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Abstract

Learning from successful applications of methods originating in statistical mechanics, com-
plex systems science, or information theory in one scientific field (e.g., atmospheric physics
or climatology) can provide important insights or conceptual ideas for other areas (e.g.,
space sciences) or even stimulate new research questions and approaches. For instance,
quantification and attribution of dynamical complexity in output time series of nonlinear
dynamical systems is a key challenge across scientific disciplines. Especially in the field of
space physics, an early and accurate detection of characteristic dissimilarity between nor-
mal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to
vastly improve space weather diagnosis and, consequently, the mitigation of space weather
hazards.

This review provides a systematic overview on existing nonlinear dynamical systems-
based methodologies along with key results of their previous applications in a space physics
context, which particularly illustrates how complementary modern complex systems ap-
proaches have recently shaped our understanding of nonlinear magnetospheric variability.
The rising number of corresponding studies demonstrates that the multiplicity of nonlin-
ear time series analysis methods developed during the last decades offers great potentials
for uncovering relevant yet complex processes interlinking different geospace subsystems,
variables and spatiotemporal scales.

Keywords Solar wind — magnetosphere — ionosphere coupling - Magnetic storms -
Magnetospheric substorms - Space weather - Nonlinear dynamics - Complex systems

1 Introduction

Solar coronal mass ejections (CMEs) colliding at high speeds of up to 3000 km/s with the
Earth’s magnetosphere can cause extremely intense magnetic storms and sudden magnetic
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field changes (and electric field pulses) both in the magnetosphere and at the Earth’s surface.
Tsurutani and Lakhina (2014) found that a “perfect” interplanetary CME (ICME) could cre-
ate a magnetic storm with intensity up to the saturation limit, with the disturbance storm-time
index (Dst) ~ —2500 nT, a value greater than the one estimated for the famous Carrington
storm. The interplanetary shock would arrive at Earth within ~12 h with a magnetosonic
Mach number ~45, comparable to astrophysical shocks. Moreover, the associated magne-
tospheric electric field would form a new relativistic electron radiation belt. Eventually, the
dayside and nightside shock-related auroral events might cause geomagnetically induced
currents (GICs) at the surface of the Earth, which in turn could lead to the collapse of power
systems over large geographical areas. Recently, Welling et al. (2021) used the estimates
provided by Tsurutani and Lakhina (2014) to drive a coupled magnetohydrodynamic-ring
current-ionosphere model of geospace to obtain more physically accurate estimates of the
geospace response to such an event. The new result regarding GIC levels exceeds values ob-
served during historic extreme events, including the March 1989 event that brought down the
Hydro-Québec power grid in eastern Canada. Such an extreme space weather scenario illus-
trates, on the one hand, the need for reliable operational space weather prediction schemes
but also, on the other hand, the necessity to understand the underlying physical mechanisms
that correspond to an open spatially extended nonequilibrium (input-output) dynamical sys-
tem, as is the Earth’s magnetosphere (Consolini et al. 2008; Balasis et al. 2009).

The solar wind-magnetosphere system has been shown to be nonlinear (e.g., Tsuru-
tani et al. 1990; Johnson and Wing 2005; Reeves et al. 2011; Wing et al. 2016 and refer-
ences therein). Indeed, since the early 1990s it was shown how the dynamics of the Earth’s
magnetosphere-ionosphere system in response to the changes of the interplanetary medium
and to the solar wind displays a nonlinear, chaotic and near-criticality (avalanche) dynamics
especially during magnetospheric substorms (e.g., Chang 1992, 1998, 1999; Klimas et al.
1996; Consolini et al. 1996; Consolini 1997; Uritsky and Pudovkin 1998; Lui et al. 2000;
Uritsky et al. 2002). In particular, in Consolini et al. (1996) evidenced that the character
of the magnetospheric dynamics as monitored by the auroral electrojet (AE) index cannot
be simply assumed to be low-dimensional, showing, indeed, multifractal features similar
to intermittent turbulence. Later, analyses on the busty-dynamics and on the self-similarity
features of geomagnetic indices and auroral images (Consolini 1997; Uritsky and Pudovkin
1998; Chapman et al. 1998; Lui et al. 2000; Klimas et al. 2000; Uritsky et al. 2002) suggested
that the magnetospheric dynamics display features similar to those of a non-equilibrium
system near a critical point of the dynamics (see also, Chang 1999; Consolini 2002). In
this framework, the magnetospheric substorms, which are among the main manifestations
of the solar wind-magnetosphere-ionosphere coupling, were associated with the occurrence
of non-equilibrium dynamical phase transitions, mainly involving the plasma confined in
the central plasma sheet (CPS) region of the near-Earth magnetotail (Sitnov et al. 2000,
2001; Sharma et al. 2001) — a region which is characterized by turbulence and a complex
dynamics (Borovsky et al. 1997; Borovsky and Funsten 2003). Nowadays, the dynamics of
the Earth’s magnetosphere is regarded as an open spatially extended non-equilibrium sys-
tem displaying dynamical complexity and self-organization (Klimas et al. 2000; Consolini
et al. 2008; Borovsky and Valdivia 2018). The term dynamical complexity refers to a spe-
cific quantifiable physical property and has not to be read as a jargon to refer to fascinating
complicated phenomena. According to Chang et al. (2006) dynamical complexity is a phe-
nomenon deeply rooted in the nature that emerges in nonlinear interacting systems, when a
multitude of structures/subsystems at different spatio-temporal scales are formed and inter-
act generating a pseudo-stochastic dynamics. Furthermore, a peculiar feature of dynamical
complexity is that the evolution laws of the global system cannot be directly surmised from
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the elemental laws that regulate the dynamics of the single parts. In this framework, the
Earth’s magnetosphere-ionosphere system, which consists of several nonlinearly interacting
plasma regions and, inside of each of these regions, of different physical structures at differ-
ent spatio-temporal scales, can display dynamical complexity in response to solar wind and
interplanetary medium changes.

Dynamical complexity detection for output time series of complex systems is one of
the foremost problems in many fields of science. Especially in geomagnetism and mag-
netospheric physics, accurate detection of the dissimilarity between normal and abnormal
states (e.g., pre-storm activity and magnetic storms) has the potential to vastly improve space
weather diagnosis and, consequently, support the mitigation of space weather hazards. Sev-
eral studies have reported advances in this context by applying complex systems tools like
scaling exponents, entropies, functional network analysis, or recurrence analysis to different
types of observational data including geomagnetic indices, space and ground magnetometers
(Balasis et al. 2006, 2008, 2009, 2011a, 2013, 2018, 2020; Consolini et al. 2021; De Miche-
lis and Consolini 2015; De Michelis et al. 2016, 2017a, 2020, 2021; Dods et al. 2015, 2017,
Donner and Balasis 2013; Donner et al. 2018, 2019; Papadimitriou et al. 2020; Tindale and
Chapman 2016; Wing et al. 2022).

Herein we present specific aspects of geomagnetic variability (in both time and space)
that have already been successfully addressed with complex systems methods. By utilizing
a variety of complementary modern complex systems-based approaches, an entirely novel
view on nonlinear magnetospheric variability is obtained. For example, nonlinear measures
based on the analysis of recurrences of previous states (Marwan et al. 2007; Donner et al.
2011a, 2011b) have been successfully applied to studying low-latitude geomagnetic indices
Dst and SYM-H along with characteristic variables of the solar wind (Donner et al. 2018,
2019; Alberti et al. 2020b). Specifically, the time-dependent coupling between the solar wind
and the magnetosphere along with the relationship between magnetic storms and magneto-
spheric substorms is of paramount importance for space weather processes. However, the
storm/substorm relationship is one of the most controversial aspects of magnetospheric dy-
namics (Gonzalez et al. 1994; Kamide et al. 1998; Sharma et al. 2003; Daglis et al. 2003). In
order to further disentangle this relationship and the role of relevant solar wind variables as
drivers and mediators, multivariate causality measures employing the concept of graphical
models constitute one particularly promising tool (Runge et al. 2015, 2019a). Toward this
goal, in a recent article Runge et al. (2018) highlighted the significant potential of combining
a causal discovery algorithm with a conditional independence test based on conditional mu-
tual information for tackling contemporary research questions in magnetospheric physics,
such as the storm-substorm relationship. Accounting for possible interactions between pro-
cesses at different temporal scales, the aforementioned approaches can be combined with
a recently developed framework for studying cross-scale interdependencies in complex dy-
namics (Palus 2014).

Taken together, the multiplicity of recently developed approaches in the field of nonlinear
time series analysis offers great potential for uncovering relevant yet complex processes in-
terlinking different geospace subsystems, variables and spatio-temporal scales. Nowadays,
information science and dynamical systems theory play a fundamental role in understanding
and predicting the behaviour of the coupled solar-terrestrial system (Baker 2020). There-
fore, this review provides a first-time systematic overview of relevant complex systems-
based techniques and their applicability in the context of geomagnetic variability. Section 2
presents some particularly valuable concepts of dynamical systems theory, while Sects. 3
and 4 concentrate on substorm and storm research, respectively. Section 5 deals with the
solar wind driving of radiation belt dynamics, while Sect. 6 provides a perspective on how
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systems science methodology can be further used to advance physical understanding of the
near-Earth electromagnetic environment. The review concludes with an outlook.

2 Dynamical Systems Theory: Core Concepts and Their Practical
Application

2.1 Dynamical Systems Theory, Statistical Physics and Chaos

Dynamical Systems Theory originated in Newtonian mechanics and has emerged as a uni-
versal approach to investigate the time evolution of a vast range of systems in physics,
chemistry, biology, engineering and economy (Strogatz 2018; Contopoulos 2002), to name
just a few. In general, a set of variables, each denoting a particular property, characterizes
the instantaneous behaviour of the system. For example, a simple pendulum can be fully
described by two parameters, its angular position and angular velocity. This set of variables
represents the state of the system and the total number of such variables is called the number
of degrees of freedom. All possible states of a system construct the state space, the dimen-
sion of which is equal to the number of degrees of freedom. In fact, at every time step, each
state is represented by a point in the state space and its temporal evolution can be viewed as
a sequence of states in this space, called the system trajectory. In many cases, the trajectory
brings the system into a particular state or a set of states (a region in the state space) in
long time, known as the attractor of the system. An attractor can be a fixed point, in which
the system reaches an equilibrium state, or a limit cycle indicating a final stable oscillatory
situation. However, sometimes the system can also end in a non-oscillatory motion within a
complex-shaped set in the state space known as a strange attractor. Such systems are locally
unstable yet globally stable.

The most common way to describe how the system state evolves is a set of continuous
or discrete differential equations (also distinguished by the nomenclature of differential and
difference equations, respectively), based on the governing laws among system variables.
This also requires knowing the initial conditions (state) of the system. In principle, given
the initial conditions (present state), one can predict the long-time behaviour (future states)
of the system, deterministically. However, this may only be feasible for low-dimensional
cases, i.e., systems with small numbers of degrees of freedom. In fact, in high dimensional
systems with large numbers of degrees of freedom, like almost all real-world systems, one
cannot solve such high dimensional equations of motions in practice.

One of the most successful theoretical frameworks of physics that deals with such high
dimensional cases is statistical mechanics. Indeed, due to the incomplete knowledge of the
microscopic world there should be some uncertainty in the system behaviour, thus bringing
probability theory and statistics as well as entropy as a generic concept to quantify this
uncertainty to the front. As a consequence, one can describe the (average) macroscopic
behaviour of the system in terms of microscopic properties. In this approach, instead of
working with a single state, one deals with a large number of copies of the system in its
different possible states, referred to as a statistical ensemble of the system. This probabilistic
point of view has helped us to investigate and understand a multitude of phenomena in
nature, from the behaviour of elementary particles (Kardar 2007) to Earth and space sciences
(Consolini et al. 2008; Balasis et al. 2013; Livadiotis 2018) and beyond.

Note that many concepts introduced in statistical physics are only applicable in equilib-
rium situations, in which the statistical ensembles are time independent. However, almost all
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real-world systems are changing over time, and exchanging mass and energy with their envi-
ronment, i.e., they are open systems. Although non-equilibrium statistical physics can deal
with many non-equilibrium systems, still many natural systems are far beyond the domain
of non-equilibrium statistical physics. The seminal works of Einstein (Einstein 1905) and
Langevin (Langevin 1908) on Brownian Motion introduced another probabilistic approach
to overcome the high dimensionality of the system, especially in non-equilibrium situations.
In this methodology, one focuses only on a few relevant and useful variables, and considers
the effect of all other unknown dynamical variables as a noise, i.e. a stochastic term, and im-
plements this into differential equations among those small number of variables. These types
of equations are called stochastic differential equations and have found their applications in
many research fields including physics, engineering, economics and finance, biology and
medicine (Mao 2007). Such a stochastic point of view implies that any prediction about the
system’s future evolution is also probabilistic.

The main problem here is that we usually do not know the noise term and hence need
to make some assumptions about the nature of the noise. The validity of our assumptions
usually can be verified by the comparison between our predictions and the experimental
observations. Another possible source of stochasticity is the noise that arises from inaccu-
rate measurements. In such cases, we can also implement the role of such observational
noises into the corresponding dynamical equations, as mentioned above. Note that, instead
of solving the stochastic dynamical equations between different system parameters, one
can study the evolution of the probability density function of those parameters, by solv-
ing a deterministic differential equation, called Fokker-Planck equation (Kadanoff 2000) or,
more generally, the Chapman-Kolmogorov equation (Kolmogorov 1938). This means that,
the stochasticity aspect of the dynamics is inherited in the probability density that can give
us remarkable information about the system dynamics, though in most nonlinear problems
solving the Chapman-Kolmogorov or Fokker-Planck equation is almost impossible and one
can only approximate the probability density, at best. This kind of stochastic approach has
already found application in a broad range of research areas, such as climate modeling (Has-
selmann 1976) and space physics (Subbotin et al. 2010; Noble and Wheatland 2012).

On the other hand, the lack of precise knowledge about the initial conditions can be an-
other source of (apparent) stochasticity in the system’s behaviour, and thus be the source of
unpredictability even in low-dimensional deterministic systems. This arises from the high
sensitivity of the system dynamics to its initial conditions, in which a small uncertainty
in the initial states, such as those due to errors in measurements or rounding errors in nu-
merical calculations, often grow exponentially with time. This divergence of initially close
trajectories in long time can be characterized by a quantity called Lyapunov exponent that
measures the rate of this separation. This divergence means that the long-time behaviour of
the system is unpredictable in general without the presence of any stochastic elements in
its dynamics. Such behaviour is characteristic of nonlinear dynamical systems and classi-
fied as chaotic behaviour in which the system eventually reaches a strange attractor. Many
physical, social, biological and economic systems are examples of such chaotic behaviour
(Tsonis 1992), with many applications in climate and space sciences (Chen and Palmadesso
1986; Crosson and Binder 2009). Although many systems have been identified as examples
of low-dimensional deterministic chaos, using various methods which estimate chaos-based
parameters like dimension, number of degrees of freedom and Lyapunov exponents from ex-
perimental time series (Nicolis and Nicolis 1984; Fraedrich 1986; Tsonis and Elsner 1988),
however, many of these findings were challenged. For instance, it has been shown in at-
mospheric dynamics that the reliability of such chaos-identification algorithms is limited
and the observed low-dimensional weather or climate attractors have been considered as
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spurious results (Grassberger 1986; Lorenz 1991; Palu§ and Novotnd 1994). It asserts that
the application of chaos-based measures like fractal dimensions or Lyapunov exponent can
be unreliable in high dimensional or stochastic processes. After the critical re-evaluation
of concepts based on purely deterministic systems, various types of information-theoretic
measures have been proposed.

In the following, we will detail some fundamental concepts of dynamical systems the-
ory and nonlinear time series analysis that have recently proven useful for gaining deeper
insights into the nonlinear dynamical characteristics of the near-Earth electromagnetic envi-
ronment.

2.2 Stochastic Time Series Properties: Long-Range Dependence, Fractals and
Multi-Fractals

Long-range dependence is a wide-spread feature of real-world dynamical systems. By defi-
nition, it is associated with a linear time series analysis concept, the characteristic behaviour
of a signal’s autocorrelation function (exhibiting power-law decay for many real-world geo-
physical systems) or, equivalently, the associated power spectral density (also displaying a
characteristic power-law scaling), both of which are intimately related via a simple Fourier
transform. While the scaling behaviour of the autocorrelation function is generally hard to
identify for time series of limited length, the corresponding behaviour of the spectral density
provides an easy and robust means to estimating a characteristic quantity, the power spectral
exponent . This exponent is intimately related to another classical measure of long-range
dependence, the celebrated Hurst exponent H originally introduced by the British hydrol-
ogist E.E. Hurst in the 1950s, via 8 = 2H + 1. In the context of river discharges, it has
been argued that long-range dependence is naturally generated when superimposing various
“microscopic” (stochastic) processes with heterogeneous parameters, or, alternatively, by
performing a fractional-order integration of an input signal as a kind of nonlinear filter. Be-
sides the power spectral density, various types of other nonlinear scaling characteristics have
been suggested for estimating H, including rescaled-range and detrended fluctuation anal-
ysis as two widely employed examples. A systematic inter-comparison between the three
aforementioned techniques can be found in Witt and Malamud (2013).

The observation of long-range dependence in stochastic processes is related to a sta-
tistical self-similarity property of the time series graph, which is characterized by another
scaling exponent measuring the roughness of this object in two-dimensional space as the
scale of resolution is successively varied. Estimators of this scaling exponent quantify a
fractal dimension D from a univariate stochastic process perspective, since their definition
relies on fundamental concepts from fractal geometry. In the case of self-similar time se-
ries and the absence of heavy-tailed probability distribution functions, one finds another
straightforward relationship between fractal dimension and Hurst exponent as D + H = 2.
There exist various approaches for estimating D from a univariate time series, including
box-counting approaches, the Higuchi fractal dimension (Higuchi 1988), and Katz fractal
dimension (Katz 1988), to mention only a few common examples. It should be noted, how-
ever, that the concept of a fractal dimension of the time series graphs, although rooted in
fractal geometry, is intimately related with the linear time series property of power spec-
tral density, and hence may not necessarily provide further insights into the studied signal
beyond the latter. In essence, estimates of the Hurst exponent and the fractal dimension of
the time series graph can be used interchangeably as long as there are no further complica-
tions like heavy-tailed probability distributions as commonly associated to intermittency. By
contrast, in case of intermittent signals often encountered in space physics, both concepts
actually provide complementary information.
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2.3 Phase Space Based Methods

The aforementioned concepts of univariate time series analysis consider an observational
time series as a unique source of information whose statistical properties exhaustively char-
acterize the system under study, which however will typically be characterized by far more
degrees of freedom than just one variable. In order to account for this fact, the concept
of attractor reconstruction by embedding has become a core approach in dynamical sys-
tem theory. Rooted in deep mathematical arguments, embedding theorems imply that under
relatively general conditions, the action of unobserved variables of deterministic dynami-
cal systems can be qualitatively reconstructed by deriving independent coordinates from a
univariate time series, which are most commonly provided in terms of so-called delay co-
ordinates, i.e. exact time-shifted replications of the original data sequence (Takens 1981).
Accordingly, an m-dimensional state vector X can be reconstructed from scalar time series
x(t)as X(t) =[x(t),x(t—n),...,x( — (m — 1)n)], where n is the backward time-lag that
can, for example, be estimated from the first minimum of the mutual information (Fraser
and Swinney 1986). In general, this time shift (embedding delay) and the number of shifts
(embedding dimension m) should be chosen such that the individual coordinates are suffi-
ciently independent and their entirety spans a multi-dimensional vector space in which the
information contained by the original time series is completely unfolded among the different
dimensions.

Utilizing the multivariate time series originated from time delay embedding, we can char-
acterize the geometric properties of the system under study in the reconstructed phase space.
There exist multiple complementary approaches to obtain useful information from this geo-
metric perspective.

In the 1980s, in the field of dynamical systems, and in parallel also in the framework of
fluid turbulence, different measures of complexity and scale-invariant features of physical
systems have been introduced. They are mainly based on the concept of scaling, recalling
the definition of a fractal, i.e., a geometric object displaying self-similarity and fine struc-
ture at small scales. These measures, usually called fractal dimensions, account for how the
details change with the scale we are looking for. From a mathematical point of view, fractals
are described via the scaling properties of a partition function based on a coarse-grained in-
variant measure in the probability space. Specifically, if we have a support §2 and we define
a positive measure 4 (usually the probability of finding a portion of the state space filled by
points), the partition function I"(¢) is defined as

-1
r= / w(B.(0) " dp(x) @
fe)
that, in the limit of £ — 0 displays a scaling-law behavior as
re—o0~¢”? (22)

with D being the so-called fractal or box-counting dimension and B, ({) a box of size £
centered at x. The latter formalism be generalized to any statistical order g such that

I, = f n(Be()" dp(x) ~ 0700, 23)
2

where the D, are called generalized fractal dimensions, accounting for the correlation in-
tegrals of g-tuplets of points in the state space. In detail, Dy is the fractal (capacity or
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box-counting) dimensions, D, is the information dimension, while D, is the correlation
dimension, accounting for the minimum number of system variables required to reconstruct
the full dynamics of the system in its phase space. The box dimension Dy informs us on
the geometrical features of the phase-space, indicating the minimum number of indepen-
dent directions to be taken into account for confining the phase-space in a given geometrical
shape. In the case of self-similar signals it relates to the Hausdorff dimension and to the
Hurst exponent, informing us on the persistence/anti-persistence nature of the system. The
information dimension D, is a measure of the randomness of the distribution of points in
the phase-space, strictly linked to the concept of loss of information, i.e., for how long the
system can be accurately predicted. The correlation dimension D, instead is a measure of
the minimum number of variables (i.e., degrees of freedom) needed to properly describe the
system.

If all D, take the same values, we call the system under study mono-fractal, otherwise
multifractal. Multifractal dynamics often co-occurs with intermittency phenomena, which
are rather typical in space physics (e.g. the solar wind).

Another way to exploit the geometric properties of the multidimensional trajectory in the
reconstructed phase space is studying the recurrence patterns of previously visited states in
time. Here, recurrence refers to the close encounter of a previous state x, typically defined
as two states on the trajectory having a spatial distance smaller than some predefined thresh-
old . This concept of recurrence defines a binary relation between pairs of state vectors that
can be visualized in terms of a so-called recurrence plot (Eckmann et al. 1987), where the
morphology and statistics of patterns consisting of recurrent pairs can be used for defining a
variety of complexity measures that can serve as proxies for predictability, determinism or
laminarity, to mention only a few (Marwan et al. 2007). The density of recurrent pairs in de-
pendence of ¢ corresponds to the aforementioned correlation integral, and its characteristic
scaling exponent provides an estimator for the correlation dimension D,. In addition, it has
been shown that characterizing the geometry of recurrent state pairs in the multidimensional
phase space in terms of the topological characteristics of the resulting random geometric
graph (Donner et al. 2011b; Donges et al. 2012) results in additional useful measures of
complexity, which have been successfully employed in past studies to differentiate between
the nonlinear fluctuation characteristics of geomagnetic indices during magnetic storms and
quiescent periods (Donner et al. 2018, 2019).

While previous fractal dimension estimates have been based on the concept of scaling
in phase space, in recent years, based on the concept of recurrences, Lucarini et al. (2012)
introduced two dynamical systems metrics. One is the instantaneous dimension d, account-
ing for the active number of degrees of freedom, and the other is the inverse persistence
0, measuring the short-term stability of the state space trajectory. Let us assume to have a
trajectory in the state space x(¢) and x(¢*) to be a reference state of the system, i.e., a given
configuration of the near-Earth electromagnetic environment (as an example, the quiet mag-
netosphere). If we define g(¢*) as the Euclidean distance between x(¢) and the reference
state x (¢*), the probability of logarithmic returns in a sphere centered at t* and of radius r is
a generalized Pareto-like distribution whose parameters are directly linked with d and 6. In
the context of near-Earth electromagnetic environment studies these metrics have been em-
ployed by Alberti et al. (2022) to investigate the recurrence statistics of the AL and SYM-H
indices. The main result is the clear dependence of the number of active degrees of free-
dom on the geomagnetic activity. In particular, during substorms the number of degrees of
freedom increases at high latitudes; conversely, during a geomagnetic storm low-latitude
exploits a reduced number of degrees of freedom. These two opposite behaviors can be re-
lated to the fast relaxation processes occurring in the magnetotail and the solar wind driving
effect.
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2.4 Information-Theoretic Approaches

Usually, temporal recordings of some system observables are our only asset to study the sys-
tem of interest. Such time series may be univariate in the scalar case or multivariate when we
deal with more than one observable. The aim is to understand the underlying dynamics of the
system by analysing such deterministic or stochastic time series and extracting information
from them. To quantify their inherent information content, a wide range of information-
theoretic measures have been introduced. Univariate measures usually try to characterize
the complexity of the dynamics like Shannon entropy (Shannon 1948) that shares the for-
malism with the Boltzmann-Gibbs entropic form, Renyi entropy (Rényi 1961), nonextensive
entropy (Havrda and Charvét 1967; Daréczy 1970; Cressie and Read 1984; Tsallis 1988),
Fisher information, Approximate entropy, Sample entropy and Fuzzy entropy (Balasis et al.
2013). However, in multivariate time series, one can ask whether different dynamical vari-
ables evolve independently or are mutually dependent, or whether one variable can influence
other variables of the system. Studying such dependencies between different variables is also
an important area of research, and can be related to questions of correlation and causality.

2.4.1 Entropies and Measures of Complexity

In spite of the immense success of many nonlinear time series analysis approaches with
their broad range of applications, they often suffer from the domain of their applicability
and their necessary assumptions, such as equilibrium-nonequilibrium, stability-instability,
linearity-nonlinearity conditions, etc. As we mentioned before, entropy as a measure of the
amount of uncertainty in statistical physics, has proved itself as significant in understanding
various systems. In 1948, Shannon introduced a similar statistical concept to investigate the
information size of a transmitted message (Shannon 1948), called information or Shannon
entropy. For a discrete random variable X with a set of values =, the Shannon entropy H (X)
is defined as

H(X)=-=)_ p(x)log p(x), (24)

xe&

where p(x) = Pr{X = x}, x € & is the probability distribution function of X. Since this in-
formation entropy is not constrained by the aforementioned particular assumptions needed
to study the underlying dynamics of a system, it opened new paths of research and played
a significant role in the introduction of new statistical techniques (Kullback 1997). In the
late 1950s, Kolmogorov and Sinai demonstrated that using the information theory of Shan-
non, a nonlinear dynamical process can be characterized by an entropy measure called the
Kolmogorov-Sinai entropy (KSE). This entropy is suitable for classification of dynamical
systems and is related to the sum of the positive Lyapunov exponents of the system and
indicates that a nonlinear dynamical system can be represented as an information source
(Billingsley 1965). Thus, information-theoretic measures may help to better understand dy-
namical processes. Indeed, as information can be representative of any physical quantities,
the language of information theory proves to be powerful in investigating different complex
dynamical systems (Brillouin 2013).
Renyi entropy (Rényi 1961) is a generalization of the Shannon entropy, defined as

1
Hy(X) = —— log Y p(x)", 2.5)

xXeg
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where ¢ is a real parameter characterizing the weights of rare and frequent events, allowing
for scaling analysis of the system. Note that the Shannon entropy is a special case of H,
for ¢ — 1. For example, Von Bloh et al. (2005) investigated the long-term predictability
of global mean daily temperature data using the spatial patterns of the second order Renyi
entropy H,.

The most generalized and physically constistent nonextensive entropy follows the for-
mulation of Havrda and Charvat (1967), Daréczy (1970) and Tsallis (1988), which may be
found as nonextensive, Tsallis, g-, or kappa entropy, can be considered as a generalization
of the Boltzmann-Gibbs entropy in statistical physics, and is defined as follows:

k
S0 == [1 - Zp(x)"], (2.6)

xe&

where k is a positive constant that includes the Boltzmann’s constant, and ¢ is a real pa-
rameter that characterizes the degree of non-extensivity. For ¢ — 1 one can recover the
Boltzmann-Gibbs entropy, which is a thermodynamic analogy of the Shannon entropy. Tsal-
lis entropy has been widely applied in various fields of research (Tsallis 2009). For example,
Balasis et al. have applied nonextensive entropy to quantify dynamical complexity of mag-
netic storms and solar flares (Balasis et al. 2011b) and of time series of the disturbance storm
time index (Balasis et al. 2008).

In 1925, Fisher introduced a measure of the amount of information that can be obtained
from a set of measurements (Fisher 1925), called Fisher information. One can write the
Fisher information in the discrete form as

N—-1
[p(xn+1) - p(xn)]2
F =
2 p(xn)

) 2.7)

n=I1

where x,, is the random variable X at time n, p(x,) is its probability and N is the total num-
ber of time steps. Fisher information has proved itself as a powerful method to study various
non-stationary and nonlinear time series (Martin et al. 1999). For example, it has been used
to detect dynamical complexity changes associated with geomagnetic jerks (Balasis et al.
2016).

To compare deterministic and stochastic systems, Pincus introduced a new statistic for
experimental time series, called approximate entropy, which is a parameter that measures
correlation or persistence, i.e., low values of approximate entropy indicates that the system
is very persistent, repetitive and predictive, while high values represent high randomness
(Pincus 1991). Sample entropy is a modification of the approximate entropy, proposed in
Richman and Moorman (2000). Both approximate and sample entropy have been used in
various fields. For example, they have been applied in Balasis et al. (2013) to extract the
complexity dissimilarity between different states of the magnetosphere.

Fuzzy entropy is a non-probabilistic concept that quantifies unpredictability of a time
series. Fuzzy entropy is a measure of fuzzy information of a fuzzy system which is quite
different from the Shannon entropy which is based on probability. Indeed, the uncertainty
in fuzzy entropy arises from fuzziness, in contrast to the Shannon entropy where the uncer-
tainty comes from the randomness (Al-Sharhan et al. 2001). Fuzzy entropy can be written
as

S==> Tuilogu: + (1 — p)log(l — u)l, (2.8)

1
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where p; is the i-th Fuzzy membership function. Similar to approximate and sample en-
tropies, Balasis et al. also successfully applied Fuzzy entropy to extract the complexity
dissimilarity among different magnetosphere states (Chen et al. 2007, 2009; Balasis et al.
2013).

If applied to simple state discretizations of a univariate time series, the aforementioned
entropy concepts characterize merely higher-order distributional properties. This changes
distinctively if state definitions are taken into account that explicitly include some type of
dynamical perspective, e.g. by studying blocks of discretized states (Ebeling and Nicolis
1992) or their ordinalpatterns (Bandt and Pompe 2002). From the scaling of entropic char-
acteristics with increasingpattern length, it is possible to distinguish complex determinis-
tic from stochastic dynamics. Moreover, there exists a vast range of statistical complexity
measures that can be defined using entropy concepts. Combining entropy and associated
complexity characteristics in a two-dimensional plain (e.g. the complexity-entropy causal-
ity plain or the Shannon-Fisher plain) provides an effective means to distinguish chaos from
stochastic motion (Rosso et al. 2007, Ribeiro et al. 2017).

2.4.2 Information Theoretic Measures of Statistical Association

The classical cross-correlation function provides a standard way to measure the similarity
between the time series of two variables x (¢) and y(¢). We first define the time series x(f) =
x(t) — x as the deviation from the time average (indicated by the horizontal bar; similarly

for y(r)). Also the standard deviation of x(z) is given by ox =4/ (8x)2. Then the correlation
function is

Cyy(r)= 2D E+T) 2.9)

Ox0y

Note that the correlation is a function of the lag 7 of time series y(¢) in reference to time
series x (). While this fundamental measure is restricted to linear dependencies between
the two variables, several information-theoretic measures have been developed to provide
thorough generalizations, including mutual information, conditional mutual information and
transfer entropy.

The average amount of common information, contained in two random variables X and
Y, is quantified by the mutual information I (X;Y), defined as

I(X;Y)=HX)+ H(Y)—-H(X,Y), (2.10)

where H(X,Y)=—-) = Z),ET log p(x, y)log p(x, y) is the joint entropy and p(x, y) is
the joint probability density function of X and Y. Thus, by substituting the definitions of
H(X)and H(X,Y) in I(X; Y), one gets

1X:¥) =3 log plx. y) log ’Z)(C)pg) @.11)

xe& yeY

p(x »)

which is an average over log . This indicates that if two variables X and Y are in-
dependent, i.e., p(x,y) = p(x) p(y) then the mutual information 7 (X; Y) tends to zero. In
other words, if X and Y are dependent, then / (X; Y) > 0. In fact, 7 (X; Y) can be considered
as a generalized measure of (cross) correlation between two variables X and Y since, un-
like the common correlation measures that are only able to detect linear dependency, mutual
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information is capable of capturing the general dependency among variables, including non-
linear statistical associations. Note that / (X; Y) is a symmetric measure under the exchange
of X and Y and thus cannot be used as an appropriate causality measure straight away.

Palus (1996) introduced an information theoretic measure for classification of complex
time series based on auto-mutual information, characterizing the decay of I[x(¢); x (¢t + 7)],
called coarse-grained entropy rates. This measure quantifies the mutual information between
time series x at time ¢ and its time-lagged version, i.e., x at time ¢ 4 7 for a time lag v > 0.
This measure can be considered as a relative measure of regularity and predictability and
also is related to Kolmogorov-Sinai entropy for dynamical systems processes. For instance,
it has been used to classify some physiological signals like electroencephalography (EEG)
and tremor (Palus§ 1996).

By investigating the entropy rate of a Gaussian process, Palus (1997) developed a mea-
sure capable of distinguishing and characterizing different states of chaotic dynamical sys-
tems, called Gaussian process entropy rate. This is indeed a power-spectrum based entropy-
like functional and is related to the Kolmogorov-Sinai entropy of a dynamical system. Such
an entropy rate has been applied in meteorological time series to extract the system com-
plexity (Palus et al. 2011), for example.

2.4.3 Causality Among Time Series

A popular information-theoretic functional used for inferring causality under appropriate
assumptions is the conditional mutual information (CMI) I(X;Y Vv Z) of the variables X
and Y given the variable Z, defined as

I(X;YVZ)=H(XVZ)+HYVZ) —HX.,YVZ). (2.12)

If Z is independent of X and Y, then I (X;Y Vv Z) = I (X; Y), demonstrating that I (X; Y Vv
Z) extracts the net shared information between X and Y beyond the information of an-
other variable Z. In order to extract the possible time-delayed relationships among different
variables, one should work with time delayed versions of the abovementioned measures.
For example, if there is a time delay T between the two variables X and Y, one can de-
fine a time-delayed mutual information as I[X (¢); Y (¢ + t)], which measures the average
amount of information contained in the process X about the 7-future of the process Y. How-
ever, there is also information about the 7-future of Y contained in Y itself, if X and Y are
not independent. In this respect, the net information about the t-future of the process Y
which is contained in the process X can be obtained by the conditional mutual information
I[X(); Y(t + 1)V Y(t)] (Palus et al. 2001). This measure can extract the coupling direc-
tion in bivariate dynamical systems and indeed is a nonlinear generalization of the Granger
causality (Granger 1969). Schreiber (2000) introduced a measure using the idea of finite-
order Markov processes known as the transfer entropy, which is an equivalent expression
for the time-delayed conditional mutual information defined above.

Note that in empirical experiments usually only one possible dimension of the phase
space is observed for each system. In such situation, by drawing upon phase space recon-
struction by means of time delay embedding, the time-delayed CMI defined above can be
reformulated as

(X0 Y@ +1) VYD)
=I([x(®),x@t—n),....x(t —(m—1n)]; (2.13)
yt+1)V [y®),yt —p),....y(t = (n = Dp)]),
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where 1 and p are time-lags used for the embedding of variables X (¢) and Y (), respec-
tively. Note that here only the information about a single component of y(¢# + 7) in the
t-future of the system Y is used for simplicity. Further extensive numerical analysis (Palus
and Vejmelka 2007) suggest that often a CMI in the form

1(x@); Yt + )V y(0), ¥t = p)y ..., y(t — (n = Dp)) (2.14)

is sufficient to extract the direction of coupling among X (¢) and Y (#), i.e., the dimension-
ality of the condition must contain full information about the state of Y (#), while single
components x(¢) and y(t 4 7) are able to provide information about the coupling direction
from X to Y, denoted as X — Y. Simply, one can obtain the causal link ¥ — X as

I(y(t); x(t+T)Vvx@),xt—n)),. ..,x(t — (m — 1)77)). (2.15)

However, Palus (2014) criticized that, in general, the prediction horizon t in such equations
cannot well demonstrate a time-delayed coupling. Wibral et al. (2013) proposed a solution
by a simple reformulation as

I(x@; y(t+T) vyt +7 1),

(2.16)
yi+t—1=p),....y(t+7—1—@0—1p)).

Under certain assumptions (Runge et al. 2019a) these measures can detect the presence of
causal relationships. In Runge et al. (2019b) a systematic causal discovery algorithm for
time series has been presented that can be used together with conditional mutual informa-
tion. This algorithm was generalized in Runge (2020) to also detect instantaneous causal
relations, and in Gerhardus and Runge (2020) to also account for hidden common causes.
These methods have great potential for further studies of causal relations among geomag-
netic processes.

As an example, the conditional mutual information has been applied to investigate the
causal information transfer between solar wind parameters and geomagnetic indices (Man-
shour et al. 2021). Specifically, in order to find the causality directions as well as the presence
of any information transfer delay between the solar wind and the geomagnetic indices, the
conditional mutual information was estimated between the vertical component of the inter-
planetary magnetic field B, as a solar wind parameter and two well-known geomagnetic
indices representing the auroral electrojet (AE), a substorm index, and the SYM-H, a storm
index, using p = 5 samples (25 min) and n = 3 as the embedding parameters. In order to
compute the statistical significance of those calculations, the circular time-shifted surrogates
test was applied by comparing the empirical results with the average values of a set of 100
different realizations of the surrogates (Manshour et al. 2021).

Figure 1(a) demonstrates that a strong causal link exists from B, to AE and also the
information transfer takes two sample time steps (10 min). However, Fig. 1(b) indicates that
there is no causal relationship from AE to B,. Similarly, we plotted CMI for the time series of
B, and SYM-H in Fig. 1(c) and (d). Figure 1(c) indicates that a causal relationship also exists
from B, to SYM-H; and the information transfer takes six sample time steps (30 min). Also,
there is no causality in the reverse direction, as represented in Fig. 1(d). Our findings confirm
that the interplanetary magnetic field component B, drives both geomagnetic storms and
substorms with different delays. The response time for the magnetic storms is longer than
the time delay among the solar wind energy input and the energy release in the magnetotail
during a substorm (Maggiolo et al. 2017) since it takes a considerably long time to inject
particles into the ring current region (Daglis et al. 1999).
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Fig. 1 (Fig. 3 from Manshour et al. 2021) The coupling directions of (a) Bz — AE, (b) AE — Bz,
(¢) Bz—~> SYM — H,(d) SYM — H— Bz, (¢) AE - SYM — H, and (f) SYM — H — AE. (g) and
(h) are the coupling directions similar to (e) and (f), by taking B; as the common driver. Also (i) and (j) are
the coupling directions similar to (c) and (d), by taking AE as the common driver. The red lines and error bars
present mean and £2 standard deviations of CMI for a set of 100 circular time-shifted surrogates

The presence of any possible causal relationship between substorms and storms has been
an open and challenging debate in space weather studies. Here, to analyze the presence of
information flow between the geomagnetic indices, we further plotted in Fig. 1(e) and (f)
the CMI of AE and SYM-H. Figure 1(e) shows that there is a strong flow from AE to SYM-
H; which means that geomagnetic storms are driven by substorms without any delay. No
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information flow is detected from storms to substorms, as can be seen in Fig. 1(f). This
result is indeed in line with some previous studies (Stumpo et al. 2020; Ganushkina et al.
2005). However, we demonstrate that the observed causality in Fig. 1(e) is not a direct causal
link, and it indeed arises according to the presence of the common driver B;. To show this,
we consider the effects of this common driver in CMI calculations. We can simply include
B, as the third variable into the condition, as

I(AE(t); SYMH(t + 1)V SYMH(t +7 — 1), B.(t + T — 6), B,(t + 7 — 11)). (2.17)

Figure 1(g) and (h) represent this CMI, and interestingly we discover that there is no infor-
mation flow between AE and SYM-H when eliminating the role of the common driver B,.
Furthermore, we also check the possible role of AE on the observed information flow among
B, and SYM-H, by interchanging the variables of B, and AE. Figure 1(i) and (j) asserts that
the information flow of B, into SYM-H is independent of the AE index. Briefly, our re-
sults suggest that the observed information flow from geomagnetic substorms into storms
is induced by the common solar wind driver B, and in fact, there is no causal relationship
between substorms and storms, which is in agreement with some previous studies (Gonzalez
et al. 1994; Kamide et al. 1998; Runge et al. 2018). Runge et al. (2018) identified B, and
other confounders of AE and SYM-H by applying a systematic information-theoretic causal
discovery algorithm. However, it should be noted here that in-situ observations have shown
that the contribution of ion injections to the ring current energy gain is substantial, despite
the fact that our results for the specific time scales considered and datasets examined do
not favor the role of substorms in the enhancement of the storm-time ring current through
accumulative ion injections during consecutive substorms (see also the references in Runge
et al. 2018). Moreover, in contrast to our results, substorm bursty-bulk flows (BBFs) accom-
panied by strong convection may penetrate the inner magnetosphere and contribute to the
ring current.

2.5 Time Series Decomposition

Physical systems and natural processes are usually characterized by a chaotic and unpre-
dictable behaviour, typically displaying multiscale interacting components. This is mani-
fested in the existence of some scaling-law behaviour, reflecting their (multi)fractal nature.
Moreover, they are also characterized by bifurcations between different states, strange at-
tractors, and invariant manifolds, reflecting the different dynamical regimes of the system.
Thus, a first step towards characterizing these features relies on decomposition methods.
These methods are usually classified into adaptive and non-adaptive/fixed-basis concepts:
the latter presents a strong mathematical background, while the former detects structures
embedded with no a priori assumptions.

2.5.1 Wavelet Analysis

Fourier transform (FT), a cornerstone of time series analysis, is a commonly used technique
to convert a signal in time domain into a frequency domain representation by decompos-
ing it in terms of sinusoidal components (basis functions) spanning the whole spectrum. FT
captures only global frequency information, averaged over the entire time period of obser-
vations. Thus, if frequency components of a time series vary over time, FT cannot identify
those localized features of the series. In order to capture the frequency information localized
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in time, one can find a sequence of FT of a windowed signal, known as short time Fourier
transform (STFT). However, it still suffers from some limitations such as using a window of
constant shape and size as well as non-localized sinusoidal basis functions, so that it cannot
capture the characteristics of sharp events or those with different durations. On the other
hand, due to the Heisenberg’s uncertainty principle, STFT cannot generate features with
both time and frequency instantaneous localization.

Wavelet Transform (WT) tries to overcome the STFT shortcomings and is a powerful
technique for analyzing localized variations of power within a time series (Addison 2017).
Similar to STFT, WT is a method to convert a one-dimensional time domain signal into
a two-dimensional time-frequency domain signal, but in contrast to STFT, the wavelet al-
gorithm uses basis functions with transient nature, called mother wavelets, which are not
restricted to a single family of functions (like sinusoidal functions in STFT) and have a
wave-like nature that is localized in time, capable of locating the occurrence of a sharp
event in the time domain. The wavelet functions can be obtained as a linear combination of
scaled and shifted mother wavelets.

In general, a wavelet transform can be either continuous or discrete. At first, we briefly
describe the continuous wavelet transform (CWT) algorithm. The function W can be a
mother wavelet if it satisfies two conditions. It must have zero-mean

+00
/ Wt =0 2.18)

oo

and finite energy (or, equivalently, must be square integrable), i.e.,
+o00 2
/ |W(r)|"dr < oo. (2.19)
—00

As we mentioned above, a wavelet is constructed from a scaled and shifted mother wavelet
U as

e Lyg(t=f 2.20
w&,s()—jg ( S ) (2.20)

where 6 and s are shift and scale parameters, respectively. In fact, 6 indicates the location
of the wavelet in time and if s > 1 the wavelet is stretched along the time axis, whereas if
0 < s < 1, the wavelet is contracted. The CWT of a time series x(¢) in a given location and
scale can be obtained by projecting x (¢) onto the corresponding wavelet as:

+00
CWT)* = f x(O)Y, (t)dt, (2.21)

oo

where (*) indicates the complex conjugate. In fact, CWT provides the local similarity (or
correlation) of a particular section of a signal and the corresponding wavelet, thus by chang-
ing the shift and scale parameters one can construct a two-dimensional picture representing
the amplitude of any features versus the scale (or frequency) as well as the time resolution
of this amplitude. If the mother wavelet also satisfies the admissibility condition of

+0o (I 2
C E/ de < 00, (2.22)

o ol
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where W (w) denotes the Fourier transform of W(¢), one can reconstruct the original time
series by using the inverse wavelet transform as

1

1 +o0o +o0o
x(t) = — / / — CWT!* Yy s (1)dOds. (2.23)
Clow Jooo sl

Another form of wavelet analysis is the discrete wavelet transform (DWT), in which the
scale and shift parameters are discrete. For example, in the dyadic DWT the scale takes
values of the form s = 2¢ where k is an integer and at a given scale s, the shift parameter
takes values of the form 1 = 2/ where [ is also an integer number. Accordingly, discrete
wavelets are defined as

Ga() =273 W (275 — 1), (2.24)
The DWT of a signal x(¢) is
+00
DWT* = / x(O)p] (). (2.25)

The original signal x () can also be reconstructed using the inverse wavelet transform as

x(t)=) 27 DWT! ¢y (1), (2.26)
Lk

if the discrete wavelets form an orthogonal basis, i.e.,

+00
G ()P (O)dt = 818 (2.27)

—00

where §;; denotes the Kronecker’s delta function. Due to the discrete nature of the param-
eters in the DWT, localization of transient features or characterization of oscillatory be-
haviours is much harder than in the CWT. On the other hand, only a restricted number of
admissible wavelets are available in DWT when compared with CWT. However, the algo-
rithm of DWT is simple and computationally more efficient than CWT.

Wavelet transform has widely been applied in science, engineering, medicine and fi-
nance (Addison 2017), and it has already proved itself as a powerful tool in geophysical
research, including geospace disturbances (Katsavrias et al. 2022 and references therein),
synchronization between wavelet modes of North Atlantic Oscillation index, the time se-
ries of sunspot numbers, the geomagnetic activity aa index and near surface air temperature
(Palu$ and Novotna 2009), the magnetic storm activity (Xu et al. 2008; Mendes et al. 2005;
Wei et al. 2004), self-affine properties of geomagnetic perturbations (Zaourar et al. 2013),
external source field in geomagnetic signals (Kunagu et al. 2013), seasonal variations in
the Ap index (Lou et al. 2003), the effects of the interplanetary magnetic field polarities on
geomagnetic indices (El-Taher and Thabet 2021), the interrelationship between solar wind
coupling functions and the geomagnetic indices Dst and AL (Andriyas and Andriyas 2017),
variation of relativistic electrons in the outer radiation belt (Katsavrias et al. 2021), and the
causal relations between the magnetosheath pressure and the waves observed in the magne-
tosphere (Archer et al. 2013).
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2.5.2 Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a nonparametric and data-adaptive method that ad-
dresses a variety of problems in time series analysis including forecasting, imputation of
missing values, and reducing the dimensionality by decomposing a time series into a small
number of interpretable components such as trends, oscillatory behaviours and noise (El-
sner and Tsonis 1996; Golyandina et al. 2001). SSA contains elements of signal processing,
linear algebra, nonlinear dynamical systems, ordinary differential equations, and functional
analysis (Golyandina et al. 2001). As a powerful tool for time series analysis, it has fre-
quently been applied in a broad variety of fields such as oceanology (Colebrook 1978),
meteorology and climatology (Ghil and Vautard 1991; Keppenne and Ghil 1992; Yiou et al.
1994; Allen and Smith 1994; Ghil et al. 2002), nonlinear physics and signal processing
(Broomhead and King 1986), economy (Hassani and Zhigljavsky 2009), and social sciences
(Golyandina et al. 2001) among others.

The fundamental step in SSA is an orthogonal decomposition of a covariance matrix of
the studied time series into its spectrum of eigenvalues as well as its orthogonal eigenvec-
tors. One obtains linearly independent individual data components (modes) by projecting
original data onto these orthogonal eigenvectors. In fact, the basic univariate SSA steps
can be described as follows: Let a univariate time series y;, i = 1, ..., Ny, be a realiza-
tion of a stationary and ergodic stochastic process {Y;}. We map the original time series y;
into a sequence of d-dimensional lagged vectors of x; with components x¥ = y; ;_; where
k=1,...,dandi=1,..., N = Ny —d+ 1. The sequence of the vectors x; is usually re-
ferred to as the N x d trajectory matrix X = {x¥}, which contains the complete record of
patterns that have occurred within a window of size d (embedding dimension). Suppose that
the original time series y; results from a linear combination of m < d different dynamical
modes. Then, ideally, the trajectory matrix X has rank m, and can be transformed into a
matrix with only m nontrivial linearly independent components. Instead of the N x d ma-
trix X, it is more appropriate to decompose the symmetric d x d lagged-covariance matrix
C = XTX, since X and C have the same rank. If the components {x{‘} have zero mean, then
the elements of the covariance matrix C can be written as

1
M= "xlxl, (2.28)

where 1/N is a normalization factor. The symmetric matrix C can be decomposed as
c=vzv’, (2.29)

where V = {v;;} is an d x d orthogonal matrix and X is a diagonal matrix of elements
01,02, ...,04. The elements oy, k = 1, ..., d are the non-negative eigenvalues of C by con-
vention given in descending order oy > 0, > --- > g,. The square roots of the eigenvalues,
akl / 2, and the set of {a,(1 / 2} are called singular values and singular spectrum, respectively, and
give SSA its name. Simply, one can calculate the modes as &' = 27:1 vyx!. If the rank of
Cism<d,theno; > --- >0, > 0,41 =--- =04 =0. In the presence of noise, however,
all eigenvalues are positive and we have oy > --- > 0, > 0,41 > - -+ > 04 > 0 (Broomhead
and King 1986). In fact, if we plot the eigenvalues, o}, one can often observe an initial steep
decline for k =1, ..., m and a nearly flat line for k =m + 1, ..., d, thus the corresponding

modes, f;.", are considered as the signal part and the noise part, for the former and the latter
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case, respectively. In this respect, the signal modes can be used to reconstruct the denoised
signal ¥ as

ik = Z vkl (2.30)
I=1
Analogously, the original time series x! can be reconstructed back from the modes as
d
xk = ka15i1~ (2.31)
I=1

The modes Ei" can also be considered as time-dependent coefficients and the orthogonal
vectors {vf} as basis functions, also known as the empirical orthogonal functions.

As mentioned above, distinguishing the signal components from noise is based on finding
a threshold to a noise floor. This approach might be problematic if the noise present in the
data is not white but colored or the signal-to-noise ratio is not large enough. For example,
in the presence of red noise of 1/f type power spectra, which is ubiquitous in geophysical
processes, one cannot reliably detect a nontrivial signal only by comparing the eigenvalues,
since the eigenvalues related to the slow modes are much larger than those of the fast modes.
Hence, the eigenvalues of the slow modes might incorrectly be interpreted as a nontrivial
signal, or, on the other hand, a nontrivial signal embedded in a red noise might be neglected
if its eigenvalues are smaller than the slow-mode eigenvalues of the background noise.

To correctly distinguish a signal from red noise, a statistical approach called Monte Carlo
SSA (MCSSA) has been proposed that utilizes the Monte Carlo simulation techniques to
test the eigenvalues of the SSA modes against a red noise null-hypothesis (Allen and Smith
1996). Surrogate data complying with this null-hypothesis are constructed as realizations of
an autoregressive process of order 1, reflecting the 1/f character of the analyzed data spec-
trum. For each realization, a covariance matrix C, is computed and then projected onto the
eigenvector basis of the original data. The statistical distribution of the diagonal elements of
the resulting matrix, obtained from the ensemble of Monte Carlo simulations, gives confi-
dence intervals outside which a time series mode can be considered significantly different
from a generic red-noise process. An extension of MCSSA has been proposed by Palus and
Novotna (2004) to evaluate and test regularity of dynamics of the SSAmodes against the
colored noise null hypothesis, in addition to the test based on eigenvalues. This enhanced
MCSSA has successfully been applied in detection of oscillatory modes in records of the
monthly North Atlantic Oscillation index, the time series of sunspot numbers, the geomag-
netic activity aa index and near surface air temperature from several mid-latitude European
locations (Palu§ and Novotna 2008, 2009).

The SSA algorithm has also been extended in order to analyse multivariate time series in
the presence of noisy and/or missing data (Allen and Robertson 1996). Similar to the uni-
variate SSA, decomposition and reconstruction are two main ingredients in multi-channel
singular spectrum analysis (mSSA). Accordingly, the multivariate trajectory matrix D is
constructed as D = (X ' ..., X%) where L is the number of time series and X i represents
the trajectory matrix of the i-th time series. Then, the grand lagged covariance matrix is
obtained as C¢ = DT D. After finding the corresponding eigenvalues and eigenvectors of
the decomposed C€, one can compute the reconstructed components of the original time
series similar to the basic SSA algorithm described above. mSSA is an effective statistical
data analysis method and has been applied to various fields including oceanography, geo-
science, meteorology, among others (Vautard and Ghil 1989; Wang et al. 2016; Shen et al.
2017; Zotov et al. 2016; Zhou et al. 2018).

@ Springer



38 Page 20 of 82 G. Balasis et al.

2.5.3 Empirical Mode Decomposition

Recently, a wide range of adaptive methods have been proposed (Chatfield 2016) and also
applied in the field of geospace research (e.g., Balasis and Egbert 2006; Alberti et al. 2017,
and references therein). Among them, particular attention has been paid to the Empirical
Mode Decomposition (EMD) (Huang et al. 1998; Huang and Wu 2008). EMD is an adaptive
method based on an iterative process known as sifting that exploits the local properties of
signals to derive the decomposition basis. Given a signal y(¢), the sifting consists of the
following steps:

1. derive a zero-mean signal r(¢) = y(t) — (y(t)), with (...} denoting the time average;

2. derive the local maxima and minima of r(¢) and interpolate them separately via cubic
splines to derive upper u(¢) and lower /() envelopes;

3. evaluate the mean envelope m () = (u(t) +1(t))/2 and determine the detail h(t) = r(t) —

m(t);

a. if the numbers of extrema and zero crossings are equal or differ at most by one and
if the mean envelope of /4(¢) has a zero mean, then & (¢) is assigned to be an Intrinsic
Mode Function (IMFu) or empirical mode;

b. otherwise steps 1 to 3 are iterated n times until a candidate detail 4,,(¢) is assigned to
be an IMFu.

Step 1. to 3. are repeated on the residual r,(¢) = r(t) — h,(¢) until no more IMFus can be
extracted. In the end, the signal y(#) can be written as the sum of all empirical modes {c, (¢)}
and the final residue r(¢), e.g., a non-oscillating function, as

Ny

YO =Y alt) +r@), (2.32)

k=1

where N is the number of detected IMFus. The set of {c,(¢)} is the basis of a Hilbert space,
satisfying properties of completeness, convergence, and local orthogonality (Huang et al.
1998; Flandrin et al. 2004).

An example of the intrinsic mode functions obtained via the EMD procedure is shown in
Fig. 2 for the geomagnetic storm occurred on 22 August 2005. As expected, the amplitudes
of empirical modes show an increase in correspondence of the three geomagnetic storms.
However, the empirical modes associated with the shortest timescales, i.e., C;(t) — Cs(t),
show irregular amplitude enhancements also before/after the storms (see, e.g., the time
period from 10 to 15 August 2005), suggesting that at these timescales the dynamics of
SYM-H may be not directly controlled by the external driving, i.e., not linearly correlated
to interplanetary changes. Indeed, according to Alberti et al. (2017) the fluctuations at these
timescales do not show a one-to-one coupling with solar wind and interplanetary parameters,
indicating the occurrence of a nonlinear response at these timescales (see, e.g., Tsurutani
et al. 1990).

Once the decomposition basis is obtained, the local amplitude-frequency modulation can
be derived via the Hilbert Transform (HT) defined as

1 (@
Gt =—P / iGN (2.33)
T 0 t—t

where P denotes the Cauchy principal value. By defining a complex signal as

2k (1) = e (1) + i (1) = ag (1) (2.34)
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ar(t) =/ e (1) + ¢ (1)?,
& (t) (2.35)
Ck(t)i|7

&, (1) =tan™! [

where a; (t) and ¢ (t) are the instantaneous amplitude and phase of the k-th empirical mode,
respectively, a time-frequency-amplitude representation can be derived, usually known as
Hilbert-Huang spectrum, by contouring the squared instantaneous amplitudes in a time-
frequency plane (Huang et al. 1998). By integrating over time, the so-called Hilbert marginal
spectrum can be derived, strictly related to the Fourier power spectral density, accounting for
the second-order statistical moment frequency distribution (Consolini et al. 2017). It should
be noted though that estimating the exponents that characterize scaling is challenging in
real-world data, and requires a methodology that goes beyond Fourier approaches (Kiyani
et al. 2009, 2013).
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An example of the Hilbert marginal spectrum obtained from the analysis of solar wind
turbulence and small-scale dynamics is shown in Fig. 3 (Consolini et al. 2017). Two differ-
ent spectral regimes, characterized by different spectral exponents, can be identified above
and below the spectral break f, ~ 0.3 Hz. This frequency break is compatible with the ion
cyclotron frequency fp, considering the effect of the Doppler shift. Furthermore, below the
frequency break all the spectra tend to the typical magnetohydrodynamic (MHD) Alfvénic
turbulence spectrum (S(f) ~ f~*/2), while above f;, i.e., in the kinetic domain, the spec-
tra are approximately ~ f~3/3. This value seems to be compatible with several different
kinetic turbulent regimes (e.g., compressible Hall-MHD turbulence, EMHD-turbulence, ki-
netic Alfvén wave turbulence), which predict a spectral slope near ~—7/3.

As a conclusion of this part, we would like to summarize some of the advantages and
limitations of the EMD. It is particularly suitable to reduce a priori assumptions on the
functional form of the basis of the decomposition, carrying out local features from time
series that cannot usually be obtained by using fixed eigenfunctions. However, as for each
data analysis method some outstanding problems need to be listed.

1. End/Boundary effects occur since the sifting is based on the local extremes of the time
series. End points of the latter are clearly classified as local extrema. This can produce
misleading empirical modes, propagating into the decomposition process through the
sifting steps, since they are not the extreme values of the time series. To avoid this prob-
lem mirror and/or data extending methods (Huang and Wu 2008) have been proposed for
a better spline fit at the ends.

2. Mode mixing can take place if a similar scale is present in different empirical modes.
This is related to the signal intermittency, aliasing the time-frequency distribution and
devoiding empirical modes of physical meaning (Huang et al. 1998, 1999). One of the
ways to avoid this problem is a noise-assisted sifting, known as Ensemble EMD. It con-
sists of adding an ensemble of white noise series to the original data and use the EMD to
decompose each time series. Then, the true empirical mode is the ensemble mean of the
corresponding intrinsic mode functions of the decomposition.

2.5.4 Multiscale Fractal Measures of State Space Trajectories

One of the most intensively studied contemporary problems in nonlinear sciences is the
investigation of the multiscale dynamical properties of time series. Recently, the previously
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described EMD has been used in combination with state space indicators to investigate scale-
dependent properties of physical systems. As shown in Alberti et al. (2020a) multiscale
measures can be derived by looking at the generalized fractal dimensions at different scales
retrieved via the EMD algorithm. Let us assume that a signal s (¢) could manifest a multiscale
behaviour

s(0) = (s) + Z 8s.(1), (2.36)

where (s) is a steady-state average value and ds.(¢) a fluctuation at scale 7. For each
> . 8s:(t) a natural measure dyu, can be introduced in a way similar to the concept of
scale-local Rényi dimensions (Grassberger 1985) as follows. We first consider a partition
function

Fq [Mrv Bs,r(l)] :/dﬂr(s),ut(Bs,r(l))q ~ l(qiqu'rs (2.37)

with Bj ; (I) being the hypercube of size / centered at the point s on the space of the ) __ 8s..
Thus, the multiscale generalized fractal dimensions can be introduced as
L loglylpe, By ()]

D, .= 1 . 2.38
g -1 0 log! (2-38)

This approach, similarly to the partial dimensions proposed by Grassberger (1983), allows us
to detect information on the state space topological properties by investigating the behaviour
of the generalized dimensions at different scales 7. Furthermore, via the Legendre transform
we can evaluate the multiscale singularities and singularity spectrum as

o —i[(q—l)D ]
" dg o (2.39)

fe = flax) =qa: —[(g — ) Dy:].

Figure 4 reports an exemplary application of this formalism to the analysis of the SYM-
H geomagnetic index. It is interesting to observe the existence of a multifractal nature at
all scales, although different values are found for the multiscale generalized fractal dimen-
sions D, .. Indeed, a more regular behaviour is found at long timescales, mainly related
to the solar wind variability and to the nonlinear response of the magnetosphere to solar
wind changes. Conversely, the short timescale dynamics, that can be related to the internal
dynamics of the magnetosphere, is characterized by larger dimensions, reflecting a stochas-
tic nature of fluctuations. Furthermore, by reconstructing the phase space we can underline
two different regions: one corresponds to the quiet-time values of the SYM-H index and the
other to the disturbed-time ones. By using the short-scale reconstruction of empirical modes
it does not quite reproduce the phase space dynamics, suggesting that some relevant infor-
mation is missed. By providing instead reconstructions of IMFs on large timescales we are
able to cover those phase space regions which have not been captured by the fast compo-
nent. This can be interpreted as a signature of the existence of a different origin of processes
operating on short and long timescales.

2.6 Multiscale Stochastic Approaches in Geospace Research

Interpreting the geospace variability in terms of a dynamical system, whose dynamics spans
a wide range of scales with a clear separation between fast and slow processes, is one of the
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Fig.4 (Fig. 14 from Alberti et al. 2020a) Multifractal analysis of the Dst index

most promising aspects for understanding and predicting its variations. In the simplest way
a non-linear stochastic model, based on a generalized Langevin equation, could be feasible.
This approach, extensively used in the climate framework (see, e.g., Ditlevsen 1999; Kwas-
niok and Lohmann 2009; Livina et al. 2010; Alberti et al. 2014), is based on a 1-dimensional
system, described by a continuous system variable x(¢), whose slow dynamics is driven by
a forcing term F(x), while the fast dynamics is described in terms of a noise process 7(z)
of amplitude o. The Langevin equation reads

dx = —=U'(x)dr + odn(t), (2.40)

where U’(x) = —F (x). From a dynamical system point of view, U (x) captures all the sta-
tistical properties of the system, since it can be linked to the probability distribution function
of the system variable x. Indeed, in this case the Fokker-Planck equation now reads

2 92

[U'()px. 0]+ G—a—[p(x,t)]. (2.41)
2 9x?

ap(x,t) _ —0
o dx

In this case, the stationary solution for the probability distribution, p,(x), is a direct function
of the state function U (x), being

ﬂ] : 2.42)

pe@) ~exp[ .
o

Then, once the stationary distribution function p,(x) is known, by inverting the above rela-
tion it is possible to get the state function U (x) responsible for the slow dynamics as

2

Ux) = TG log s (x). (2.43)

The stationary solution is also an equilibrium solution (Ichimaru 1973), so that the state
function U (x) can be used to investigate the number and the nature of the available system
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states. Indeed, having even-order state functions (i.e., with positive curvature at both minus
and plus infinity), the number of zero crossings of the first derivative of U (x) corresponds
to the number of system states, while the sign of the second derivative evaluated at the zeros
of U’(x) characterizes their nature (positive: stable, negative: unstable) (Ditlevsen 1999;
Kwasniok and Lohmann 2009; Livina et al. 2010; Alberti et al. 2014).

3 Contributions to Substorm Research
3.1 Nonlinear and System Science Approaches to Substorms

Substorms share basic characteristics with driven, dissipative systems that are far-from-
equilibrium, and as such suggest points of contact with the wider field of non-equilibrium
statistical physics. The magnetosphere is a driven system with capacity for mass, momentum
and energy storage and release on multiple scales: (i) microscales, where an instability oc-
curs in a background plasma that can be treated as approximately uniform, (ii) mesoscales,
where the variation in the background is relevant, and (iii) macro- or system scales, there
the process spans the entire magnetosphere, as in a geomagnetic substorm.

Many of the approaches and physical models that have been suggested for substorms
have heritage in non-linear and complex systems modeling. We can chart the development
of this strand of substorm research across three broad categories:

1) Low-dimensional and in a smoothed sense deterministic

2) High dimensional and intrinsically stochastic

3) An emergent transition from a system dominated by processes on the micro and
mesoscale, to one characterized by large scale system-spanning coherent structure

3.2 Low-Dimensional and Deterministic

Some of the earliest attempts to understand and model the substorm cycle are of this class.
Baker et al. (1990a) suggested that the cycle of magnetotail loading and unloading maps
onto the “dripping faucet” of Shaw (1984). The water drip from a slowly leaking faucet will
always eventually produce a disconnected droplet of water, but the exact time of discon-
nection, and size of droplet, is highly uncertain as it appears to behave as a chaotic system.
An analogue is the formation of a near-Earth neutral line or the disconnection of the mag-
netotail (plasmoid formation: Hones et al. 1984) that can thus be modelled as a repeatable
phenomenon which nonetheless has an apparently random spread of properties around a
well-defined mean. Deterministic low-dimensional chaotic systems thus explain a broad dis-
tribution in inter-substorm waiting times without recourse to any stochasticity (Lewis 1991).
This class of model points to only a few parameters being necessary to determine the state of
the system. Sharma (1995) considered a data-driven approach to systemizing the substorm
cycle as a low-dimensional system. Sharma et al. (1993) used Singular Spectrum Analysis
(SSA) to project the time-series of driving and dissipation (solar wind input parameters and
geomagnetic indices) to construct the low-dimensional dynamical space in which the sys-
tem moves. By truncating to the first few components this space becomes low-dimensional
(few degrees of freedom) and the system orbits on a manifold in this space that is folded-
so that there is a catastrophe or discontinuous jump. Again, the motion is deterministic but
can exhibit a broad distribution of waiting times and event sizes. All approaches in this class
require the system to be low-dimensional, and as observations became more extensive it
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became clear that important physics is occurring across a broad range of spatio-temporal
scales. How these approaches could be extended to understand the substorm-storm relation-
ship is an open question. The system also can relax in principle via steady reconnection, and
has a strong-driving limit. These driving and relaxation modes are naturally accommodated
by the “dripping faucet” analogy.

3.3 High Dimensional and Stochastic

Following from new ideas in complexity science, there has been considerable interest in
models that are intrinsically stochastic and high dimensional. The “poster child” for this kind
of system is the avalanche, or “sandpile” model (Bak et al. 1987, 1988), intended to demon-
strate Self Organized Criticality — SOC (reviews: Jensen 1998; Watkins et al. 2015) although
there are a variety of interesting and potentially relevant models (Sornette 2006). The key
elements that these models seek to capture are as follows. The system is high dimensional
or has many degrees of freedom, that is, the physics enabling energy release and transport is
occurring on multiple spatial and temporal scales. These processes are non-linearly coupled
across a broad range of spatial and temporal scales. This is in contrast to systems which
we can isolate to a specific space and timescale, such as an oscillator or wave, or indeed, a
broad spectrum of waves which are not coupled and simply linearly propagate through each
other. There is a separation of timescales, the driving of the system occurs slowly and dis-
sipation and energy release (i.e., substorm onset and evolution) is fast. The system evolves
through many metastable states, there is no single path to instability (substorm onset), it is a
dynamical steady-state, not an equilibrium. The stochasticity in the system is intrinsic to the
many paths through which the system can evolve. This class of model naturally codifies the
idea of “multiscale” or “cross-scale” processes and indeed, the early work on sandpile mod-
els promoted this way of thinking about magnetospheric dynamics. Sandpile models were
considered as having points of contact with auroral observation and magnetotail dynamics
(Chapman et al. 1998; Lui et al. 2000; Uritsky and Pudovkin 1998; Consolini 1997; Uritsky
et al. 2002) but it is important to differentiate between models as a way to illustrate and cod-
ify the important physics — simple sandpile models — in the same sense as Baker’s “dripping
faucet” did for low-dimensional chaos, as opposed to detailed models that attempt to synthe-
sise avalanche models and MHD (e.g., Klimas et al. 2005). Furthermore, stochastic systems
near criticality can under some circumstances be characterized by a small number of rele-
vant parameters (Chang 1992) so that observations will exhibit low-dimensional behaviour
as described above.

These approaches are perhaps most valuable in that they drove new ways of looking
at the data. They predict that the onset time of the substorm will be inherently uncertain,
whereas event sizes will be predictable in their statistical distribution. Importantly, these
statistical models do not aim to reproduce specific detailed time-sequences of events that
are seen in the data. They do not identify a specific instability or detailed scenario of evolu-
tion of the system with energy transport, indeed, under different conditions, the system will
utilize different pathways for energy transport and release. This perspective suggests that a
quantitative statistical approach to the data can capture relevant aspects of the system’s be-
haviour. Although the solar wind driving of the magnetosphere and its response are highly
variable, their statistical distributions quantify space weather risk (Chapman et al. 2020 and
references therein) and are found to have properties that are independent of variation across
solar cycles (Hush et al. 2015; Tindale and Chapman 2016; Tindale et al. 2018; Chapman
et al. 2018) supporting space weather prediction and providing a quantitative benchmark for
space weather models.
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Alongside these complexity-led approaches, there is a well-developed field of stochastic
processes, that is, developing stochastic and kinetic equations (Langevin, Fokker-Planck and
Fractional Kinetics) that capture the essential features of the stochastic timeseries. These
have found application in describing solar wind parameters and geomagnetic indices (Hnat
et al. 2004; Watkins et al. 2009a; Alberti et al. 2018) and the relationships between them
(Hnat et al. 2005).

It is important to distinguish these approaches from the extensive work on turbulence
where models and methods developed in the mainstream turbulence literature have found
both application and development in quantifying the scaling properties of fluctuations in the
solar wind, magnetosheath and magnetotail (see e.g., Borovsky 2021). Turbulence and SOC
can be clearly distinguished in their limiting behaviour (Chapman et al. 2009) but are more
challenging to distinguish observationally in the finite-sized systems that we find in solar
and magnetospheric physics (e.g., Watkins et al. 2009b).

3.4 An Emergent Transition from Small to Large Scale Coherent Structure

Model driven approaches to the observations, such as those described above, when at their
best frame the analysis in terms of testing a hypothesis — the data supports the model or it
does not. Limitations of the data, and oversimplification in the models, can often mean that
quite distinct physical pictures are corroborated by some aspect of the observations when
viewed through a specific methodology. The methods used for quantifying low-dimensional
deterministic dynamics, and high-dimensional stochastic behaviour, can be quite distinct
and may only extract the properties consistent with one or the other. We are now moving
from a data-poor to a data-rich era of space plasma physics. Hence there is new interest in
data analysis methods that can handle large and diverse datasets and are, as far as possible,
non-parametric and model independent.

Network science is a well-established and highly active field, it provides a system for
extracting pattern from large datasets. Networks can be dynamic (i.e., time-evolving) and
directed (codifying information flow). Once a network is formed from the data, it can be
characterized by parameters that capture its topological properties (Dods et al. 2017). This
quite recent approach has already found application in ionospheric total electron content —
TEC (McGranaghan et al. 2017; Zou et al. 2011; Liu et al. 2020) and in ground-based mag-
netometers (Orr et al. 2019, 2021). Networks find natural application to non-uniform spatial
sampling and can extract the pattern of spatial correlation without requiring any gridding of
the data, desirable as gridding necessarily introduces its own spatial correlation. An impor-
tant non-trivial consideration is that the data needs to be uniformly calibrated, as is the case
of the SuperMAG network (Gjerloev 2012). Network characterization of spatio-temporal
correlation is in principle model-independent. This is a major advantage, in that a single
analysis based on networks can capture both high dimensional (many small interacting struc-
tures) and low-dimensional (few, large-scale coherent structures) behaviour. Naturally, the
analysis is limited to the spatial and temporal resolution of the measurements. Thus, in the
analysis of substorms (Orr et al. 2021), we can capture the transition from many, meso-scale
(a few hundreds of km) current filaments around onset, to one single current wedge at ex-
pansion phase. This picture of a substorm is the emergence of large-scale structure which
is always repeatable, from meso-scale structures which may differ from one event to an-
other. Since all the physics (that can be resolved by the observations) is captured, one can
test against competing hypotheses, most clearly, whether the substorm current wedge is a
single large-scale coherent structure or many small wedge-type current systems as a result
of individual flux bundles.
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Fig.5 (adapted Fig. 2 from Orr et al. 2021) Evolution of network community structure at the onset of the 16
March 1997 storm as seen by SuperMAG. Polar plots are in magnetic coordinates centered at the magnetic
pole, with midnight located at the bottom of each panel. (MLT = 0 h). Maps show the nightside from dusk
(MLT = 18 h) to dawn (MLT = 6 h) and 60-90° magnetic latitude. Magnetic field perturbation vectors (North
and East components, BN,E) are plotted in black. Polar VIS images are superimposed on each panel. Each
panel (a—f) shows a snapshot of the community structure in intervals of five normalized minutes from before
onset (a, ¢’ = —5) to the time of maximum expansion (f, ¢’ = 20). The circles represent ground magnetometer
locations with the line representing the BN, E vector. Black magnetometers are not part of a community. Each
individual community is indicated by a different colour. See Orr et al. (2021) for details, this study analysed
41 isolated substorms, and whilst the evolution towards onset is unique for each event, the final state is a
single large-scale community, indicative of a single large-scale current wedge

This approach can in principle be extended to three spatial dimensions and to combine
different, inhomogeneous data, which will enable both the exploration of extensive datasets,
and data-model comparison. Since it reduces the detailed multipoint observations to a few
topological network parameters, it allows statistical inter-event comparison to determine
to what extend the behaviour is repeatable, which features are typical and predictable and
which are essentially unpredictable. It may ultimately lead to a synthesis of the ideas devel-
oped above, so that the system in fact at different times/phases of activity exhibits high, or
low-dimensional behaviour. This kind of understanding is essential to understanding what
about the system is predictable, and what will be straightforward, or highly challenging, to
capture in advanced space weather modeling. An example of this analysis is shown in Fig. 5
and Fig. 6.
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Fig. 6 (adapted Fig. 3 from Orr et al. 2021) The normalized modularity, QN, of a set of 41 substorms that
have two or more magnetometers in four even local time sectors of the nightside and are quiet before onset.
Panels a, b normalized time is the abscissa. Panel a ordinate indicates bins of QN at each normalized time
and the color intensity indicates the probability as indicated by the colour bar on the rhs of the panel (count of
substorms with QN/total number of substorms). Panel b plots QN of each of the 41 substorms as a function of
normalized time, ¢/, as thin light gray lines. The median is overplotted in black and the 25 and 75% quantiles
in darker gray. Panel c plots the normalized histograms of QN of the events aggregated over 10-min intervals
as time progresses. The median is overplotted on each histogram. See Orr et al. (2021) for details, whilst there
is a wide variation in network modularity before onset, by 20 minutes after onset the modularity falls to a low
value, indicating that the network is dominated by a single community

4 Contributions to Storm Research

At the beginning of the space age, Akasofu (1964), discovered and described a sequence
of auroral brightenings and expansions in the midnight sector at auroral latitudes. These
events occurred up to a half dozen times a day during relatively geomagnetic quiet intervals.
Because there were no spacecraft carrying auroral cameras at the time, Akasofu made this
discovery using multiple ground-based all sky camera photographs of auroras laid out on
his living room floor. Sydney Chapman, the then PhD advisor of Akasofu, demanded that
Akasofu call these events “substorms” in his publication on the topic (Akasofu, personal
communication, 2016). To this day everyone agrees that a substorm is indeed the fundamen-
tal mode of massive energy deposition into the magnetosphere and ionosphere. However,
concerning the exact triggering mechanism, there are many different ideas (magnetic re-
connection: Dungey 1961; Russell and Elphic 1978; current driven instabilities: Huba et al.
1977; Coroniti and Eviatar 1977; ion tearing mode instability: Schindler 1975; Galeev et al.
1978; Zelenyi and Kuznetsova 1984; Lakhina and Tsurutani 1998; ballooning instability:
Roux et al. 1991), all of them with strong arguments in favor of them. It is possible that all
of these mechanisms are indeed correct in that there are several different causes of substorm
macroinstabilities.

The part of the concept of a substorm which is still controversial today is its role with
magnetic storms. Both Chapman and Akasofu considered a substorm to be an integral part
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of a magnetic storm, thus the name. The idea is that many substorms added together made
up a magnetic storm. To discuss this further, we first need to describe what a magnetic storm
is and isn’t.

In the 1960s, it was thought that magnetic storms had three main phases, the “initial
phase” where the Dst index (Iyemori 1990) becomes and remains positive, the storm main
phase where the Dst index becomes negative, and the recovery phase, where the Dst index
recovers to its background (~0 nT) level. From space age satellite observations, it was found
that it was magnetic reconnection between the interplanetary magnetic field (IMF) and the
Earth’s magnetopause magnetic field leads to solar wind energy input into the magneto-
sphere during magnetic storms (Rostoker and Filthammar 1967; Gonzalez and Tsurutani
1987; Tsurutani et al. 1988; Zhang et al. 2007; Echer et al. 2008). The mechanism of mag-
netic reconnection and energy injection into the nightside region of the magnetosphere was
proposed by Dungey (1961). The superthermal plasmasheet plasma is convected and adia-
batically energized to ~10 to 300 keV as it is injected into the magnetosphere to form the
ring current. The particles form a ring of current through gradient and curvature drift, thus
the name. The total amount of particle kinetic energy of the ring current particles is linearly
related to the decrease in the Dst indices, indicating that Dst is a good quantitative measure
of the storm intensity (Dessler and Parker 1959; Sckopke 1966).

This magnetic reconnection on both the dayside and nightside magnetosphere (Dungey
1961) and the formation of the enhanced ring current thus causes the main phase of the
magnetic storm. What are the interplanetary parameters that are the causes of magnetic
reconnection and magnetic storms? Well obviously southward magnetic fields for one and
solar wind velocity for another. Combined together they are the interplanetary electric field
E =V x B. Also a factor, but less of one is the plasma density (Gonzalez et al. 1989).
Echer et al. (2008) have shown that all 90 major magnetic storms with Dst < —100 nT that
occurred in solar cycle 23 were due to southward IMFs. Tsurutani and Gonzalez (1995)
showed that with northward IMFs geomagnetic quiescence occurred. The energy input into
the magnetosphere was 100 to 30 times less than during southward IMFs.

Then what is the “initial phase” and its physical cause? It was experimentally found by
Smith (1979) and Tsurutani et al. (1988) that magnetic storms generated near solar max-
imum were typically caused by Interplanetary Coronal Mass Ejections (ICMEs) and their
upstream sheaths. ICMEs are the interplanetary remains and evolution of CMEs coming
from the Sun. The fast CMEs are led (on the antisunward side) by fast mode collisionless
shocks (Kennel et al. 1985), which have compressed and accelerated the slow solar wind
forming the sheaths. The abrupt plasma density jump at the shock/sheath causes a sudden
compression of the Earth’s magnetosphere due to the increase in the solar wind ram pres-
sure. This compression is noted as a “sudden impulse” (SI') by ground-based magnetome-
ters (Araki et al. 2009). However, if there is no southward IMF component in the sheath or
following ICME proper, there is no enhanced magnetic reconnection and thus no magnetic
storm main phase. For this reason, modern scientists have dropped the term storm “initial
phase” because it is just magnetospheric compression and not part of the storm itself. This
has been discussed in detail by Joselyn and Tsurutani (1990) in which they suggest that the
term “Storm Sudden Commencement” (SSC) be dropped from the literature. The shock will
always produce a “sudden impulse” (Araki et al. 2009) and that term should be used instead.

The magnetic recovery phase is caused by the loss of the energetic ring current particles.
This has been described and modeled by Kozyra et al. (1997, 2002) and Jordanova et al.
(1998). The loss processes are charge exchange, Coulomb collisions, wave-particle inter-
actions (with consequential particle loss to the ionosphere) and convection out the dayside
magnetopause.
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When Chapman and Akasofu coined the term “substorm”, they realized that although
substorms occur during all phases of magnetic storms, there were far more events during the
storm main phase than either of the other two. This led to their speculation that substorms
were the building blocks of magnetic storm main phases.

Is there observational evidence contrary to the Chapman and Akasofu hypothesis that mag-
netic storm (main phases) are caused by multiple substorms?

The answer is yes, on two different fronts. Tsurutani et al. (2004) searched for magnetic
storms with a lack of substorms. The magnetic storms were identified by events where Dst <
—50 nT and substorms were identified by high values of the AE indices. They found that
magnetic storms caused by slowly rotating southward interplanetary magnetic fields would
create Dst depressions that would quantitatively qualify as magnetic storms. These slowly
rotating magnetic fields were part of the magnetic cloud (MC) portion of the ICME. These
storms had a significant lack of AE substorms or no substorms at all. So there are published
examples of storms without substorms.

But is that the end of the argument? Well not quite. These events appeared as large
amplitude “convection bays” (Pytte et al. 1978; Sergeev et al. 1996). The question then
becomes “is this not a true magnetic storm, but some other geophysical phenomena?”. This
topic has yet to be answered.

There is another form of geomagnetic activity besides isolated substorms and magnetic
storms. This geomagnetic activity that occurs associated with Alfvén waves embedded in
high speed solar wind streams. The streams emanate from coronal holes primarily during
the declining phase of the solar cycle (Krieger et al. 1973; McComas et al. 2002). Earlier
Tsurutani and Gonzalez (1987) found this activity and gave it a descriptive name, “High-
Intensity Long-Duration Continuous AE Activity” (HILDCAA) event. These events had to
occur outside of a magnetic storm, had to last 2 days or longer, reached peak AE values of
1000 nT or higher, and had no lapse of AE less than 200 nT for 2 hours or more. The south-
ward component of the Alfvén waves caused magnetic reconnection and the consequential
HILDCAA geomagnetic activity. HILDCAAS have been found to be a series of substorms
(identified by spacecraft imaging), but there are other “convection events” present as well
(Tsurutani and Gonzalez 2007). The convection events are now recognized as being associ-
ated with Nishida (1968) DP2 current systems. However, the main point is that HILDCAAs
are an example of many consecutive substorms/convection events that do not form a mag-
netic storm. Thus, this is a contrary example from another perspective.

If magnetic storms are different from a series of substorms what is the relationship between
the two?

We know from observations that both are caused by southward interplanetary magnetic
fields and magnetic reconnection. Substorms occur from short duration southward fields
(Tsurutani and Meng 1972; Kamide et al. 1977). Magnetic storms are caused by long dura-
tion and intense southward magnetic fields (Gonzalez et al. 1994; Daglis et al. 2007). During
most (main phase) magnetic storms there are many substorms as well.

It is possible that the two phenomena are independent and the two systems can be opera-
tional at the same time (Tsurutani and Gonzalez 2007). Magnetic storms involve large scale
entire magnetospheric convection patterns. The convection electric fields produce the ener-
gization for the ring current formation. Substorm reconnection and subsequent convection
is more highly localized and involve only a relatively small portion of the nightside magne-
tosphere. One test to determine if this scenario is correct and the two systems can operate at
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the same time is to study nightside electric fields and determine if two separate systems are
coexisting.

When we mention that magnetic reconnection is the cause of storms and substorms, it
is clear that there are other interplanetary parameters that influence the efficiency of the
magnetic reconnection process (Gonzalez et al. 1989; Borovsky 2013). It is also known that
interplanetary shock impingement onto the magnetosphere can trigger substorms (Heppner
1955; Zhou and Tsurutani 2001). In some cases, the substorms are so intense that they may
be the main energy input factor for a coincident magnetic storm (Tsurutani and Hajra 2021;
Hajra et al. 2016; Hajra and Tsurutani 2018). What is the source of this substorm/storm
energy? There is probably stored magnetotail energy but additional solar wind ram kinetic
energy cannot be ruled out as well.

Application of Information-Theoretic Measures for Storm Research

Information-Theory measures, such as the ones discussed in Sect. 2.4, can provide valu-
able insights into the state of the magnetosphere and the various changes that it is subjected
to, and thus, can be used to study and characterize the onset and evolution of phenomena
such as magnetic storms. In Balasis et al. (2013) the authors have used various entropies to
study the variations in the information content of the Dst series, for the entire year of 2001,
which included two intense magnetic storms, on March 31st and November 6th, with values
that reached a minimum of —387 nT and —292 nT respectively. They used the Tsallis en-
tropy formula, with a q value equal to 1.84, on the binary representation of the series, as well
as the Approximate, Sample and Fuzzy entropies, the latter of which with an exponential
membership function.

As can be seen in Fig. 7, all measures accurately detect the complexity dissimilarity
among different “physiological” (quiet times) and “pathological” (intense magnetic storms)
states of the magnetosphere. They imply the emergence of two distinct patterns: a pattern
associated with the intense magnetic storms, which is characterized by a higher degree of
organization (lower entropy values) and a pattern associated with normal periods, which is
characterized by a lower degree of organization (higher entropy). In general, all four entropy
measures clearly distinguish between the different complexity regimes in the Dst time series.

5 Solar Wind Driving of Radiation Belt Dynamics

Characterizing and modeling processes at the sun and of space plasma in our solar system
are difficult because the underlying physics is often complex, nonlinear, and not well under-
stood. The drivers of a system are often nonlinearly correlated with one another, which
makes it a challenge to understand the relative effects caused by each driver. However,
entropy-based information theory can be a valuable tool that can be used to determine the
information flow among various parameters, causalities, untangle the drivers, and provide
observational constraints that can help guide the development of theories and physics-based
models. Similarly correlative methods provide a basis for ranking solar wind functions in
terms of their geoeffectiveness, and for building models driven by these solar functions. The
solar wind drivers of radiation belt electrons are investigated using correlation functions,
mutual information (MI), conditional mutual information (CMI), transfer entropy (TE), and
impulse response functions (IRF). Relativistic electron fluxes at the geosynchronous orbit
(herein J, ggo refers to geosynchronous MeV electron energy flux) is found to be anticor-
related with solar wind density (ng,) with a lag of 1 day. However, this lag time and an-
ticorrelation can be attributed mainly to the J, geo(t 4 2 days) correlation with solar wind
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Fig. 7 (Fig. 1 from Balasis et al. 2013) From top to bottom: Dst time series from January 1, 2001, to De-
cember 31, 2001, associated with two intense magnetic storms (marked in red) and the corresponding ApEn,
SampEn, FuzzyEn and non-extensive Tsallis entropy, Sg, for sliding windows of 256 hours each. The tri-
angles denote five time intervals in which the first, third and fifth intervals correspond to higher entropies,
whereas the second and fourth time windows exhibit lower entropies (the parts of the entropy plots shown in
red)

velocity, Vi, (¢), and the anticorrelation of solar wind density and velocity over timescale of
1 day. Analyses of solar wind driving of the magnetosphere need to consider this (Viy, nsw)
anticorrelation. Using CMI to remove the effects of Vi, the response of J, ggo to ngy is
30% smaller and has a lag time <24 hr, suggesting that the loss mechanism due to ng, or
solar wind dynamic pressure has to start operating in <24 hr. Nonstationarity in the system
dynamics is investigated using windowed TE. The solar wind drivers are then investigated
using filtering methods: the impulse response functions of the electron flux, as a function of
L shell and energy, to solar wind velocity, density, and interplanetary magnetic field are pre-
sented. We discuss the physical significance of three large-scale modes in these responses.
Determining the spatial, temporal, and energy parameters of these modes narrows down
the search for the salient acceleration and loss processes in the radiation belts. Finally, we
present linear and nonlinear dynamical models of the electron flux.

5.1 Introduction
The Earth’s radiation belts refer to a region in space that is populated by trapped energetic
electrons and ions. Typically, there are two electron radiation belts, the inner belt and outer

belt, but sometimes a third belt appears between the two belts. The inner belt is located
at an equatorial distance approximately between 1.2 and 3 Rg (Rg = radius of the Earth
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~6378 km) from the center of the Earth and contains electrons having energies of hun-
dreds of keVs and ions having hundreds of MeVs. The outer belt is located at an equatorial
distance approximately between 4 and 8 Rg and contains mostly electrons having energies
ranging from a few hundred keVs to tens of MeVs. The present chapter deals only with the
outer radiation belt electron population.

The existence of radiation belt MeV electrons is usually explained by several acceleration
mechanisms that can accelerate electrons from a few keVs to tens of MeVs.

There have been several acceleration mechanisms proposed, but most studies generally
suggest either local or global acceleration. In a local acceleration scenario, storms and sub-
storms inject plasma-sheet particles into the inner-magnetosphere and accelerate low-energy
(e.g., few-keV) electrons to a few hundred keVs. Once in the inner magnetosphere, elec-
trons interact with locally excited ultra-low-frequency (ULF) waves (e.g., Elkington et al.
1999; Rostoker et al. 1998; Ukhorskiy et al. 2005; Mathie and Mann 2000, 2001), very-
low-frequency (VLF) waves (e.g., Summers et al. 1998; Omura et al. 2007; Thorne 2010;
Simms et al. 2015; Camporeale 2015; Camporeale and Zimbardo 2015), and/or magne-
tosonic waves (e.g., Horne et al. 2007; Shprits et al. 2008), which can energize electrons
to the MeV-energy range. The solar wind velocity may be linked to the local acceleration
mechanism through substorm particle injections (e.g., Baker and Kanekal 2008; Kissinger
et al. 2011; Tanskanen 2009; Kellerman and Shprits 2012; Newell et al. 2016).

Although the previous paragraph would link the substorm injections and electron ac-
celeration to high Vi, some studies emphasized the role of the southward component of
the magnetic field, especially during high-amplitude Alfvén waves, and High Intesity Long
Duration Continuous AE Activity (HILDCAA) events (Hajra et al. 2013). Tsurutani et al.
(2010 and references therein) suggested that the process starts at the Sun with nonlinear
Alfvén waves carried by high-speed solar wind streams emanating from coronal holes. The
southward component of the Alfvén wave magnetic field would cause magnetic reconnec-
tion at the dayside magnetopause, which would lead to energetic plasma injections on the
nightside and electron acceleration (this is discussed further in the Journal of Geophysical
Research (JGR) Special Section on Chorus, Tsurutani et al. (2010)).

Certain global-acceleration mechanisms also invoke ULF waves for electron accelera-
tion. A popular scenario is that the ULF waves are generated globally by a Kelvin-Helmbholtz
instability (KHI) along the magnetopause flanks due to large velocity shea