
Comprehensibility of system models during test design:
a controlled experiment comparing UML activity diagrams
and state machines

Michael Felderer1,2 & Andrea Herrmann3

The Author(s) 2018

Abstract UML activity diagrams and state machines are both used for modeling system
behavior from the user perspective and are frequently the basis for deriving system test
cases. In practice, system test cases are often derived manually from UML activity
diagrams or state machines. For this task, comprehensibility of respective models is
essential and a relevant question for practice to support model selection and design, as
well as subsequent test derivation. Therefore, the objective of this paper is to compare
the comprehensibility of UML activity diagrams and state machines during manual test
case derivation. We investigate the comprehensibility of UML activity diagrams and state
machines in a controlled student experiment. Three measures for comprehensibility have
been investigated: (1) the self-assessed comprehensibility, (2) the actual comprehensibil-
ity measured by the correctness of answers to comprehensibility questions, and (3) the
number of errors made during test case derivation. The experiment was performed and
internally replicated with overall 84 participants divided into three groups at two
institutions. Our experiment indicates that activity diagrams are more comprehensible
but also more error-prone with regard to manual test case derivation and discusses how
these results can improve system modeling and test case design.

Keywords UMLmodels . System testing . Systemmodels . Test design .Model
comprehensibility . Controlled experiment

Software Qual J
https://doi.org/10.1007/s11219-018-9407-9

* Michael Felderer
michael.felderer@uibk.ac.at; michael.felderer@bth.se

Andrea Herrmann
herrmann@herrmann-ehrlich.de

1 University of Innsbruck, Innsbruck, Austria
2 Blekinge Institute of Technology, Karlskrona, Sweden
3 Herrmann & Ehrlich, Stuttgart, Germany

(2019) 27:125–147

Published online: 23 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-018-9407-9&domain=pdf
mailto:michael.felderer@uibk.ac.at
mailto:michael.felderer@bth.se

1 Introduction

Behavior models like UML activity diagrams or state machines are not only used for system
modeling, but are also a valuable basis for deriving test cases in model-based testing (Utting
et al. 2012). Model-based testing is a variant of system testing that relies on explicit models
that encode the intended behavior of a system under test (SUT) (Utting et al. 2012). As
indicated in an experiment by Pretschner et al. (Pretschner et al. 2005), both automatically and
manually derived model-based test suites can detect significantly more requirements defects
than handcrafted test suites that were directly derived from the textual requirements. The fully
automated derivation of test cases from UML diagrams is still difficult and challenging. This is
due to the fact that high-quality UML models, which contain all information needed for
automatically deriving test cases, are required for this purpose. However, such models are
rarely available in practice. In addition, there is empirical evidence (Pretschner et al. 2005) that
handcrafted model-based suites detect as many errors as automatically generated model-based
test suites with the same number of tests. Therefore, we investigate the case which is still
practically more relevant than automation: A test designer analyzes a UML activity diagram or
state machine and derives several test cases manually in order to achieve test coverage. Like all
complex manual activities, this kind of test case derivation is error-prone and requires
comprehensible test models that require a significant amount of time to be created (Mohacsi
et al. 2015) and impact the quality of the derived test cases.

The objective of the study presented in this paper therefore is to examine model
comprehensibility when manually deriving test cases from UML activity diagrams and
state machines, and whether there are differences between these diagram types. For this
purpose, three measures for comprehensibility are collected from each diagram type in a
controlled experiment: (1) the self-assessed comprehensibility, (2) the actual comprehen-
sibility measured by the correctness of answers to comprehensibility questions and (3)
the number of errors made during test case derivation. Both serve as system models from
behavioral perspective and are in practice often used as alternatives (Pohl and Rupp
2011). In a previous publication (Felderer and Herrmann 2014), we have analyzed the
types of errors made when manually deriving test cases from UML models. In this
publication, the comprehensibility aspects of manually deriving test cases from activity
diagrams and state machines are investigated.

Knowing which of both diagram types better serves the purpose of test case derivation can
thus be useful for practice, when one has to select the right UML model type for system
modeling taking testing aspects into account. As both types of models, i.e., UML activity
diagrams and state machines, are often used interchangeably in practice to represent the
system’s behavior as well as use cases of a system (Pohl and Rupp 2011) and to further derive
test cases, it is relevant to investigate which model type is more comprehensible during test
design. In industry, it is common to have system tests executed by test personnel with some
domain knowledge, but only little experience in systematic testing (Felderer et al. 2014)
(Felderer and Herrmann 2014), for instance by key users. The required skills in test design
are then often provided in short trainings (Felderer et al. 2014) (Felderer and Herrmann 2014).
This situation is similar to courses at university if domains familiar to students and suitable
trainings are provided. We therefore investigate the difference between the two diagram types,
i.e., UML activity diagrams and state machines, in a controlled experiment with overall 84
students divided into three groups at two institutions, i.e., the experiment was performed with
two groups at Duale Hochschule Baden-Württemberg in Karlsruhe (Germany) and its

Software Qual J (2019) 27:125–147126

replication (Mendonça et al. 2008) by the same researchers was performed at the University of
Innsbruck (Austria).

This paper is structured as follows. Section 2 gives an overview of related work. Section 3
covers the experiment description and Section 4 presents the experiment results and their
analysis. Section 5 discusses the results and Section 6 threats to validity. Finally, Section 7
concludes this paper and presents future work.

2 Background and related work

Comprehensibility of UML models in the context of manual derivation of test cases have not
been investigated empirically before. However, there are two types of related work: (1)
empirical studies on comprehensibility of UML models discussed in Section 2.1 as well as
(2) on the manual derivation of test cases discussed in Section 2.2. In addition, in Section 2.3
we sketch the background on system test cases, as in our study we derive system test cases
from system models. In the remainder of this paper, we use the terms BUML activity
diagrams^ and Bactivity diagrams^ as well as BUML state machines^ and Bstate machines^
interchangeably.

2.1 Empirical studies on the comprehensibility of UML models

Quality of UML models has been investigated intensively in recent years and several empirical
studies are available (Budgen et al. 2011; Fernández-Sáez et al. 2013). The most empirically
studied quality attribute of UML models is comprehensibility (Cruz-Lemus et al. 2011a). It has
been investigated from different perspectives. Some approaches focus on layout and visuali-
zation aspects of UML models (e.g., (Purchase et al. 2001; Wong and Sun 2006; Eichelberger
and Schmid 2009; Sharif and Maletic 2010; Störrle 2012; Störrle 2014)). Others study styles
and rigor in UML models (e.g., (Briand et al. 2005; Nugroho 2009)) or look into the effect of
using stereotypes on model comprehension (e.g., (Staron et al. 2006; Sharif and Maletic 2009;
Ricca et al. 2010; Cruz-Lemus et al. 2011b)). Finally, closest to our work, different UML
diagram types are compared (Otero and Dolado 2004; Glezer et al. 2005). In two controlled
student experiments, Otero and Dolado (Otero and Dolado 2004) compare sequence diagrams
and state machines. They observe that (1) state diagrams provide higher semantic comprehen-
sion of dynamic modeling in UML when the domain is real-time and sequence diagrams are
better in the case of a management information system, and (2) regardless of the domain, a
higher semantic comprehension of the UML designs is achieved when the dynamic behavior is
modeled by using both sequence diagram and state machine. Results of a controlled student
experiment by Glezer et al. (Glezer et al. 2005) who compare collaboration and sequence
diagrams indicate that collaboration diagrams are easier to comprehend than sequence dia-
grams in real-time systems, but there is no difference in comprehension of the two diagram
types in management information systems. The difference between UML activity diagrams
and state machines has not been compared in controlled experiments, neither with respect to
comprehensibility nor with respect to manual test case derivation. Comprehensibility (also
called understandability) in different studies is measured by

& time need to read the diagram and to answer comprehensibility questions (Otero and
Dolado 2004; Glezer et al. 2005; Aranda et al. 2007),

Software Qual J (2019) 27:125–147 127

& self-assessed perceived comprehensibility or confidence (Glezer et al. 2005; Aranda et al.
2007; Cioch 1991),

& the number or proportion of correct answers to comprehensibility questions (Otero and
Dolado 2004; Aranda et al. 2007; Cioch 1991; Agarwal et al. 1999; Genero et al. 2008; De
Lucia et al. 2010),

& understandability efficiency, i.e., number of correct answers to comprehensibility questions
divided by time need (Genero et al. 2008; Cruz-Lemus et al. 2005),

& recall, i.e., proportion of the correct answers given by the participant out of all correct
answers, precision, i.e., proportion of the correct answers given by the participant out of all
answers given, and the F-measure (= 2 (precision recall)/(precision + recall)) for multiple
choice questions asked (De Lucia et al. 2010; Gravino et al. 2008).

Aranda et al. state that there are many variables to consider, and it may not be feasible to
evaluate them all in a single empirical study (Aranda et al. 2007). The most frequently used
comprehensibility metric is the number of errors made when answering comprehensibility
questions. So, we will use it in our experiment too.

2.2 Empirical studies on manually deriving test cases from UML models

This subsection provides a short overview on the state of the art of manually deriving
test cases from UML models. First, automated model-based testing is an approach
claimed to improve testing effectiveness although there is not much evidence for this.
Pretschner et al. (Pretschner et al. 2005) evaluate model-based testing based on a case
study of an automotive network controller. It motivates the usage of models on the
system level for deriving tests. Automatized test case derivation and manual test case
derivation seem to be equally efficient in terms of error detection. Many researchers have
shown that it is possible to automatically derive test cases from an activity diagram or
state machine, and to obtain as many test cases as are needed for test coverage (see
(Briand and Labiche 2002a; Kundu and Samanta 2009; Linzhang et al. 2004; Mingsong
et al. 2006) for activity diagrams as well as (Offutt and Abdurazik 1999; Kim et al. 1999;
Riebisch et al. 2003; Samuel et al. 2008) for state machines). However, for automatic test
generation, complete system models are needed, while during requirements engineering
and system design, the system models are often modeled just good enough to agree about
the functionality with the stakeholders. Therefore, information which is intuitively clear
to the project team might be not modeled, several steps might be summarized for more
clarity and not all special and error cases might be drawn. Some information like
preconditions and other conditions must be specified explicitly by enhancing the models
by test-specific stereotypes or OCL expressions (Object Constraint Language). Both
variants may be complex and hard to perform for a practitioner. A human test designer,
however, when deriving test cases, might be able to add information which is not
explicitly modeled. For sure, automatic generation may to some extent still be doable
with incomplete system models that may even be refined later in the development
process. However, this also requires additional effort and expertise for implementing
the test automation which is often not available.

Many empirical studies have investigated testing techniques (Juristo et al. 2004) or compare
different defect detection methods like testing and inspection (Runeson et al. 2006). Juristo
et al. (Juristo et al. 2004) summarize 25 years of empirical research on software testing

Software Qual J (2019) 27:125–147128

techniques based on more than 20 studies and conclude that collective knowledge on testing
techniques is limited. Runeson et al. (Runeson et al. 2006) provide a survey on empirical
defect detection studies comparing inspection and testing techniques based on evidence
reported in 10 experiments and 2 case studies. Both techniques have low effectiveness;
reviewers find only 25 to 50% of an artifact’s defects using inspection, and testers find 30 to
60% using testing. Using test models is one approach claimed to improve effectiveness,
although there is hardly any evidence for this. Pretschner et al. (Pretschner et al. 2005) present
an evaluation of model-based testing and its evaluation based on a case study of an automotive
network controller. Both automatically and manually derived model-based test suites detected
significantly more requirements errors than handcrafted test suites that were directly derived
from the requirements. The number of detected programming errors did not depend on the use
of models. Automatically generated model-based test suites detected as many errors as
handcrafted model-based suites with the same number of tests. Finally, Nugroho and Chaudron
(Nugroho and Chaudron 2014; Nugroho and Chaudron 2009) investigate the effect of UML
modeling, specifically the production of class and sequence diagrams, on the quality of the
code, as measured by defect density, and on defect resolution time in the context of an
industrial Java system. The authors found that the production of UML class diagrams and
sequence diagrams reduces defect density in the code and the time required to fix defects.

Granda et al. (Granda et al. 2014) measure a test case’s quality by semantic completeness:
BSemantic Completeness means that it contains all the statements about the domain that are
correct and relevant^ (see also (Lindland et al. 1994)) and BWe measure this variable by
counting how many functions expressed in the input specification are also treated in the
abstract test cases^ (Granda et al. 2014).

In our previous study (Felderer and Herrmann 2014), we analyzed the quality of test cases
manually derived from UML activity diagrams and state machines, which resulted in a
taxonomy of error types in test cases and their frequencies. In this study, the comprehensibility
of UML activity diagrams and state machines themselves during manual test case derivation is
investigated.

2.3 System test cases

In our study, we derive system test cases for requirements from requirements models. These
are black box tests in the sense of the following definition: BBlack-box testing describes testing
based on external specifications. It observes the operations to be executed. Therefore, input
data determine the appropriate action status of the program, and an output data sequentially
executed after invoking an input data.^ (Pretschner et al. 2005). We have slightly adapted the
test case template of the International Software Testing Qualifications Board (ISTQB) (ISTQB
2012). Our tabular template for test cases, which is also used in industrial projects (Felderer
and Beer 2013), is shown in Table 1. An identifier is inserted in the upper left corner next to the
precondition. A test case consists of a precondition as well as a sequence of test steps. A test
case contains a sequence of test steps, each with operation call, input data, and expected results
developed for a particular objective or test condition, such as to exercise a particular path or to
verify compliance with a specific requirement. A test step is mainly determined by its
operation call which further defines the input data and expected result. Each test step is
documented as one numbered row including an operation call, input data, and expected
result(s). We skip an explicit postcondition which in our template is included in the expected
result of the last test step.

Software Qual J (2019) 27:125–147 129

3 Experiment description

This section is structured as follows. Section 3.1 presents the research questions and analysis
procedure, Section 3.2 the experiment design, and Section 3.3 the execution of the experiment.

3.1 Goal, research questions, and variables

The goal of this experiment was to understand the model comprehensibility during the process
of manual test case derivation from UML models. The two diagram types (DT) activity
diagrams (AD) and state machines (SM) were compared to each other. We used models of
two different systems: an automated teller machine (ATM) and a drink vending machine
(DVM). For this purpose, the following research questions are investigated:

(RQ1) Are there differences between models described as UML activity diagrams and
state machines with regard to errors made when manually deriving test cases?
(RQ2) Are there differences between models described as UML activity diagrams and
state machines with regard to self-assessed comprehensibility when manually deriving
test cases?
(RQ3) Are there differences between models described as UML activity diagrams and
state machines with regard to actual comprehensibility when manually deriving test
cases?
(RQ4) Does the self-assessed comprehensibility of the models correlate with the number
of errors made when manually deriving test cases?
(RQ5) Does the actual comprehensibility of the models correlate with the number of
errors made when manually deriving test cases?
(RQ6) Does the self-assessed comprehensibility of the models correlate with the actual
comprehensibility?

The independent variable for all research questions is the diagram type (DT), i.e., UML
activity diagram (AD) or UML state machine (SM). Figure 1 shows the dependent variables
which we consider in the research questions and their relationships to these: the number of
errors (NOE) made in the derived test cases, the self-assessed comprehensibility (SCOMP),
and the actual comprehensibility (ACOMP). The research questions assigned to specific
variables in Fig. 1 (i.e., RQ1, RQ2, and RQ3) are answered by hypothesis testing, and the
research questions assigned to relationships in Fig. 1 (i.e., RQ4, RQ5, and RQ6) are answered
by correlation analysis between the two related variables (see Section 3.4 for further details
regarding the analysis procedure).

Table 1 Test case 1 for a gumball machine (which we used for training the participants)

TC_1 Precondition: matching coin inserted

No. Operation call Input data Expected result
1 Turn lever Coin thrown in
2 Check coin Number Not enough coins inserted
3 Insert coin Matching coin
4 Turn lever Coin thrown in
5 Check coin Number Enough coins thrown in
6 Eject gumball Gumball ejected

Software Qual J (2019) 27:125–147130

In the context of this study, we define an error in a test case as follows: A test case contains
an error when it deviates from the sample solution in a way that information is missing, too
much, too detailed or not detailed enough, or when it is written to the wrong template field. For
instance, for the test case shown in Table 1, deviations would be that one of the six test steps is
missing, or that the input data Bmatching coin^ is cited as expected result. Semantic com-
pleteness is most important here, as a test case differing from the sample solution can be
semantically correct, too. In order to count errors, we compared the test cases created by the
experiment participants to our sample solutions. These were the four sets of test cases needed
for branch coverage for each of the four diagrams. The sample solution contained three test
cases for the ATM’s activity diagram and four for the DVM’s activity diagram. Both state
machines demanded only one test case for branch coverage by traversing loops several times.
We distinguish between three levels of errors, i.e., test step, case or suite:

& Test step errors (NOE_STEP): errors with regard to input data, expected result or a
complete test step. Their number is counted individually, so each test case can contain
several step errors.

& Test case errors (NOE_CASE): errors made systematically in a whole test case for all steps
or errors with regard to the precondition

& Test suite errors (NOE_SUITE): errors made in all test cases of the test suite

Errors with regard to input data, expected result or the overall test step are counted on the
level of test steps, i.e., for each row in a test case description as shown in Table 1. Errors with
regard to precondition or the overall test case are counted on the level of test cases, i.e., zero or
one time for each test case as shown in Table 1. Finally, errors with regard to the test suite (i.e.,
errors which appear in all test cases of one test suite) are counted on the level of test suites. If a
specific error affects all test steps, then it counts on the level of test cases, and if an error affects
all test cases (including their precondition), then it counts on the level of the test suite. For
instance, if error Bprecondition missing^ holds for all test cases of a test suite (with more than
one test case), then the error Bprecondition missing^ is counted for the overall test suite. If
input is missing for all test steps of a test case (with more than one test step), then the error Bno
input^ is counted for the overall test case. All analyses of errors to answer RQ1, RQ4, and
RQ5 are performed for NOE_STEP, NOE_CASE as well as for NOE_SUITE.

The self-assessed comprehensibility (SCOMP) of a diagram is the participations’ subjective
rating of comprehensibility measured on a five-point Likert-scale with values Bvery good^,
Bgood^, Baverage^, Bbad^, and Bvery bad.^

Self-assessed
comprehensibility

(SCOMP)

Actual
comprehensibility

(ACOMP)

Number of
errors made

(NOE)

RQ1

RQ2 RQ3

RQ4 RQ5

RQ6

Fig. 1 The relationship between
research questions RQ1 to RQ6
and used dependent variables to
answer them

Software Qual J (2019) 27:125–147 131

The actual comprehensibility (ACOMP) of a diagram refers to the answers to four
comprehensibility questions about the diagram. These questions were open free text questions
(no multiple choice) and had only one correct answer. An answer could be wrong (0 points) or
correct (1 point), but also partly correct answers were possible and counted half a point. We
assume: If the participant gives a wrong answer to these questions, this shows that he has not
well understood this aspect of the diagram. ACOMP is measured by the sum of points
achieved when answering the four comprehensibility questions.

3.2 Experiment design

The experiment and its replication was performed with students as experimental subjects.
Three groups of students participated at two institutions, i.e., two groups of Business Infor-
matics students at the Duale Hochschule Baden-Württemberg in Karlsruhe (Germany) as well
as a group of Computer Science students at the University of Innsbruck (Austria). The
participants were additionally motivated to perform well by the fact that the manual test case
derivation was also part of the final written exam and the experiment was therefore a good
training for them. The groups were named after their institution, i.e., Karlsruhe group 1,
Karlsruhe group 2, and Innsbruck. All students in each of the groups knew UML models from
previous courses. At the Duale Hochschule Baden-Württemberg, the students attended a one-
semester course on software analysis where they learned about the different UML diagram
types including activity diagrams and state machines before the experiment actually took
place. Additionally, they applied UML models in an extensive one-semester case study project.
At the University of Innsbruck the situation was similar: the students attended a one-semester
course on software development and project management where they also learned about the
different UML diagram types including activity diagrams and state machines. In parallel, the
students applied UML in an accompanying practical one-semester software project. All
students received the same introductory training and domains familiar to them were chosen,
i.e., a gumball machine in the training phase as well as a drink vending and an automated teller
machine in the actual experiment. Besides basic knowledge about the applied UML models,
neither specific business nor technical knowledge was required with respect to the main task to
execute during the experiment, i.e., the manual derivation of test cases from activity diagrams
and state machines. As it was therefore unlikely that the Business Informatics and Computer
Science students have different prerequisites with respect to executing the experiment task,
each group performed the same one. We tested our assumption that there are no differences
between the three groups by a Kruskal-Wallis one-way analysis of variance (Crawley 2012)
which confirmed that the perceived comprehensibility and number of errors made for activity
diagrams and state machines do not differ significantly between the three groups. This context
is similar to how system testing is often performed in industry, where it is not uncommon to
have system tests executed by test personnel with some domain knowledge, but only little
experience in systematic testing (Felderer et al. 2014). For instance, when implementing
enterprise systems, testing is often performed by key users who are no software engineers,
but future users of the system. The required skills in test design are then often provided in short
trainings, i.e., similar to the training phase in our experiment. Such an experiment with
unexperienced participants can show what is difficult about a task, i.e., in our case, the manual
derivation of test cases from UML activity diagrams and state machines, and where a
procedure is not intuitive. We did not prescribe any procedure for the concrete test case
derivation, but only investigated the derived test cases themselves.

Software Qual J (2019) 27:125–147132

The main task for each participant was to derive test cases from activity diagrams and state
machines in order to achieve branch coverage. This means that all transitions (between
activities or states respectively) or edges of the diagram must be called by at least one test
case. All students had to perform this task twice with varying domains, i.e., drink vending
machine (DVM) and automated teller machine (ATM), and diagram type, i.e., UML activity
diagram (AD), and state machine (SM). The activity diagrams used in the experiment
contained 12 activities (each, for DVM and ATM). The state machines had three states (the
DVM) respectively five states (the ATM). These diagrams were developed for this experiment
and validated by persons with industrial experience. Their complexity was limited due to the
natural time constraints of the experiment. In order to avoid learning effects which would result
in better test cases for the model used second, each group used each system only once. This
resulted in two treatments: In treatment A, first test cases where derived from the AD of the
DVM, and as second task from the SM of the ATM, and in treatment B first from the SM of
the DVM and second from the AD of the ATM (see Table 2). In both treatments, the DVM
model was used first. Table 2 provides an overview of the experimental treatments per group.

For each group, we applied a between-subjects balanced design (Kirk 1995) in which each
treatment (A and B) has an equal number of participants as experimental subjects. The
assignment of the students to one of the two treatments was performed randomly. The design
of the experiments is robust against carryover effects as both the domain and the diagram type
change between the tasks of each treatment and avoid carryover in both respects when deriving
test cases.

For each task, the students received two sheets. The first sheet included the instruc-
tions, the diagrams, and comprehensibility questions. The instruction for test case
derivation read as follows: BPlease write down all test cases, which you need for
achieving branch coverage. For each test case, define the preconditions, individual test
steps, input data and expected results. Enter the test cases in the template. Try to define
test cases with the possible minimum of test steps.^ We did not prescribe any procedure
for the test case derivation. The second sheet contained the empty tabular test case
templates (like in Table 1) to be filled by the students.

The activity diagrams contain lifelines, activities and decision nodes, one initial node and
final nodes. Each decision node has several outgoing edges with disjunctive conditions.
Figure 2 shows an example for such an activity diagram modeling the flow of the gumball
machine used in the training phase. This activity diagram comprises five activities and has a
cyclomatic complexity (McCabe 1976) of 3 (with 11 nodes and 12 edges). The activity
diagrams used in the experiment were slightly larger and comprised 12 activities, both for
DVM and ATM. Their cyclomatic complexities were 2 for the DVM (with 19 nodes and 19
edges) and 3 for the ATM (with 19 nodes and 20 edges).

Table 2 Overview of treatments per group: for each group, treatment A means that the participants first derived
test cases from the DVM’s AD and then from the ATM’s SM, and treatment B vice versa first from DVM’s SM
and then from ATM’s AD

Karlsruhe group 1 Karlsruhe group 2 Innsbruck

Treatment A DVM-AD
ATM-SM

DVM-AD
ATM-SM

DVM-AD
ATM-SM

Treatment B DVM-SM
ATM-AD

DVM-SM
ATM-AD

DVM-SM
ATM-AD

Software Qual J (2019) 27:125–147 133

The state machines contain states and transitions with triggers, guards, and events. Figure 3
shows such a state machine modeling the flow of the gumball machine used in the training
phase. This state machine comprises four states and has a cyclomatic complexity (McCabe
1976) of 5 (with 6 nodes and 9 edges). The state machines used in the experiment had 3 states
for the DVM and 5 states for the ATM. Their cyclomatic complexities were 5 for the DVM
(with 5 nodes and 8 edges) and 6 for the ATM (with 7 nodes and 11 edges).

The input and output of an activity usually was obvious based on the model (in the activity
diagrams) or modeled explicitly (in the state machines). In the gumball example, we have the
activity Binsert coin^ and later-on the condition Bcoin matching^, from which the tester can
conclude that the input to step Binsert coin^ is a matching coin and the expected result is Bcoin
inserted.^ We took care that both models of the same machine were equivalent in terms of
level of abstraction as well as content, although the activity diagram notation originally is
meant as a system’s black box model and the state machine a white box model.

In our experiment, test cases are supposed to be executed manually and on the system level.
According to our practical experience of the structure of test cases, we adapted the ISTQB
definition (ISTQB 2012), as described in Section 2.3. A test suite is a set of several test cases
for the same system under test.

We specify each test case in a tabular template. The template for test cases, which is also
commonly used in industrial projects (Felderer and Beer 2013), is shown in Table 1, Table 3,
and Table 4. An identifier is inserted in the upper left corner next to the precondition. Each test
step corresponds to one numbered row including an operation call, input data and expected
result(s). All activities of an activity diagram as well as all triggers and events of a state

Customer Machine

Insert Coin Check Coin Number

Eject Gumball

[Not Enough Coins Thrown In]

[Enough Coins Thrown In]

Turn Lever [Coin Matching]

Remove Coin

[Coin Not Matching]

[Coin Not Inserted]

[Coin Inserted]

Fig. 2 Test model of gumball machine described as UML activity diagram used to prepare the participants in the
training phase

Software Qual J (2019) 27:125–147134

machine correspond to test steps. The students obtained a sheet for each task with four test case
templates on it.

Table 3 shows an example test case derived from the UML activity diagram of the gumball
machine shown in Fig. 2.

Table 4 shows an example test case derived from the UML state machine of the gumball
machine shown in Fig. 3.

The derived test cases are abstract as they do not contain concrete but abstract input data.
We decided to focus on abstract test cases as the derivation of concrete input data would
require additional data flow modeling and introduces confusing factors. But already the
derivation of abstract test cases, as discussed in our experiment, is of high practical relevance
as the creation of test data is in practice often performed independently of the abstract test case
derivation and even applies specific test design techniques like equivalence partitioning
(Felderer and Beer 2013) which are out of scope of the experiment.

Additionally to the main task of deriving test cases, the participants were also asked several
open comprehension questions with respect to the diagrams, in order to verify that they
basically understood the respective diagram. Finally, the participants were asked to judge the
perceived comprehensibility of the respective diagram on the following five-point Likert-scale:
very good = +2, good = +1, average = 0, bad = −1, very bad = −2.

We made available all provided sheets used as experimental material online at
http://homepage.uibk.ac.at/~c703409/manual_test_derivation.

We created and internally discussed sample solutions for each of the four sets of test cases.
The sets of test cases needed for edge coverage for each of the four diagrams were modeled

Coin Thrown In

[Enough Coins Thrown In] / Eject Gumball

Insert Coin [Coin Not Inserted]

Insert Coin [Not Enough Coins Thrown In]

Coin Inserted Turn Lever [Coin Matching]

Turn Lever [Coin Not Matching] / Remove Coin

Standby

[Coin Inserted]

Number of Coins CheckedCheck Coin Number

Fig. 3 Test model of gumball machine described as UML state machine used to prepare the participants in the
training phase

Table 3 Example test case derived from the activity diagram in Fig. 2

TC_2 Precondition: no coin inserted

No. Operation call Input data Expected result
1 Insert coin Not matching coin
2 Turn lever Coin not thrown in
3 Remove coin No gumball ejected and coin removed

Software Qual J (2019) 27:125–147 135

http://homepage.uibk.ac.at/~c703409/manual_test_derivation

completely. The sample solution contained three test cases for the ATM’s activity diagram and
four for the DVM’s activity diagram. Both state machines demanded only one test case for
edge coverage by traversing loops several times. However, semantically they contained the
same test cases like the activity diagram’s test cases, one executed after the other. We also
created sample solutions for all other questions we asked. Each author answered the questions
independently and then we compared our solutions and discussed them.

3.3 Experiment execution

The group sizes were 31, 25 and 28 students, respectively (see Table 5). The first two groups
were students of Business Informatics at the Duale Hochschule Baden-Württemberg in
Karlsruhe in their third year of studies and the experiment took place on the 14th October
2013 during the software engineering lecture. The members of the third group were 28
bachelor students of Computer Science at the University of Innsbruck. This experiment was
conducted in a lecture on software quality and took place on the 31st of October 2013. Table 5
shows how many participants from each of the three groups, i.e., Karlsruhe group 1, Karlsruhe
group 2, and Innsbruck, have received which of the two treatments, i.e., treatment A and
treatment B.

The experiment followed the same agenda for all three groups. As no previous experience
with the task of test case derivation could be assumed and we wanted all participants to
understand the task and the artifacts used, the experiment was prepared by a previous, similar
exercise. Consequently, each experiment included two sessions: the training phase and the
actual experiment.

The first session was the training phase. After an explanation of the task, in this
session, the students were asked to derive test cases from an activity diagram as well as a
state machine describing a gumball machine. The students first received instructions on
the task, and then tried themselves to perform the task. The derived test cases are abstract

Table 4 Example test case derived from the state machine in Fig. 3

TC_1 Precondition: coin inserted and coin not matching

No. Operation call Input data Expected result
1 Turn lever Coin not thrown in
2 Remove coin Standby
3 Insert coin Matching coin
4 Turn lever Coin thrown in
5 Check coin Number Not enough coins thrown in
6 Insert coin Matching coin
7 Turn lever Coin thrown in
8 Check coin number Enough coins thrown in
9 Eject gumball Gumball ejected and standby

Table 5 Test design: treatments, groups and group sizes

Karlsruhe, group 1 Karlsruhe, group 2 Innsbruck Sum

Treatment A 15 13 14 42
Treatment B 16 12 14 42
Sum 31 25 28 84

Software Qual J (2019) 27:125–147136

as they do not contain concrete but abstract input data. Afterwards, our sample solution
was presented and discussed with the whole group of students. This sample solution
contained a set of test cases for each of the diagrams which achieves branch coverage
and uses the minimum number of loops and steps. The sample solution also included the
correct answers to all questions on the questionnaire: the number of test cases needed for
each of the three types of coverage and the answers to the comprehensibility questions.
The students also received the sample solution. The experiences and feedback from this
exercise helped us to make the task description for the experiment more precise, to plan
the time schedule and to refine the material used. The observation of the students when
deriving test cases and the joint discussion of the solution reflected a broad understand-
ing of the UML diagrams and test derivation from these. Additionally, the two re-
searchers designed sample solutions before executing the experiment, to estimate the
required time and the difficulty of the experimental task.

The second session comprised the actual experiment. All students had to perform the same
tasks twice with varying domain and diagram type. In both treatments, the DVM model was
used first. This was done for the reason if a student asks a question concerning the DVM, it is
better that the other group works on the DVM as well to not being confused. During the actual
experiment, there were almost no questions asked. The students had as much time as they
needed. Their time need was 30 to 70 min for both diagrams. The motivation for the students
to participate in the experiment was the hint that a similar task would be part of the course’s
final exam.

It would have been interesting to log the time need for each individual task of the
experiment. However, for several practical reasons, we resigned to log the time. Due to our
experience from previous experiments, this would distract the participants from the test case
derivation and it is difficult to receive correct and complete time values. In addition, drawing
conclusions from the time need would be difficult anyway: a long time could mean slow
comprehension, but also high motivation and systematic working style (including re-reading
one’s results). Therefore, we decided to not log time and to not limit time to avoid any time
pressure.

3.4 Analysis procedure

In this section, we describe the analysis procedure applied to answer the six research questions
formulated before. According to their formulation, RQ1, RQ2, and RQ3 are answered by
hypothesis testing, and RQ4, RQ5, and RQ6 by correlation analysis.

To answer RQ1, the following hypotheses have been tested:

H1,0: There is no significant difference in the number of test step, test case and test suite
errors, respectively, made when deriving test cases between UML activity diagrams and
state machines.
H1,1: Significantly more test step, test case and test suite errors, respectively, are made
when deriving test cases from UML activity diagrams than from state machines.

To answer RQ2, the following hypotheses have been tested:

H2,0: There is no significant difference in the self-assessed comprehensibility of UML
activity diagrams and state machines.

Software Qual J (2019) 27:125–147 137

H2,1: UML activity diagrams have a significantly higher self-assessed comprehensibility
than UML state machines.
To answer RQ3, the following hypotheses have been tested:
H3,0: There is no significant difference in the actual comprehensibility of UML activity
diagrams and state machines.
H3,1: UML activity diagrams have a significantly higher actual comprehensibility than
UML state machines.

The goal of the statistical analysis is to reject the null hypotheses and possibly accept the
alternative ones. For all hypotheses, the independent variable is the diagram type (DT), i.e.,
activity diagram (AD) or state machine (SM). H1 is evaluated separately for test steps, cases
and the overall test suite. The dependent variables are NOE_STEP, NOE_CASE, and
NOE_SUITE, respectively. So H1 in fact covers three hypotheses, i.e., for NOE_STEP,
NOE_CASE, and NOE_SUITE. For H2, the dependent variable is SCOMP of a diagram,
and for H3 ACOMP. We formulate all hypotheses as one-tailed hypotheses because due to
personal experiences, initial data exploration, and previous investigations (Felderer and
Herrmann 2014) we have specific assumptions about the direction of the cause-effect rela-
tionship between the independent and dependent variables: On the one hand, one seems to
make more errors when deriving test cases from activity diagrams than from state machines
but on the other hand activity diagrams seem to be more understandable than state machines.
The aim of the statistical analysis is to reject the null hypotheses and possibly accept the
alternative ones. For data measured on an ordinal scale we use non-parametric Wilcoxon tests,
for other data we use a Shapiro-Wilk normality test (Crawley 2012), to determine whether the
data follows a normal distribution. If Shapiro-Wilk does not refute the assumption that the data
is normally distributed, we test by means of a t test (Crawley 2012), which is a parametric test,
and otherwise, we apply a non-parametric Wilcoxon signed-rank test (Crawley 2012). For all
hypotheses, we apply a significance level of α = 0.05. If the data is normally distributed, we
test H1 by means of the one-tailed paired t test (Crawley 2012), which is a parametric test.
Otherwise, we apply the non-parametric one-tailed Wilcoxon signed-rank test (Crawley 2012).
For hypothesis H2, which addresses the difference of the self-assessed comprehensibility
between UML activity diagrams (AD) and state machines (SM), we performed—as the
dependent variable COMP is measured on an ordinal scale—the non-parametric one-tailed
Wilcoxon rank-sum test (Crawley 2012).

For the analysis of correlation between the variables in RQ4, RQ5 and RQ6, we use
Spearman’s rank correlation coefficient (Crawley 2012) which is appropriate because in every
analysis at least one variable is measured on an ordinal scale. The statistical analyses of all
research questions are performed within the statistical computing environment R (Crawley
2012).

4 Experimental results

The experiment resulted in 150 sets of test cases which were expected to contain a total of 342
test cases. These contained a total of 1816 errors. Two participants, both in Karlsruhe group 2
and one for each treatment, did not create test cases at all and were therefore excluded from
further analysis. In what follows, we present the results and their interpretation with respect to
the investigated research questions.

Software Qual J (2019) 27:125–147138

(RQ1) The number of errors made when deriving test cases are shown for each of the four
diagrams in Table 6.

For the hypotheses H1 of all three error types, i.e., test steps, cases, and suites, respectively,
the p value of the Shapiro-Wilk normality tests is lower than 0.05. This finding points to the
fact, that the data are not normally distributed, and therefore H1 was tested according to the
analysis procedure with a Wilcoxon signed rank test due to the matched error types. With
p values of 0.01491, 0.00005 and 0.851, respectively, we can reject the null hypothesis H1,0 for
test steps and test cases but not for test suites, and conclude that significantly more test step and
test case errors are made when deriving test cases from UML activity diagrams than from
UML state machines.

(RQ2) The frequencies of self-assessed comprehensibility SCOMP per diagram type are
shown in Fig. 4. As mentioned in Section 3.4, hypothesis H2 was tested with the non-
parametric Wilcoxon rank sum test (also known as Mann-Whitney U test). With a p value
of 0.003013, we can reject the null hypothesis H2,0 and conclude that UML activity diagrams
have a significantly higher self-assessed comprehensibility than UML state machines.

Table 6 Error numbers (NOE_STEP, NOE_CASE, NOE_SUITE) for each of the four diagrams (DVM-AD,
SVM-SM, ATM-AD, ATM-SM)

NOE_STEP NOE_CASE NOE_SUITE Sum

DVM-AD 321 61 41 423
DVM-SM 249 16 47 312
ATM-AD 554 81 32 667
ATM-SM 333 42 39 414
Sum 1457 200 159 1816

12

52

17

00
1

27

38

10

6

0
1

0

10

20

30

40

50

60

very good good average bad very bad NA

AD SM

Fig. 4 Frequencies for self-assessed comprehensibility (SCOMP) per diagram type, i.e., activity diagram (AD)
and state machine (SM), where NA means value not available

Software Qual J (2019) 27:125–147 139

(RQ3) The frequencies of actual comprehensibility ACOMP per diagram type are shown in
Fig. 5. As mentioned in Section 3.4, hypothesis H3 was tested with the non-parametric
Wilcoxon rank sum test (also known as Mann-Whitney U test). With a p value of 0.04076,
we can reject the null hypothesis H3,0 and conclude that UML activity diagrams have a
significantly higher actual comprehensibility than UML state machines.

(RQ4), (RQ5), (RQ6) Table 7 shows the Spearman’s rank correlation coefficient between
error numbers (NOE_STEP, NOE_CASE, NOE_SUITE), self-assessed comprehensibility
(SCOMP), as well as actual comprehensibility (ACOMP). Between each pair of two different
variables only very weak correlations exist.

5 Discussion

In this experiment, we found that many errors are made when manually deriving system test
cases from both UML activity diagrams and state machines. However, there are statistically
relevant differences between both diagram types.

Significantly more test step and test case errors are made when deriving test cases from
UML activity diagrams than from UML state machines (RQ1). This seems to contradict the
finding that activity diagrams were found to be significantly better comprehensible than state
machines—both, with respect to the self-assessed comprehensibility (RQ2) and the actual
comprehensibility (RQ3) measured by the correctness of responses to comprehension ques-
tions. However, these findings are not really contradicting when considering that model
comprehension and test case derivation are two different activities. It can even be considered
logical that the activity diagram being less formal is more easily comprehensible, but then

2
1

7 7

22

7

21

15

2
3

15

9

16

6

17

14

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 NA

AD SM

Fig. 5 Frequencies for actual comprehensibility (ACOMP), i.e., sum of points for answering four comprehen-
sibility questions, per diagram type, i.e., activity diagram (AD) and state machine (SM), where NA means sum
not available

Software Qual J (2019) 27:125–147140

lacks part of the information needed for test case derivation. For instance, preconditions and
expected results are modeled explicitly in the UML state machine as states, whereas in the
UML activity diagrams, this information is contained implicitly in the diagram. This shows
that the two diagram types might be optimized for different project stakeholders. Activity
diagrams might be more easily understandable for customers, while for testers, the more
formal state machine fits better because it contains more of the information required for test
case derivation.

Additionally to the differences between the two diagram types, we analyzed correlations
between the self-assessed comprehensibility and the number of errors made (RQ4), between
the actual comprehensibility and the number of errors made (RQ5), and between the self-
assessed comprehensibility and the actual comprehensibility (RQ6). These correlation analyses
would show when there are correlations between the same person’s results: Do those subjects
who understood the model well or who thought they understood the model make less or more
errors? Do those who thought they understood the model well also give better replies to the
comprehensibility questions? However, no such correlations were found. From this, we draw
the following conclusions: Model comprehension and test case derivation are different steps
and seem to be relatively independent of each other. Understanding the model well does not
necessarily lead to better (or worse) test cases. The experiment participants could not well
judge their own model comprehension.

As model comprehension alone does not lead to complete test cases, the test designers
could profit from guidelines which support them when deriving test cases. Such guidelines can
read like: BEach activity in the activity diagram corresponds to one or several test steps.^, or:
BEach trigger in a state machine corresponds to an operation call of a test step.^

Our results are consistent with related work. We found that during manual derivation of test
cases from UML models, errors are made. This is similar for other complex activities
performed manually during software engineering, like inspections (Runeson et al. 2006). Such
activities cannot be performed manually without errors. Fully automated test derivation may
help to overcome this issue. However, this requires complete and correct test models, which
need a great effort and respective expertise to be created and maintained. Therefore, manual
test derivation is still of use and can help to detect and correct defects in the UML model and
therefore serves as a quality assurance activity.

Deriving test cases manually is error-prone and requires a significant manual effort. This
provides a motivation to automate the derivation of test cases from UML models. Approaches
for doing so exist. Some authors use state machines to derive test cases (e.g., (Kim et al. 1999;
Samuel et al. 2008; Kansomkeat and Rivepiboon 2003)), others use activity diagrams
(Linzhang et al. 2004; Mingsong et al. 2009; Kim et al. 2007; Tripathy and Mitra 2013),

Table 7 Correlation matrix between error numbers and comprehensibility (SCOMP and ACOMP)

Activity diagram (AD) State machine (SM)

SCOMP ACOMP SCOMP ACOMP

NOE_STEP 0.063 0.059 0.057 − 0.049
NOE_CASE − 0.069 0.099 0.104 0.069
NOE_SUITE − 0.015 0.029 − 0.087 − 0.045
SCOMP 1.000 0.078 1.000 0.127 RQ6
ACOMP 0.078 1.000 0.129 1.000

RQ4 RQ5 RQ4 RQ5

Software Qual J (2019) 27:125–147 141

and still others both (Swaina et al. 2010). However, many authors highlight that the UML
models without additional annotation do not contain sufficient information for automated test
generation. Therefore, state diagrams are for instance enhanced by OCL expressions (Offutt
and Abdurazik 1999; Weißleder and Sokenou 2008), activity diagrams are enhanced by OCL
expressions and further information (Briand and Labiche 2002b; Hartmann et al. 2005). Other
researchers combine two types of UML models, e.g., state machines with activity diagrams
(Swaina et al. 2010) or activity diagrams with sequence diagrams (Tripathy and Mitra 2013).
In practice, this means that the preparation for the automated test case derivation (similar to the
manual derivation that we discuss in this paper) also requires time-consuming and potentially
error-prone manual preparations.

In the literature, we found no comparison of the comprehensibility and error-
proneness of UML activity diagrams and state machines with regard to manual test case
derivation. So this paper is the first research contribution showing the easier compre-
hensibility and higher error-proneness of activity diagrams compared to state machines
when manually deriving test cases.

6 Threats to validity

In this section, we discuss the validity of the experiment, i.e., its internal, external, construc-
tion, and conclusion validity (Wohlin et al. 2012).

Internal validity is threatened if a relationship is observed between the treatment and the
outcome, although there in fact is none. This can happen when the observed effect is caused by
the treatment. However, we took care that the two diagrams presenting the same machine were
semantically equal. Another potential threat is the exchange of information among the
participants. We emphasize that participants were not allowed to communicate with each
other; we prevented this arranging them appropriately, i.e., students with the same treatment
did not sit next to each other, and we monitored them during the experiment.

In our specific experiment, the errors made by the participants depend strongly on the
quality of the explanations and instructions they obtained. We executed the experiment
with three groups who received the same explanations. They were prepared by a previous
exercise, so there was a feedback loop for the participants and also for the experimenters.
We understand our experiment results as a hint on where the training process can be
improved (e.g., by providing explicit guidelines), so the participants would make fewer
errors. We do not expect that there are differences between the Business Informatics
students and the Computer Science students because their previous knowledge with
respect to the task to execute was similar. All students knew UML models from previous
courses, received the same introductory training and were familiar with the chosen
domains. In addition, neither specific business nor technical knowledge is required to
perform the experiment task. We tested our assumption that there are no differences
between the three groups by a Kruskal-Wallis one-way analysis of variance (Crawley
2012), which confirmed that the perceived comprehensibility and number of errors made
for activity diagrams and state machines do not differ significantly between the three
groups.

Construct validity refers to the extent to which the experiment setting or the measure
chosen actually reflects the construct under study. The metrics to answer the research
questions were defined based on a literature research about which metrics are commonly

Software Qual J (2019) 27:125–147142

used. Students were given enough time to answer all questions and to perform the
experimental tasks. Social threats (e.g., evaluation apprehension) have been avoided,
since the students were not graded on the results obtained.

When comparing to comprehensibility measured by multiple choice questions, the F-
measure from the multiple choice questions is mathematically comparable to the ratio of
correct free text answers (Gravino et al. 2008). The free text questions in our experiment
could either be correct (1 point), incorrect (0), or partly correct (1/2 point). Our
participants achieved a ratio of 0.66 correct answers for the activity diagram of the
DVM and 0.64 for the ATM activity diagram. This is comparable to the results from a
similar series of student experiments (Reggio et al. 2011) where an F-measure of 0.52 to
0.64 was achieved for activity diagrams. The state machines achieved 0.56 correct
answers for the DVM and 0.74 for the ATM. So, our participants’ model comprehension
was in a good range.

Conclusion validity is concerned with data collection, the reliability of the measurement,
and the relationship of the treatment and the outcome, i.e., whether there is a statistically
significant relationship. In our experiment, 84 students participated. This is a sufficient sample
size providing enough data to derive significant results.

External validity is concerned with the extent to which it is possible to generalize the
findings. It is an important issue in student experiments. The results of our experiment
cannot be generalized to all industrial settings and to professional test designers. Expe-
rienced testers would probably derive more complete test cases. Furthermore, our results
are not generalizable to systems of arbitrary complexity, due to the rather low complexity
of the considered problems and the simplicity of the provided diagrams. Both limitations
result from the experiment’s time constraints. But also in industry, a remarkable amount
of the diagrams are only simple and illustrative, and testers not always are testing experts
but rather domain experts with only little experience in systematic testing (Felderer et al.
2014). The required skills in test design are then provided in short trainings (i.e., similar
to the training phase in our experiment). This increases the transferability of our results
to industrial settings.

We use this experiment for gaining insights into what errors are intuitively made by subjects
who have low previous experience in deriving test cases, but who have been trained before. To
test whether experienced testers make fewer errors is considered as future work.

7 Conclusions and future work

In this paper, we empirically evaluated the comprehensibility of UML activity diagrams
and state machines during manual derivation of test cases in a controlled experiment and
a replication with student participants. UML activity diagrams were found to be statis-
tically significantly more comprehensible than UML state machines, according to the
experiment subjects’ self-assessment as well as measured by correct replies to compre-
hension questions. However, more errors were made when deriving test cases from UML
activity diagrams than from UML state machines. When analyzing correlations on an
individual level, model comprehensibility and errors made during test case derivation
were not found to correlate. And the two measures of comprehensibility were also not
correlated, which seems to imply that participants could not quantify their own model’s
comprehension.

Software Qual J (2019) 27:125–147 143

We will continue following this direction of research. Two types of activities are planned:
First, we will analyze the data generated from the experiment further and investigate additional
research questions and hypotheses. For instance, we also asked questions which investigate the
personal characteristics of the participants and will try to find correlations between personality
and errors made. If there are correlations, this means that a good tester can be chosen based on
a personality test. The other line of future research is to execute further controlled experiments.
For instance, we plan to give the subjects more detailed guidelines and then to investigate
whether these improvements indeed reduce not only the total number of errors, but also which
concrete errors types are actually reduced. As the manual derivation of test cases from activity
diagrams or state charts is also common in practice, we plan industrial case studies to
investigate these research questions and to apply guidelines for manual test derivation in an
industrial context.

Acknowledgements Open access funding provided by University of Innsbruck and Medical University of
Innsbruck. We thank all participants of the experiment for their time and concentration.

Funding information This work was partly funded by the Austria Science Fund (FWF) through the project
MOBSTECO (FWF P 26194-N15) as well as by the Knowledge Foundation (KKS) of Sweden through the
project 20130085: Testing of Critical System Characteristics (TOCSYC).

References

Agarwal, R., De, P., & Sinha, A. P. (1999). Comprehending object and process models: an empirical study. IEEE
Transactions on Software Engineering, 25(4), 541–556.

Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S. (2007) A framework for empirical evaluation of model
comprehensibility. International workshop on modeling in software engineering (MiSE-07) .

Briand, L., & Labiche, Y. (2002a). A UML-based approach to system testing. Software and Systems Modeling,
1(1), 10–42.

Briand, L., & Labiche, Y. (2002b). A UML-based approach to system testing. Software and Systems Modeling,
1(1), 10–42.

Briand, L. C., Labiche, Y., Di Penta, M., & Yan-Bondoc, H. (2005). An experimental investigation of formality in
UML-based development. IEEE Transaction on Software Engineering, 31(10), 833–849.

Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. A., & Pretorius, R. (2011). Empirical evidence about the
UML: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.

Cioch, F. A. (1991). Measuring software misinterpretation. Journal of Systems and Software, 14(2), 85–95.
Crawley, M. J.(2012) The R book. Wiley.
Cruz-Lemus, J. A., Genero, M., Manso, M. E., Piattini, M. (2005). Evaluating the effect of composite states on

the understandability of UML statechart diagrams. in: Model driven engineering languages and systems
(MoDELS 2005), 113–125.

Cruz-Lemus, J. A., Genero, M., Caivano, D., Abrahão, S., Insfrán, E., & Carsí, J. A. (2011a). Assessing the
influence of stereotypes on the comprehension of UML sequence diagrams: a family of experiments.
Information and Software Technology, 53(12), 1391–1403.

Cruz-Lemus, J. A., Genero, M., Caivano, D., Abrahão, S., Insfrán, E., & Carsí, J. A. (2011b). Assessing the
influence of stereotypes on the comprehension of UML sequence diagrams: a family of experiments.
Information and Software Technology, 53(12), 1391–1403.

De Lucia, A., Gravino, C., Oliveto, R., & Tortora, G. (2010). An experimental comparison of ER and UML class
diagrams for data modelling. Empirical Software Engineering, 15(5), 455–492.

Eichelberger, H., & Schmid, K. (2009). Guidelines on the aesthetic quality of UML class diagrams. Information
and Software Technology, 51(12), 1686–1698.

Felderer, M., & Beer, A. (2013). Using defect taxonomies to improve the maturity of the system test process:
results from an industrial case study. In Software Quality. Increasing Value in Software and Systems
Development.

Felderer, M., & Herrmann, A. (2014). Manual test case derivation from UML activity diagrams and state
machines: a controlled experiment. Information and Software Technology, 61, 1–15.

Felderer, M., Beer, A., Peischl B. (2014). On the role of defect taxonomy types for testing requirements: results of
a controlled experiment, Euromicro SEAA 2014.

Software Qual J (2019) 27:125–147144

Fernández-Sáez, A. M., Genero, M., & Chaudron, M. R. V. (2013). Empirical studies concerning the mainte-
nance of UML diagrams and their use in the maintenance of code: a systematic mapping study. Information
and Software Technology, 55(7), 1119–1142.

Genero, M., Cruz-Lemus, J. A., Caivano, D., Abrahão, S., Insfran, E., & Carsí, J. A. (2008). Assessing the
influence of stereotypes on the comprehension of UML sequence diagrams: a controlled experiment.
MoDELS, 2008, 280–294.

Glezer, A., Last, M., Nachmany, E., & Shoval, P. (2005). Quality and comprehension of UML interaction
diagrams-an experimental comparison. Information and Software Technology, 47(10), 675–692.

Granda, F. M., Condori-Fernández, N., Vos, T., & Pastor, O. (2014). Towards the automated generation of
abstract test cases from requirements models. RET Workshop.

Gravino, C., Scanniello, G., & Tortora, G. (2008). An empirical investigation on dynamic modeling in
requirements engineering. MoDELS, 2008, 615–629.

Hartmann, J., Vieira, M., Foster, H., & Ruder, A. (2005). A UML-based approach to system testing. Innovations
System Software Engineering, 1(1), 12–24.

ISTQB. (2012). Standard glossary of terms used in software testing. Version, 2, 2.
Juristo, N., Moreno, A. M., & Vegas, S. (2004). Reviewing 25 years of testing technique experiments. Empirical

Software Engineering, 9(1–2), 7–44.
Kansomkeat, S., & Rivepiboon, W. (2003). Automated-generating test case using UML statechart diagrams. In

SAICSIT ‘03.
Kim, Y. G., Hong, H. S., Bae, D.-H., & Cha, S. D. (1999). Test cases generation fromUML state machines. IEEE

Software, 146(4), 187–192.
Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test cases generation from UML activity diagrams. In Eighth ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing.

Kirk, R.E.(1995) Experimental design. Procedures for the behavioural sciences. Brooks/Cole Publishing
Company.

Kundu, B., & Samanta, D. (2009). A novel approach to generate test cases from UML activity diagrams. Journal
of Object Technology, 8(3), 65–83.

Lindland, O., Sindre, G., Sølvberg, A. (1994) Understanding quality in conceptual modeling, 42–49.
Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., Guoliang, Z.(2004) Generating test cases from

UML activity diagram based on gray-box method. 11th Asia-Pacific Software Engineering Conference.
McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4), 308–320.
Mendonça, M. G., Maldonado, J. C., de Oliveira, M. C. F., Carver, J., Fabbri, S. C. P. F., Shull, F., Travassos, G. H.,

Höhn, E. N., & Basili, V. R. (2008). A framework for software engineering experimental replications. 13th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS 2008), 203–212.

Mingsong, C., Xiaokang, Q., Xuandong, L.(2006) Automatic test case generation for UML activity diagrams.
Proceedings of the 2006 international workshop on Automation of software test (AST 06).

Mingsong, C., Xioakang, Q., Wei, X., Linzhang, W., Jianhua, Z., & Xuandong, L. (2009). UML activity
diagram-based automatic test case generation for Java programs. The Computer Journal, 52(5), 545–556.

Mohacsi, M., Felderer, M., & Beer, A. (2015). Estimating the cost and benefit of model-based testing: a decision
support procedure for the application of model-based testing in industry. Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2015), 382–389.

Nugroho, A. (2009). Level of detail in UML models and its impact on model comprehension: a controlled
experiment. Information and Software Technology, 51(12), 1670–1685.

Nugroho, A., & Chaudron, M. R. V. (2009). Evaluating the impact of UML modeling on software quality: an
industrial case study. MoDELS, 181–195, 2009.

Nugroho, A., & Chaudron, M. R. V. (2014). The impact of UML modeling on defect density and defect
resolution time in a proprietary system. Empirical Software Engineering, 19(4), 926–954.

Offutt, J., Abdurazik, A.(1999) Generating tests from UML specifications. UML99, LNCS 1723.
Otero, M. C., & Dolado, J. J. (2004). Evaluation of the comprehension of the dynamic modeling in UML.

Information and Software Technology, 46(1), 35–53.
Pohl, K., Rupp, C. (2011). Requirements engineering fundamentals: a study guide for the certified professional

for requirements engineering exam-foundation level-IREB compliant. O'Reilly.
Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa, B., Zölch, R., Stauner,

T.(2005) One evaluation of model-based testing and its automation. In Proceedings of the 27th international
conference on software engineering. ACM.

Purchase, H. C., Colpoys, L., McGill, M., Carrington, D., & Britton, C. (2001). UML class diagram syntax: an
empirical study of comprehension. In Proceedings of the 2001 Asia-Pacific symposium on information
visualisation-volume 9.

Software Qual J (2019) 27:125–147 145

Reggio, G., Ricca, F., Scanniello, G., Di Cerbo, F., & Dodero, G. (2011). A precise style for business process
modelling: results from two controlled experiments. Model driven engineering languages and systems.
Springer Berlin Heidelberg, 138–152.

Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., & Ceccato, M. (2010). How developers’ experience and
ability influence web application comprehension tasks supported by UML stereotypes: a series of four
experiments. IEEE Transaction on Software Engineering, 36(1), 96–118.

Riebisch, M., Philippow, I., Götze, M.(2003) UML-based statistical test case generation. Objects, Components,
Architectures, Services, and Applications for a Networked World. LNCS 2591.

Runeson, P., Andersson, C., Thelin, T., Andrews, A., & Berling, T. (2006). What do we know about defect
detection methods? IEEE Software, 23(3), 82–90.

Samuel, P., Mall, R., & Bothra, A. K. (2008). Automatic test case generation using unified modeling language
(UML) state machines. IET Software, 2(2), 79.

Sharif, B., & Maletic, J. (2009). An empirical study on the comprehension of stereotyped UML class diagram
layouts. 17th International Conference on Program Comprehension, 268–272.

Sharif, B., & Maletic, J. (2010). An eye tracking study on the effects of layout in understanding the role of design
patterns. IEEE International Conference on Software Maintenance (ICSM), 1–10.

Staron, M., Kuzniarz, L., & Wohlin, C. (2006). Empirical assessment of using stereotypes to improve compre-
hension of UML models: a set of experiments. Journal of Systems and Software, 79(5), 727–742.

Störrle, H. (2012). On the impact of layout quality to understanding UML diagrams: diagram type and expertise.
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HC 2012), 49–56.

Störrle, H. (2014). On the impact of layout quality to understanding UML diagrams: size matters.Model-Driven
Engineering Languages and Systems (MoDELS 2014), 518–534.

Swaina, S. K., Mohapatrab, D. P., & Mallc, R. (2010). Test case generation based on state and activity models.
Journal of Object Technology, 9(5), 1–27.

Tripathy, A., Mitra, A.(2013) Test case generation using activity diagram and sequence diagram. Kumar A. et al.
(Eds.): Proceedings of ICAdC, AISC 174, 121–129.

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model-based testing approaches. Software
Testing, Verification and Reliability, 22(5), 297–312.

Weißleder, S., & Sokenou, D. (2008). Automatic test case generation from UML models and OCL expressions.
Software Engineering (Workshops).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Spring.

Wong, K., & Sun, D. (2006). On evaluating the layout of UML diagrams for program comprehension. Software
Quality Journal, 14(3), 233–259.

Michael Felderer is a professor in software engineering at the Institute of Computer Science at the University of
Innsbruck, Austria, and a guest professor at the Blekinge Institute of Technology, Sweden. He holds a PhD and a
habilitation degree in computer science. His research interests include software testing and software quality in
general, risk management, requirements engineering, model engineering, empirical software engineering, soft-
ware processes, security engineering, software analytics, and improving industry-academia collaboration. He
works in close collaboration with industry and transfers his research results into practice as a consultant and
speaker on industrial conferences.

Software Qual J (2019) 27:125–147146

Andrea Herrmann is a freelance trainer and consultant in software engineering with 20 years of work
experience. She holds a PhD in Physics and a habilitation degree in computer science. Her research interests
include requirements engineering, empirical software engineering, and IT project management. She wrote more
than 100 publications, regularly speaks at conferences, and is an associate member at IREB, co-author of syllabus
and handbook for the CPREAdvanced Level in Requirements Management, and speaker of the regional group of
the German Informatics Society in Stuttgart.

Software Qual J (2019) 27:125–147 147

	Comprehensibility...
	Abstract
	Introduction
	Background and related work
	Empirical studies on the comprehensibility of UML models
	Empirical studies on manually deriving test cases from UML models
	System test cases

	Experiment description
	Goal, research questions, and variables
	Experiment design
	Experiment execution
	Analysis procedure

	Experimental results
	Discussion
	Threats to validity
	Conclusions and future work
	References

