Data-driven approaches
	6.3 Search-based approaches

	7 Discussion
	7.1 Contributions
	7.2 Future work

	8 Conclusion
	Acknowledgements
	References

