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Abstract
Autonomous driving has become an important research area for road traffic, whereas test-
ing of autonomous driving systems to ensure a safe and reliable operation remains an open 
challenge. Substantial real-world testing or massive driving data collection does not scale 
since the potential test scenarios in real-world traffic are infinite, and covering large shares 
of them in the test is impractical. Thus, critical ones have to be prioritized. We have devel-
oped an approach for critical test scenario identification and in this study, we implement 
the approach and validate it on two real autonomous driving systems from industry by inte-
grating it into their tool-chain. Our main contribution in this work is the demonstration and 
validation of our approach for critical scenario identification for testing real autonomous 
driving systems.

Keywords Critical scenario identification · Autonomous driving · Software testing · Test 
scenario generation

1 Introduction

While autonomous driving is expected to improve traffic capacity and reduce road acci-
dents, testing of autonomous driving systems is a prerequisite to validate the reliability and  
safety of such systems  (Song,  Engström, et  al., 2021). Inadequate or ineffective testing 
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could fail to discover potential defects and misbehavior in the systems and lead to severe 
accidents in the road traffic  (Gambi, Mueller et  al., 2019). The fatal accident caused by 
Uber’s autonomous vehicle is an example where a pedestrian who walked her bicycle 
across the road was hit by the vehicle in Arizona, USA, in 2018 (Yang et al., 2020).

Current approaches for testing autonomous driving systems that rely on substantial 
real-world driving, or collecting real driving data at scale, are considered both inefficient 
and ineffective. They take an unpractical amount of time to complete and may still not 
cover rare traffic situations  (Ponn et  al.,  2019), while the regular road traffic is consid-
ered non-critical most of the time (Klischat and Althoff, 2019). New approaches for test-
ing autonomous driving systems based on critical scenario identification are increasingly 
demanded (Gambi, Mueller et al., 2019; Gambi, Huynh et al., 2019). We refer to critical 
scenarios here as scenarios that can lead to a collision or near-collision consequence or 
situation, and are of interest for testing autonomous vehicles.

Nevertheless, existing studies mostly present parts of an end-to-end solution for critical 
test scenario identification, for example, focusing on either simulation or optimization tasks 
of critical driving scenarios  (Klück et  al., 2019; Batsch et  al., 2021). Also, the reported 
studies are in many cases function-specific, for example, by proposing interventions based 
on a particular function module, like motion planning for highway scenarios (Ponn et al., 
2020). Therefore, the feasibility of such approaches for testing different autonomous driv-
ing functions is unclear. In addition, previous studies tend not to validate their approaches 
on real driving functions from industry, but instead on basic implementations based on 
existing platforms like MATLAB Simulink (Iqbal et al., 2021), or using publicly available 
driving components like DeepDriving (Gambi, Mueller et al., 2019; Gambi, Huynh et al., 
2019). The effectiveness of those approaches for testing real autonomous driving systems 
under real traffic conditions is not demonstrated.

To tackle the challenges mentioned above and facilitate testing of different autono-
mous driving systems, we have proposed a critical test scenario identification approach in  
our previous short paper (Song, Tan, et al., 2021). We are detailing the approach in the cur-
rent work and providing two real-world cases to demonstrate the implementation and result of  
this approach. The two cases involve two autonomous driving functions developed by the 
automaker Volvo Cars — a parking function and a driving function. Our approach utilizes 
three existing engineering tools (requirement and verification management tool, SPAS sim-
ulation platform, and modeFrontier process optimization and automation tool). We imple-
ment this approach for the two autonomous driving systems and have identified numerous 
critical scenarios for them. Consequently, the identified scenarios can be used to design test 
cases for those systems in both simulated and real-world testing. To clarify our scope, the 
work does not aim to find the best optimization algorithm but to implement the approach 
and demonstrate the feasibility of it for testing real autonomous driving functions.

The contribution of this work is the implementation and validation of said approach 
for critical test scenario identification. The approach enables an end-to-end solution from 
the initial analysis of the system specifications until generating critical scenarios that can 
be used for testing. It is generic as the tools involved are exchangeable and is not subject 
to any particular driving function, simulator or application tools. Thus, the approach can, 
in principle, be used for critical scenario identification for testing any autonomous driving 
system. In addition, we provide evidence showing that the approach is effective in identify-
ing critical scenarios for testing realistic autonomous driving functions. We also want to 
highlight that, due to industrial confidentiality concerns, only partial data and result analy-
sis are presented, where sensitive information is removed, still demonstrating the principal 
outcomes.
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The rest of the paper is organized as follows. Section 2 describes concepts and terms 
used in this study. Section 3 explains our the research approach. Sections 4 and 5 detail 
the case studies that use the proposed approach for identifying critical scenarios for testing 
two autonomous driving functions. Section 6 presents related literature on critical scenario 
identification for testing of autonomous driving systems. We present discussions and limi-
tations of the study in Sect. 7, and conclude the paper in Sect. 8.

2  Terms and concepts

In this section, terms related to critical scenario identification for testing autonomous driv-
ing system are introduced. Also, we provide our definition of terms such as scenario, criti-
cal scenario, and scenario-based testing.

2.1  Scenario

According to Ulbrich et al., a scenario is defined as a temporal sequence of scenes, with 
actions and events of the elements that are involved within this sequence (Ulbrich et al., 
2015). By actions and events, they mean, for example, maneuvers like cut-out and avoid 
colliding with a vehicle ahead. Given this definition, a scenario consists of at least one 
scene with corresponding actions and events, and a scene, in this context, is embodied as 
the geo-spatially stationary environment, dynamic elements, and a self-representation of all 
actors and observers.

Based on the definition proposed by Ulbrich et al. (2015), Menzel et al. further refined 
the definition of scenario into three different abstraction levels — functional, logical, and 
concrete scenarios (Menzel et al., 2018). Specifically, functional scenarios usually describe 
the involved entities and their behaviors using a natural language. Logical scenarios spec-
ify the state space of the functional scenarios with the relevant parameters, parameter range 
and distribution. Concrete scenarios are instantiated from the logical scenarios by assign-
ing concrete values for the parameters within the desired value range and distribution.

We adopt the definition of abstraction layers of scenarios in our work, proposed by 
Menzel et  al. (2018), where functional scenarios are retrieved from the system specifi-
cations and analyzed to derive the parameters for logical scenarios. Subsequently, con-
crete scenarios are simulated and optimized to identify the critical ones for testing autono-
mous driving systems. We have also observed that similar terms such as elements, entities, 
objects, and traffic participants are often used in the literature to refer to the different road 
users such as pedestrians, cyclists, and vehicles of different types. We stick with the defini-
tion from Menzel et al. (2018) to use entities for defining scenarios.

2.2  Critical scenario

There is no universal agreement as yet on what constitutes a critical scenario, although 
different interpretations in the literature share a high similarity. Zhang et  al. describe a 
critical scenario as a dangerous road situation that may lead to an unsafe decision for the 
autonomous vehicle, and appropriate countermeasures must be taken immediately to avoid 
impending collision (Zhang et al., 2020). In contrast, Kluck et al. focus more on the con-
crete scenario level and consider a scenario to be critical if underlying parameter values 
cause a malfunction of the autonomous driving system  (Klück et  al., 2019). Hallerbach 
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et al. propose critical scenarios as the scenarios that need to be tested, which can be derived 
from both functional and non-functional requirements (e.g., traffic efficiency, driver com-
fort)  Hallerbach et  al. (2018). Herein we take the interpretation from Kluck et  al., and 
define critical scenarios as scenarios with a parameter set that has a high probability of 
revealing unintended and unsafe behavior of the systems, which may cause a collision or 
near-collision situation for the vehicle and other entities in the road traffic (Klück et al., 
2019).

Furthermore, we need to differentiate critical scenarios from similar terms to avoid mis-
understanding. Gambi et al. use accident scenarios from police reports as critical scenarios 
for testing autonomous vehicles (Gambi, Huynh et al., 2019), whereas Klischat et al. argue 
that an accident by a human driver may not necessarily be a critical scenario and can be 
avoidable by others or autonomous vehicles (Klischat & Althoff, 2019). Challenging sce-
narios and complex scenarios are often used as synonyms, and are related to critical sce-
narios. Riedmaier et al. (2020) claim that a scenario is critical if the behavior of the system 
is evaluated after the scenario has been executed either in real world or in simulation and 
the criticality being measured. In contrast, scenarios are challenging or complex if they are 
evaluated and classified as challenging or complex without being executed. Ponn et al. point 
out that challenging scenarios are not always necessarily critical ones but more often lead to 
critical ones when executed (Ponn et al., 2020). Lastly, we also differentiate the concept of 
critical scenarios from corner-case scenarios (also referred to as edge cases). Karunakaran 
et al. define an edge case as an unknown and unsafe scenario that is hard to predict during 
the test and can lead to severe results for the autonomous vehicle (Karunakaran et al., 2020). 
Since critical scenarios can either be known or unknown, we believe the edge cases are a 
subset of the critical scenarios that are of high interest for its identification and testing the 
autonomous driving systems.

2.3  Scenario‑based testing

Scenarios are commonly used to substantiate test cases for autonomous driving sys-
tems (Erdogan et al., 2018). As stated by Kluck et al., a test case is the value assignments 
of all relevant parameters of the scenario, which essentially aligns with the definition of the 
concrete scenarios (Klück et al., 2019). However, a test case should entail not only a sce-
nario but also a pass-fail criterion to evaluate the resulting behavior of the system (Gambi, 
Mueller et al., 2019; Menzel et al., 2018). An example test case for an autonomous lane-
keeping function, as given by Gambi, Mueller et al. (2019), is that the vehicle must follow 
a navigation path on a generated road map. The test fails if the vehicle cannot get to the 
destination or drives out of the lane. In this example, the test scenario consists mainly of 
the generated road map, and the pass/fail criteria is whether or not the vehicle under test 
gets to the destination and drives in the lane. The pass/fail criteria for a certain scenario 
could be derived based on the requirements of functional, safety, or performance standards 
etc. of the system.

Scenario-based testing plays a key role in safety validation of autonomous driving sys-
tems (Riedmaier et al., 2020). It tests the systems with different scenarios and examines 
the resulting behavior of the vehicle in terms of interactions with the road infrastructure, 
with other road entities, and compliance with the functional specifications as well as the 
safety regulations (Batsch et al., 2021). The scenario-based testing approach aims to reduce 
the test effort to a manageable number of scenarios by limiting the testing to meaning-
ful scenarios  (Ponn et  al., 2019). The number of concrete scenarios can be infinite due 
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to the combinatorial explosion of parameter values  (Batsch et al., 2021), and identifying 
all possible scenarios is difficult regardless of which approach is used (Hallerbach et al., 
2018). According to Batsch et al., scenario-based testing usually runs in simulation with 
Software-in-the-Loop (SIL). Still, it can also be carried out with Hardware-in-the-Loop 
(HIL), or in the real world with proving ground (also known as test tracks in some studies) 
or public road traffic (Batsch et al., 2021).

Despite the remarkable benefits of using scenario-based approaches for testing autono-
mous vehicles, identifying relevant scenarios for the system under test remains the prerequi-
site, especially those critical scenarios that violate the desired safety requirements (Riedmaier 
et al., 2020). Open questions still challenge us in regards to what constitutes good test sce-
narios and how to generate them systematically (Gambi, Huynh et al., 2019); how to define 
and collect realistic test scenarios (Erdogan et al., 2018); and how to identify the critical sce-
narios for testing (Zhang et al., 2020). Menzel et al. propose many different sources that can 
be used for deriving test scenarios, such as functional specifications, system boundaries, the 
operational environment, legal requirements, and real driving data collected (Menzel et al., 
2018). While common and safe scenarios without significant actions can be easily identified 
and reduced, the success of a scenario-based testing approach is highly reliant on its ability 
to find more critical scenarios within a given testing budget (Porres et al., 2020). That is the 
core of the current study — to implement and validate the feasibility of the approach we 
developed for critical scenario identification for testing real autonomous driving systems.

2.4  Objective functions

An integral part entailed in critical scenario identification is how can we quantify and 
evaluate a concrete scenario to be critical or not, thus the criticality of a scenario must 
be represented in a quantifiable way. In this study, we use the term objective functions to 
refer to the measurements of criticality of a scenario. Different surrogate measurements for 
safety evaluation of traffic conflicts can be used as objective functions, for example, Time-
to-Collision (TTC), Post-Enchroachment Time (PET), and Time-to-Brake (Mahmud et al., 
2017). Among these surrogate indicators, TTC is used the most, according to a review 
study by Laureshyn et al. (2016). As an example, Klück et al. (2019) measure and extract 
scenarios with TTC less than one second as critical scenarios for an autonomous emer-
gency braking system.

Safety metrics extracted from industrial standards can also be used as objective func-
tions, for example, ISO-15622 standard for adaptive cruise control (Riedmaier et al., 2020), 
ISO-26262 for general automotive development and test (Feng et al., 2020), and Responsi-
bility–Sensitive Safety (RSS) for autonomous vehicles (Karunakaran et al., 2020). Several 
performance metrics, including safety, functionality, mobility, and drivers’ comfort, are 
used for generating test scenarios for autonomous vehicles by Feng et al. (2020), and they 
use a combination of the maneuver challenge and exposure frequency as the measurements 
for evaluating critical scenarios.

Eventually, selecting objective functions must be specific to a particular driving system 
and the system specifications. In this study, we have selected TTC  and jerk for the autono-
mous driving function, distance to vehicles and angle of host vehicle for the autonomous 
parking function, as objective functions. TTC  represents the time remaining before colli-
sion, given the vehicles keep the current speed and direction. A shorter TTC means that a 
collision is more imminent. Jerk measures the change of acceleration rate of the vehicle, 
where a large jerk value means an aggressive change of acceleration of the vehicle and the 
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opposite of smoothness. Distance to vehicles simply measures and restricts that the host 
vehicle (also known as ego vehicle) should keep a safe distance (i.e., 0.3m) to the station-
ary vehicles after completing the parking maneuver, and angle of host vehicle requires the 
vehicle to keep a good orientation and be within a specific boundary of angles (i.e., ±3◦ ) to 
the parking slots.

3  Research approach

In this section, we describe the context and method we used for the current study. Overall, 
we followed the design science paradigm in our research  (Runeson et al., 2020). Design 
science paradigm is used as a frame to guide, describe, or communicate the research using 
three basic elements — problem conceptualization, solution design, and solution valida-
tion. The three elements are connected in the given order and can be performed in many 
iterations (Runeson et al., 2020).

We investigated the problem of critical test scenario identification by studying the  
existing literature and industrial practices in an earlier study (Song, Engström, et al., 2021). 
Then, we designed the solution for critical test scenario identification in another prior 
study (Song, Tan, et al., 2021). In the current work, we implement the approach we devel-
oped in an industrial context by integrating the existing engineering tools, and validate it 
using two real autonomous driving functions by collaborating with Volvo Cars, which we 
report in Sects. 4 and 5. Lastly, we infer the potential usage of our approach for testing autono-
mous driving systems in general, which is detailed later in Sect. 7.

3.1  Research context

The current study is based on the critical test scenario identification approach that we pre-
sented briefly in our previous work (Song, Tan, et al., 2021). As shown in Fig. 1, the approach  
defines a tool-chain with three different engineering tools and a workflow for critical test 
scenario identification. The approach enables an end-to-end solution from analyzing the 
system specifications until critical test scenarios are identified for a given autonomous 
driving system. The identified scenarios can then be used to substantiate test cases for the 
system.

The three engineering tools are as follows: (1) a requirement and verification manage-
ment tool which is used for storing and analyzing the system specifications. By using this 

Fig. 1  Overview of the critical test scenario identification approach, consisting of interconnected tools (left) 
which are used in the workflow (right). The figure is a reprint from our previous work with minor adapta-
tion, and we refer to Song, Tan, et al. (2021) for more details of the approach
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tool, relevant parameters (e.g., speed and position of vehicles) and objective functions 
(e.g., TTC, PET) can be derived from the system specifications and operational environ-
ments; (2) an internal simulation platform SPAS, which is developed by Volvo Cars and 
used for early verification of the active safety and autonomous driving functions. We use 
SPAS to simulate the scenarios and record the simulation results; (3) a process automation 
and optimization tool modeFrontier, which is a commercial tool for process and design 
optimization. We create optimization models in this tool by using the parameters, objec-
tive functions, and an optimization algorithm (e.g., pilOPT), and the models explore criti-
cal scenarios based on the simulation result from SPAS.

The tools are exchangeable, meaning that we can substitute them with other similar 
tools to cope with different industrial environments or autonomous driving functions 
under test. For example, we can use other similar tools (e.g, SysWeaver  (Bhat et  al., 
2018)) to replace tool (1) as it is an independent tool for studying the system func-
tionality and extracting relevant parameters from its operational environment. We could 
also select a different simulator from tool (2), such as Carla (Dosovitskiy et al., 2017) 
or AirSim (Shah et al., 2018), to simulate the scenario execution. modeFrontier allows 
the integration of third-party applications in its optimization models and triggers the 
execution of the applications using e.g., available interfaces, command lines, or self-
developed scripts in various programming languages. Thus, we just have to adapt the 
optimization flow in modeFroniter to incorporate a different simulator. Other simulators 
for autonomous driving are presented by Kang et al. (2019) and Rosique et al. (2019).

The workflow includes two main phases, see Fig.  1 (right). In the first phase, we 
start by analyzing the system specifications to understand the functionalities and the 
operational design domain (ODD) of the system. ODD is a concept that defines the 
operational environment where the system is designed to function (Gyllenhammar et al., 
2020). The system specifications can be, for example, functional specifications, design 
documents, related standards or regulations. Based on that, we select relevant parame-
ters that constitute a driving scenario and the value range and distribution of the param-
eters. Also, we define objective functions that measure the criticality of the executed 
scenarios and a threshold for each objective function for identifying critical scenarios. 
Lastly, we generate an initial suite of scenarios by sampling through the parameter space 
based on the intended distribution and size of the initial test suite.

In the second phase, we create an optimization model in modeFrontier to integrate 
the selected parameters, objective functions, and the SPAS simulator. The optimization 
model optimizes the scenario generation with respect to the objective functions and the 
simulation results. It executes the scenarios in the initial test suites in simulation, and 
continuously explores the parameter space based on the results of completed simulation. 
We also configure the number of iterations for the optimization model in modeFrontier 
based on the testing budget and computational resources available. Lastly, critical sce-
narios are identified if resulting objective function values surpass the thresholds. For 
example, scenarios with less than 0.3 m’s distance to surrounding vehicles are critical 
for the autonomous parking function, which we describe in Sect. 5.

Our study is also relying on the collaboration with our industry partner — Volvo 
Cars, where they support us by providing access to the tools above and two autonomous 
driving functions, namely autonomous driving function and autonomous parking func-
tion. We implement our approach on these two functions for identifying critical sce-
narios for testing such systems, and demonstrate its feasibility for testing using realistic 
autonomous driving functions.
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3.2  Research method

The current study is conducted in multiple steps for implementation and validation of 
the approach we proposed (Song, Tan, et al., 2021). We study each autonomous driving 
function in the first step. Then, we create the optimization models for the functions in 
steps 2 and 3. In the last step, we retrieve the optimization results and provide the iden-
tified critical test scenarios to the engineering teams. 

1. For each autonomous driving function, we analyze the system specifications, through 
the requirement and verification management tool, to understand the functionality and 
the ODD of the system. The goal of this step is to identify the relevant parameters (e.g., 
speed and position of vehicles) and to define objective functions (e.g., TTC) for the 
autonomous driving function.

2. We explore the tool modeFrontier and create an optimization model by integrating the 
parameters and objective functions from step 1 and the SPAS simulation platform. We 
also configure the optimization algorithm (i.e., a multi-strategy searching algorithm 
pilOPT), size of the initial test suite, and the number of iterations based on the testing 
resource available.

3. We replicate the optimization model from step 2 and select a different algorithm (i.e., a 
heuristic searching algorithm MOSA) to compare how two algorithms differ in identify-
ing critical scenarios.

4. We start the optimization models in modeFrontier, and debug the errors if the process 
fails or suspends, for example, the process gets timed out or software crashes due to any 
environment issues. After the optimization processes finish, we export and analyze the 
results such as the number of critical scenarios identified on each objective function, 
and how selected parameters are related to the identified critical scenarios, which we 
present in Sects. 4 and 5. The identified scenarios are provided to the engineering teams 
to test the systems and investigate potential flaws as well as to improve the specification, 
design, or implementation of the systems.

4  Case I: Autonomous driving function

This section describes the implementation of the approach which we present in Sect. 3 
for the first case. We aim to generate critical test scenarios for an early version of an 
autonomous driving function from Volvo Cars, which in this paper is referred to as the 
AD function (ADF).

4.1  Analyze system specifications

ADF offers unsupervised in-lane driving in queued situations up to a specific speed 
limit vmax , and enables the host vehicle to keep a safe distance to the preceding vehicle 
within the lane. The cardinal functionalities of ADF can be summarized as (1) driv-
ing in a lane and (2) proactively adapting speed. These functionalities specify that the 
host vehicle shall stay in lane and maintain a safe longitudinal and lateral distance to 
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infrastructure, other vehicles and entities on the road. In addition, the host vehicle shall 
comfortably control speed to comply with the current speed limit.

Figure  2 shows snapshots in a scenario at different time steps. It is simulated in the 
SPAS platform and demonstrates the functionality of ADF. The host vehicle equipped with 
ADF is marked gray, while others are visualized in white. At the beginning of the scenario, 
the host vehicle drives at a relatively high speed compared to other vehicles. When driv-
ing around the bend, the host vehicle detects the front vehicle in the same lane, thus ADF 
drives the host vehicle to decrease the speed gradually. At the end of the scenario, the host 
vehicle manages to adapt its speed to follow the front vehicle.

4.2  Select relevant parameters

With the requirement and verification management tool, the operational environment of 
ADF is analyzed, where it covers different kinds of influential factors on the road, includ-
ing traffic, vehicle status, environment, infrastructure, other road users, and driver behav-
ior. We select parameters from two domains: (1)  movable entities, including dynamic 
behaviors of the host vehicle and other road users, and (2) road topology, including high-
way infrastructure and traffic conditions. In this section, we elaborate on the parameter 
selection of movable entities as an example.

Road users include all kinds of vehicles, pedestrians, and animals. However, since the 
operational environment for ADF is on the highway where pedestrians and animals rarely 
appear. Thus, only vehicles are taken into consideration in this study. The vehicles in the 
ADF function can be divided into three categories: host vehicle, lead vehicle, and other 
vehicles. We denote the vehicle set by V = {Vh, Vl, Vo1, ..., VoN}, N ∈ ℤ , where Vh and Vl 
represent the host and lead vehicle, while Vo1, ..., VoN are other vehicles on the road. The 
simulation period of each scenario is set to T unless a collision happens and triggers an 
early termination. In addition, parameters for each movable object are analyzed in four 
aspects to define a scenario: initial position, velocity, acceleration profile, and the number 
of vehicles. In what follows, we denote the position, velocity and acceleration of vehicle-i 
at time step-t by �i(t) = [px

i
(t), p

y

i
(t)], vi(t) and ai(t) . Specifically, the velocity and accelera-

tion are expressed as scalars since only the longitudinal information is of interest.

Fig. 2  A series of visualized scenes of the autonomous driving function (ADF). The gray vehicle (labeled 
1) represents the host vehicle with ADF installed, and the white vehicles (labeled 2–7) represent the other 
vehicles on road
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4.2.1  Initial position

The initial position of vehicles is selected, including the longitudinal and lateral posi-
tions along the road. Several constraints are defined to limit value selection of the initial 
position. First, each vehicle should keep a safe distance to others. The two-second rule, 
which is a rule of thumb estimating for safe distance at any speed for vehicles  (Breyer 
et  al., 2010), is set as the baseline to deduce minimal initial longitudinal distance 
|px

i
(t0) − px

j
(t0)| ≥ dx

min
,∀i, j ∈ V . Also, to limit the scope of a scenario, we define a dis-

tance range between head-most vehicle and back-most vehicle in simulation, and its 
upper limit is denoted by Dmax . Regarding the lateral distance, the vehicle must leave a 
d

y

min
= 1.5m space when considering regular road width for a freeway of 3.5m (Mouhagir 

et al., 2016), i.e., |py

i
(t) − p

y

j
(t)| ≥ d

y

min
,∀i, j ∈ V.

4.2.2  Velocity

ADF provides the nominal function only in situations when the host vehicle’s velocity is 
lower than a specified limit, i.e., vVh

(t) ≤ vmax . To evaluate ADF’s performance, the host 
vehicle should be able to detect and follow the lead vehicle. For this reason, the host vehi-
cle should be in the right level of proximity to the lead vehicle, which allows the lead 
vehicle to be detected at the initial stage of a scenario. In addition, the initial velocity of the 
lead vehicle should follow vVl

(t0) ≤ vVh
(t0) , or otherwise, the ADF will be deactivated and 

switched to human maneuver mode. Moreover, to keep the traffic smooth on the highway, 
the minimum speed for all vehicles is set to a specified level vmin . According to Abuelenin 
et al. (2014), the traffic velocity on the road approximately complies with a normal distri-
bution, and thus normal distribution is used for velocity in scenario generation.

4.2.3  Acceleration

We restrict the acceleration of all vehicles on the road with |ai(t)| ≤ 3m∕s2, i ∈ V at each 
time step during the simulation, based on real-world traffic data (Bokare & Maurya, 2017). 
Besides, the longest acceleration period is restricted to 3 seconds and acceleration values 
are sampled from a uniform distribution.

4.2.4  Number of vehicles

The number of vehicles on the road is jointly decided by dx
min

 , Dmax and the length of a 
vehicle. Each scenario has |V| = N + 2 vehicles. For a special case when there is only one 
lane in the road, the maximum number of vehicles could be placed on the road is 10, with 
subject to dx

min
 , Dmax and the length of a vehicle. That is also the upper limit for the number 

of vehicles. The upper limit on vehicle number also reduces the design space and acceler-
ates the scenario optimization process. To ensure there are enough vehicles on the road to 
formulate a critical scenario, the minimum number of vehicles is set to 5. Thus, the number 
of vehicles defined in a scenario is given as 5 ≤ |V| ≤ 10.

4.3  Define objective functions

We define the objective function from two perspectives to extract critical scenarios: vehicle 
behavior and driver reaction. For vehicle behavior, criticality is defined as the closeness to 
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an accident, of which TTC is used as an indicator. TTC is considered an objective function 
that should be minimized. A threshold time ( ΔTthres ) is set to distinguish critical scenarios 
from non-critical ones.

Regarding the driver reaction, ADF should ensure the driving comfort as much as pos-
sible  (Feng et  al., 2020). For this reason, jerk, measured as the rate of change in accel-
eration, is selected as another objective function to evaluate criticality of scenarios. Jerk 
value larger than ±4m∕s3 would not be acceptable for most vehicles (Bellem et al., 2016). 
Thus, we try to maximize the absolute value of jerk to find the critical scenarios and set 
|ȧthres| = 4m∕s3 as a threshold for the corresponding scenarios to be considered as critical.

Both TTC and jerk are evaluated at each scene and are updated by time frames. We 
select the extreme values of TTC and jerk within a simulation period to represent the criti-
cality of a scenario. For this reason, the simulation will not be terminated prematurely if 
the value of TTC or jerk has exceeded the threshold unless a collision is detected.

4.4  Generate initial test suite

To generate an initial test suite, we use MATLAB to translate the specifications in the 
requirement and verification management tool, and send the outputs to modeFrontier for 
generating a new design of experimentation (DoE) (Riedmaier et al., 2020). DoE is a sys-
tematic approach for analyzing the relationship between input parameters and output val-
ues and how the effect (output) changes over variation of the conditions (parameter sets). 
The DoE generation in our work represents the selection of parameter values and the crea-
tion of new test scenarios. ModeFrontier has different approaches for design space explora-
tion, and in this case, the Space filler DoE is leveraged for test scenario generation. This 
approach gives the most uniform filling of the design space, where the risk of missing 
corner cases can be mitigated. Latin Hypercube Sampling (LHS) is applied to generate ran-
dom design configurations and an initial test suite (i.e., with 50 scenarios, according to the 
rule of thumb for DoE (Tan, 2019)) is generated.

4.5  Create optimization models

The optimization process in modeFrontier follows the scheme as discussed in Fig. 1. First, 
initial test scenarios are simulated in SPAS. Then, simulation results are recorded, saved, 
and analyzed by modeFrontier. Subsequently, new test scenarios are generated with distinct 
parameter values by the optimization model and executed in simulation. The entire opti-
mization process ends after the specified number of iterations, and critical scenarios can 
then be extracted and analyzed. Figure 3 shows the modeFrontier optimization model for 
ADF. In short, the top part is parameters for generating new scenarios. The sub-parts inside 
represent sub-parameters that need to be specified for a scenario. The parameter values are 
transferred to the middle part, where the SPAS simulation is performed. Lastly, the bottom 
part is used to define the objective functions. The optimization is then based on the objec-
tive functions of the scenarios in SPAS simulation.

Two optimization algorithms, namely Multi-Objective Simulated Annealing (MOSA) (Ulungu 
et al., 1999) and pilOPT1, are used for optimization purposes. The optimization models that use 
each algorithm are created separately, and Fig. 3 is an example of such models. pilOPT is an 

1 https:// engin eering. esteco. com/ modef ronti er/

https://engineering.esteco.com/modefrontier/


452 Software Quality Journal (2023) 31:441–469

1 3

in-house developed algorithm in modeFrontier, which can effectively handle the multi-strategy 
searching problem and minimize the amount of time and computational resources required. It 
combines the advantages of local and global search algorithms to get the optimum solutions. In 
contrast, MOSA is a heuristic searching algorithm, which is regarded as the benchmark algorithm 
to be compared with pilOPT.

4.6  Run simulation and optimization

After creating the optimization models, the optimization process is started in mode-
Frontier. The number of optimization iterations is determined mainly based on compu-
tational resources available and is set to 300 in this case. Higher intensive grid search 
can be performed with more powerful computing resources, although the number of 
available software licenses of commercial tools may also be limiting. After running 
the simulation and optimization, the results are saved to extract and analyze the critical 
scenarios.

Fig. 3  modeFrontier optimization model for the ADF
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4.7  Identify critical scenarios

Figure 4 shows the optimization results of critical scenario identification for ADF, with 
Fig. 4a using MOSA and Fig. 4b using pilOPT. A dot in the figure represents a test sce-
nario, and the two dashed lines are the criticality thresholds for the objective functions 
TTC and jerk. By using these two dashed lines, we separate the scenarios into critical and 
non-critical sections. Thus, we see four quadrants in each sub-figure: (1) critical jerk and 
critical TTC, (2) critical jerk but non-critical TTC, (3) non-critical jerk but critical TTC, 
and (4) non-critical for both jerk and TTC. Therefore, scenarios in quadrants 1, 2 and 3 
in each sub-figure are critical scenarios, since at least one objective function is critical 
in these quadrants. The colors merely indicate the sequence of the scenarios when they 
were executed in modeFrontier, blue means the earlier scenarios, and red means the later 
scenarios.

For the MOSA algorithm, we observed a clear boundary among test scenarios with very 
low jerk values. In addition, another boundary exists to partition test scenarios whether 
their TTC values exceed ΔTthres or not. For test scenarios with low jerk values, the TTC 
values are mostly over ΔTthres , indicating that in those test scenarios, the host vehicle does 
not experience a sharp acceleration, thus being obvious safe scenarios. As scenarios are 
randomly distributed as in the figure, no distinct region feature and difference emerge with 
the optimization process.

In Fig. 4b, there is no obvious boundary on either axis, but the figure is divided into 
two groups. Test scenarios in the first group, located on the upper part of the figure, have 
remarkably high jerk values. The number of critical scenarios is summarized in Table 1 to 
compare the difference between MOSA and pilOPT. The number of scenarios caused by 
violating TTC and jerk constraints is not summing up the total amount since there are some 

Fig. 4  modeFrontier optimization results from the autonomous driving function (ADF) with (a) MOSA and 
(b) pilOPT algorithms. Each dot represents a test scenario. The dashed lines are the criticality thresholds 
for TTC and jerk, respectively, while the precise scale of the two axis is left out for confidentiality reasons. 
Colors indicate the order of the scenario execution

Table 1  Number of critical test 
scenarios with respect to the 
objective functions

MOSA pilOPT

jerk 33 87
TTC 18 28
total 45 95
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scenarios where both criteria are critical. We conclude that, in this case study, pilOPT has 
a better performance in finding critical scenarios than MOSA, especially with respect to 
jerk. This is, however, not our primary focus, and optimization algorithms can be further 
explored in future studies.

5  Case II: Autonomous parking function

In this section, we describe the implementation and result for the second case that uses the 
approach we present in Sect. 3 to generate critical test scenarios for an early version of an 
autonomous parking function from Volvo Cars.

5.1  Analyze system specifications

The Autonomous Parking Function (APF) aims to detect and park the vehicle into a fea-
sible parking slot between two stationary vehicles autonomously, where a driver is not 
required. The function should park the vehicle in both parallel and perpendicular slots, 
either reversely or forwardly.

The case study APF version supports only the rearward parking in parallel slots (i.e., 
parking slots that are parallel to the road direction) where the parking maneuver is per-
formed mainly in three steps. First, the vehicle drives at a low speed and passively scans 
the empty slots using the ultrasonic sensors that are deployed on the front side of the vehi-
cle. Second, the vehicle identifies the target slot and performs motion planning to park the 
vehicle in it without colliding the vehicles around. Lastly, the vehicle starts to actuate the 
rearward parking maneuver by controlling the steering wheel, propulsion, shifting gear and 
braking, and follows the trajectory that is computed in the previous step. When the vehicle 
reaches the final position that has been planned, it sets a brake torque to stop the vehicle 
and deactivates the parking function.

Figure 5 illustrates the function and operational scenes of APF. Specifically, five vehi-
cles (numbered 2–6 and in white) are parked parallel to the road direction and remain sta-
tionary. The host vehicle (i.e., numbered with 1 and marked in gray — the vehicle with 
APF installed) first drives from the left and passes the stationary vehicles, it scans and 

Fig. 5  A series of visualized scenes of the autonomous parking function (APF)
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identifies an empty slot between the rear vehicle (4, referred as Vr ) and the front vehicle (5, 
referred as Vf  ). Then APF reversely parks the host vehicle into the slot without colliding 
with other vehicles and stops at a feasible position subject to physical constraints such as 
the slot length and the maximum steering angle the vehicle can perform. In an optimal situ-
ation, the host vehicle should stop at the center of the parking slot with a sufficient distance 
to both Vr and Vf  , and the vehicle stands parallel to the parking slot.

5.2  Select relevant parameters

After analyzing the system specifications and current design of APF by using the require-
ment and verification management tool, we identify two relevant parameters for constitut-
ing a test scenario for APF, namely slot length and angle of the stationary vehicle.

Slot length describes the actual length of the parking slot and is the primary param-
eter that determines whether a parking slot is feasible or not. Buehler and Wegener (2003) 
adopted both the slot length and slot width as the two parameters that depict the parking 
space and used them to explore critical test scenarios for an autonomous parking system. 
Given the current design and implementation of APF, we presume a sufficient slot width in 
the current study and thus select slot length as a relevant parameter for defining scenarios.

Based on the setup in Fig. 5, slot length can be quantified and adjusted by changing the 
position of either Vr or Vf  on the coordinate system of the simulation platform. Herein we 
select the position of Vf  (referred as PoVf  ) as the derived parameter for slot length. The 
value range of slot length contains both a lower bound — the minimum slot length APF 
should handle without colliding the stationary vehicles, and an upper bound — an adequate 
slot length that APF manages while keeping a sufficient distance to the stationary vehicles 
and a considerable yaw angle to the parking slot. Due to confidentiality concerns, we do 
not report the specific values here.

The angle of the stationary vehicles represents the yaw angle rate of the stationary vehi-
cles (i.e., Vr and Vf  ), and is a parameter that determines the shape of the parking slot as well 
as the motion planning of APF. Since we here focus on rearward parking, and the slot length 
is generally larger than the standard parking slot length, we consider the yaw angle of Vf  hav-
ing the most impact (referred as AnVf  ). The value range for this parameter is set to [ −3

◦ , 3◦ ] 
according to the ISO-16787 standard (International Organization for Standardization, 2017) 
which is a standard for testing autonomous parking functions and is up to each nation to 
implement. According to this standard, a vehicle should remain within [ −3

◦ , 3◦ ] to the central 
line of the parking slot after completing the parking maneuver. Thereby, we take this standard 
specification as a reference for setting AnVf .

5.3  Define objective functions

The basic acceptance criterion for a parking scenario, according to ISO-16787 stand-
ard  (International Organization for Standardization, 2017), includes that the host vehicle 
should keep a minimal 0.3 m distance to other vehicles around and standstill with a yaw 
angle within ±3◦ to the central line of the parking slot. We consider scenarios beyond these 
two criteria critical and should be identified. Based on these two criteria and the setup 
shown in Fig. 5, the distance to Vr (referred as DtVr ) and Vf  (referred as DtVf  ) should be 
minimized through optimization to identify the scenarios with less than 0.3 m distance to 
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either of them. In addition, the yaw angle of the host vehicle (referred to as AnVh ) needs to 
be optimized to identify the scenarios that end with an angle beyond ±3◦.

Nevertheless, we cannot have all the aforementioned objective functions in one opti-
mization model due to the natural conflicts among them. For example, minimizing DtVr 
is essentially maximizing DtVf  since these two vehicles are located on the two end sides 
of the parking slot. Thus, these two objective functions must be separated into two differ-
ent optimization models. In addition, we cannot maximize and minimize AnVh at the same 
time to identify critical test scenarios that are greater than 3◦ and those lower than −3◦ . 
Thus, these two objective functions have to be separated into two different optimization 
models as well. The resulting set of objectives is four, hence leading to four optimization 
models with two objective functions each as shown in Table 2.

5.4  Generate initial test suite

We generate an initial set of test scenarios in modeFrontier to enable further optimiza-
tion of the parameters towards the most critical scenarios. Based on the two parameters 
we select (i.e., PoVf  and AnVf  ) and the objective functions we define, we first compute the 
size of the initial test suite using the rule of thumb for DoE (Tan, 2019), as shown in Eq. 1. 
Npar is the number of parameters and Nobj is the number of objective functions. As for APF, 
the size of the initial test suite is eight, given two parameters are selected, and two objec-
tive functions are defined for each optimization model.

Next, an initial suite of test scenarios can be generated by sampling the parameters based 
on the intended distribution. However, the real distribution for both DtVr and AnVh are 
unknown and are difficult to model or predict. Hence, we generate the initial test scenarios 
with the Latin Hypercube Sampling (LHS) strategy and uniform distribution. In LHS, the 
parameter space is divided into equal parts with respect to the target sampling size (i.e., the 
size of the initial test suite) and the sampling position is randomly chosen according to the 
parameter distribution (Batsch et al., 2021). LHS is considered superior to other sampling 
approaches like random sampling and ensures that the entire parameter space is covered as 
evenly as possible (Batsch et al., 2021). As there is no such real distribution for the selected 
parameters provided, we also use the uniform distribution to assure every parameter value 
interval is equally likely.

5.5  Create optimization models

We create the optimization models in modeFrontier by integrating the selected parame-
ters, the objective functions, and the SPAS simulation platform. Similar to what has been 

(1)Initial suite size = 2 ∗ Npar ∗ Nobj

Table 2  modeFrontier 
optimization models and 
corresponding objective 
functions for APF

 Model Objective function 1 Objective function 2

1 minimize DtVr maximize AnVh

2 minimize DtVr minimize AnVh

3 minimize DtVf maximize AnVh

4 minimize DtVf minimize AnVh
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presented in Fig. 3, the parameters are defined as inputs to the optimization model and are 
used to generate scenarios for simulation. An initial set of values for the parameters are 
sampled preliminary with LHS and are considered the initial test suite to enable further 
optimization of critical test scenarios. The objective functions are the output of the optimi-
zation model and are optimized based on the completed scenario simulation.

We configure the number of optimization iterations to 80 based on the testing budget 
and computational resources available. In other words, the optimization model first runs 
the initial test scenarios (i.e., 8 scenarios) in the SPAS simulation platform and tracks the 
objective functions’ value. Then the optimization model optimizes the selection of param-
eters for another 72 iterations based on the completed simulation results. Lastly, we select 
the optimization algorithm in modeFrontier based on our previous experience (i.e., Sect. 4) 
where pilOPT was used. In addition, we also replicate two optimization models (1 and 3 in 
Table 2) using MOSA to compare two different optimization algorithms and demonstrate 
the generality of our approach in using different optimization strategies. Thus, we create 
six optimization models in total, as shown in Table 3. We do not replicate all optimization 
models for MOSA, as the simulation and optimization are computationally expensive. To 
clarify again, we do not aim to find the best optimization algorithm in this study but to 
implement and validate the feasibility of the approach for critical test scenario identifica-
tion for real driving functions.

5.6  Run simulation and optimization

We start the optimization models in modeFrontier, and the optimization process runs auto-
matically. For each optimization iteration, the simulation result is recorded and optimized 
with respect to the objective functions. After all iterations are completed, the optimization 
process terminates, and full results are saved. Since scenarios are simulated in the SPAS 
simulation platform and are triggered from modeFrontier, we have set a maximum time for 
a single simulation session to avoid suspending the entire optimization process due to pos-
sible problems such as software crashes or environmental issues.

5.7  Identify critical scenarios

The result of the optimization models can be visualized in modeFroniter using different 
charts or statistical analysis tools and be exported in many different formats. As men-
tioned earlier, we created six optimization models for APF, and each model consists of 80 
evaluation iterations. By filtering the results with the criticality thresholds we define, the 

Table 3  modeFrontier optimization models and results for APF. By results, we mean the number of critical 
test scenarios identified with respect to the objective functions

Model Objective function 1 Objective function 2 Algorithm Iteration Result

1 minimize DtVr maximize AnVh pilOPT 80 41
2 minimize DtVr maximize AnVh MOSA 80 40
3 minimize DtVr minimize AnVh pilOPT 80 35
4 minimize DtVf maximize AnVh pilOPT 80 40
5 minimize DtVf maximize AnVh MOSA 80 29
6 minimize DtVf minimize AnVh pilOPT 80 30
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optimization models have identified 29 to 41 critical scenarios, as indicated by the last col-
umn (i.e., Result) in Table 3. The critical scenarios, as we mentioned earlier, can be used to 
substantiate test cases for testing the function in different environments (e.g., in simulation, 
in testing tracks, or on public roads).

The resulting critical scenarios are found exclusively on one of the objective functions 
— AnVh — and no critical scenarios found for both DtVr and DtVf  . As shown in Fig. 6a — 
the result of optimization model 1 from Table 3 for minimizing DtVr and maximizing AnVh 
using pilOPT, no critical scenario (i.e., < 0.3 m ) is can be found in the DtVr dimension as 
all scenarios resulted in a sufficiently large distance for DtVr , which is considered as safe 
according to the industrial standard ISO-16787. That indicates the early implementation 
of the function we used is conservative on the distance to other vehicles. In contrast, 41 
critical scenarios are identified based on the AnVh which are greater than 3◦ to the central 
line of the parking slot. An example is AnVh gets 13.28

◦ when AnVf  and PoVf  are at spe-
cific values. That is the considered critical since angle of host vehicle deviates too much 
after the parking maneuver. These scenarios should be investigated by the development and 
test teams to improve the system design, implementation, or test so it can handle them as 
intended and safely.

Furthermore, Fig. 6b shows the correlation between parameter AnVf  and the objective 
AnVh . The result indicates that AnVf  does not have a general effect on AnVh and it is ran-
domly distributed regardless the value of AnVf  . In contrast, an explicit pattern is drawn on 
PoVf  and AnVh in Fig. 6c, in which AnVh keeps increasing when PoVf  decreases. When 
PoVf  is lower than a specific value, AnVh is over the criticality threshold 3◦ and scenarios 
are identified as critical. This observation suggests that decreasing slot length can lead to 
more critical scenarios, and the smaller the slot length is, the larger deviation of the angle 
of host vehicle can be. For that reason, how slot length impacts the autonomous parking 
function should be analyzed and more tests by adapting the slot length may be conducted. 
Based on that, the system should be enhanced and re-tested using the identified critical 
scenarios.

The results are consistent when using other optimization models with different combi-
nations of objective functions. We identify critical scenarios on AnVh only, and the visual-
ized results indicate that AnVh gets larger and exceeds the criticality threshold when PoVf  
declines. The observations suggest that adapting the slot length and angle of the stationary 

Fig. 6  Result of minimizing DtVr and maximizing AnVh using pilOPT. The dash line in the sub-figures is 
the criticality threshold for AnVh and the dots are the scenarios executed in the simulation. Scenarios on  
the right side of the dashed line in sub-figure (a) and above the dashed line in sub-figures (b) and (c) are the 
critical scenarios identified on with AnVh larger than 3◦ . The scale of PoVf  in sub-figure (c) is removed for 
confidentiality reasons
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vehicle does not generate critical test scenarios for APF with respect to the distance to the 
stationary vehicles. However, both of them lead to critical test scenarios where the angle 
of the host vehicle exceeds 3◦ . A clear trend is observed that smaller slot length generally 
increases the angle of the host vehicle, which means a bad orientation to the parking slot 
and demonstrates there is a pattern of critical scenarios that the system does not meet.

Lastly, pilOPT generally identifies more critical scenarios than MOSA in this case, 
although there are no significant differences between them consistently. For the optimiza-
tion models that minimize DtVr and maximize AnVh , pilOPT identifies 41 critical scenar-
ios, and MOSA identifies 40. As for the models that minimize DtVf  and maximize AnVh , 
pilOPT identifies 40 critical scenarios where MOSA identifies 29. Based on the results, 
pilOPT performs better than MOSA, while further comparison between these two algo-
rithms is required. Since we do not aim to address the best optimization algorithm in the 
current study, we have demonstrated that our approach effectively identifies critical test 
scenarios and is general to different optimization algorithms.

6  Related work

In this section, we present related literature on critical test scenario identification for auton-
omous driving. The general idea of critical scenario identification, as described by Ponn 
et  al., is that a concrete scenario is selected, executed, and evaluated with the criticality 
metrics (Ponn et al., 2019). The identified critical scenarios are then used for testing auton-
omous driving systems in different environments, such as simulation or testing tracks. As 
reported in the literature, there are different approaches for critical scenario identification, 
ranging from using expert knowledge, data extraction techniques, or search-based algo-
rithms etc. We categorize the literature we surveyed based on our interpretation and com-
pare them with our work separately in the following subsections.

Our approach falls into the third category of the approaches — search-based approaches 
as described in Sect.  6.3 — and uses search and optimization algorithms for identify-
ing critical test scenarios from the scenario space. Unlike other studies that use similar 
approaches, we integrated tools and a workflow to provide an end-to-end approach for crit-
ical test scenario identification, and we validated our approach in an industrial context by 
using real autonomous driving systems. In contrast to studies that use different approaches 
such as knowledge-based approaches or data-driven approaches, our approach does not rely 
heavily on expert knowledge or substantial driving data collection, which is considered 
more efficient for testing autonomous driving systems.

For a complete literature overview, we refer to the systematic literature reviews by 
Zhang et al. (2021) for critical scenario identification, and Rajabli et al. (2020) for software 
verification and validation, as well as the survey by Riedmaier et al. (2020) for scenario-
based approaches, all for assessment of safety of autonomous vehicles.

6.1  Knowledge‑based approaches

The knowledge-based approaches leverage expert knowledge to generate, extract, or select 
scenarios for testing. This approach is not frequently reported in the literature due to its 
evident constraints with respect to access to experts. As an example, Ponn et  al. (2020) 
involved experts from the autonomous driving domain for selecting parameters of scenarios 
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and assessing the weight of the parameters as well as evaluating resulting critical scenarios 
for testing the autonomous driving systems.

The advantages of using this approach include the quick creation of an initial catalogue 
of test scenarios (Riedmaier et al., 2020), yet the drawbacks are non-negligible. It requires 
expert involvement and is labor-intensive, and may lack the diversity and complexity of 
real-world scenarios, especially those accidents that impose complicated situations and 
rarely happen (Zhang et al., 2020). In addition, the generation and selection of scenarios 
might be subjective, where simple scenarios are ignored but can still cause severe conse-
quences. As a result, the derived scenarios are often considered lacking evidence for proof 
of safety in real traffic (Ponn et al., 2019).

Compared to our approach, we do not rely on expert involvement, and identification of 
the critical scenarios is automated by integrating the existing engineering tools. Specifi-
cally, the selection of scenarios is based on optimizing the parameter space and simulation 
of the scenarios. Thus, it is not limited or biased by subjective knowledge acquired.

6.2  Data‑driven approaches

The data-driven approaches extract critical scenarios based on available data sets that have 
been collected beforehand. The data can be presented in many different forms, for exam-
ple, scenario libraries, accident reports, or sensor data collected by test vehicles. Scenario 
extraction and selection techniques and tools are then used for identifying critical scenarios 
from the data.

Among the published studies, Gambi, Huynh et al. (2019) generated effective and criti-
cal test scenarios for autonomous driving by reconstructing crash accidents from police 
reports in simulation, using natural language processing. Zhang et al. (2020) introduced a 
toolkit for extracting critical scenarios based on real traffic accident videos and reproduc-
ing the scenarios in simulation. The extracted scenarios are then used for the safety assess-
ment of autonomous vehicles. Erdogan et  al. (2018) proposed an architecture to enable 
test scenario generation, where test scenarios are first extracted from a video stream that 
contains real-world sensor data and then are stored in a structured database cluster with 
scenario definitions and the corresponding measurements. A user interface is implemented 
and included in this architecture to customize and adapt the conditions for test scenario 
generation, based on the aforementioned scenario database.

Deep learning has been actively used for critical test scenario identification. Ding 
et  al. (2020) trained a generative model for generating safety-critical scenarios by sam-
pling through the parameters and rewarding the risky scenarios. The generative model gets 
a higher reward when a riskier scenario is generated. Another study that uses reinforce-
ment learning is reported by Karunakaran et al. (2020) for automatically generating sce-
narios and optimizing the learning towards the worst-case scenarios with respect to the 
RSS safety metrics. A few other studies that employ deep learning techniques include 
Batsch et al. (2021) using Gaussian Processes to train and optimize the parameter selection 
towards the most critical scenarios on the performance boundary, and Jenkins et al. (2018) 
using a recurrent neural network to generate accident scenarios for testing the autonomous 
driving systems based on the in-vehicle and vehicle-to-infrastructure data generated from 
simulators. In a related application domain, Porres et  al. (2020) used online supervised 
learning to train a generative model for searching and selecting critical scenarios for testing 
the autonomous maritime collision avoidance systems through the operation.
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Even though diverse techniques for extracting or generating critical scenarios based on 
real driving data have been studied, limitations are described in these studies as well. A pre-
requisite of using such techniques is a data set that is comprehensive (Riedmaier et al., 2020), 
whereas it is well known that collecting real driving data at scale is both time-consuming and 
expensive but still does not guarantee to include all corner cases (Karunakaran et al., 2020; 
Priisalu et al., 2021). As highlighted by Hallerbach et al. (2018), the major drawback of using 
recorded data is the incompleteness of the data set, thus we have to understand how the data 
is acquired and how representative it is. The quality of the data can be affected by various 
factors such as the type of sensors used and how they are installed (Ponn et al., 2019), the 
location where the data is collected, and the fact that rare-occurring situations are difficult 
to collect (Ding et al., 2020). After all, we still have to understand how to extract and select 
scenarios given massive data collected (Klitzke et al., 2019).

In contrast, our work does not rely on collecting data from different sources, and thus 
is not subject to the size or diversity of the data set. Instead, we first analyze the system 
functionalities and operational design domain based on the system specifications. Then, we 
create optimization models using the existing engineering tools. The optimization model 
optimizes scenario generation towards the objective functions for critical scenarios based 
on simulation results.

6.3  Search‑based approaches

The search-based approaches employ search algorithms to optimize critical scenarios from 
the operational design domain of the autonomous driving system. This approach typically 
requires the execution of the scenarios in simulation and an objective function that meas-
ures the criticality of the scenarios. The search process evolves based on the parameter 
space and the objective function value of the executed scenarios. Also, it usually limits 
the search to a certain number of iterations based on the testing budget and computational 
resources available. Our approach falls into this category.

Klischat and Althoff (2019) used evolutionary algorithms to optimize the drivable area of 
the vehicle to generate complex scenarios for testing the motion planning of the autonomous 
vehicles. Similar work is reported by Althoff and Lutz (2018) to generate safety-critical 
scenarios for collision avoidance of autonomous vehicles by optimizing the drivable area. 
Buehler and Wegener (2003) also employed evolutionary algorithms for generating critical 
scenarios for functional testing of an autonomous parking system. Specifically, genetic algo-
rithms are a class of evolutionary algorithms commonly used for search and optimization 
problems. Gambi, Mueller et  al. (2019) used genetic algorithms to evolve the generation 
of virtual road networks for testing the lane-keeping function. Klück et al. (2019) proposed 
an approach for test parameter optimization using genetic algorithms and have employed it 
for testing an autonomous emergency braking function. Felbinger et al. (2019) compared a 
genetic algorithm approach and a combinatorial testing approach for detecting critical sce-
narios for an emergency braking function.

The advantages of using a search-based approach for solving optimization of critical 
scenarios for testing of autonomous driving systems are prominent, since the selection of 
parameter values is rather difficult before the test and covering the entire parameter space 
is costly  (Ponn et  al., 2019). In addition, this approach does not rely on collecting sub-
stantial driving data and is easy to implement. However, some limitations are also stated 
in the existing studies. For example, generated scenarios may not be realistic in the real-
world traffic, simulation of the scenarios is often computationally expensive, and only 
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low-dimensional scenarios can be handled effectively in optimization (Ding et al., 2020). 
To complement the said limitations, Beglerovic et al. (2017) simulated and optimized test 
scenarios based on a light-weighted surrogate model instead of the real system, Feng et al. 
(2020) established a sophisticated model of relevant parameters, metrics, and searching 
process for critical scenario generation, and Hallerbach et  al. (2018) created a complete 
tool-chain for critical test scenario identification for autonomous driving systems.

We believe that the search-based approach can well compensate for the scarcity of sen-
sor data and generate critical scenarios that can be used to substantiate test cases for autono-
mous driving systems. While most of the existing studies use either a basic implementation 
of the autonomous driving function based on engineering tools like MATLAB Simulink 
(e.g., Ponn et al., 2020), or publicly available driving components such as DeepDriving and 
Beam.AI by Gambi, Mueller et al. (2019), and Gambi, Huynh et al. (2019), for validating 
the approaches, their effectiveness on realistic autonomous driving functions is not dem-
onstrated. Besides, many of them are also function-specific, which is relevant to a particu-
lar function or operational domain for, e.g., parking system (Buehler & Wegener, 2003), 
motion planning (Klischat & Althoff, 2019), or highway scenario (Beglerovic et al., 2017). 
Our approach is generic in that the tools involved are exchangeable and are not determined 
by the driving functions, so it can, in principle, be used for critical test scenario gener-
ation for any autonomous driving system. We also demonstrate the effectiveness of this 
approach by using two real autonomous driving systems from the industry. As articulated 
by Hallerbach et al. (2018) and Ding et al. (2020), there exist very few studies that provide 
a complete solution for critical test scenario identification which are generic to different 
autonomous driving systems. The major contribution of our work is to address such a gap 
and facilitate the testing of autonomous driving systems.

7  Discussion

In this section, we first summarize the main contributions and some limitations of the cur-
rent work. Then, some future work items are included and discussed to improve or extend 
the approach further.

7.1  Contributions

In this paper, we present the implementation of an approach to critical test scenario iden-
tification for pilot validation of real autonomous driving systems. We argue that testing 
all possible driving scenarios in real road traffic is impractical, since it is expensive, time-
consuming, and may still not cover all the rare-occurring traffic situations  (Karunakaran 
et al., 2020; Zhang et al., 2020). In contrast to Kalra et al., who claim that millions or even 
billions of miles of driving tests are required to demonstrate the reliability of an autono-
mous vehicle (Kalra & Paddock, 2016), testing of autonomous driving functions must be 
based on a feasible number of test scenarios and focus on the most critical ones  (Ponn 
et  al., 2019; Klück et  al., 2019). Using critical scenario identification and simulation is 
considered a good alternative to address the gaps as mentioned above and enable testing 
of autonomous driving functions in a more efficient way (Klück et al., 2019; Rajabli et al., 
2020; Mauritz et al., 2016).

In our approach, we integrate the existing engineering tools and a workflow as an end-
to-end solution for critical test scenario identification. In contrast, existing studies mostly 
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present a partial solution for critical scenario identification and barely provide a complete 
tool-chain (Hallerbach et al., 2018). Our approach relies on optimizing the parameter selec-
tion and simulation of the scenarios. As the tools involved are exchangeable, the approach 
is flexible and generic for testing different autonomous driving functions that are not sub-
ject to specific tools, techniques, or sensors employed in the function or simulation.

We demonstrate the feasibility of our approach for critical test scenario identification, 
using real autonomous driving functions in both high-speed and low-speed maneuvering 
domains. This is different from the most common approach for validating proposed solu-
tions for critical scenario identification in existing studies, which use a simple implemen-
tation of the autonomous driving function or publicly available driving components like 
DeepDriving (Gambi, Mueller et al., 2019). Besides, many studies demonstrate the effec-
tiveness of their approaches based on limited settings, such as a pedestrian step-out sce-
nario (Batsch et al., 2021) and certain scenarios from Carla Scenario Runner Library (Ding 
et al., 2020). Even though the potential of such approaches might be extended, the connec-
tion to real autonomous driving functions and to find critical scenarios in general is not 
explicitly provided.

The two cases we present in Sects. 4 and 5 include the actual work we implement and 
the results achieved on real autonomous driving functions using the proposed approach. 
While the results are generally effective in finding the critical test scenarios for the given 
autonomous driving systems, we would like to stress that they are merely early versions 
of the autonomous driving systems. Thus, the results are subject to the current design and 
specifications of the systems when conducting the study. Besides, we want to clarify that 
our approach can effectively generate some, but not all potential critical scenarios in the 
operational design domain. The goal is to find more critical scenarios using this approach, 
and possible tuning can still be performed regarding, for example, the sampling approach 
for the initial suite of scenarios and the number of optimization iterations. We can expect 
that the better the parameter space is sampled for the initial test suite, the more efficient 
the critical scenarios could be approached later in the optimization; the more optimiza-
tion iterations can be assigned, the more critical scenarios could be identified, yet the cost 
comes in parallel from the computational resources needed for it.

7.2  Future work

Future improvement and extension of our approach regarding its design and implemen-
tation are multi-fold, including, e.g., scenario composition, parameter selection, realistic 
parameter distribution, and optimization algorithms.

First, the composition and representation of scenarios can be improved to include dif-
ferent driver behavior models and enable the definition of complex spatio-temporal inter-
actions between different entities within the driving maneuver. As highlighted by Feng 
et al. (2020), existing studies mostly handle only low-dimensional scenarios, whereas the 
actual operational design domain for the autonomous driving functions is much more com-
plicated. OpenDrive and OpenScenario, as used by Zhang et al. (2020) and Erdogan et al. 
(2018), to define static and dynamic elements in a full driving scenario in a structured way 
are good references to explore.

The second improvement of the approach is the comprehensive parameter selection to 
ensure all relevant parameters are identified and selected. The current approach is highly 
relying on analyzing the system specifications and extracting parameters based on its func-
tionalities and operational design domain. Existing models for a structural description of 
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road traffic like Bagschik et  al. (2018) or Scholtes et  al. (2021) can be used to derive a 
complete list of parameters. The model from Schotles et al. includes entities and specifica-
tions of entities on six different layers such as road network, traffic infrastructure, move-
able objects, weather conditions, and communication (i.e, information exchange between 
entities). Another alternative is to involve experts to identify relevant parameters, espe-
cially the significant ones, based on prior-established knowledge. Parameter selection 
could also be a continuously evolving step, where originally selected parameters might be 
removed due to irrelevance to a scenario’s criticality and new identified parameters can be 
selected later.

Thirdly, realistic distribution of the relevant parameters selected should be investigated 
to improve the realism of the scenarios and real occurrence of the scenarios. As articulated 
by Batsch et al. (2021), scenario-based testing sampling requires a true distribution of the 
parameters. A shift in the distribution may impact the relevance and potential damage of 
the scenarios (Riedmaier et al., 2020); thus, the distribution of parameters is important and 
needs to be identified (Ding et al., 2020). Different sampling approaches such as adaptive 
sampling (Mullins et al., 2017), importance sampling (Feng et al., 2020), or modelling the 
distribution (Song et al., 2022) are a few candidates to be further studied.

Fourthly, we also propose to evaluate different optimization algorithms to best fit the 
generation of critical test scenarios for different autonomous driving systems and use paral-
lelization to improve the efficiency of the simulation and optimization (Porres et al., 2020). 
They are good directions to be sorted out in future research yet not the goals in the cur-
rent study. Especially that parallelization is already a feasible option in optimization tools 
like modeFrontier; it is more about the computational resources that can be allocated for 
optimization that matters. Our primary focus in this work is to implement the approach for 
critical test scenario identification and demonstrate the feasibility of the approach for real 
autonomous driving systems. As a preliminary step, tools and a workflow are integrated, 
and critical test scenarios are generated for real autonomous driving systems from the 
industry. Thus, it constitutes a basis for further exploration and refinement of the approach 
in practice.

Given the enormous challenges of testing autonomous driving systems, we face (Koopman 
& Wagner, 2016; Knauss et al., 2017), the importance of using simulation and critical test 
scenario generation increases steeply (Jenkins et al., 2018). Further, as stated by Beglerovic 
et al., selection of relevant parameters, objective functions, and appropriate evaluation criteria 
is a non-trivial task since each of them comes with its own challenges, and the quality of crit-
ical test scenario generation is highly dependent on them (Beglerovic et al., 2017). Despite 
that sub-components within our approach can be further expanded and improved, we believe 
our work is worth the efforts and has a huge potential in the future in ensuring the safety and 
reliability of autonomous vehicles. Particularly since very few studies have been reported for 
presenting an end-to-end solution for critical test scenario identification that is general for 
different autonomous driving systems, according to Hallerbach et al. (2018).

8  Conclusion

Safety and reliability are indispensable properties for autonomous vehicles, yet there is no 
common standard way to test autonomous driving functions systematically and efficiently. 
Conventional requirements-driven testing approaches are impeded due to uncertainty of 
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the operational environment and the complexity of the driving scenarios. Therefore, sup-
port for identifying the critical scenarios for testing autonomous driving systems is needed.

We established an end-to-end approach with integrated tools and a workflow, and we 
implement it in this study to identify critical test scenarios for two real autonomous driv-
ing systems from Volvo Cars. The results suggest that our approach can effectively identify 
critical test scenarios. The identified scenarios can be used to substantiate test cases for 
autonomous driving systems either in simulation or in the real world.

Future extension of the approach aims to improve the scenario representation, incor-
porate the realistic distribution of the parameters, and compare the effectiveness of differ-
ent optimization algorithms. Future work also includes integrating this approach into the 
practitioners’ engineering practices and to observe how effective the approach, as well as 
the identified critical scenarios, could be for testing autonomous driving systems in a real 
industrial context.

The study provides a feasible and complete approach for critical test scenario identi-
fication for autonomous driving and a basis for building sub-components further. Given  
the widespread attention on autonomous driving and the challenges for testing the enabling 
functions, we shed light on testing different autonomous driving systems efficiently and 
effectively.
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