
Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09557-y

1 3

Construction of a quality model for machine learning
systems

Julien Siebert1 · Lisa Joeckel1 · Jens Heidrich1 · Adam Trendowicz1 ·
Koji Nakamichi2 · Kyoko Ohashi2 · Isao Namba2 · Rieko Yamamoto2 · Mikio Aoyama3

Accepted: 14 April 2021
© The Author(s) 2021

Abstract
Nowadays, systems containing components based on machine learning (ML) methods are
becoming more widespread. In order to ensure the intended behavior of a software system,
there are standards that define necessary qualities of the system and its components (such
as ISO/IEC 25010). Due to the different nature of ML, we have to re-interpret existing qual-
ities for ML systems or add new ones (such as trustworthiness). We have to be very precise
about which quality property is relevant for which entity of interest (such as completeness
of training data or correctness of trained model), and how to objectively evaluate adher-
ence to quality requirements. In this article, we present how to systematically construct
quality models for ML systems based on an industrial use case. This quality model enables
practitioners to specify and assess qualities for ML systems objectively. In addition to the
overall construction process described, the main outcomes include a meta-model for speci-
fying quality models for ML systems, reference elements regarding relevant views, entities,
quality properties, and measures for ML systems based on existing research, an example
instantiation of a quality model for a concrete industrial use case, and lessons learned from
applying the construction process. We found that it is crucial to follow a systematic process
in order to come up with measurable quality properties that can be evaluated in practice.
In the future, we want to learn how the term quality differs between different types of ML
systems and come up with reference quality models for evaluating qualities of ML systems.

Keywords Machine learning · Quality requirements · Software quality · Quality
evaluation · Quality model

1 Introduction

The digital transformation enables digital products and services that are based on data or
on models derived from data. This enables innovative solutions such as automated transla-
tion, automated driving, or predictive maintenance. At the core of such products lie data-
driven software components. A data-driven software component is a piece of software that

 * Julien Siebert
 julien.siebert@iese.fraunhofer.de

Extended author information available on the last page of the article

Published online: 25 June 2021

Software Quality Journal (2022) 30:307–335

/

http://orcid.org/0000-0002-7696-0046
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09557-y&domain=pdf

1 3

solves a given task (e.g., image segmentation, sentiment analysis, classification, etc.), using
methods from data science, such as machine learning (ML), data mining, natural language
processing, signal processing, statistics, etc. The functionality of data-driven software
components (or at least part of it) is not entirely defined by the programmer in the classical
way (by programming it directly), but is derived (i.e., learned) from data.

At the core of a data-driven software component lies the notion of a model (or sev-
eral models, coupled together in a pipeline). Developing and operating data-driven soft-
ware components raises new challenges in comparison to “classical” software engineering
(Arpteg et al., 2018; de Souza Nascimento et al., 2019; Kästner & Kang, 2020; Kumeno,
2020; Lwakatare et al., 2020; Sculley et al., 2015; Wan et al., 2019; Zhang & Tsai, 2002;
Zhang et al., 2019). In short, the behavior of such components is first and foremost funda-
mentally different from traditional (i.e., not data-driven) software: the relationship between
the input and the outcome of the software component is usually non-linear. This means that
a small change in the inputs can lead to strong discrepancies in the outputs (see, for exam-
ple, the problem of adversarial examples (Kurakin et al., 2016)). This input-output relation-
ship is also only defined for a subset of the data, which leads to uncertainty in outcomes for
previously unseen data (or when the modeled system changes, i.e., if there is concept drift).
Different algorithms can be used to solve a given task (for example, neural networks, sup-
port vector machines, and decision trees can all solve classification tasks). The knowledge
of the algorithm(s) used to build a data-driven software component alone is not sufficient
to understand how the component will behave. First, it is necessary to also consider the
data used at both training time and inference time (i.e., runtime). Second, common devel-
opment principles from software engineering, such as encapsulation and modularity, have
to be rethought. For example, changing the application context of a data-driven component
(its intended scope), the type of model used, or the internal parameters, usually implies re-
training the component. This is also referred to as the CACE principle: changing anything
changes everything (Sculley et al., 2015). Third, the development and integration of data-
driven software components are a multi-disciplinary approach: it requires knowledge about
the application domain, knowledge about how to construct models, and finally, knowledge
about software engineering. Fourth, quality assurance, and specifically testing, works dif-
ferently than in traditional software. This is because data-driven methods (such as ML, for
instance) target problems where the expected solution is inherently difficult to formalize,
and where test oracles are not directly available (Belani et al., 2019; Bosch et al., 2018;
Horkoff, 2019; Zhang et al., 2020).

In order to ensure the intended quality of a software system, there are standards that
define necessary quality properties of the system and its components. For instance, ISO/
IEC 25010 (ISO/IEC, 2011) defines quality models for software and systems, i.e., a hier-
archy of quality properties of interest and how to quantify and assess them. Due to the dif-
ferent nature of data-driven software components, these quality models cannot be applied
directly as they are. Some have to be adjusted in their definition (e.g., reusability of trained
models) and some need to be added (e.g., trustworthiness, fairness). We also have to be
very precise about which quality is relevant for which part of the overall system. For
instance, in a data-driven software system, the algorithms executing the model play a far
less significant role than the type of the model, or the data used for training and testing
(Sculley et al., 2015). To develop meaningful quality models, it is necessary to understand
the application context of the use case and what kind of data-driven method is used.

In this article, we focus on ML systems and present how to systematically construct
quality models for those systems based on an industrial use case. This is an extended ver-
sion of an article (Siebert et al., 2020) that goes into more details regarding the construction

308 Software Quality Journal (2022) 30:307–335

1 3

process itself and the structure of ML quality models. First, we discuss related work and
summarize the gaps that we would like to close with our contribution. Second, we give an
overview of the proposed process for constructing quality models for ML systems. Each
step of the process is detailed in the subsequent sections: In Sect. 4, we describe the struc-
ture of the quality model to be constructed. In Sect. 5, we illustrate the industrial use case
and application context for which we are developing the quality model. In Sect. 6, we ana-
lyze the development process of ML models regarding what qualities could be of potential
interest in different development stages. In Sect. 7, we define different views one can take
on an ML system and relevant entities, which will have to be evaluated for a specific use
case and application context. In Sect. 8, we systematically work out a list of reference enti-
ties, relevant quality properties, and how to potentially measure them for a concrete indus-
trial use case. In Sect. 9, we show how to instantiate concrete quality models based on the
reference list for a concrete example, which will enable practitioners to specify and assess
quality requirements for such kinds of ML systems. In Sect. 10, we discuss the usefulness
of the identified qualities based on an evaluation performed together with experts from
industry. In Sect. 11, we present major lessons learned from following the quality model
construction process for ML systems. Finally, we conclude the paper with a brief summary
and an outlook on future research.

2 Related work

To build a quality model, it is first necessary to define the usage scenarios (i.e., How will
the system be used? By whom? What are the expectations in terms of quality? etc.). This
naturally goes hand in hand with the definition of the relevant quality properties and the
entities to be measured. It is also necessary to define how to measure these properties and,
finally, to decide on the basis of these measurements what to do to improve certain proper-
ties of quality.

In the literature, some quite generic quality models for software and systems can be
found, such as ISO/IEC 25010 (ISO/IEC, 2011) or ISO/IEC 8000 (ISO/TS, 2011). These
standards propose different definitions of properties grouped into several categories with a
decomposition structure (e.g., Product Quality is decomposed into eight properties, such
as Functional Suitability, which is decomposed into sub-properties, such as Functional
Correctness). With the advance and widespread adoption of data science methods, new
and more specific quality proposals (such as the EU Ethics Guidelines for Trustworthy
(HLEG, 2019), the German DIN SPEC 92, 001 (SPEC 92001-01), or the Japanese QA4AI
consortium (Hamada et al., 2020) as well as certification guidelines (Marselis & Shaukat,
2018; Marselis et al., 2017) have emerged.

Some of the new quality properties are rather generic: they cover not only machine
learning but also other disciplines from artificial intelligence (AI) or statistics. These
include:

• Transparency and accountability (e.g., reproducibility, interpretability and explainabil-
ity, auditability, minimization, and reporting of negative impact)

• Diversity, non-discrimination, fairness, as well as societal and environmental well-
being (e.g., avoidance of unfair bias, accessibility and universal design, stakeholder
participation, sustainability, and environmental friendliness)

309Software Quality Journal (2022) 30:307–335

1 3

• Security, safety, data protection (e.g., respect for privacy, quality and integrity of data,
access to data, and ability to cope with erroneous, noisy, unknown, and adversarial
input data)

• Technical robustness, reliability, dependability (e.g., correctness of output, estimation
of model uncertainty, robustness against harmful inputs, errors, or unexpected situa-
tions)

• Human agency and oversight, legal and ethical aspects (e.g., possibility of human
agency and human oversight, respect for fundamental rights)

Some quality properties are more specific to interactive and embodied AI (like assistants
or robots), such as intelligent behavior and personality (Hamada et al., 2020; Marselis &
Shaukat, 2018; Marselis et al., 2017). The quality properties are applied to entities. These
entities can represent processes, products, impacted users, or external objects.

Although quality properties are being (re)defined for ML components, the literature
from the field of requirements engineering shows many challenges when developing and
implementing quality models in the context of ML systems (Belani et al., 2019; Bosch
et al., 2018; Horkoff, 2019; Ismail et al., 2019; Vogelsang & Borg, 2019). On the one side,
data scientists bring new types of requirements (e.g., in terms of data quality). On the other
side, other stakeholders (the users of such systems) may have wrong expectations concern-
ing what such a system can or cannot do, and might not be able to determine which quality
properties are relevant. In between, requirements engineers also have to understand how
different implementation choices may impact the quality of the system (Horkoff, 2019).

Here, it is interesting to take a short detour to the field of modeling and simulation the-
ory (Calder et al., 2018; Edmonds, 2002; Edmonds et al., 2019; Epstein, 2008). Indeed,
as already stated, at the core of an ML component lies the notion of a model. A model
is by definition a re-presentation (i.e., a simplification) of some part of reality (i.e., the
system under study). It is used to answer a given question about that part of reality (i.e.,
a model has a purpose). To define usage scenarios and elicit requirements, it is necessary
to understand the intended purpose of the model. One example of a model purpose can be
that the system under study should be described. This is done, for example, by inspecting
the characteristics of the data representing the system (e.g., statistical distribution, topo-
logical structure). Another purpose, which is very often present in data science, is the mak-
ing of a prediction. Other examples can be found in the literature in the field of modeling
and simulation. These go far beyond the classical 4: describe, predict, understand, control.
For example, Epstein lists 17 reasons for building models (among others: predict, explain,
guide data collection, train practitioners) (Epstein, 2008); Edmonds et al. detail seven rea-
sons for building models (prediction, explanation, description, theoretical exploration,
illustration, analogy, and social learning) (Edmonds et al., 2019). In parallel, research into
data science processes shows that different data science scenarios have emerged (Martinez-
Plumed et al., 2020). We see here that ML-based services bring new usage and business
scenarios. However, our understanding of how quality is impacted by these scenarios is not
complete yet.

Process models related to data-driven methods (such as knowledge engineering, data
mining, ML, etc.) have been around for decades (Mariscal et al., 2010; Martinez-Plumed
et al., 2020). In recent years, more case studies and literature reviews have been conducted
to assess the challenges perceived by developers of ML components, as well as their pro-
cesses and best practices (see, for instance, the review (Lorenzoni et al., 2021)). We see
that there is a consensus on the definition of tasks, roles, and how the process for devel-
oping and operating ML systems should be organized. However, it is less clear how the

310 Software Quality Journal (2022) 30:307–335

1 3

process impacts quality. Implementing quality improvement actions requires a good under-
standing of the process: which steps are performed, which people/roles are involved, which
entities are affected, etc.

ML components usually consist of several sub-components organized in pipelines:
e.g., data preparation (e.g., resizing or cropping images, cleaning text), features engineer-
ing, training and evaluating the models. Describing the entities composing the systems
and organizing these entities into different views helps to refine which quality properties
may be relevant and which quality measures can be used. For example, in Zhang et al.
(2020), the authors define a set of quality properties, such as correctness (i.e., good-
ness of fit), robustness, efficiency, etc. They also relate these quality properties to differ-
ent views/entities: data, learning program, and framework (e.g., Weka, TensorFlow). In
(Nakajima, 2018), the authors distinguish between three main qualities, namely service
quality, product quality, and platform quality. They also describe different views/entities
of the system: the training dataset, the neural network, the hyper parameters, “the infer-
ence in vivo” (corresponding to the decision outputted by the component at runtime), and
the machine learning platform. DIN-SPEC 92001 also provides a description in terms of
views/entities: data, model, platform, and environment. As a last example, the authors in
Hamada et al. (2020) provide five main qualities related to views/entities, namely data
integrity, model robustness, system quality, process agility, and customer expectation,
including a total of 49 quality sub-properties. Several frameworks have been proposed to
model quality of ML systems. For example, the MLQ framework (Ishikawa, 2018) pro-
poses to build argumentations for assessing the quality of ML systems using the following
concepts: ML algorithm, dataset, ML component, and ML system. The evAIa method
(Poth et al., 2020) is based on four steps: a product risk assessment, a questionnaire on the
AI approaches used, recommendations for QA methods to mitigate risks, and a transpar-
ency report. The questionnaire contains 47 questions covering 17 topics and classified
into three main domains (features and data, implementation, infrastructure).

In the literature, we see that a consensus exists around what qualities need to be meas-
ured. However, the naming of the quality properties and the naming of the entities (or their
classification) has not yet stabilized.

We also see that, because the field of data science is large, the importance of certain
quality properties and measures for quantifying them depends on the concrete context and
use case, and they have to be addressed in different tasks of the process model used. For
instance, the availability of a ground truth is one important factor (see Fig. 1): (a) if the full
ground truth exists (as in the case of reinforcement learning, for example), then test oracles
exist. Consequently, the quality mainly depends on the test oracle itself, and the quality
can be safely measured using the available ground truth. (b) If only a partial ground truth

Fig. 1 The availability of ground
truth data (labels) has a direct
impact on the analysis or training
methods used as well as on the
definition of quality measures
and their assessment

Impact on quality

Data generation process,

Simulation environment

Data quality,

Data representativity
Analysis and evaluation

hypotheses

Not available
Completely available

(e.g., games, simulation)

Partially available

(e.g., proxy or labeled data)

Ground truth availability

Unsupervised

learning
Semi-supervised

learning

Reinforcement

learning

Supervised

learning

Training methods

311Software Quality Journal (2022) 30:307–335

1 3

exists (as in the case of semi-supervised or supervised learning), data quality and its repre-
sentativeness have to be analyzed carefully. (c) If no ground truth exists (as in the case of
unsupervised learning), the assumptions made by the learning algorithms and those made
during the model evaluation play a significant role with respect to quality. The type of tasks
that are performed (such as regression, classification, clustering, outlier detection, dimen-
sionality reduction, etc.) also has an impact on the quality assessment. Each type of task
is accompanied by corresponding quality measures. For example, for classification tasks,
the goodness of fit can be measured by accuracy, precision, recall, f-score, etc. (Hossin &
Sulaiman, 2015), but for clustering, other measures are needed (Emmons et al., 2016). The
measures chosen will depend on the use case. For example, in the case of binary classifica-
tion tasks, the cost of a false-positive may not be the same as the cost of a false-negative.
Some measures might not be compatible with one another, as is the case, for example, for
fairness measures (Barocas & Boyd, 2017; Kleinberg et al., 2016).

The literature provides a solid basis of relevant quality properties, entities to be meas-
ured, process models, etc. However, we see different gaps that have not been addressed
so far: (1) there is a lack of unique and clear definitions of views on ML systems (e.g.,
what is the definition of a platform view in (de Souza Nascimento et al., 2019), or should
hyper-parameters be included as a separate view). (2) Existing quality models are often too
abstract to be of value for practitioners (e.g., in terms of proposed measures) and require
guidelines for tailoring to be applicable (Wagner et al., 2015). (3) The combination of and
the relationship between quality properties and related measures have not been sufficiently
investigated yet, and it is not clear whether they can be satisfied altogether. (4) Comprehen-
sive development guidelines for quality-aware ML systems, which would bring together
the different quality models, processes, and views, are largely missing or not made explicit.

In the remainder of this article, we will contribute mainly to closing the first two gaps.
However, our overall research goal is aimed at coming up with comprehensive develop-
ment guidelines for quality-aware ML systems.

3 Quality model construction process

This section describes the process we followed to construct a quality model for ML sys-
tems based on our previous work in the field (Goeb et al., 2015). It consists of six steps,
which we will describe sequentially, but which are performed iteratively in practice. An
overview of all steps and illustrations of the major outcomes for each step are presented in
Fig. 2.

1. Define quality meta-model: First of all, we described the features of our ML quality
model; that is, the basic structure we want to use for documenting all quality properties
of interest and the measures/metrics for quantifying those properties. This resulted in a
quality meta-model as our common understanding for specifying quality models.

2. Define use case and application context: Previous research in the field of quality mod-
eling concluded that the concept of “quality” highly depends on the application context
and concrete use case. This includes, e.g., the criticality of the system under develop-
ment. For this reason, we tried to describe the context and use case as clearly as pos-
sible based on a real industrial case. Even though we assume that many of the quality
properties derived for this use case in the next steps could be generalized and will also
apply to similar systems, the use case and application context give us a good basis for

312 Software Quality Journal (2022) 30:307–335

1 3

filling our quality model with the most relevant properties instead of trying to come up
with a complete list of all potentially interesting properties.

3. Identify relevant ML quality requirements: Developing an ML model can be split into
different stages related to understanding the problem to solve, gathering the required
data, and building the ML model itself. From the different stages, we may derive differ-
ent relevant quality requirements regarding the inputs and outputs of the ML develop-
ment process. The concrete activities performed depend on the concrete problem to be
solved and the ML model to be constructed. This is derived from the application context
and the use case.

4. Identity relevant entities of an ML system: In an ML system, the ML model itself is
only one entity of many. To build a comprehensive quality model for ML systems, it is
important to analyze all relevant entities that could come into play, such as the data, the
model itself, the infrastructure on which the model is executed, the execution environ-
ment of the overall system, and so on. Again, this highly depends on the application
context and the use case.

5. Identify reference elements of an ML quality model: Based on the identified quality
requirements from the ML development process and the relevant entities of an ML
system, we can create a table of reference elements to be used in an ML quality model.
This intermediate step before building the quality model itself is required in order to
get a simple overview of relevant entities and their quality properties as well as typical
measures for quantifying the properties. For this purpose, we collected existing measures
from the literature and from our practical experience in building ML models.

6. Instantiate quality model for use case: In the last step, we built the quality model itself based
on the meta-model defined in the first step. For this purpose, reference elements from the
previous step were instantiated for the concrete use case. This also included the definition
of evaluation rules for quickly identifying quality issues for the concrete use case.

Even though the construction process we followed was only applied for a particular
industrial use case and application context, we believe that the steps can be generalized and
applied to other cases and contexts as well. In the following sections, we will provide more
details for each of the steps listed above.

1) Quality meta-model 3) ML quality requirements

4) Relevant entities of an

ML system

5) Reference elements of an

ML quality model

6) Instantiation of ML

quality model for use case

2) Use case and application context

• Problem type, ML task

• Intended application scope,

• Ground truth availability,

• etc.

Environment
Users, society, scope

System / Infrastructure
Output / scope supervision, infrastructure, training / execution algorithm

ML component

Data
Development / runtime data

Model
Model type, trained model

Other

system components

ML Supervision

Component

Entity Property Measure

entity 1.1 property 1.1.1 measure 1.1.1.1, …

property 1.1.2 measure 1.1.2.1, …

… …

entity 1.2 property 1.2.1 measure 1.2.1.1, …

… …

Business understanding

Data understanding

Data preparation

Modeling

Deployment/operation

Evaluation

Property

Evaluation

Entity

Measure
� part-of

� quantifies

refinesrefines

*

*

*

1

*

*

*

**0..1

1

*

Entity � Property
Step “Classification” � Quality

Entity � Property
Trained Imputation Model � Development Correctness

Measure
MMRE

Entity � Property
Trained Imputation Model � Stability

Evaluation
Target: MMRE <= 5%

Entity � Property
Sub-Step “Missing Value Imputation” � Quality

Measure
SD

Measures I1 I2
MMRE 5% 3%

SD 0 0.2

Evaluation
Target: SD ~ 0

Priority 1Priority 2

Entity � Property
Pipeline “Decision Trees” � Quality

Entity � Property
Step “Preparation” � Quality

Example Evaluation of Imputation Models:

…

Fig. 2 Overview of the quality model construction process

313Software Quality Journal (2022) 30:307–335

1 3

4 Step 1: Define quality meta‑model

In practice, the quality of ML systems is typically considered implicitly, which causes a
number of problems. The most basic and common one is an inconsistent understanding of
quality by developers and users of ML systems. Additionally, quality criteria considered by
system developers differ from the quality requirements of a system’s users. Furthermore,
data scientists tend to evaluate the fulfillment of quality criteria and their mutual depend-
encies rather implicitly, which makes it difficult to comprehend the decisions they made
regarding quality.

In this section, we propose a solution to this situation. Motivated by quality manage-
ment in traditional software engineering, we introduce a quality meta-model as a common
ground for consistently defining, communicating, evaluating, and controlling the quality of
ML systems. There are a number of practical advantages to an explicit quality meta-model.
Most of all, it creates a basis for considering the quality of an ML system systematically.
It forces one to ask questions about what the quality of a system means, what aspects of
quality are most and which are less relevant, how to objectively measure the achievement
of quality, what the quality acceptance criteria are, and what the tradeoffs among multiple
quality criteria are.

We base the proposed quality meta-model (see Fig. 3) on previous work in traditional
software engineering (Nistala et al., 2019), in particular on the Quamoco quality meta-
model (Goeb et al., 2015).

The central element of a quality model is a property of an entity, that is, an attribute
that characterizes the entity and is related to the quality of the entity. Entity refers to the
concrete things that are important for the quality of an ML system (such as data for training
models) and its properties represent certain characteristics of these things (such as com-
pleteness or consistency). The concept of a property is general and can be used on different
levels of abstraction. Entities and their properties may be abstract or specific. The basic
difference between the two is that in contrast to specific properties of entities, generic ones
are rather difficult to quantify and evaluate. Specific properties of specific entities can be
associated relatively easily with measures. An example of an abstract property of an entity
could be quality of a model; in this case, neither quality nor model is exactly specified and
thus difficult to evaluate. An example of a specific property of an entity is correctness of a
classification model, which can be measured, for example, using F-Score.

To clearly describe system quality from an abstract level down to concrete measure-
ments, abstract properties and entities have to be broken down—respectively through the
“refine” and “part-of” relations in the meta-model—into more specific, measurable proper-
ties and entities. The concepts defined in the quality meta-model allow for modeling dif-
ferent hierarchies of quality to express divergent views on quality. In the example quality

Fig. 3 Quality meta-model for
ML systems

Property

Evaluation

Entity

Measure
� part-of

� quantifies

refinesrefines

*

*

*

1

*

*

*

**0..1

1

*

314 Software Quality Journal (2022) 30:307–335

1 3

model, which we will introduce in Sect. 9, we exemplify two main hierarchies: processing
pipeline and quality hierarchy.

Both properties and entities need to be concrete enough to be measured, particularly in
the leaves of a quality model. For this purpose, a quality meta-model defines the concept
of measure for a property of an entity. A measure is a concrete description of how a spe-
cific property (of a specific entity) should be quantified in a specific context. For example,
correctness of a classification model can be measured using precision, recall, or F-score
measures.

Quality evaluation comprises four basic elements: measurement, evaluation, aggre-
gation, and interpretation. Measurement consists of the collection of measurement data
for the factors specified at the lowest level of the quality model’s hierarchy according to
the measures defined in the quality model. Evaluation involves assessing the fulfillment
of quality preferences associated with the factor. Aggregation comprises the synthesis of
assessments obtained on individual child factors in a bottom-up manner throughout the
quality model hierarchy into an overall assessment of a system under assessment. Finally,
interpretation is the translation of the potentially abstract quality assessments into evalua-
tions that are understandable (intuitive) for human decision makers.

Before a quality assessment can be executed, it first needs to be operationalized. The
measurement step may require defining additional measures to ensure that measurement
data collected for the same measure across different products are comparable. The evalua-
tion step requires defining preference functions to model the decision criteria with respect
to the measures defined for the factors. In the simplest case, a preference can be modeled as
an acceptance threshold (target), that is, a specific boundary value that determines which
values of a measure are preferred (acceptable) and which are not. Aggregation requires
defining the aggregation operator to synthesize the assessments of the individual prop-
erties of entities across the quality model hierarchy into the total assessment. This may
include defining preferences regarding the relative importance of child nodes defined for
the same parent node in the quality model hierarchy to account for potential decision trade-
offs between child nodes. The relative importance of properties of entities can be quantified
through numerical weights. Finally, interpretation requires defining an interpretation model
that will translate rough assessments into an understandable evaluation that decision mak-
ers can interpret properly, for instance to derive appropriate improvement actions. Users of
the quality model and of the quality assessment method can (and should) perform opera-
tionalization prior to quality assessment in order to make the approach fit their specific
context (e.g., they should adjust preference functions and weighting to reflect their specific
preferences regarding the importance of individual properties of entities).

5 Step 2: Define use case and application context

Different elicitation techniques can be used in order to define the relevant use cases and the
application context of the system under study. As part of this project, reference materials
were made available by Fujitsu and workshops were held by a focus group. The industrial
use case can be described as follows. The Accounting Center of Fujitsu receives purchase
order requests (POR) in digital form that needs to be categorized for further treatment.
POR are semi structured text documents. This task was traditionally done by human opera-
tors and is now performed by an ML component. The corresponding ML task is classifica-
tion, and new POR need to be classified into 3 predefined categories. The ML component

315Software Quality Journal (2022) 30:307–335

1 3

is trained with a ground truth dataset consisting of labeled examples of past POR that have
been categorized by human operators. In order to deal with wrong classifications, a moni-
toring system was implemented in conjunction with a correction engine based on expert
rules. The ML component was re-trained when too many categorization failures were
detected. The studied system thus includes at least 3 main components: the ML classifica-
tion component itself, a monitoring system, and a correction engine.

The goal of this system is to reduce operating cost and time at an acceptable level of
classification accuracy (comparable to humans). During the interviews, other related qual-
ity issues were mentioned. First, the development and operation of ML components were
seen as complex and associated with high cost and risks. Several areas of expertise came
into play when developing and operating this system. This led to communication and coor-
dination problems. Furthermore, when wrong classifications occurred, finding the root
cause of such a failure was not trivial. The principal quality aspects deemed relevant for
this use case were the functional correctness of the system (in terms of classification accu-
racy) but also the development and operation costs (in terms of time).

6 Step 3: Identify relevant ML quality requirements

Many factors can influence the quality of a software system (code, hardware, development
process, usage scenarios, etc.). One of the goals when designing a quality model is to cover
all relevant quality properties. Since software engineering (whether ML-based or not) can
become quite complex, it is necessary to have a systematic approach that helps to define
and refine which quality properties have to be modeled. In this section, we propose the use
of a process model (CRISP-DM) as a basis for listing potential entities and their properties
that can influence the quality of an ML system.

The CRISP-DM model (short for CRoss Industry Standard Process for Data Mining)
(Shearer, 2000) is an open standard describing the different phases encountered in data
analysis projects. This model proposes six phases, namely, business understanding, data
understanding, data preparation, modeling, evaluation, deployment. It is currently thought
to be the de-facto standard for projects developing ML components, according to several
polls (for instance Shearer, 2000), and although extensions have been proposed to this
model (Kurgan & Muslek, 2006; Mariscal et al., 2010; Martinez-Plumed et al., 2020; IBM,
nd; Microsoft, 2019), recent case studies like Amershi et al. (2019), Lwakatare et al.
(2020), and Martinez-Plumed et al. (2020) show that the proposed six phases are generic
enough. The CRISP-DM model is sometimes described as a waterfall model (Mariscal
et al., 2010). However, for our purpose, abstracting from the sequential aspect and only
considering the phases and the corresponding activities help to cover the different aspects
influencing the quality of the ML system.

Business understanding Whether ML-based or not, a software component always meets
certain requirements: It is developed in a certain business context; there are objectives to
be achieved; the component is supposed to bring added value; it has a cost and may involve
risks. Stakeholders, expected usage scenarios, and key performance indicators (KPIs) are
usually defined during this phase. Compared to more "classical" software components, ML
components bring some specific requirements with them. For example, a business objec-
tive must be transformed into a clear analysis objective (e.g., grouping customers into dif-
ferent segments based on their purchase history). The way to evaluate its success needs to

316 Software Quality Journal (2022) 30:307–335

1 3

be established (e.g., a new web shop feature improves the click rate by x percentage points,
as measured in an A/B test). The business context imposes assumptions and constraints on
how components are designed and built (e.g., the ML component must run on an embed-
ded device, so time and memory complexity must be limited), on data availability (i.e.,
what data has been collected or can be collected and labeled), and on requirements for
privacy, safety, security, fairness, etc. It also affects choices regarding how to select and
evaluate models (e.g., the ML model should not have a false alarm rate greater than x%),
how to handle changes in concepts and distribution, and how to perform new training (e.g.,
run data should be sufficiently similar to training data—up to a certain notion of similarity,
an alarm should be triggered when the model extrapolates).

Data understanding The data understanding phase can be seen as a requirement engi-
neering phase specifically directed towards the data (it usually goes hand in hand with the
business understanding phase). Indeed, the type of analysis method and the corresponding
evaluation measures that can be used depend on several data-related factors (besides the
analysis objective): the type of data available (e.g., unstructured data like text or images vs.
structured data like tabular data), whether some ground truth is available (see the discus-
sion in the previous section), the quality of the data (e.g., its resolution, its representativity;
whether noise, outliers, or missing values are present, etc.), and how the data is gathered.

Data preparation Together with the modeling phase, the data preparation phase belongs
to the concretization phase of the ML component. Here, several artifacts are implemented
in order to transform the raw data into data that can be fed into analysis methods. The
way the data is prepared (e.g., labeling, removal, or imputation of outliers or missing data,
features engineering, features selection) have a cost and an impact on the quality of the
analysis results. Several data preparation algorithms use internal models and posit some
hypotheses about the data (e.g., the data follows a Gaussian distribution), which might not
coincide with reality. Additionally, adjustments need to be made depending on privacy
requirements (e.g., anonymization of sensitive features) or fairness requirements (e.g., pref-
erential sampling). Data used for model building and model evaluation might also originate
from different sources (e.g., simulation vs. real data), be distributed differently, and require
different data preparation steps.

Modeling The modeling phase is probably the tip of the iceberg when it comes to develop-
ing ML components. This is where methods such as ML are applied to form and evaluate
the artifacts that make up the component. As previously mentioned, this phase is strongly
linked to the data preparation phase. In general, an ML component is composed of several
sub-components from these two phases. The quality of the ML model is impacted by sev-
eral aspects: the type of task to be solved (e.g., classification, clustering, regression, anom-
aly detection, dimensionality reduction, etc.), the type of model (neural network, decision
tree, etc.), the data used for building (i.e., training), and evaluating the developed artifacts,
as well as the manner in which the data is separated for training and validation, together
with requirements on runtime complexity or safety constraints. Since the way the com-
ponent is created is experimental, the way these experiments are managed (using hyper-
parameter search, cross-validation, independent train-test split) also plays a role in terms
of quality. The modeling phase also contains an evaluation part that aims at evaluating the
trained component with regard to the available data. It does so by measuring performance

317Software Quality Journal (2022) 30:307–335

1 3

measures (such as precision, recall, etc. for classification tasks), performing sensitivity
analysis, or testing against adversarial examples.

Deployment (and operation) The original paper left the operating phase out. For our
purpose, we include it. The quality at runtime is impacted by the data that flows into the
ML component (e.g., the runtime data should have similar characteristics as the training
and evaluation data to make reliable assumptions on the model performance). Therefore,
monitoring the dataflow, the application context, and the ML component’s behavior (e.g.,
by estimating the output uncertainty of the ML model) is needed in order to evaluate its
quality. The second point is that operation requirements (such as real-time constraints or
the runtime architecture) may differ from those during development. Indeed, an ML com-
ponent may require large amounts of data as well as specific libraries and hardware archi-
tectures (such as GPUs) to be built (trained). However, once developed, this component
may have to be deployed in a totally different environment (e.g., in a mobile device using a
different programming language). Here, the way the deployment is managed (for example,
by using exchange formats such as ONNX or PMML, by using versioning and automated
CI/CD tools, etc.) also impacts the quality of the ML system. The deployment phase may
also introduce evaluation methods such as integration testing or runtime monitoring.

Evaluation This was originally defined as the 5th phase, and its goal is to answer whether
the ML component properly achieves the business objectives. Note that the modeling phase
and possibly the deployment phase also contain an evaluation part. Here, however, the
objective is to evaluate the system from a business perspective. In other words, does the
system meet the KPIs defined above? This could be done, for example, through controlled
experiments such as A/B tests. This allows creating feedback loops in order to select which
version of an ML component gives the best results (from a business perspective). The first
thing to notice is that in order to perform such an evaluation, the goals, the measures, and
the methodology of the experiment have to be defined. These experiments may involve
external software components (such as traffic redirection) whose internal quality may
impact the way an ML component is evaluated.

A process model helps to systematically go through all the lifecycle phases of a system
and list quality requirements that may be relevant for a given use case. To measure quality,
it is also necessary to detail which entities play a role and how one can measure their cor-
responding quality properties. In doing so, the list of quality requirements aids to identify
the quality properties of these entities.

7 Step 4: Identity relevant entities of an ML system

In the previous section, we looked at the process of developing and maintaining ML com-
ponents in order to see which aspects can influence the quality of the system and which
quality requirements are needed. In order to build a quality model with a systematic struc-
ture, we now propose different “views” that help to categorize quality properties and their
corresponding quality measures together with the entities to be measured. This also helps
to cover as many relevant quality properties as possible, as we look at influences on quality
from a second perspective.

318 Software Quality Journal (2022) 30:307–335

1 3

The views we propose are: model view, data view, system view, infrastructure view,
and environment view (see Fig. 4 for an illustrative overview). Note that a given quality
model may or may not use all the views, as the relevant ones are selected according to
the use case.

Model view The model view is concerned with quality properties belonging to the arti-
facts that are trained using data in order to perform a given task (e.g., classification, regres-
sion, dimensionality reduction, etc.). An ML component usually consists of several sub-
components organized in a directed acyclic graph (also called a pipeline) (Amershi et al.,
2019). The specificity of such a component is first the way it is built. We have to distin-
guish between the development phase (where the training and the evaluation of the pipeline
are done) and the operation phase (where the artifacts created in the previous phase are
deployed and used in production, i.e., at runtime), because these two phases may be imple-
mented with different technologies (e.g., R/Python for learning, Web/Java on the applica-
tion side) or have different quality demands (e.g., using a large quantity of data at training
time, operating under short latency at runtime, etc.).

In the model view, we have made a distinction between what we call a model type
(e.g., decision tree, neural network, etc.) and a trained model (e.g., a specific instance
of a neural network trained on a specific dataset using a specific training algorithm).
Again, the goal of this distinction is to separate quality properties related to a specific
entity instance from those related to the entity type. For example, the appropriateness
of a given model applies to a model type (like the family of decision trees), whereas
the goodness of fit applies to a specific trained instance. Note that we also separate the
model from its training algorithm (i.e., the algorithm that takes training data and a
model type as input and outputs a trained model) and its execution algorithm (i.e., the
algorithm that takes runtime data and a trained model as input and outputs a decision,
for instance a classification of inputted runtime data). The argumentation is that the
training and execution algorithms are pieces of “classical” software whose quality prop-
erties can be described and measured using existing standards.

Environment
Users, society, scope

System / Infrastructure
Output / scope supervision, infrastructure, training / execution algorithm

ML component

Data
Development / runtime data

Model
Model type, trained model

Other

system components

ML Supervision

Component

Fig. 4 Overview of the different views on the software system and the entities that influence the system’s
quality

319Software Quality Journal (2022) 30:307–335

1 3

Data view The data view is concerned with the quality properties related to the data. The
term data here describes the data that is used as input for the ML component. We fur-
ther distinguish between development data, i.e., data used during the development phase
to train the component, and runtime data, i.e., the dataset used during the operation phase
(i.e., the data that flows into the trained model when deployed and used in production).
We make this distinction first of all because data used during model training and during
application differs in nature. Training data typically has a “batch” nature, that is, it consists
of a large set of data collected over a certain period, on which models are trained and vali-
dated. Runtime data, on the other hand, typically has a “stream” nature, that is, it represents
data that changes continuously over time. The nature of data determines its specific quality
properties as well as the applicable preparation and training algorithms. Combining batch
and stream processing poses a significant challenge in the development of AI systems
(Marz & Warren, 2015), e.g., because not all processing algorithms used during develop-
ment to train models on batch data are easily applicable (transferable) to runtime environ-
ments where trained models are applied on stream data. Furthermore, training and runt-
ime data can be associated with different physical objects, be stored in different databases,
and be preprocessed or accessed differently during the development and operation phases.
Therefore, different quality properties apply either to each dataset separately or to both (for
example, by comparing the representativeness of the development data with regard to the
runtime data). We pushed the distinction even further concerning the development data.
Indeed, the process of training an ML component requires splitting the development data
into different subsets: the so-called training, validation, and test subsets. The training sub-
set is used to determine the model parameters during training. The validation subset is used
for hyper-parameter tuning (e.g., the maximum depth of a decision tree). Finally, to provide
an unbiased evaluation of the trained model, a test subset is used. Note that the test subset
is supposed to be independent of the training and validation subsets. The way the training,
validation, and test subsets are chosen has an impact on the quality of the evaluation of the
trained model.

System view First, an ML component is usually organized in a pipeline of tasks. Devel-
oping such a pipeline is by its very nature experimental. A given pipeline may be trained
several times with different model types, training algorithms, or datasets in order to find
the best combinations (also known as the Combined Model Selection and Hyperparam-
eter optimization (CASH) problem (Hutter et al., 2018). The way the search is done and
the way the sub-components are connected has an impact on quality (see, for example, the
problem of data leakage (Kaufman et al., 2011)). Second, once a model has been devel-
oped (i.e., trained), it needs to be deployed. As already stated above, the development
and the runtime environment may be of a different nature. Therefore, a specific architec-
ture needs to be put in place in order to export the trained models (e.g., using serializa-
tion, exchange formats like ONNX, PMML, or using model management tools) (Marz
& Warren, 2015). Finally, the deployed component is itself part of a larger system, i.e.,
it consumes data from one or several sources and interacts with other ML-based or clas-
sical components. Since a decision outputted by an ML component is always subject to
uncertainty, and since wrong decisions might impact the system’s overall quality, consid-
ering the flow of information from the system input through all components to the system
output is important for understanding the impact of a given ML component’s quality on
the overall system behavior. Typical quality properties related to the system view include,
among others, data dependencies and feedback loops (Sculley et al., 2015). For example,

320 Software Quality Journal (2022) 30:307–335

1 3

the input data can be monitored in order to detect either data drift or anomalous data-
points. The output of the component can also be monitored in order to detect and correct
wrong decisions. This monitoring also has its own quality properties, which may be rel-
evant for the use case at stake (e.g., monitoring effectiveness and efficiency).

Infrastructure view What we call the infrastructure view is closely related to the system
view. However, here the view is more focused on the quality properties related to how the
system is concretely implemented (e.g., hardware, training libraries). We decided to sepa-
rate these two views in order to highlight some specificities of ML components. For exam-
ple, the efficiency of the training and execution algorithms is a property that belongs to
this view. The same applies to the suitability of the infrastructure either for training or for
executing the components. For example, current trained deep learning models used for nat-
ural language processing are several gigabytes in size, and require several days (or weeks)
of training on dedicated hardware machines (GPU clusters). The trained model cannot be
executed on embedded devices due to computational and storage limitations.

Environment view The environment consists of elements that (1) are external to the sys-
tem under consideration and (2) interact either directly or indirectly with the system. This
includes the users. For ML systems, several environmental aspects may have a direct influ-
ence on the quality. These include, for example, aspects causing quality deficits in the data.
This is strongly related to the notion of concept drift. Since an ML component is built for
and tested in a given context of use (or target application scope), its quality will decrease
when this context changes (Kläs & Vollmer, 2018). A self-adapting component depend-
ent on the environment also raises further quality-related challenges (see, for example, the
problems faced by the Microsoft chatbot Tay). Vice versa, an ML component can also have
an impact on its environment, e.g., in terms of resource usage or societal discrimination
(HILEG, 2019).

8 Step 5: Identify reference elements of an ML quality model

In this step, we created a table of reference elements to be used in an ML quality model.
We used the quality requirements and the views defined in the previous sections to
select pertinent entities for the use case. From that point on, we identified quality prop-
erties of interest for all entities. For each property, we either give examples of concrete
measures for objectively evaluating the quality, or, if this is not possible, define exam-
ples for items one would have to check in order to address the respective quality. This
was done based on existing literature in the field and our practical experience of build-
ing ML models.

Table 1 presents the list of reference elements from which we built a concrete qual-
ity model later on. The elements were designed to be specific enough to address the
described use case appropriately (including supervision- and classification-related qual-
ity properties), but also contains generic elements to allow it to be applied to other (sim-
ilar) use cases (such as most properties related to data and model).

321Software Quality Journal (2022) 30:307–335

1 3

Ta
bl

e
1

 O
ve

rv
ie

w
 o

f t
he

 d
er

iv
ed

 re
fe

re
nc

e
el

em
en

ts
 o

f t
he

 q
ua

lit
y

m
od

el

V
ie

w
En

tit
y

Pr
op

er
ty

Ex
am

pl
e

qu
al

ity
 m

ea
su

re
s a

nd
 c

he
ck

lis
ts

M
od

el
M

od
el

 ty
pe

A
pp

ro
pr

ia
te

ne
ss

: D
eg

re
e

to
 w

hi
ch

 th
e

m
od

el
 ty

pe
 is

 a
pp

ro
pr

ia
te

 fo
r t

he

cu
rr

en
t t

as
k

(e
.g

.,
cl

as
si

fic
at

io
n,

 e
tc

.)
an

d
ca

n
de

al
 w

ith
 th

e
cu

rr
en

t
da

ta
 ty

pe
 (e

.g
.,

nu
m

er
ic

al
, c

at
eg

or
ic

al
)

Pr
er

eq
ui

si
te

s f
or

 m
od

el
 ty

pe

Tr
ai

ne
d

m
od

el
D

ev
el

op
m

en
t c

or
re

ct
ne

ss
 (g

oo
dn

es
s o

f fi
t):

 a
bi

lit
y

of
 th

e
m

od
el

 to

pe
rfo

rm
 th

e
cu

rr
en

t t
as

k
m

ea
su

re
d

on
 th

e
de

ve
lo

pm
en

t d
at

as
et

Pr
ec

is
io

n,
 R

ec
al

l,
F-

sc
or

e,
 e

tc
. f

or
 tr

ai
ni

ng

Ru
nt

im
e

co
rr

ec
tn

es
s (

go
od

ne
ss

 o
f fi

t):
 sa

m
e

as
 a

bo
ve

 m
ea

su
re

d
on

 th
e

ru
nt

im
e

da
ta

se
t

Pr
ec

is
io

n,
 R

ec
al

l,
F-

sc
or

e,
 e

tc
. a

t r
un

tim
e

Re
le

va
nc

e
(b

ia
s-

va
ria

nc
e

tra
de

off
):

de
gr

ee
 to

 w
hi

ch
 th

e
m

od
el

 a
ch

ie
ve

s
a

go
od

 b
ia

s-
va

ria
nc

e
tra

de
off

 (n
ei

th
er

 u
nd

er
fit

tin
g

no
r o

ve
rfi

tti
ng

 th
e

da
ta

)

Va
ria

nc
e

of
 c

ro
ss

-v
al

id
at

io
n

go
od

ne
ss

 o
f fi

t

Ro
bu

stn
es

s:
 a

bi
lit

y
of

 th
e

m
od

el
 to

 h
an

dl
e

no
is

e
or

 d
at

a
w

ith
 m

is
si

ng

va
lu

es
 a

nd
 st

ill
 m

ak
e

co
rr

ec
t p

re
di

ct
io

ns
Eq

ua
liz

ed
 L

os
s o

f A
cc

ur
ac

y
(E

LA
)

St
ab

ili
ty

: d
eg

re
e

to
 w

hi
ch

 a
 tr

ai
ne

d
m

od
el

 g
en

er
at

es
 re

pe
at

ab
le

 re
su

lts

w
he

n
tra

in
ed

 o
n

di
ffe

re
nt

 su
bs

et
s o

f t
he

 tr
ai

ni
ng

 d
at

as
et

Le
av

e-
on

e-
ou

t c
ro

ss
-v

al
id

at
io

n
st

ab
ili

ty

Fa
irn

es
s:

 a
bi

lit
y

of
 th

e
m

od
el

 to
 o

ut
pu

t f
ai

r d
ec

is
io

ns
Eq

ua
liz

ed
 o

dd
s

In
te

rp
re

ta
bi

lit
y:

 d
eg

re
e

to
 w

hi
ch

 th
e

tra
in

ed
 m

od
el

 c
an

 b
e

in
te

rp
re

te
d

by
 h

um
an

s
C

om
pl

ex
ity

 m
ea

su
re

s (
e.

g.
, n

o.
 o

f p
ar

am
et

er
s,

de
pt

h)

Re
so

ur
ce

 u
til

iz
at

io
n:

 re
so

ur
ce

s u
se

d
by

 th
e

m
od

el
 w

he
n

it
is

 a
lre

ad
y

tra
in

ed
Re

qu
ire

d
sto

ra
ge

 sp
ac

e

322 Software Quality Journal (2022) 30:307–335

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

V
ie

w
En

tit
y

Pr
op

er
ty

Ex
am

pl
e

qu
al

ity
 m

ea
su

re
s a

nd
 c

he
ck

lis
ts

D
at

a
D

ev
el

op
m

en
t d

at
a

Re
pr

es
en

ta
tiv

en
es

s:
 d

eg
re

e
to

 w
hi

ch
 th

e
da

ta
 is

 re
pr

es
en

ta
tiv

e
of

 th
e

st
at

ist
ic

al
 p

op
ul

at
io

n
St

at
ist

ic
al

 te
sts

 (e
.g

.,
tw

o-
sa

m
pl

e
t-t

es
t,

et
c.

)

C
or

re
ct

ne
ss

: d
eg

re
e

to
 w

hi
ch

 th
e

da
ta

 is
 fr

ee
 fr

om
 e

rr
or

s
O

ut
lie

r d
et

ec
tio

n
m

ea
su

re
s (

e.
g.

, Z
-s

co
re

)

C
om

pl
et

en
es

s:
 d

eg
re

e
to

 w
hi

ch
 th

e
da

ta
 is

 fr
ee

 fr
om

 m
is

si
ng

 v
al

ue
s

N
o.

 o
f m

is
si

ng
 v

al
ue

s

C
ur

re
nt

ne
ss

: d
eg

re
e

to
 w

hi
ch

 th
e

da
ta

 is
 u

p
to

 d
at

e
w.

r.t
. t

he
 c

ur
re

nt

ta
sk

A
ge

 o
f d

at
a

In
tra

-C
on

si
ste

nc
y:

 c
on

si
ste

nc
y

of
 th

e
da

ta
 w

ith
in

 a
 d

at
as

et
, e

.g
.,

th
e

da
ta

 d
oe

s n
ot

 c
on

tra
di

ct
 it

se
lf

or
 th

e
fo

rm
at

tin
g

is
 c

on
si

ste
nt

Va
lu

e
ra

ng
es

, w
or

d
co

un
ts

Tr
ai

n/
Te

st
In

de
pe

nd
en

ce
: d

eg
re

e
to

 w
hi

ch
 th

e
tra

in
in

g
an

d
te

st
 su

bs
et

s
ar

e
in

de
pe

nd
en

t o
f o

ne
 a

no
th

er
St

at
ist

ic
al

 te
sts

 (e
.g

.,
tw

o-
sa

m
pl

e
t-t

es
t,

et
c.

)

B
al

an
ce

dn
es

s:
 d

eg
re

e
to

 w
hi

ch
 a

ll
cl

as
se

s (
la

be
ls

) a
re

 e
qu

al
ly

 re
pr

e-
se

nt
ed

 in
 th

e
da

ta
se

t
R

at
io

 o
f c

la
ss

es

A
bs

en
ce

 o
f b

ia
s:

 d
eg

re
e

to
 w

hi
ch

 th
e

da
ta

 is
 fr

ee
 fr

om
 b

ia
s a

ga
in

st
a

gi
ve

n
gr

ou
p

R
at

io
s o

f g
ro

up
s

D
ev

el
op

m
en

t a
nd

 ru
nt

im
e

da
ta

In
te

r-c
on

si
ste

nc
y:

 c
on

si
ste

nc
y

be
tw

ee
n

di
ffe

re
nt

 d
at

as
et

s,
e.

g.
, f

or
m

at
-

tin
g,

 sa
m

pl
in

g
m

et
ho

ds
 u

se
d

Va
lu

e
ra

ng
es

, c
ro

ss
w

is
e

ou
tli

er
 d

et
ec

tio
n

m
ea

su
re

s

En
vi

ro
nm

en
t

Tr
ai

ni
ng

 p
ro

ce
ss

En
vi

ro
nm

en
ta

l i
m

pa
ct

: d
eg

re
e

to
 w

hi
ch

 th
e

tra
in

in
g

pr
oc

es
s i

m
pa

ct
s

th
e

en
vi

ro
nm

en
t

En
er

gy
 c

on
su

m
pt

io
n

So
ci

et
y

So
ci

al
 im

pa
ct

: d
eg

re
e

to
 w

hi
ch

 th
e

M
L

co
m

po
ne

nt
 im

pa
ct

s s
oc

ie
ty

Im
pa

ct
 o

n
em

pl
oy

ee
s

Sc
op

e
Sc

op
e

co
m

pl
ia

nc
e:

 d
eg

re
e

to
 w

hi
ch

 th
e

ap
pl

ic
at

io
n

of
 th

e
M

L
co

m
po

-
ne

nt
 re

sp
ec

ts
 it

s i
nt

en
de

d
sc

op
e

of
 u

se
Va

lu
e

ra
ng

es
, n

ov
el

ty
 d

et
ec

tio
n

m
ea

su
re

s

323Software Quality Journal (2022) 30:307–335

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

V
ie

w
En

tit
y

Pr
op

er
ty

Ex
am

pl
e

qu
al

ity
 m

ea
su

re
s a

nd
 c

he
ck

lis
ts

Sy
ste

m
O

ut
pu

t s
up

er
vi

si
on

Eff
ec

tiv
en

es
s:

 d
eg

re
e

to
 w

hi
ch

 th
e

ou
tp

ut
 su

pe
rv

is
io

n
al

go
rit

hm

de
te

ct
s f

al
se

 o
ut

co
m

es
 o

f t
he

 M
L

co
m

po
ne

nt
Fa

ls
e

po
si

tiv
e/

ne
ga

tiv
e

de
te

ct
io

n
ra

te

Su
pe

rv
is

io
n

ov
er

he
ad

/e
ffi

ci
en

cy
: r

es
ou

rc
es

 u
se

d
fo

r m
on

ito
rin

g
a

gi
ve

n
M

L
co

m
po

ne
nt

Ti
m

e,
 m

em
or

y
us

ed
, e

tc
.

Sc
op

e
su

pe
rv

is
io

n
Eff

ec
tiv

en
es

s:
 d

eg
re

e
to

 w
hi

ch
 th

e
sc

op
e

su
pe

rv
is

io
n

al
go

rit
hm

 d
et

ec
ts

co

nt
ex

t c
ha

ng
es

N
o.

 o
f o

ut
-o

f-
sc

op
e

ca
se

s

Su
pe

rv
is

io
n

ov
er

he
ad

/e
ffi

ci
en

cy
: r

es
ou

rc
es

 u
se

d
fo

r m
on

ito
rin

g
th

e
ap

pl
ic

at
io

n
sc

op
e

Ti
m

e
m

em
or

y
us

ed
, e

tc
.

O
th

er
 n

on
-M

L
co

m
po

ne
nt

s
H

er
e

w
e

re
fe

r t
o

th
e

re
le

va
nt

 su
bs

et
 o

f t
he

 q
ua

lit
y

pr
op

er
tie

s o
f t

he

st
an

da
rd

 IS
O

/IE
C

 2
50

10
, w

hi
ch

 a
re

 n
ot

 li
ste

d
he

re
 fo

r s
pa

ce
 re

as
on

s
In

fr
as

tru
ct

ur
e

In
fr

as
tru

ct
ur

e
In

fr
as

tru
ct

ur
e

su
ita

bi
lit

y:
 d

eg
re

e
to

 w
hi

ch
 th

e
in

fr
as

tru
ct

ur
e

m
at

ch
es

th

e
M

L
co

m
po

ne
nt

 n
ee

ds
 (e

.g
.,

in
 te

rm
s o

f h
ar

dw
ar

e
ty

pe
, c

om
pu

ta
-

tio
n

ca
pa

bi
lit

y,
 b

an
dw

id
th

, m
em

or
y,

 e
tc

.)

C
om

pu
ta

tio
na

l a
nd

 st
or

ag
e

ca
pa

bi
lit

ie
s

Tr
ai

ni
ng

 a
lg

or
ith

m
Tr

ai
ni

ng
 e

ffi
ci

en
cy

: r
es

ou
rc

es
 u

se
d

fo
r t

ra
in

in
g

a
gi

ve
n

m
od

el
Ti

m
e,

 m
em

or
y

us
ed

, e
tc

.
Ex

ec
ut

io
n

al
go

rit
hm

Ex
ec

ut
io

n
effi

ci
en

cy
: r

es
ou

rc
es

 u
se

d
fo

r e
xe

cu
tin

g
a

gi
ve

n
tra

in
ed

m

od
el

Ti
m

e,
 m

em
or

y
us

ed
, e

tc
.

324 Software Quality Journal (2022) 30:307–335

1 3

9 Step 6: Instantiate ML quality model for use case

Based on the reference elements worked out for the use case of Fujitsu’s Accounting
Center and the quality meta-model presented in Sect. 4, it is now possible to derive a con-
crete quality model.

When building a quality model for an AI component, it is important to note that you
typically do not make use of a single algorithm, for which the quality should be deter-
mined, but you rather have a whole solution idea composed of different steps, a so-called
processing pipeline, which makes use of different data-based models for which quality has
to be determined individually.

In the use case described above, we could make use of a solution idea based on so-
called decision trees for building a classification model. Before running the decision tree
classification algorithm for building a classification model, the data has to be prepared
accordingly, e.g., missing or incomplete values must be dealt with. Therefore, one sub-
step of preparation could be the imputation of missing values using an imputation model.
For each part of the processing pipeline, different entities and their different properties as
defined in Table 1 can be of relevance. Example entities include the trained model or the
data used for training the model, while example properties include completeness or cor-
rectness. Both entities and properties can create hierarchies. Figure 5 shows an example of
what a simplified entity hierarchy could look like.

In correspondence to the entity hierarchy, one could now think of relevant properties of
certain entities for addressing the quality of the whole pipeline. An example breakdown
structure is shown in Figs. 6 and 7. On the higher levels of the hierarchy, we are interested
in the general quality (property) of each step of the pipeline (entity). For instance, when
using an imputation model, one could be interested in the development correctness and
stability (properties) of the trained model (entity). The corresponding excerpts of the qual-
ity model are shown in Fig. 6. The processing pipeline is modeled as a hierarchy of enti-
ties (steps and sub-steps). As can be seen in the figure, the quality model generically talks
about the “quality” of the corresponding step of the pipeline. On the lower levels of the
quality model, all relevant entities and properties can be found for each step of the pipe-
line, such as “trained model × stability”. Each property of an entity has a set of measures
assigned to it and an evaluation rule describing how to evaluate the measures. These rules
objectively specify our quality requirements. For instance, the imputation model is consid-
ered correct if the mean magnitude of relative error (MMRE) is lower than or equal to 5%.
Or, the imputation model is considered stable if the standard deviation (SD) of different
runs of the model is close to zero.

Based on these evaluation rules, it is now possible to compare different models objec-
tively. At the bottom of Fig. 6, two example imputation models are characterized using the
measures specified. As can be seen, I2 performs better regarding MMRE, but fails regard-
ing the SD criterion.

Fig. 5 Example hierarchy of enti-
ties to address for processing the
pipeline “Decision Trees”

Entity
Pipeline “Decision Trees”

Entity
Step “Classification”

Entity
Step “Preparation”

Entity
Sub-Step “Missing Value Imputation”

Entity
Trained Imputation Model

Entity
Trained Classification Model

325Software Quality Journal (2022) 30:307–335

1 3

In the same way, the quality model can be completed for the other steps of the pro-
cessing pipeline. Figure 7 shows further properties, measures, and evaluation rules for the
classification step. In practice, many additional properties have to be considered, not only
regarding the trained model, but also other entities addressing the data, the environment,
the system, or the infrastructure.

The example presented here only makes use of evaluation rules on the leaf nodes of the
quality model. Depending on the required degree of formality, an aggregation of meas-
ures can be performed along the hierarchy of properties and entities with corresponding

Entity � Property
Step “Classification” � Quality

Entity � Property
Trained Imputation Model � Development Correctness

Measure
MMRE

Entity � Property
Trained Imputation Model � Stability

Evaluation
Target: MMRE <= 5%

Entity � Property
Sub-Step “Missing Value Imputation” � Quality

Measure
SD

Measures I1 I2
MMRE 5% 3%

SD 0 0.2

Evaluation
Target: SD ~ 0

Priority 1Priority 2

Entity � Property
Pipeline “Decision Trees” � Quality

Entity � Property
Step “Preparation” � Quality

Example Evaluation of Imputation Models:

…

Fig. 6 Example quality model for the processing pipeline of the “Preparation” step

Entity � Property
Trained Classification Model � Development Correctness

Measure
F-Score

Entity � Property
Trained Classification Model � Interpretability

Evaluation
Baseline: F-Score => 90%
Target: F-Score => 95%

Entity � Property
Step “Classification” � Quality

Measure
No. of nodes

Measures C1 C2
F-Score 95% 97%

Nodes 20 300

Depth 3 10

Measure
Depth of tree

Evaluation
Target: Nodes <= 20 and Depth <= 5

Priority 1Priority 2

Entity � Property
Pipeline “Decision Trees” x Quality

Entity � Property
Step “Preparation” � Quality

Example Evaluation of Classification Models:

…

Fig. 7 Example quality model for the processing pipeline of “Classification” step

326 Software Quality Journal (2022) 30:307–335

1 3

evaluation rules on each level. In that case, one would end up with a single quality index
on the top level. Using this kind of aggregation mechanism is quite common for software
quality models when presenting the results of a quality evaluation to different software
managers.

10 Discussion of validity

In this article, we first proposed a categorization of quality properties as well as entities
in the form of different views/entities. This classification is the result of a literature-based
review, discussions with industrial partners, and our own experience in the development of
ML components. To scientifically assess and consolidate a useful and systematic grouping
of quality properties for ML systems, several iterations will be necessary (e.g., case study,
systematic literature review, mapping study).

We also derived a quality model specifically tailored for a given use case. The definition
and the relevance of the quality properties were first discussed internally in a workshop with
experts. Later, three case studies with a focus on requirements engineering for ML systems
were conducted by Fujitsu Laboratories (see the full details in (Nakamichi et al., 2020)).
The goal of the first case study was to verify that the requirement analysts actually con-
sider the different properties (22 in total) in their requirement definition. For each property,
3 ML developers, 2 software developers, and 1 project manager were asked (1) whether they
know and use it and (2) whether it requires customer agreement and what is the status of
the agreement. The results showed that, in this specific case, most of the properties (77%)
were already known and used (Nakamichi et al., 2020). The objective of the second case
study was to verify whether the developers were aware of the proposed quality measures
(34 in total). For each quality measure, 3 ML developers, 2 software developers, and 1 pro-
ject manager were asked whether they know it and what is its measurement status in their
respective projects. The results showed that 45% of the submitted quality measures were
already used, 28% were not used yet (answer “want to measure”), 15% were not measured
because of technical or cost difficulties, and 10% were not needed (Nakamichi et al., 2020).
The goal of the third case study was to probe the effectiveness of the quality measures (6
in total). For each quality property and a corresponding measure, 3 ML developers and 3
software developers were asked about the measurement status and the effectiveness of the
measure. The results showed that 83% of the submitted measures were deemed effective
(Nakamichi et al., 2020). The performed case studies provide a first confirmation that the
quality properties identified are valid and meaningful for developers. In this previous paper,
the authors did not go into the details of the how the quality model presented was built.

In terms of limitations, we see two main aspects:

1. We used a specific process model for listing potential entities and their quality proper-
ties. As stated above, new process descriptions have been proposed in the literature.
Although the CRISP-DM model is generic enough (see, for example, the different
reviews done in this field, like (Martinez-Plumed et al., 2020; Mariscal et al., 2010;
Kurgan & Muslek, 2006)), some phases may still be missing. Furthermore, we did not
investigate other process-related aspects yet, e.g., what qualities have to be assured in
which activity and handled by which role. We believe that the proposed views/entities
can help to establish a mapping between roles (e.g., Data Scientist, Data Engineer, etc.)
and quality properties or measures. For example, Data Scientists are usually in charge

327Software Quality Journal (2022) 30:307–335

1 3

of building models and are in direct line when it comes to measuring the impact of data
quality on the models’ outcomes. However, data engineers are the ones that can usually
implement new data quality improvement actions. Architects with a good understanding
of data science methods (such as ML) will be needed to solve problems on the system
level.

2. Second, our viewpoint for defining the quality model was more the data science perspec-
tive. Integration with classical software/systems engineering qualities (such as those
defined by ISO/IEC 25010) is missing. There is as yet no consensus on the naming of
quality properties related to ML components. Furthermore, whereas some of the pro-
posed properties can be easily classified under existing ISO/IEC 25010 ones (e.g., the
model’s Goodness of Fit could potentially belong to Functional Correctness), others may
be more difficult to classify (such as Scope Compliance). Whether the ISO/IEC 25010
is the right framework for ML components is still an open issue.

11 Lessons learned

We are completely aware that the model we developed is quite specific to the use case in
which it was applied and that other use cases may require different quality properties and,
in consequence, different measures. However, we would like to share an excerpt from the
lessons we learned from following the described methodological approach. Even though
some of these are known from other fields, we nonetheless think it is worth mentioning
them in the context of developing ML systems:

1. Context and use case must be clear. As pointed out before, there are many application
fields and potential ML-based solutions available. It is very important to be as clear as
possible about the general application context. ML components should never be used
just for the sake of being fancy, but always because there is the profound assumption
that they will add concrete value for the application context. The quality properties that
are important mainly depend on this.

2. Iterative approach: The ML model, its application context, and its use case have to be
adjusted over time and some initial assumptions will turn out to be false. Therefore, it
is important to follow an iterative approach when developing the ML system and to be
able to quickly identify dead ends and take different paths. Having a clear picture of
what quality properties are important and how to quantify them is crucial for this, as it
allows us to immediately see whether we can fulfill them with our solution path.

3. Multidisciplinary work: As we stated at the beginning of this article, different kinds
of knowledge must come together to develop quality-aware ML systems. For instance,
a data scientist knows how to measure the fairness or stability of the trained model, a
software/system engineer knows how to assure the quality of the overall system, and a
domain expert knows whether the ML system really solves the problem better than a
traditional software system.

4. The devil is in the details: We learned that it is easy to talk about abstract generic quality
properties, such as those defined by ISO/IEC 25010, on a high level. To define meaning-
ful quality properties, we had to break them down into concrete qualities of entities and
define how to operationalize these properties with measures.

5. Quality-aware process/guidelines: Even though there are defined processes for ML
model building (such as CRISP-DM) and for software engineering (such as rich and

328 Software Quality Journal (2022) 30:307–335

1 3

agile processes) with elaborate practices for improvement (such as DevOps approaches),
an integrated process is missing, nor do guidelines exist on how to bring everything
together with a clear focus on the quality of ML systems.

12 Conclusions

This article presented how to construct a concrete quality model for an ML system based
on an industrial use case. Compared to the existing body of knowledge in the field of qual-
ity modeling, and specifically with regard to the quality of ML systems, we added the fol-
lowing aspects:

• Systematic construction process for quality models of ML systems.
• Adaptation of the concept of software quality meta-models to ensure uniform docu-

mentation of relevant entities, quality properties, measures, and evaluation methods.
• Table of reference quality elements for ML systems as a systematic overview and clas-

sification of relevant views, entities, quality properties, and measures for ML systems
based on existing research.

• Example instantiation of a quality model for a concrete industrial use case (purchase
order requests) to illustrate the applicability of the different steps of the construction
process.

• Lessons learned from applying the construction process in order to support other
researchers and practitioners in avoiding typical hurdles and issues.

Even though the proposed construction process lacks a comprehensive evaluation, it
was designed and performed together with researchers and practitioners in the field and
may guide others in the systematic construction of quality models for ML systems.

The resulting list of reference quality elements was specifically derived for the industrial
use case, but may be generalizable for similar kinds of ML systems.

Regarding future work, we plan to perform more case studies to empirically validate
the construction process on other use cases regarding its applicability and usefulness. In
particular, we want to apply the process to other ML tasks (like regression or unsupervised
learning) and learn about the impact on the quality model. Moreover, we plan to develop
an approach for evaluating the overall quality of ML systems based on a predefined quality
model. The overall goal is to have reference quality models for evaluating certain types of
ML systems.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

329Software Quality Journal (2022) 30:307–335

http://creativecommons.org/licenses/by/4.0/

1 3

References

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., & Zimmermann,
T. (2019). Software Engineering for Machine Learning: A Case Study. In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp.
291–300.

Arpteg, A., Brinne, B., Crnkovic-Friis, L., & Bosch, J. (2018). Software Engineering Challenges of Deep
Learning. In: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 50–59. IEEE, [S.l.].

Barocas, S., & Boyd, D. (2017). Engaging the ethics of data science in practice. Communications of the
ACM, 60, 23–25.

Belani, H., Vukovic, M., & Car, Z. (2019). Requirements Engineering Challenges in Building AI-Based
Complex Systems. In: 2019 IEEE 27th International Requirements Engineering Conference Work-
shops (REW), pp. 252–255. IEEE.

Bosch, J., Olsson, H. H., Crnkovic, I., Wang X., Munch J., Suominen A., Bosch J., Jud C., & Hyrynsalmi
S. (2018). It takes three to tango: Requirement, outcome/data, and AI driven development. CEUR
Workshop Proceedings, 2305.

Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly, C. A., Douglas, R., Edmonds, B., Gascoigne, J.,
Gilbert, N., Hargrove, C., et al. (2018). Computational modelling for decision-making: where, why,
what, who and how. Royal Society Open Science, 5, 172096.

de Souza Nascimento, E., Ahmed, I., Oliveira, E., Palheta, M. P., Steinmacher, I., & Conte, T. (2019).
Understanding Development Process of Machine Learning Systems: Challenges and Solutions. In:
2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 1–6.

Edmonds, B. (2002). The Use of Models - Making Mabs Actually Work.
Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C.,

Ormerod, P., Root, H., & Squazzoni, F. (2019). Different Modelling Purposes. JASSS 22.
Emmons, S., Kobourov, S., Gallant, M., & Börner, K. (2016). Analysis of network clustering algorithms

and cluster quality metrics at scale. PLoS One, 11, e0159161.
Epstein, J. M. (2008). Why model? JASSS, 11, 12.
Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A., Plösch, R., Seidl, A.,

Streit, J., & Trendowicz, A. (2015). Operationalised product quality models and assessment: The
Quamoco approach. Information and Software Technology, 62, 101–123.

Hamada, K., Ishikawa, F., Masuda, S., Matsuya, M., & Ujita, Y. (2020). Guidelines for Quality Assur-
ance of Machine Learning-based Artificial Intelligence. In: SEKE2020: the 32nd International
Conference on Software Engineering & Knowledge Engineering, 335–341.

HLEG, A. (2019). High-Level Expert group on artificial intelligence: Ethics guidelines for trustworthy
AI. European Commission.

Horkoff, J. (2019). Non-Functional Requirements for Machine Learning: Challenges and New Direc-
tions. In: 27th International Requirements Engineering Conference (RE2019), pp. 386–391. IEEE
Computer Society, Conference Publishing Services, Los Alamitos, California.

Hossin, M., & Sulaiman, M. N. (2015). A Review on Evaluation Metrics for Data Classification Evalua-
tions. IJDKP 5, 1–11.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2018). (eds.): Automated Machine Learning: Methods, Sys-
tems, Challenges. Springer.

IBM. (nd). Analytic Solutions Unified Method. Implementation with Agile Principles, checked on
5/8/2019.

Ishikawa, F. (2018). Concepts in Quality Assessment for Machine Learning - From Test Data to Argu-
ments. In: Trujillo, J.C.e., Davis, K., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) Conceptual
modeling. 37th International Conference, ER 2018, Xi’an, China, Proceedings / Juan C. Trujillo,
Karen C. Davis, Xiaoyong Du, Zhanhuai Li, Tok Wang Ling, Guoliang Li, Mong Li Lee (eds.), pp.
536–544. Springer, Cham, Switzerland.

Ismail, A., Truong, H.-L., & Kastner, W. (2019). Manufacturing process data analysis pipelines: a
requirements analysis and survey. Journal of Big Data, 6.

ISO/TS 8000. (2011). Data Quality.
ISO/IEC 25010. (2011). Systems and software engineering — Systems and software Quality Require-

ments and Evaluation (SQuaRE) — System and software quality models.
Kästner, C., & Kang, E. (2020). Teaching Software Engineering for AI-Enabled Systems. In: The 42nd

International Conference on Software Engineering (ICSE 2020). Software Engineering Education
and Training.

330 Software Quality Journal (2022) 30:307–335

1 3

Kaufman, S., Rosset, S., & Perlich, C. (2011). Leakage in data mining. In: Apte, C., Ghosh, J., Smyth, P.
(eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, Ca, USA, p. 556. ACM, New York.

Kläs, M., & Vollmer, A. M. (2018). Uncertainty in machine learning applications: a practice-driven clas-
sification of uncertainty. In M. Hoshi & S. Seki (Eds.), Developments in Language Theory, 11088.
(pp. 431–438). Springer International Publishing.

Kleinberg, J., Mullainathan, S., & Raghavan, M. (2016). Inherent Trade-Offs in the Fair Determination
of Risk Scores. arXiv.org.

Kumeno, F. (2020). Software engineering challenges for machine learning applications: a literature
review. IDT, 13, 463–476.

Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world.
Kurgan, L. A., & Muslek, P. (2006). A survey of knowledge discovery and data mining process models. The

Knowledge Engineering Review, 21, 1–24.
Lorenzoni, G., Alencar, P., Nascimento, N., & Cowan, D. (2021). Machine Learning Model Development

from a Software Engineering Perspective: A Systematic Literature Review.
Lwakatare, L. E., Raj, A., Crnkovic, I., Bosch, J., & Olsson, H. H. (2020). Large-Scale Machine Learning

Systems in Real-World Industrial Settings A Review of Challenges and Solutions. Information and
Software Technology, 106368.

Mariscal, G., Marbán, Ó., & Fernández, C. (2010). A survey of data mining and knowledge discovery pro-
cess models and methodologies. The Knowledge Engineering Review, 25, 137–166.

Marselis, R., & Shaukat, H. (2018). Machine Intelligence quality characteristics. How to measure the qual-
ity of Artificial Intelligence and robotics.

Marselis, R., Shaukat, H., & Gansel, T. (2017). Testing of Artificial Intelligence. Sogeti.
Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez Orallo, J., Kull, M., Lachiche, N., Ramirez

Quintana, M. J., & Flach, P. A. (2020). CRISP-DM Twenty Years Later: From Data Mining Processes to
Data Science Trajectories. IEEE Transaction on Knowledge and Data Engineering, 1.

Marz, N., & Warren, J. (2015). Big data. Principles and best practices of scalable real-time data systems /
Nathan Marz, James Warren. Manning, Shelter Island.

Microsoft. (2019). Team Data Science Process Documentation. Available online at https:// docs. micro soft. com/
en- us/ azure/ machi ne- learn ing/ team- data- scien ce- proce ss/, updated on 11/15/2018, checked on 11/16/2018.

Nakajima, S. (2018). [Invited] Quality Assurance of Machine Learning Software. In: 2018 IEEE 7th Global
Conference on Consumer Electronics (GCCE). 9–12 pp. 601–604. IEEE, Piscataway, NJ.

Nakamichi, K., Ohashi, K., Namba, I., Yamamoto, R., Aoyama, M., Joeckel, L., Siebert, J., & Heidrich,
J. (2020). Requirements-Driven Method to Determine Quality Characteristics and Measurements for
Machine Learning Software and Its Evaluation. In: 28th IEEE International Requirements Engineering
Conference (RE).

Nistala, P., Nori, K. V., & Reddy, R. (2019). Software Quality Models: A Systematic Mapping Study. ICSSP
2019: 25 May 2019, Montréal, Canada : proceedings2019 IEEE/ACM International Conference on
Software and System Processes. (pp. 125–134). IEEE.

Poth, A., Meyer, B., Schlicht, P., & Riel, A. (2020). Quality Assurance for Machine Learning – an approach
to function and system safeguarding. In: 2020 IEEE 20th International Conference on Software Qual-
ity, Reliability and Security (QRS), pp. 22–29. IEEE (uuuu-uuuu).

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo,
J.-F., & Dennison, D. (2015). Hidden Technical Debt in Machine Learning Systems. In: Proceedings of
the 28th International Conference on Neural Information Processing Systems, pp. 2503–2511.

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Ware-
housing, 5, 14–22.

Siebert, J., Joeckel, L., Heidrich, J., Nakamichi, K., Ohashi, K., Namba, I., Yamamoto, R., & Aoyama, M.
(2020). Towards Guidelines for Assessing Qualities of Machine Learning Systems. In: Shepperd, M.,
Brito e Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R. (eds.) Quality of Information and Commu-
nications Technology, 1266, pp. 17–31. Springer International Publishing, Cham.

SPEC, D. 92001–01: Künstliche Intelligenz - Life Cycle Prozesse und Qualitätsanforderungen. Teil 1: Qual-
itäts-Meta-Modell. Beuth Verlag GmbH, Berlin.

Vogelsang, A., & Borg, M. (2019). Requirements Engineering for Machine Learning: Perspectives from
Data Scientists. In: 2019 IEEE 27th International Requirements Engineering Conference Workshops
(REW), pp. 245–251.

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A., Plösch, R.,
Seidl, A., Streit, J., et al. (2015). Operationalised product quality models and assessment: The Qua-
moco approach. Information and Software Technology, 62, 101–123.

331Software Quality Journal (2022) 30:307–335

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/

1 3

Wan, Z., Xia, X., Lo, D., & Murphy, G. C. (2019). How does Machine Learning Change Software Develop-
ment Practices? IEEE Transactions on Software Engineering, 1.

Zhang, D., & Tsai, J. (2002). Machine learning and software engineering. In: Staff, I.C.S. (ed.) 14th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2002), pp. 22–29. IEEE Com-
puter Society Press, Los Alamitos.

Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020) Machine Learning Testing: Survey, Landscapes and
Horizons. IEEE Transactions on Software Engineering, 1.

Zhang, X., Yang, Y., Feng, Y., & Chen, Z. (2019). Software Engineering Practice in the Development of
Deep Learning Applications.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Julien Siebert Julien Siebert is expert “Artificial Intelligence” in the Data
Science department of the Fraunhofer Institute for Experimental Software
Engineering IESE in Kaiserslautern. He received a M. Sc. in Artificial
Intelligence (Université Henri Poincarré, Nancy, France) and a M. Sc. in
Engineering Science (École Supérieure des Sciences de l’Ingénieur de
Nancy, ESSTIN, Nancy, France) in 2007, and got his Ph.D. in Computer
Science in the field of modeling and simulation of complex systems in
2011 from the Université de Lorraine and INRIA Grand Est (Nancy,
France).

Lisa Jöckel Lisa Jöckel is a researcher in the Data Science department
at the Fraunhofer Institute for Experimental Software Engineering
IESE. Her work focuses on uncertainty estimation in data-driven soft-
ware components. Further interests concern quality assurance for
software systems containing data-driven components. She received
her M. Sc. in Computer Science from the Technical University of
Kaiserslautern with a major in data visualization and computer
graphics.

332 Software Quality Journal (2022) 30:307–335

1 3

Jens Heidrich Jens Heidrich heads the Smart Digital Solutions
department at Fraunhofer IESE and is a lecturer at the Technical Uni-
versity of Kaiserslautern. In the area of process management, he is
concerned with the continuous improvement of processes with the
help of best practices and measurement data. He is a member of vari-
ous program committees of international conferences and since 2011
he is on the board of the "Software Measurement and Evaluation"
group of the German Informatics Society.

Adam Trendowicz Dr. Adam Trendowicz is expert "Data Analytics" in
the Data Science department of the Fraunhofer Institute for Experi-
mental Software Engineering IESE in Kaiserslautern. After complet-
ing his doctorate on software project effort and risk assessment models
at the Technical University of Kaiserslautern, he worked in the field of
data science and data-driven business innovation. Dr. Trendowicz cur-
rently focuses on data quality and preparation in the context of
machine learning as well as on the lean deployment of data-driven
innovations based on solutions from the areas of machine learning and
artificial intelligence. Dr. Trendowicz is co-founder of the "Data Scien-
tist" training and certification program offered by the Fraunhofer Alli-
ance Big Data and Artificial Intelligence. He has also held several tuto-
rials on business IT alignment, data preparation and analysis, software
quality measurement and cost estimation. Finally, he is co-author of
several books and numerous publications in international journals and
at conferences.

Koji Nakamichi Koji Nakamichi is a company member of Fujitsu Ltd.
After he received BS and ME from Yokohama National University,
Yokohama, Japan in 1992 and 1994, respectively, he joined FUJITSU
LABORATORIES LIMITED. His research area includes software devel-
opment methodologies and software quality evaluation. He is a member
of IPSJ.

333Software Quality Journal (2022) 30:307–335

1 3

Kyoko Ohashi Kyoko Ohashi is a company member of Fujitsu Ltd.
After received BS from Tsuda College, Japan, in 1986, she joined
FUJITSU LABORATORIES LIMITED. She researched software
development methodologies, requirement engineering, User experi-
ence, software quality evaluation, and so on. She is a member of IPSJ.

Isao Namba Isao Namba is a company member of Fujitsu Ltd. After
received MA from Kyoto University, Japan, in 1989, he joined
FUJITSU LABORATORIES LIMITED. He researched natural lan-
guage processing, information retrieval, software quality evaluation,
and so on. He is a member of IPSJ.

Rieko Yamamoto Rieko Yamamoto is a visiting professor in the
Department of Software Engineering at Nanzan University and a fel-
low of Japan Science and Technology Agency. After received BS from
Waseda University, Japan, in 1983, she joined FUJITSU LABORATO-
RIES LIMITED. She researched software development methodologies,
software development environments, requirement engineering and so
on, then moved to JST in 2021. Yamamoto received her PhD in soft-
ware engineering from Nanzan University. She is a council member of
Science Council of Japan and a member of IPSJ and IEEE.

334 Software Quality Journal (2022) 30:307–335

1 3

Mikio Aoyama Mikio Aoyama is a professor in the Department of
Software Engineering at Nanzan University, Japan. After received MS
from Okayama University, Japan, in 1980, he joined Fujitsu Limited,
where he was involved in the development of large-scale communica-
tions software, and the development and practice of advanced soft-
ware engineering. From 1986 to 1988, he was visiting scholar at the
University of Illinois, USA. In 1995, he joined Niigata Institute of
Technology as a professor, then moved to Nanzan University in 2001.
His research interests include requirements engineering and software
engineering for cloud computing and embedded computing. Aoyama
received his PhD in engineering from Tokyo Institute of Technology.
He is a member of IPSJ, IEEE, ACM, and ASE.

Authors and Affiliations

Julien Siebert1 · Lisa Joeckel1 · Jens Heidrich1 · Adam Trendowicz1 ·
Koji Nakamichi2 · Kyoko Ohashi2 · Isao Namba2 · Rieko Yamamoto2 · Mikio Aoyama3

 Lisa Joeckel
 lisa.joeckel@iese.fraunhofer.de

 Jens Heidrich
 jens.heidrich@iese.fraunhofer.de

 Adam Trendowicz
 adam.trendowicz@iese.fraunhofer.de

 Koji Nakamichi
 nakamichi@fujitsu.com

 Kyoko Ohashi
 ohashi.kyoko@fujitsu.com

 Isao Namba
 namba@fujitsu.com

 Rieko Yamamoto
 rhd02113@nifty.com

 Mikio Aoyama
 mikio.aoyama@nifty.com

1 Fraunhofer IESE, Kaiserslautern, Germany
2 Fujitsu Laboratories Ltd., Kawasaki, Japan
3 Nanzan University, Nagoya, Japan

335Software Quality Journal (2022) 30:307–335

http://orcid.org/0000-0002-7696-0046

	Construction of a quality model for machine learning systems
	Abstract
	1 Introduction
	2 Related work
	3 Quality model construction process
	4 Step 1: Define quality meta-model
	5 Step 2: Define use case and application context
	6 Step 3: Identify relevant ML quality requirements
	7 Step 4: Identity relevant entities of an ML system
	8 Step 5: Identify reference elements of an ML quality model
	9 Step 6: Instantiate ML quality model for use case
	10 Discussion of validity
	11 Lessons learned
	12 Conclusions
	References

