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Abstract
Nowadays, systems containing components based on machine learning (ML) methods are 
becoming more widespread. In order to ensure the intended behavior of a software system, 
there are standards that define necessary qualities of the system and its components (such 
as ISO/IEC 25010). Due to the different nature of ML, we have to re-interpret existing qual-
ities for ML systems or add new ones (such as trustworthiness). We have to be very precise 
about which quality property is relevant for which entity of interest (such as completeness 
of training data or correctness of trained model), and how to objectively evaluate adher-
ence to quality requirements. In this article, we present how to systematically construct 
quality models for ML systems based on an industrial use case. This quality model enables 
practitioners to specify and assess qualities for ML systems objectively. In addition to the 
overall construction process described, the main outcomes include a meta-model for speci-
fying quality models for ML systems, reference elements regarding relevant views, entities, 
quality properties, and measures for ML systems based on existing research, an example 
instantiation of a quality model for a concrete industrial use case, and lessons learned from 
applying the construction process. We found that it is crucial to follow a systematic process 
in order to come up with measurable quality properties that can be evaluated in practice. 
In the future, we want to learn how the term quality differs between different types of ML 
systems and come up with reference quality models for evaluating qualities of ML systems.

Keywords Machine learning · Quality requirements · Software quality · Quality 
evaluation · Quality model

1 Introduction

The digital transformation enables digital products and services that are based on data or 
on models derived from data. This enables innovative solutions such as automated transla-
tion, automated driving, or predictive maintenance. At the core of such products lie data-
driven software components. A data-driven software component is a piece of software that 
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solves a given task (e.g., image segmentation, sentiment analysis, classification, etc.), using 
methods from data science, such as machine learning (ML), data mining, natural language 
processing, signal processing, statistics, etc. The functionality of data-driven software 
components (or at least part of it) is not entirely defined by the programmer in the classical 
way (by programming it directly), but is derived (i.e., learned) from data.

At the core of a data-driven software component lies the notion of a model (or sev-
eral models, coupled together in a pipeline). Developing and operating data-driven soft-
ware components raises new challenges in comparison to “classical” software engineering 
(Arpteg et al., 2018; de Souza Nascimento et al., 2019; Kästner & Kang, 2020; Kumeno, 
2020; Lwakatare et al., 2020; Sculley et al., 2015; Wan et al., 2019; Zhang & Tsai, 2002; 
Zhang et al., 2019). In short, the behavior of such components is first and foremost funda-
mentally different from traditional (i.e., not data-driven) software: the relationship between 
the input and the outcome of the software component is usually non-linear. This means that 
a small change in the inputs can lead to strong discrepancies in the outputs (see, for exam-
ple, the problem of adversarial examples (Kurakin et al., 2016)). This input-output relation-
ship is also only defined for a subset of the data, which leads to uncertainty in outcomes for 
previously unseen data (or when the modeled system changes, i.e., if there is concept drift). 
Different algorithms can be used to solve a given task (for example, neural networks, sup-
port vector machines, and decision trees can all solve classification tasks). The knowledge 
of the algorithm(s) used to build a data-driven software component alone is not sufficient 
to understand how the component will behave. First, it is necessary to also consider the 
data used at both training time and inference time (i.e., runtime). Second, common devel-
opment principles from software engineering, such as encapsulation and modularity, have 
to be rethought. For example, changing the application context of a data-driven component 
(its intended scope), the type of model used, or the internal parameters, usually implies re-
training the component. This is also referred to as the CACE principle: changing anything 
changes everything (Sculley et al., 2015). Third, the development and integration of data-
driven software components are a multi-disciplinary approach: it requires knowledge about 
the application domain, knowledge about how to construct models, and finally, knowledge 
about software engineering. Fourth, quality assurance, and specifically testing, works dif-
ferently than in traditional software. This is because data-driven methods (such as ML, for 
instance) target problems where the expected solution is inherently difficult to formalize, 
and where test oracles are not directly available (Belani et al., 2019; Bosch et al., 2018; 
Horkoff, 2019; Zhang et al., 2020).

In order to ensure the intended quality of a software system, there are standards that 
define necessary quality properties of the system and its components. For instance, ISO/
IEC 25010 (ISO/IEC, 2011) defines quality models for software and systems, i.e., a hier-
archy of quality properties of interest and how to quantify and assess them. Due to the dif-
ferent nature of data-driven software components, these quality models cannot be applied 
directly as they are. Some have to be adjusted in their definition (e.g., reusability of trained 
models) and some need to be added (e.g., trustworthiness, fairness). We also have to be 
very precise about which quality is relevant for which part of the overall system. For 
instance, in a data-driven software system, the algorithms executing the model play a far 
less significant role than the type of the model, or the data used for training and testing 
(Sculley et al., 2015). To develop meaningful quality models, it is necessary to understand 
the application context of the use case and what kind of data-driven method is used.

In this article, we focus on ML systems and present how to systematically construct 
quality models for those systems based on an industrial use case. This is an extended ver-
sion of an article (Siebert et al., 2020) that goes into more details regarding the construction 
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process itself and the structure of ML quality models. First, we discuss related work and 
summarize the gaps that we would like to close with our contribution. Second, we give an 
overview of the proposed process for constructing quality models for ML systems. Each 
step of the process is detailed in the subsequent sections: In Sect. 4, we describe the struc-
ture of the quality model to be constructed. In Sect. 5, we illustrate the industrial use case 
and application context for which we are developing the quality model. In Sect. 6, we ana-
lyze the development process of ML models regarding what qualities could be of potential 
interest in different development stages. In Sect. 7, we define different views one can take 
on an ML system and relevant entities, which will have to be evaluated for a specific use 
case and application context. In Sect. 8, we systematically work out a list of reference enti-
ties, relevant quality properties, and how to potentially measure them for a concrete indus-
trial use case. In Sect. 9, we show how to instantiate concrete quality models based on the 
reference list for a concrete example, which will enable practitioners to specify and assess 
quality requirements for such kinds of ML systems. In Sect. 10, we discuss the usefulness 
of the identified qualities based on an evaluation performed together with experts from 
industry. In Sect. 11, we present major lessons learned from following the quality model 
construction process for ML systems. Finally, we conclude the paper with a brief summary 
and an outlook on future research.

2  Related work

To build a quality model, it is first necessary to define the usage scenarios (i.e., How will 
the system be used? By whom? What are the expectations in terms of quality? etc.). This 
naturally goes hand in hand with the definition of the relevant quality properties and the 
entities to be measured. It is also necessary to define how to measure these properties and, 
finally, to decide on the basis of these measurements what to do to improve certain proper-
ties of quality.

In the literature, some quite generic quality models for software and systems can be 
found, such as ISO/IEC 25010 (ISO/IEC, 2011) or ISO/IEC 8000 (ISO/TS, 2011). These 
standards propose different definitions of properties grouped into several categories with a 
decomposition structure (e.g., Product Quality is decomposed into eight properties, such 
as Functional Suitability, which is decomposed into sub-properties, such as Functional 
Correctness). With the advance and widespread adoption of data science methods, new 
and more specific quality proposals (such as the EU Ethics Guidelines for Trustworthy 
(HLEG, 2019), the German DIN SPEC 92, 001 (SPEC 92001-01), or the Japanese QA4AI 
consortium (Hamada et al., 2020) as well as certification guidelines (Marselis & Shaukat, 
2018; Marselis et al., 2017) have emerged.

Some of the new quality properties are rather generic: they cover not only machine 
learning but also other disciplines from artificial intelligence (AI) or statistics. These 
include:

• Transparency and accountability (e.g., reproducibility, interpretability and explainabil-
ity, auditability, minimization, and reporting of negative impact)

• Diversity, non-discrimination, fairness, as well as societal and environmental well-
being (e.g., avoidance of unfair bias, accessibility and universal design, stakeholder 
participation, sustainability, and environmental friendliness)
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• Security, safety, data protection (e.g., respect for privacy, quality and integrity of data, 
access to data, and ability to cope with erroneous, noisy, unknown, and adversarial 
input data)

• Technical robustness, reliability, dependability (e.g., correctness of output, estimation 
of model uncertainty, robustness against harmful inputs, errors, or unexpected situa-
tions)

• Human agency and oversight, legal and ethical aspects (e.g., possibility of human 
agency and human oversight, respect for fundamental rights)

Some quality properties are more specific to interactive and embodied AI (like assistants 
or robots), such as intelligent behavior and personality (Hamada et  al., 2020; Marselis & 
Shaukat, 2018; Marselis et al., 2017). The quality properties are applied to entities. These 
entities can represent processes, products, impacted users, or external objects.

Although quality properties are being (re)defined for ML components, the literature 
from the field of requirements engineering shows many challenges when developing and 
implementing quality models in the context of ML systems (Belani et  al., 2019; Bosch 
et al., 2018; Horkoff, 2019; Ismail et al., 2019; Vogelsang & Borg, 2019). On the one side, 
data scientists bring new types of requirements (e.g., in terms of data quality). On the other 
side, other stakeholders (the users of such systems) may have wrong expectations concern-
ing what such a system can or cannot do, and might not be able to determine which quality 
properties are relevant. In between, requirements engineers also have to understand how 
different implementation choices may impact the quality of the system (Horkoff, 2019).

Here, it is interesting to take a short detour to the field of modeling and simulation the-
ory (Calder et  al., 2018; Edmonds, 2002; Edmonds et  al., 2019; Epstein, 2008). Indeed, 
as already stated, at the core of an ML component lies the notion of a model. A model 
is by definition a re-presentation (i.e., a simplification) of some part of reality (i.e., the 
system under study). It is used to answer a given question about that part of reality (i.e., 
a model has a purpose). To define usage scenarios and elicit requirements, it is necessary 
to understand the intended purpose of the model. One example of a model purpose can be 
that the system under study should be described. This is done, for example, by inspecting 
the characteristics of the data representing the system (e.g., statistical distribution, topo-
logical structure). Another purpose, which is very often present in data science, is the mak-
ing of a prediction. Other examples can be found in the literature in the field of modeling 
and simulation. These go far beyond the classical 4: describe, predict, understand, control. 
For example, Epstein lists 17 reasons for building models (among others: predict, explain, 
guide data collection, train practitioners) (Epstein, 2008); Edmonds et al. detail seven rea-
sons for building models (prediction, explanation, description, theoretical exploration, 
illustration, analogy, and social learning) (Edmonds et al., 2019). In parallel, research into 
data science processes shows that different data science scenarios have emerged (Martinez-
Plumed et al., 2020). We see here that ML-based services bring new usage and business 
scenarios. However, our understanding of how quality is impacted by these scenarios is not 
complete yet.

Process models related to data-driven methods (such as knowledge engineering, data 
mining, ML, etc.) have been around for decades (Mariscal et al., 2010; Martinez-Plumed 
et al., 2020). In recent years, more case studies and literature reviews have been conducted 
to assess the challenges perceived by developers of ML components, as well as their pro-
cesses and best practices (see, for instance, the review (Lorenzoni et al., 2021)). We see 
that there is a consensus on the definition of tasks, roles, and how the process for devel-
oping and operating ML systems should be organized. However, it is less clear how the 
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process impacts quality. Implementing quality improvement actions requires a good under-
standing of the process: which steps are performed, which people/roles are involved, which 
entities are affected, etc.

ML components usually consist of several sub-components organized in pipelines: 
e.g., data preparation (e.g., resizing or cropping images, cleaning text), features engineer-
ing, training and evaluating the models. Describing the entities composing the systems 
and organizing these entities into different views helps to refine which quality properties 
may be relevant and which quality measures can be used. For example, in Zhang et  al. 
(2020), the authors define a set of quality properties, such as correctness (i.e., good-
ness of fit), robustness, efficiency, etc. They also relate these quality properties to differ-
ent views/entities: data, learning program, and framework (e.g., Weka, TensorFlow). In 
(Nakajima,  2018), the authors distinguish between three main qualities, namely service 
quality, product quality, and platform quality. They also describe different views/entities 
of the system: the training dataset, the neural network, the hyper parameters, “the infer-
ence in vivo” (corresponding to the decision outputted by the component at runtime), and 
the machine learning platform. DIN-SPEC 92001 also provides a description in terms of 
views/entities: data, model, platform, and environment. As a last example, the authors in 
Hamada et  al. (2020) provide five main qualities related to views/entities, namely data 
integrity, model robustness, system quality, process agility, and customer expectation, 
including a total of 49 quality sub-properties. Several frameworks have been proposed to 
model quality of ML systems. For example, the MLQ framework (Ishikawa, 2018) pro-
poses to build argumentations for assessing the quality of ML systems using the following 
concepts: ML algorithm, dataset, ML component, and ML system. The evAIa method 
(Poth et al., 2020) is based on four steps: a product risk assessment, a questionnaire on the 
AI approaches used, recommendations for QA methods to mitigate risks, and a transpar-
ency report. The questionnaire contains 47 questions covering 17 topics and classified 
into three main domains (features and data, implementation, infrastructure).

In the literature, we see that a consensus exists around what qualities need to be meas-
ured. However, the naming of the quality properties and the naming of the entities (or their 
classification) has not yet stabilized.

We also see that, because the field of data science is large, the importance of certain 
quality properties and measures for quantifying them depends on the concrete context and 
use case, and they have to be addressed in different tasks of the process model used. For 
instance, the availability of a ground truth is one important factor (see Fig. 1): (a) if the full 
ground truth exists (as in the case of reinforcement learning, for example), then test oracles 
exist. Consequently, the quality mainly depends on the test oracle itself, and the quality 
can be safely measured using the available ground truth. (b) If only a partial ground truth 

Fig. 1  The availability of ground 
truth data (labels) has a direct 
impact on the analysis or training 
methods used as well as on the 
definition of quality measures 
and their assessment
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exists (as in the case of semi-supervised or supervised learning), data quality and its repre-
sentativeness have to be analyzed carefully. (c) If no ground truth exists (as in the case of 
unsupervised learning), the assumptions made by the learning algorithms and those made 
during the model evaluation play a significant role with respect to quality. The type of tasks 
that are performed (such as regression, classification, clustering, outlier detection, dimen-
sionality reduction, etc.) also has an impact on the quality assessment. Each type of task 
is accompanied by corresponding quality measures. For example, for classification tasks, 
the goodness of fit can be measured by accuracy, precision, recall, f-score, etc. (Hossin & 
Sulaiman, 2015), but for clustering, other measures are needed (Emmons et al., 2016). The 
measures chosen will depend on the use case. For example, in the case of binary classifica-
tion tasks, the cost of a false-positive may not be the same as the cost of a false-negative. 
Some measures might not be compatible with one another, as is the case, for example, for 
fairness measures (Barocas & Boyd, 2017; Kleinberg et al., 2016).

The literature provides a solid basis of relevant quality properties, entities to be meas-
ured, process models, etc. However, we see different gaps that have not been addressed 
so far: (1) there is a lack of unique and clear definitions of views on ML systems (e.g., 
what is the definition of a platform view in (de Souza Nascimento et al., 2019), or should 
hyper-parameters be included as a separate view). (2) Existing quality models are often too 
abstract to be of value for practitioners (e.g., in terms of proposed measures) and require 
guidelines for tailoring to be applicable (Wagner et al., 2015). (3) The combination of and 
the relationship between quality properties and related measures have not been sufficiently 
investigated yet, and it is not clear whether they can be satisfied altogether. (4) Comprehen-
sive development guidelines for quality-aware ML systems, which would bring together 
the different quality models, processes, and views, are largely missing or not made explicit.

In the remainder of this article, we will contribute mainly to closing the first two gaps. 
However, our overall research goal is aimed at coming up with comprehensive develop-
ment guidelines for quality-aware ML systems.

3  Quality model construction process

This section describes the process we followed to construct a quality model for ML sys-
tems based on our previous work in the field (Goeb et al., 2015). It consists of six steps, 
which we will describe sequentially, but which are performed iteratively in practice. An 
overview of all steps and illustrations of the major outcomes for each step are presented in 
Fig. 2.

1. Define quality meta-model: First of all, we described the features of our ML quality 
model; that is, the basic structure we want to use for documenting all quality properties 
of interest and the measures/metrics for quantifying those properties. This resulted in a 
quality meta-model as our common understanding for specifying quality models.

2. Define use case and application context: Previous research in the field of quality mod-
eling concluded that the concept of “quality” highly depends on the application context 
and concrete use case. This includes, e.g., the criticality of the system under develop-
ment. For this reason, we tried to describe the context and use case as clearly as pos-
sible based on a real industrial case. Even though we assume that many of the quality 
properties derived for this use case in the next steps could be generalized and will also 
apply to similar systems, the use case and application context give us a good basis for 
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filling our quality model with the most relevant properties instead of trying to come up 
with a complete list of all potentially interesting properties.

3. Identify relevant ML quality requirements: Developing an ML model can be split into 
different stages related to understanding the problem to solve, gathering the required 
data, and building the ML model itself. From the different stages, we may derive differ-
ent relevant quality requirements regarding the inputs and outputs of the ML develop-
ment process. The concrete activities performed depend on the concrete problem to be 
solved and the ML model to be constructed. This is derived from the application context 
and the use case.

4. Identity relevant entities of an ML system: In an ML system, the ML model itself is 
only one entity of many. To build a comprehensive quality model for ML systems, it is 
important to analyze all relevant entities that could come into play, such as the data, the 
model itself, the infrastructure on which the model is executed, the execution environ-
ment of the overall system, and so on. Again, this highly depends on the application 
context and the use case.

5. Identify reference elements of an ML quality model: Based on the identified quality 
requirements from the ML development process and the relevant entities of an ML 
system, we can create a table of reference elements to be used in an ML quality model. 
This intermediate step before building the quality model itself is required in order to 
get a simple overview of relevant entities and their quality properties as well as typical 
measures for quantifying the properties. For this purpose, we collected existing measures 
from the literature and from our practical experience in building ML models.

6. Instantiate quality model for use case: In the last step, we built the quality model itself based 
on the meta-model defined in the first step. For this purpose, reference elements from the 
previous step were instantiated for the concrete use case. This also included the definition 
of evaluation rules for quickly identifying quality issues for the concrete use case.

Even though the construction process we followed was only applied for a particular 
industrial use case and application context, we believe that the steps can be generalized and 
applied to other cases and contexts as well. In the following sections, we will provide more 
details for each of the steps listed above.

1) Quality meta-model 3) ML quality requirements

4) Relevant entities of an

ML system

5) Reference elements of an

ML quality model

6) Instantiation of ML

quality model for use case

2) Use case and application context
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• etc.
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Fig. 2  Overview of the quality model construction process
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4  Step 1: Define quality meta‑model

In practice, the quality of ML systems is typically considered implicitly, which causes a 
number of problems. The most basic and common one is an inconsistent understanding of 
quality by developers and users of ML systems. Additionally, quality criteria considered by 
system developers differ from the quality requirements of a system’s users. Furthermore, 
data scientists tend to evaluate the fulfillment of quality criteria and their mutual depend-
encies rather implicitly, which makes it difficult to comprehend the decisions they made 
regarding quality.

In this section, we propose a solution to this situation. Motivated by quality manage-
ment in traditional software engineering, we introduce a quality meta-model as a common 
ground for consistently defining, communicating, evaluating, and controlling the quality of 
ML systems. There are a number of practical advantages to an explicit quality meta-model. 
Most of all, it creates a basis for considering the quality of an ML system systematically. 
It forces one to ask questions about what the quality of a system means, what aspects of 
quality are most and which are less relevant, how to objectively measure the achievement 
of quality, what the quality acceptance criteria are, and what the tradeoffs among multiple 
quality criteria are.

We base the proposed quality meta-model (see Fig. 3) on previous work in traditional 
software engineering (Nistala et  al., 2019), in particular on the Quamoco quality meta-
model (Goeb et al., 2015).

The central element of a quality model is a property of an entity, that is, an attribute 
that characterizes the entity and is related to the quality of the entity. Entity refers to the 
concrete things that are important for the quality of an ML system (such as data for training 
models) and its properties represent certain characteristics of these things (such as com-
pleteness or consistency). The concept of a property is general and can be used on different 
levels of abstraction. Entities and their properties may be abstract or specific. The basic 
difference between the two is that in contrast to specific properties of entities, generic ones 
are rather difficult to quantify and evaluate. Specific properties of specific entities can be 
associated relatively easily with measures. An example of an abstract property of an entity 
could be quality of a model; in this case, neither quality nor model is exactly specified and 
thus difficult to evaluate. An example of a specific property of an entity is correctness of a 
classification model, which can be measured, for example, using F-Score.

To clearly describe system quality from an abstract level down to concrete measure-
ments, abstract properties and entities have to be broken down—respectively through the 
“refine” and “part-of” relations in the meta-model—into more specific, measurable proper-
ties and entities. The concepts defined in the quality meta-model allow for modeling dif-
ferent hierarchies of quality to express divergent views on quality. In the example quality 

Fig. 3  Quality meta-model for 
ML systems
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model, which we will introduce in Sect. 9, we exemplify two main hierarchies: processing 
pipeline and quality hierarchy.

Both properties and entities need to be concrete enough to be measured, particularly in 
the leaves of a quality model. For this purpose, a quality meta-model defines the concept 
of measure for a property of an entity. A measure is a concrete description of how a spe-
cific property (of a specific entity) should be quantified in a specific context. For example, 
correctness of a classification model can be measured using precision, recall, or F-score 
measures.

Quality evaluation comprises four basic elements: measurement, evaluation, aggre-
gation, and interpretation. Measurement consists of the collection of measurement data 
for the factors specified at the lowest level of the quality model’s hierarchy according to 
the measures defined in the quality model. Evaluation involves assessing the fulfillment 
of quality preferences associated with the factor. Aggregation comprises the synthesis of 
assessments obtained on individual child factors in a bottom-up manner throughout the 
quality model hierarchy into an overall assessment of a system under assessment. Finally, 
interpretation is the translation of the potentially abstract quality assessments into evalua-
tions that are understandable (intuitive) for human decision makers.

Before a quality assessment can be executed, it first needs to be operationalized. The 
measurement step may require defining additional measures to ensure that measurement 
data collected for the same measure across different products are comparable. The evalua-
tion step requires defining preference functions to model the decision criteria with respect 
to the measures defined for the factors. In the simplest case, a preference can be modeled as 
an acceptance threshold (target), that is, a specific boundary value that determines which 
values of a measure are preferred (acceptable) and which are not. Aggregation requires 
defining the aggregation operator to synthesize the assessments of the individual prop-
erties of entities across the quality model hierarchy into the total assessment. This may 
include defining preferences regarding the relative importance of child nodes defined for 
the same parent node in the quality model hierarchy to account for potential decision trade-
offs between child nodes. The relative importance of properties of entities can be quantified 
through numerical weights. Finally, interpretation requires defining an interpretation model 
that will translate rough assessments into an understandable evaluation that decision mak-
ers can interpret properly, for instance to derive appropriate improvement actions. Users of 
the quality model and of the quality assessment method can (and should) perform opera-
tionalization prior to quality assessment in order to make the approach fit their specific 
context (e.g., they should adjust preference functions and weighting to reflect their specific 
preferences regarding the importance of individual properties of entities).

5  Step 2: Define use case and application context

Different elicitation techniques can be used in order to define the relevant use cases and the 
application context of the system under study. As part of this project, reference materials 
were made available by Fujitsu and workshops were held by a focus group. The industrial 
use case can be described as follows. The Accounting Center of Fujitsu receives purchase 
order requests (POR) in digital form that needs to be categorized for further treatment. 
POR are semi structured text documents. This task was traditionally done by human opera-
tors and is now performed by an ML component. The corresponding ML task is classifica-
tion, and new POR need to be classified into 3 predefined categories. The ML component 
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is trained with a ground truth dataset consisting of labeled examples of past POR that have 
been categorized by human operators. In order to deal with wrong classifications, a moni-
toring system was implemented in conjunction with a correction engine based on expert 
rules. The ML component was re-trained when too many categorization failures were 
detected. The studied system thus includes at least 3 main components: the ML classifica-
tion component itself, a monitoring system, and a correction engine.

The goal of this system is to reduce operating cost and time at an acceptable level of 
classification accuracy (comparable to humans). During the interviews, other related qual-
ity issues were mentioned. First, the development and operation of ML components were 
seen as complex and associated with high cost and risks. Several areas of expertise came 
into play when developing and operating this system. This led to communication and coor-
dination problems. Furthermore, when wrong classifications occurred, finding the root 
cause of such a failure was not trivial. The principal quality aspects deemed relevant for 
this use case were the functional correctness of the system (in terms of classification accu-
racy) but also the development and operation costs (in terms of time).

6  Step 3: Identify relevant ML quality requirements

Many factors can influence the quality of a software system (code, hardware, development 
process, usage scenarios, etc.). One of the goals when designing a quality model is to cover 
all relevant quality properties. Since software engineering (whether ML-based or not) can 
become quite complex, it is necessary to have a systematic approach that helps to define 
and refine which quality properties have to be modeled. In this section, we propose the use 
of a process model (CRISP-DM) as a basis for listing potential entities and their properties 
that can influence the quality of an ML system.

The CRISP-DM model (short for CRoss Industry Standard Process for Data Mining) 
(Shearer, 2000) is an open standard describing the different phases encountered in data 
analysis projects. This model proposes six phases, namely, business understanding, data 
understanding, data preparation, modeling, evaluation, deployment. It is currently thought 
to be the de-facto standard for projects developing ML components, according to several 
polls (for instance Shearer, 2000), and although extensions have been proposed to this 
model (Kurgan & Muslek, 2006; Mariscal et al., 2010; Martinez-Plumed et al., 2020; IBM, 
nd; Microsoft, 2019), recent case studies like Amershi et  al. (2019), Lwakatare et  al. 
(2020), and Martinez-Plumed et al. (2020) show that the proposed six phases are generic 
enough. The CRISP-DM model is sometimes described as a waterfall model (Mariscal 
et  al., 2010). However, for our purpose, abstracting from the sequential aspect and only 
considering the phases and the corresponding activities help to cover the different aspects 
influencing the quality of the ML system.

Business understanding Whether ML-based or not, a software component always meets 
certain requirements: It is developed in a certain business context; there are objectives to 
be achieved; the component is supposed to bring added value; it has a cost and may involve 
risks. Stakeholders, expected usage scenarios, and key performance indicators (KPIs) are 
usually defined during this phase. Compared to more "classical" software components, ML 
components bring some specific requirements with them. For example, a business objec-
tive must be transformed into a clear analysis objective (e.g., grouping customers into dif-
ferent segments based on their purchase history). The way to evaluate its success needs to 
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be established (e.g., a new web shop feature improves the click rate by x percentage points, 
as measured in an A/B test). The business context imposes assumptions and constraints on 
how components are designed and built (e.g., the ML component must run on an embed-
ded device, so time and memory complexity must be limited), on data availability (i.e., 
what data has been collected or can be collected and labeled), and on requirements for 
privacy, safety, security, fairness, etc. It also affects choices regarding how to select and 
evaluate models (e.g., the ML model should not have a false alarm rate greater than x%), 
how to handle changes in concepts and distribution, and how to perform new training (e.g., 
run data should be sufficiently similar to training data—up to a certain notion of similarity, 
an alarm should be triggered when the model extrapolates).

Data understanding The data understanding phase can be seen as a requirement engi-
neering phase specifically directed towards the data (it usually goes hand in hand with the 
business understanding phase). Indeed, the type of analysis method and the corresponding 
evaluation measures that can be used depend on several data-related factors (besides the 
analysis objective): the type of data available (e.g., unstructured data like text or images vs. 
structured data like tabular data), whether some ground truth is available (see the discus-
sion in the previous section), the quality of the data (e.g., its resolution, its representativity; 
whether noise, outliers, or missing values are present, etc.), and how the data is gathered.

Data preparation Together with the modeling phase, the data preparation phase belongs 
to the concretization phase of the ML component. Here, several artifacts are implemented 
in order to transform the raw data into data that can be fed into analysis methods. The 
way the data is prepared (e.g., labeling, removal, or imputation of outliers or missing data, 
features engineering, features selection) have a cost and an impact on the quality of the 
analysis results. Several data preparation algorithms use internal models and posit some 
hypotheses about the data (e.g., the data follows a Gaussian distribution), which might not 
coincide with reality. Additionally, adjustments need to be made depending on privacy 
requirements (e.g., anonymization of sensitive features) or fairness requirements (e.g., pref-
erential sampling). Data used for model building and model evaluation might also originate 
from different sources (e.g., simulation vs. real data), be distributed differently, and require 
different data preparation steps.

Modeling The modeling phase is probably the tip of the iceberg when it comes to develop-
ing ML components. This is where methods such as ML are applied to form and evaluate 
the artifacts that make up the component. As previously mentioned, this phase is strongly 
linked to the data preparation phase. In general, an ML component is composed of several 
sub-components from these two phases. The quality of the ML model is impacted by sev-
eral aspects: the type of task to be solved (e.g., classification, clustering, regression, anom-
aly detection, dimensionality reduction, etc.), the type of model (neural network, decision 
tree, etc.), the data used for building (i.e., training), and evaluating the developed artifacts, 
as well as the manner in which the data is separated for training and validation, together 
with requirements on runtime complexity or safety constraints. Since the way the com-
ponent is created is experimental, the way these experiments are managed (using hyper-
parameter search, cross-validation, independent train-test split) also plays a role in terms 
of quality. The modeling phase also contains an evaluation part that aims at evaluating the 
trained component with regard to the available data. It does so by measuring performance 
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measures (such as precision, recall, etc. for classification tasks), performing sensitivity 
analysis, or testing against adversarial examples.

Deployment (and operation) The original paper left the operating phase out. For our 
purpose, we include it. The quality at runtime is impacted by the data that flows into the 
ML component (e.g., the runtime data should have similar characteristics as the training 
and evaluation data to make reliable assumptions on the model performance). Therefore, 
monitoring the dataflow, the application context, and the ML component’s behavior (e.g., 
by estimating the output uncertainty of the ML model) is needed in order to evaluate its 
quality. The second point is that operation requirements (such as real-time constraints or 
the runtime architecture) may differ from those during development. Indeed, an ML com-
ponent may require large amounts of data as well as specific libraries and hardware archi-
tectures (such as GPUs) to be built (trained). However, once developed, this component 
may have to be deployed in a totally different environment (e.g., in a mobile device using a 
different programming language). Here, the way the deployment is managed (for example, 
by using exchange formats such as ONNX or PMML, by using versioning and automated 
CI/CD tools, etc.) also impacts the quality of the ML system. The deployment phase may 
also introduce evaluation methods such as integration testing or runtime monitoring.

Evaluation This was originally defined as the 5th phase, and its goal is to answer whether 
the ML component properly achieves the business objectives. Note that the modeling phase 
and possibly the deployment phase also contain an evaluation part. Here, however, the 
objective is to evaluate the system from a business perspective. In other words, does the 
system meet the KPIs defined above? This could be done, for example, through controlled 
experiments such as A/B tests. This allows creating feedback loops in order to select which 
version of an ML component gives the best results (from a business perspective). The first 
thing to notice is that in order to perform such an evaluation, the goals, the measures, and 
the methodology of the experiment have to be defined. These experiments may involve 
external software components (such as traffic redirection) whose internal quality may 
impact the way an ML component is evaluated.

A process model helps to systematically go through all the lifecycle phases of a system 
and list quality requirements that may be relevant for a given use case. To measure quality, 
it is also necessary to detail which entities play a role and how one can measure their cor-
responding quality properties. In doing so, the list of quality requirements aids to identify 
the quality properties of these entities.

7  Step 4: Identity relevant entities of an ML system

In the previous section, we looked at the process of developing and maintaining ML com-
ponents in order to see which aspects can influence the quality of the system and which 
quality requirements are needed. In order to build a quality model with a systematic struc-
ture, we now propose different “views” that help to categorize quality properties and their 
corresponding quality measures together with the entities to be measured. This also helps 
to cover as many relevant quality properties as possible, as we look at influences on quality 
from a second perspective.
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The views we propose are: model view, data view, system view, infrastructure view, 
and environment view (see Fig. 4 for an illustrative overview). Note that a given quality 
model may or may not use all the views, as the relevant ones are selected according to 
the use case.

Model view The model view is concerned with quality properties belonging to the arti-
facts that are trained using data in order to perform a given task (e.g., classification, regres-
sion, dimensionality reduction, etc.). An ML component usually consists of several sub-
components organized in a directed acyclic graph (also called a pipeline) (Amershi et al., 
2019). The specificity of such a component is first the way it is built. We have to distin-
guish between the development phase (where the training and the evaluation of the pipeline 
are done) and the operation phase (where the artifacts created in the previous phase are 
deployed and used in production, i.e., at runtime), because these two phases may be imple-
mented with different technologies (e.g., R/Python for learning, Web/Java on the applica-
tion side) or have different quality demands (e.g., using a large quantity of data at training 
time, operating under short latency at runtime, etc.).

In the model view, we have made a distinction between what we call a model type 
(e.g., decision tree, neural network, etc.) and a trained model (e.g., a specific instance 
of a neural network trained on a specific dataset using a specific training algorithm). 
Again, the goal of this distinction is to separate quality properties related to a specific 
entity instance from those related to the entity type. For example, the appropriateness 
of a given model applies to a model type (like the family of decision trees), whereas 
the goodness of fit applies to a specific trained instance. Note that we also separate the 
model from its training algorithm (i.e., the algorithm that takes training data and a 
model type as input and outputs a trained model) and its execution algorithm (i.e., the 
algorithm that takes runtime data and a trained model as input and outputs a decision, 
for instance a classification of inputted runtime data). The argumentation is that the 
training and execution algorithms are pieces of “classical” software whose quality prop-
erties can be described and measured using existing standards.

Environment
Users, society, scope

System / Infrastructure
Output / scope supervision, infrastructure, training / execution algorithm

ML component

Data
Development / runtime data

Model
Model type, trained model

Other 

system components

ML Supervision

Component

Fig. 4  Overview of the different views on the software system and the entities that influence the system’s 
quality
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Data view The data view is concerned with the quality properties related to the data. The 
term data here describes the data that is used as input for the ML component. We fur-
ther distinguish between development data, i.e., data used during the development phase 
to train the component, and runtime data, i.e., the dataset used during the operation phase 
(i.e., the data that flows into the trained model when deployed and used in production). 
We make this distinction first of all because data used during model training and during 
application differs in nature. Training data typically has a “batch” nature, that is, it consists 
of a large set of data collected over a certain period, on which models are trained and vali-
dated. Runtime data, on the other hand, typically has a “stream” nature, that is, it represents 
data that changes continuously over time. The nature of data determines its specific quality 
properties as well as the applicable preparation and training algorithms. Combining batch 
and stream processing poses a significant challenge in the development of AI systems 
(Marz & Warren, 2015), e.g., because not all processing algorithms used during develop-
ment to train models on batch data are easily applicable (transferable) to runtime environ-
ments where trained models are applied on stream data. Furthermore, training and runt-
ime data can be associated with different physical objects, be stored in different databases, 
and be preprocessed or accessed differently during the development and operation phases. 
Therefore, different quality properties apply either to each dataset separately or to both (for 
example, by comparing the representativeness of the development data with regard to the 
runtime data). We pushed the distinction even further concerning the development data. 
Indeed, the process of training an ML component requires splitting the development data 
into different subsets: the so-called training, validation, and test subsets. The training sub-
set is used to determine the model parameters during training. The validation subset is used 
for hyper-parameter tuning (e.g., the maximum depth of a decision tree). Finally, to provide 
an unbiased evaluation of the trained model, a test subset is used. Note that the test subset 
is supposed to be independent of the training and validation subsets. The way the training, 
validation, and test subsets are chosen has an impact on the quality of the evaluation of the 
trained model.

System view First, an ML component is usually organized in a pipeline of tasks. Devel-
oping such a pipeline is by its very nature experimental. A given pipeline may be trained 
several times with different model types, training algorithms, or datasets in order to find 
the best combinations (also known as the Combined Model Selection and Hyperparam-
eter optimization (CASH) problem (Hutter et al., 2018). The way the search is done and 
the way the sub-components are connected has an impact on quality (see, for example, the 
problem of data leakage (Kaufman et al., 2011)). Second, once a model has been devel-
oped (i.e., trained), it needs to be deployed. As already stated above, the development 
and the runtime environment may be of a different nature. Therefore, a specific architec-
ture needs to be put in place in order to export the trained models (e.g., using serializa-
tion, exchange formats like ONNX, PMML, or using model management tools) (Marz 
& Warren, 2015). Finally, the deployed component is itself part of a larger system, i.e., 
it consumes data from one or several sources and interacts with other ML-based or clas-
sical components. Since a decision outputted by an ML component is always subject to 
uncertainty, and since wrong decisions might impact the system’s overall quality, consid-
ering the flow of information from the system input through all components to the system 
output is important for understanding the impact of a given ML component’s quality on 
the overall system behavior. Typical quality properties related to the system view include, 
among others, data dependencies and feedback loops (Sculley et al., 2015). For example, 
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the input data can be monitored in order to detect either data drift or anomalous data-
points. The output of the component can also be monitored in order to detect and correct 
wrong decisions. This monitoring also has its own quality properties, which may be rel-
evant for the use case at stake (e.g., monitoring effectiveness and efficiency).

Infrastructure view What we call the infrastructure view is closely related to the system 
view. However, here the view is more focused on the quality properties related to how the 
system is concretely implemented (e.g., hardware, training libraries). We decided to sepa-
rate these two views in order to highlight some specificities of ML components. For exam-
ple, the efficiency of the training and execution algorithms is a property that belongs to 
this view. The same applies to the suitability of the infrastructure either for training or for 
executing the components. For example, current trained deep learning models used for nat-
ural language processing are several gigabytes in size, and require several days (or weeks) 
of training on dedicated hardware machines (GPU clusters). The trained model cannot be 
executed on embedded devices due to computational and storage limitations.

Environment view The environment consists of elements that (1) are external to the sys-
tem under consideration and (2) interact either directly or indirectly with the system. This 
includes the users. For ML systems, several environmental aspects may have a direct influ-
ence on the quality. These include, for example, aspects causing quality deficits in the data. 
This is strongly related to the notion of concept drift. Since an ML component is built for 
and tested in a given context of use (or target application scope), its quality will decrease 
when this context changes (Kläs & Vollmer, 2018). A self-adapting component depend-
ent on the environment also raises further quality-related challenges (see, for example, the 
problems faced by the Microsoft chatbot Tay). Vice versa, an ML component can also have 
an impact on its environment, e.g., in terms of resource usage or societal discrimination 
(HILEG, 2019).

8  Step 5: Identify reference elements of an ML quality model

In this step, we created a table of reference elements to be used in an ML quality model. 
We used the quality requirements and the views defined in the previous sections to 
select pertinent entities for the use case. From that point on, we identified quality prop-
erties of interest for all entities. For each property, we either give examples of concrete 
measures for objectively evaluating the quality, or, if this is not possible, define exam-
ples for items one would have to check in order to address the respective quality. This 
was done based on existing literature in the field and our practical experience of build-
ing ML models.

Table 1 presents the list of reference elements from which we built a concrete qual-
ity model later on. The elements were designed to be specific enough to address the 
described use case appropriately (including supervision- and classification-related qual-
ity properties), but also contains generic elements to allow it to be applied to other (sim-
ilar) use cases (such as most properties related to data and model).
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9  Step 6: Instantiate ML quality model for use case

Based on the reference elements worked out for the use case of Fujitsu’s Accounting 
Center and the quality meta-model presented in Sect. 4, it is now possible to derive a con-
crete quality model.

When building a quality model for an AI component, it is important to note that you 
typically do not make use of a single algorithm, for which the quality should be deter-
mined, but you rather have a whole solution idea composed of different steps, a so-called 
processing pipeline, which makes use of different data-based models for which quality has 
to be determined individually.

In the use case described above, we could make use of a solution idea based on so-
called decision trees for building a classification model. Before running the decision tree 
classification algorithm for building a classification model, the data has to be prepared 
accordingly, e.g., missing or incomplete values must be dealt with. Therefore, one sub-
step of preparation could be the imputation of missing values using an imputation model. 
For each part of the processing pipeline, different entities and their different properties as 
defined in Table 1 can be of relevance. Example entities include the trained model or the 
data used for training the model, while example properties include completeness or cor-
rectness. Both entities and properties can create hierarchies. Figure 5 shows an example of 
what a simplified entity hierarchy could look like.

In correspondence to the entity hierarchy, one could now think of relevant properties of 
certain entities for addressing the quality of the whole pipeline. An example breakdown 
structure is shown in Figs. 6 and 7. On the higher levels of the hierarchy, we are interested 
in the general quality (property) of each step of the pipeline (entity). For instance, when 
using an imputation model, one could be interested in the development correctness and 
stability (properties) of the trained model (entity). The corresponding excerpts of the qual-
ity model are shown in Fig. 6. The processing pipeline is modeled as a hierarchy of enti-
ties (steps and sub-steps). As can be seen in the figure, the quality model generically talks 
about the “quality” of the corresponding step of the pipeline. On the lower levels of the 
quality model, all relevant entities and properties can be found for each step of the pipe-
line, such as “trained model × stability”. Each property of an entity has a set of measures 
assigned to it and an evaluation rule describing how to evaluate the measures. These rules 
objectively specify our quality requirements. For instance, the imputation model is consid-
ered correct if the mean magnitude of relative error (MMRE) is lower than or equal to 5%. 
Or, the imputation model is considered stable if the standard deviation (SD) of different 
runs of the model is close to zero.

Based on these evaluation rules, it is now possible to compare different models objec-
tively. At the bottom of Fig. 6, two example imputation models are characterized using the 
measures specified. As can be seen, I2 performs better regarding MMRE, but fails regard-
ing the SD criterion.

Fig. 5  Example hierarchy of enti-
ties to address for processing the 
pipeline “Decision Trees”

Entity
Pipeline “Decision Trees”

Entity
Step “Classification”

Entity
Step “Preparation”

Entity
Sub-Step “Missing Value Imputation”

Entity
Trained Imputation Model

Entity
Trained Classification Model
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In the same way, the quality model can be completed for the other steps of the pro-
cessing pipeline. Figure 7 shows further properties, measures, and evaluation rules for the 
classification step. In practice, many additional properties have to be considered, not only 
regarding the trained model, but also other entities addressing the data, the environment, 
the system, or the infrastructure.

The example presented here only makes use of evaluation rules on the leaf nodes of the 
quality model. Depending on the required degree of formality, an aggregation of meas-
ures can be performed along the hierarchy of properties and entities with corresponding 

Entity � Property
Step “Classification” � Quality

Entity � Property
Trained Imputation Model � Development Correctness 

Measure
MMRE

Entity � Property
Trained Imputation Model � Stability

Evaluation
Target: MMRE <= 5%

Entity � Property
Sub-Step “Missing Value Imputation” � Quality

Measure
SD

Measures I1 I2
MMRE 5% 3%

SD 0 0.2

Evaluation
Target: SD ~ 0

Priority 1Priority 2

Entity � Property
Pipeline “Decision Trees” � Quality

Entity � Property
Step “Preparation” � Quality

Example Evaluation of Imputation Models: 

…

Fig. 6  Example quality model for the processing pipeline of the “Preparation” step

Entity � Property
Trained Classification Model � Development Correctness 

Measure
F-Score

Entity � Property
Trained Classification Model � Interpretability

Evaluation
Baseline: F-Score => 90%
Target: F-Score => 95%

Entity � Property
Step “Classification” � Quality

Measure
No. of nodes

Measures C1 C2
F-Score 95% 97%

Nodes 20 300

Depth 3 10

Measure
Depth of tree

Evaluation
Target: Nodes <= 20 and Depth <= 5

Priority 1Priority 2

Entity � Property
Pipeline “Decision Trees” x Quality

Entity � Property
Step “Preparation” � Quality

Example Evaluation of Classification Models: 

…

Fig. 7  Example quality model for the processing pipeline of “Classification” step
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evaluation rules on each level. In that case, one would end up with a single quality index 
on the top level. Using this kind of aggregation mechanism is quite common for software 
quality models when presenting the results of a quality evaluation to different software 
managers.

10  Discussion of validity

In this article, we first proposed a categorization of quality properties as well as entities 
in the form of different views/entities. This classification is the result of a literature-based 
review, discussions with industrial partners, and our own experience in the development of 
ML components. To scientifically assess and consolidate a useful and systematic grouping 
of quality properties for ML systems, several iterations will be necessary (e.g., case study, 
systematic literature review, mapping study).

We also derived a quality model specifically tailored for a given use case. The definition 
and the relevance of the quality properties were first discussed internally in a workshop with 
experts. Later, three case studies with a focus on requirements engineering for ML systems 
were conducted by Fujitsu Laboratories (see the full details in (Nakamichi et  al., 2020)). 
The goal of the first case study was to verify that the requirement analysts actually con-
sider the different properties (22 in total) in their requirement definition. For each property, 
3 ML developers, 2 software developers, and 1 project manager were asked (1) whether they 
know and use it and (2) whether it requires customer agreement and what is the status of 
the agreement. The results showed that, in this specific case, most of the properties (77%) 
were already known and used (Nakamichi et al., 2020). The objective of the second case 
study was to verify whether the developers were aware of the proposed quality measures 
(34 in total). For each quality measure, 3 ML developers, 2 software developers, and 1 pro-
ject manager were asked whether they know it and what is its measurement status in their 
respective projects. The results showed that 45% of the submitted quality measures were 
already used, 28% were not used yet (answer “want to measure”), 15% were not measured 
because of technical or cost difficulties, and 10% were not needed (Nakamichi et al., 2020). 
The goal of the third case study was to probe the effectiveness of the quality measures (6 
in total). For each quality property and a corresponding measure, 3 ML developers and 3 
software developers were asked about the measurement status and the effectiveness of the 
measure. The results showed that 83% of the submitted measures were deemed effective 
(Nakamichi et al., 2020). The performed case studies provide a first confirmation that the 
quality properties identified are valid and meaningful for developers. In this previous paper, 
the authors did not go into the details of the how the quality model presented was built.

In terms of limitations, we see two main aspects:

1. We used a specific process model for listing potential entities and their quality proper-
ties. As stated above, new process descriptions have been proposed in the literature. 
Although the CRISP-DM model is generic enough (see, for example, the different 
reviews done in this field, like (Martinez-Plumed et al., 2020; Mariscal et al., 2010; 
Kurgan & Muslek, 2006)), some phases may still be missing. Furthermore, we did not 
investigate other process-related aspects yet, e.g., what qualities have to be assured in 
which activity and handled by which role. We believe that the proposed views/entities 
can help to establish a mapping between roles (e.g., Data Scientist, Data Engineer, etc.) 
and quality properties or measures. For example, Data Scientists are usually in charge 
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of building models and are in direct line when it comes to measuring the impact of data 
quality on the models’ outcomes. However, data engineers are the ones that can usually 
implement new data quality improvement actions. Architects with a good understanding 
of data science methods (such as ML) will be needed to solve problems on the system 
level.

2. Second, our viewpoint for defining the quality model was more the data science perspec-
tive. Integration with classical software/systems engineering qualities (such as those 
defined by ISO/IEC 25010) is missing. There is as yet no consensus on the naming of 
quality properties related to ML components. Furthermore, whereas some of the pro-
posed properties can be easily classified under existing ISO/IEC 25010 ones (e.g., the 
model’s Goodness of Fit could potentially belong to Functional Correctness), others may 
be more difficult to classify (such as Scope Compliance). Whether the ISO/IEC 25010 
is the right framework for ML components is still an open issue.

11  Lessons learned

We are completely aware that the model we developed is quite specific to the use case in 
which it was applied and that other use cases may require different quality properties and, 
in consequence, different measures. However, we would like to share an excerpt from the 
lessons we learned from following the described methodological approach. Even though 
some of these are known from other fields, we nonetheless think it is worth mentioning 
them in the context of developing ML systems:

1. Context and use case must be clear. As pointed out before, there are many application 
fields and potential ML-based solutions available. It is very important to be as clear as 
possible about the general application context. ML components should never be used 
just for the sake of being fancy, but always because there is the profound assumption 
that they will add concrete value for the application context. The quality properties that 
are important mainly depend on this.

2. Iterative approach: The ML model, its application context, and its use case have to be 
adjusted over time and some initial assumptions will turn out to be false. Therefore, it 
is important to follow an iterative approach when developing the ML system and to be 
able to quickly identify dead ends and take different paths. Having a clear picture of 
what quality properties are important and how to quantify them is crucial for this, as it 
allows us to immediately see whether we can fulfill them with our solution path.

3. Multidisciplinary work: As we stated at the beginning of this article, different kinds 
of knowledge must come together to develop quality-aware ML systems. For instance, 
a data scientist knows how to measure the fairness or stability of the trained model, a 
software/system engineer knows how to assure the quality of the overall system, and a 
domain expert knows whether the ML system really solves the problem better than a 
traditional software system.

4. The devil is in the details: We learned that it is easy to talk about abstract generic quality 
properties, such as those defined by ISO/IEC 25010, on a high level. To define meaning-
ful quality properties, we had to break them down into concrete qualities of entities and 
define how to operationalize these properties with measures.

5. Quality-aware process/guidelines: Even though there are defined processes for ML 
model building (such as CRISP-DM) and for software engineering (such as rich and 
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agile processes) with elaborate practices for improvement (such as DevOps approaches), 
an integrated process is missing, nor do guidelines exist on how to bring everything 
together with a clear focus on the quality of ML systems.

12  Conclusions

This article presented how to construct a concrete quality model for an ML system based 
on an industrial use case. Compared to the existing body of knowledge in the field of qual-
ity modeling, and specifically with regard to the quality of ML systems, we added the fol-
lowing aspects:

• Systematic construction process for quality models of ML systems.
• Adaptation of the concept of software quality meta-models to ensure uniform docu-

mentation of relevant entities, quality properties, measures, and evaluation methods.
• Table of reference quality elements for ML systems as a systematic overview and clas-

sification of relevant views, entities, quality properties, and measures for ML systems 
based on existing research.

• Example instantiation of a quality model for a concrete industrial use case (purchase 
order requests) to illustrate the applicability of the different steps of the construction 
process.

• Lessons learned from applying the construction process in order to support other 
researchers and practitioners in avoiding typical hurdles and issues.

Even though the proposed construction process lacks a comprehensive evaluation, it 
was designed and performed together with researchers and practitioners in the field and 
may guide others in the systematic construction of quality models for ML systems.

The resulting list of reference quality elements was specifically derived for the industrial 
use case, but may be generalizable for similar kinds of ML systems.

Regarding future work, we plan to perform more case studies to empirically validate 
the construction process on other use cases regarding its applicability and usefulness. In 
particular, we want to apply the process to other ML tasks (like regression or unsupervised 
learning) and learn about the impact on the quality model. Moreover, we plan to develop 
an approach for evaluating the overall quality of ML systems based on a predefined quality 
model. The overall goal is to have reference quality models for evaluating certain types of 
ML systems.
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