Software Quality Journal (2019) 27:919-920
https://doi.org/10.1007/511219-019-09461-6

®

In this issue Check for
updates

Rachel Harrison'

Published online: 31 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

In this issue, we have a special section and eight regular research papers. The special section is
on trustworthy systems and software. I am very grateful to the guest editors, Sudipto Ghosh
and Zhenyu Chen, for all their hard work on this special section. The guest editors have
provided a helpful introduction to this special section to guide your reading.

The first two regular research papers are linked by the common theme of code smells, and
these are followed by a systematic literature review on risk factors found in software
development. We then have two papers on the performance of developers followed by two
papers on testing and one on the quality of modelling languages.

In “A large-scale empirical study of code smells in JavaScript projects”, David Johannes,
Foutse Khomh, and Giuliano Antoniol describe a large-scale study of JavaScript code smells
to better understand how they impact the fault-proneness of applications. The results show that
code smells do affect the quality of JavaScript applications negatively. The authors suggest that
developers should track and remove smells early in the software life cycle.

Systematic mapping studies help to highlight the strengths and weaknesses of a research
field. The paper “Software Design Smell Detection: a systematic mapping study” by Khalid
Alkharabsheh, Yania Crespo, Esperanza Manso, and José A. Taboada analyzes 18 years of
research into design smell detection. From the 395 papers analyzed, the authors report that
there is a lack of human expertise and benchmark validation processes and also show that
design smell detection positively influences quality attributes. They suggest that it would be
helpful to have a reference repository of design smells labeled by experts.

Systematic literature reviews are similar to mapping studies but usually follow rigorous
protocols to provide a very detailed analysis of the literature. In “Risk factors in software
development projects: a systematic literature review”, Jilio Menezes Jr., Cristine Gusmao, and
Hermano Moura identify and map risk factors found in software development project envi-
ronments. The authors conducted a systematic literature review and categorized 148 different
risk factors. The results show that risk factors related to software requirements are frequently
cited, together with a lack of technical skill.

< Rachel Harrison
rachel.harrison@brookes.ac.uk

School of Engineering, Computing and Mathematics, Oxford Brookes University, OX33, 1HX,
Oxford, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-019-09461-6&domain=pdf
mailto:rachel.harrison@brookes.ac.uk

920 Software Quality Journal (2019) 27:919-920

The performance of developers is of particular concern to managers and can be a prob-
lematic issue. In “To var or not to var: how do C# developers use and misuse implicit and
explicit typing?” Pierre A. Akiki looks at the difference between implicit and explicit typing in
C# and provides an overview of developers’ opinions and of the guidelines that are available
online. The paper reports on an analysis of the source code of 10 different open-source
software projects with more than 16,500 thousand lines of code. The paper also presents a
tool called Code Analysis and Refactoring Engine for C# (Care#). Future work includes an
extension of Care# to support more types of analysis and refactoring.

The Personal Software Process can help developers to improve their performance. The
paper “Assisting software engineering students in analyzing their performance in software
development” by Mushtaq Raza, Jodo Pascoal Faria, and Rafael Salazar describes a tool for
automated experiment performance analysis and improvement recommendations. The authors
performed a controlled experiment involving 61 software engineering students, half of which
used the new tool in a Personal Software Process (PSP) performance analysis assignment,
while the other half used a traditional PSP support tool for performing the same assignment.
The results showed significant benefits in terms of the students’ satisfaction and the time
required to do the analysis. In future work, the authors will investigate the application of the
new tool for analyzing the performance of teams adhering to agile practices.

Testing is of paramount importance to the industry. In “Classifying generated white-box
tests: an exploratory study”, David Honfi and Zoltan Micskei describe exploratory studies to
investigate the performance of developers during white-box test analysis. The studies were
carried out in a laboratory setting with 106 graduate students. The results showed that
participants do tend to incorrectly classify tests. The authors suggest using a conceptual
framework to describe the classification task.

Continuing the theme of testing, the paper “An efficient regression testing approach for
PHP Web applications using test selection and reusable constraints” by Ravi Eda and
Hyunsook Do discusses an approach to test selection for PHP Web applications where a
subset of existing tests that cover the modified code paths can be detected. The authors use a
tool to identify tests that can be reused with a new software version. Results show that this
approach is effective in reducing the cost of regression testing.

The final paper in this issue is concerned with the quality of modelling languages. In “A
method to evaluate quality of modelling languages based on the Zachman reference taxono-
my”, Faber D. Giraldo, Sergio Espafia, William J. Giraldo, Oscar Pastor, and John Krogstie
propose using principles from an information systems architecture reference (the Zachman
framework) as a taxonomy for modelling languages. The paper derives formal, methodolog-
ical, and technological requirements for a modelling language quality evaluation method to
tackle some of the open model-driven engineering quality challenges. In the future, the authors
will improve the tool by adding visualization options and populate the tool with more
examples of taxonomic analysis.

I hope that you will find this issue interesting and informative. As usual, if you have any
suggestions or comments please email me at rachel.harrison @brookes.ac.uk.

Publisher's note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	In this issue

