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Abstract Rossby waves are a pervasive feature of the large-scale motions of the Earth’s
atmosphere and oceans. These waves (also known as planetary waves and r-modes) also
play an important role in the large-scale dynamics of different astrophysical objects such as
the solar atmosphere and interior, astrophysical discs, rapidly rotating stars, planetary and
exoplanetary atmospheres. This paper provides a review of theoretical and observational
aspects of Rossby waves on different spatial and temporal scales in various astrophysical
settings. The physical role played by Rossby-type waves and associated instabilities is dis-
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cussed in the context of solar and stellar magnetic activity, angular momentum transport in
astrophysical discs, planet formation, and other astrophysical processes. Possible directions
of future research in theoretical and observational aspects of astrophysical Rossby waves are
outlined.

Keywords Rossby waves · Solar system planets · Sun · Stars · Astrophysical discs ·
Magnetohydrodynamic waves

1 Introduction

Rossby waves (also known as planetary waves and r-modes) are pervasive part of the global
weather system at different latitudes of the Earth. Theoretical background for Rossby waves
has been developing over centuries starting from Hadley (1735) that studied deflection of
horizontal motion by the Earth’s rotation. Laplace made a significant contribution with his
tidal equation describing tidal influence of the Moon on the Earth (Laplace 1893). Hough
(1897, 1898) solved the Laplace equation in terms of Associated Legendre functions and
separated the solutions into two classes: “the oscillation of the first class” corresponding
to high-frequency gravity waves and “the solution of the second class” corresponding to
the low-frequency rotational waves (in principle, to Rossby waves). Rossby (1939) based
on the Kelvin circulation theorem (Thomson 1868), which implies the conservation of a
vorticity during fluid motions under certain conditions, realised that the conservation of the
total (planetary plus relative) vorticity on a rotating sphere allows the oscillations which
propagate in the opposite direction of the rotation. Rossby waves have been frequently ob-
served in the atmosphere of the Earth and giant planets of the solar system (Jupiter, Saturn).
Interested reader can find detailed information on Rossby wave dynamics in the Earth’s at-
mosphere and oceans in books (e.g., Gill 1982; Pedlosky 1987, 2003) and reviews (Lindzen
1967; Platzman 1968; Salby 1984).

It has been shown in recent years that the Rossby waves are also of significant importance
in different astrophysical situations like Sun, stars, astrophysical discs, etc. The growing
interest towards astrophysical Rossby waves already led to new knowledge in this field.
Here we review recent observational and theoretical achievements in the study of Rossby
waves with astrophysical applications.

Outline of this review. Section 2 contains a short historical introduction of the genesis
of research into Rossby waves on the Earth and in laboratory experiments. The theory of
both hydrodynamic and magnetohydrodynamic Rossby waves is presented in Sect. 3, which
also contains a description of their instabilities and the main features of non-linear Rossby
waves. The evidence of these waves in various astrophysical environments is discussed in
Sect. 4: solar system planets, the Sun, main-sequence and compact stars and astrophysical
disks. Finally, possible future advances in this research area are examined in Sect. 5.

2 Rossby Waves on the Earth

Before starting to review astrophysical Rossby waves, we first summarise key observations
of the waves in the atmospheres of the Earth and laboratory experiments.
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2.1 The Earth’s Atmosphere and Oceans

In 1935 Carl-Gustav Rossby started a project on long-range weather forecasting at the Mas-
sachusetts Institute of Technology in cooperation with the US Weather Bureau. Seven-day
and later five-day mean charts were created weekly for sea-level pressure and for isentropic
contours (i.e. contours of constant potential temperature) over the Northern Hemisphere.
Additionally, the five-day mean charts have been constructed weekly for the three kilome-
ter level over North America. These charts inspired Rossby to discover a simple formula
describing large-scale atmospheric dynamics as a conservation of total vorticity, which con-
sists in the sum of Earth and atmospheric vorticity with regards to the rotating planet (relative
vorticity). The divergence-free formulas for phase and group speeds of the planetary waves
in the case of a uniform jet with the velocity U (in the direction of the Earth rotation) are
written as (Rossby 1939, 1945) (see details in the Sect. 3)

cph = U − βL2

4π2
(1)

and

cg = U + βL2

4π2
, (2)

where cph and cg are the phase and group velocities, L is the wavelength and

β = ∂f

∂ϑ
= 2�⊕ cosϑ

R⊕
(3)

is the parameter characterising the latitudinal variation of the Coriolis acceleration (ϑ is
a latitude). Here �⊕ and R⊕ are the Earth angular velocity and radius, respectively. The
phase velocity of the waves is directed opposite to the direction of rotation, while the group
velocity is directed towards the rotation. For the wavelength of L = 2π

√
U/β , the waves

become stationary, i.e., the wave crests do not move with respect to the Earth.
To determine whether Rossby’s concept was applicable, Hovmöller (1949) constructed

a time-longitude diagram with the mean 500-hPa geopotential (pressure) between 35◦ and
60 ◦N latitudes depicted for every tenth longitude (Fig. 1). This time-longitude or trough-
ridge diagram (now called a Hovmöller diagram) clearly showed the large-scale upper-air
wave pattern with quasi-stationary planetary waves slowly moving in westward (retrograde)
direction with the phase velocity as predicted and successive amplifications of the pressure
systems moving rapidly with the speed of 25◦–30◦ day−1 eastward (prograde) with the group
velocity in agreement with predicted value (see also Namias and Clapp 1944; Parry and Roe
1952 and Platzman 1968).

Rossby considered a plane approximation and hence the Rossby wave emerged as a ho-
mogeneous plane harmonic wave unaffected on a finite domain such as the sphere. Haurwitz
(1940) showed that the conservation of total vorticity over a two-dimensional spherical sur-
face with non-divergent character leads to the solution for the stream function in terms of
associated Legendre polynomials with the dispersion relation (see details in the Sect. 3)

σ = − 2m�⊕
n(n + 1)

, (4)

where σ is the wave frequency, m and n are angular order and degree of associated Legendre
polynomials, respectively. m and n > 1 are integers with |m| ≤ n. Here, m plays the role of
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Fig. 1 The trough-ridge diagram
based on the mean 500-hPa
geopotential for November 1945
averaged between latitudes 35◦
and 60 ◦N. Horizontal axis shows
longitudes (in every 10 degree)
from 0◦ to 180 ◦E and 0◦ to
180 ◦W. The vertical axis shows
time (days) during the whole
month. Areas of high pressure
values (i.e., ridges) are shown
with horizontal hatching and
areas of low values (troughs)
with vertical hatching. The
slanting straight lines indicate a
succession of maximum
development of troughs and
ridges from the central Pacific to
the western Atlantic. Adapted
from Hovmöller (1949)

zonal wavenumber. The difference, n − |m|, determines the number of zeroes between the
North and South poles. Spherical harmonics with n = |m| are zonal harmonics and those
with n �= |m| are tesseral harmonics. Note that the non-divergent planetary waves are often
called Rossby-Haurwitz waves.

Global observations of the Earth atmosphere confirm qualitative agreement between
Haurwitz formula and real measurements (Eliasen and Machenhauer 1965). Figure 2 shows
that in the 90-day interval the transient parts of tesseral harmonics (1,2), (2,3) and (3,4) ex-
hibited remarkably uniform westward drifts. For the most large-scale component, (m,n) =
(1,2), it is seen that the 24 hour tendency field is moving towards the west with a rather
constant speed of propagation equal to about 70 degrees of longitude per day, corresponding
to a period of 5 days. For the components (m,n) = (2,3) and (3,4) one can find a motion of
the same character with a mean speed of the westward propagation amounting to about 40
and 20 degrees of longitude per day, respectively, and the corresponding periods of 4.5 and
6 days. As predicted by the theory, the fastest drift is for the largest scale (smallest n). The
corresponding numbers computed from the theory for a prototype atmosphere are 115, 53
and 28 degrees per day. The difference between theoretically predicted and observed phase
speeds is related with the non-divergent approach of Haurwitz (1940).
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Fig. 2 Successive daily values
of the phase angle for the 24 hour
tendency field of tesseral
harmonics (m,n) = (1,2), (2,3),
and (3,4), of 500 mb stream
function during the 90 days
period, beginning 1 December
1956. Horizontal axis shows the
number of westward circulations
round the earth after the first
passage of the Greenwich
meridian. Adapted from Eliasen
and Machenhauer (1965)

Fig. 3 Three-dimensional plot
of the 100 mb (m,n) = (1,4)

mode amplitude versus latitude
and time for April 1981. Adapted
from Hirooka and Hirota (1989)

Westward propagating global Rossby waves have been detected in oceans using satellite
observations of see levels (Chelton and Schlax 1996), in sea surface temperature (Hill et al.
2000) and in maps of chlorophyll (Killworth et al. 2004). The propagation speeds agreed to
those predicted by linear theory around tropics, but were few times faster at higher latitudes.

On the other hand, consideration of shallow water model (Longuet-Higgins 1968), which
incorporates horizontal divergence due to the variation of atmospheric height, results in
much closer values to the observations. Solutions of shallow water system greatly depend
on the Lamb parameter

ε = 4�2⊕R2⊕
gH

, (5)

where g is the gravitational acceleration and H is the layer thickness. Note that the Lamb
parameter is the inverse of reduced or effective gravity, Eq. (106), which is also used in
shallow water models.

When ε � 1, then the dynamics of Rossby waves is governed by spherical harmonics in
terms of Legendre polynomials. All spherical harmonics with m ≤ 4 and n − m ≤ 4 have
been observed over several decades in the Earth’s atmosphere (Ahlquist 1982; Lindzen et al.
1984; Hirooka and Hirota 1989; Venne 1989; Elbern and Speth 1993; Weber and Madden
1993; Madden 2007). Figure 3 illustrates the meridional structure and time evolution of the
planetary wave mode with m = 1 and n = 4 at 100 mb over April 1981 (Hirooka and Hirota
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1989). From the figure, one can clearly see the almost antisymmetric structure with three
nodes between the two poles during the first half of the month.

When ε � 1, the Rossby waves are trapped near the equator and become equatorial
waves (Matsuno 1966; Longuet-Higgins 1968). The equatorial Rossby waves have been
observed in the Earth’s atmosphere near the equatorial regions (Yanai and Lu 1983; Kiladis
and Wheeler 1995). Wheeler and Kiladis (1999) used 18 year (from January 1979 to August
1996) observations of outgoing longwave radiation, a proxy for cloudiness, and constructed
wavenumber-frequency spectral maps, where some peaks show nice correspondence to the
theoretical dispersion curves of equatorial shallow water waves including Rossby modes.

It must be noted that the Rossby waves may explain the observation of outward-
propagating spiral bands in hurricanes (Montgomery and Kallenbach 1997). But the waves
are associated with the radial gradient of hurricane vorticity rather than the latitudinal gra-
dient of Earth vorticity.

2.2 Laboratory Experiments

In this section we summarise the main experimental work done in laboratory on Rossby
waves and baroclinic instabilities. More details on this topic can be found in previous
reviews such as e.g. Platzman (1968), Maxworthy and Browand (1975) and Read et al.
(2015b). The general circulation of the atmosphere is a single example (of many) concern-
ing thermal convection generated by heat sources and sinks displaced in both the vertical
and horizontal in a rotating fluid having low (i) viscosity and (ii) thermal conductivity. For
this reason the minimal laboratory experiments of atmospheric flows must (i) contain at least
these features (thermal convection and sinks) and (ii) be capable of satisfying some scaling
laws to obtain dynamic similarity to the analysed phenomena in the atmospheric/oceanic
system. The experiments reviewed in this section can be regarded as representing the key
requirements of the circulation in absence of more complex phenomena (Read 1988). Ex-
amples of these additional complexities we are not considering in this review are radiative
transfer, boundary layer turbulence, water, atmospheric chemistry, water vapor, etc.

2.2.1 Apparatus

The goal of laboratory experiments on Rossby waves is to reproduce a flow circulating at
low Rossby numbers (the ratio of the inertial to Coriolis accelerations, see in the Sect. 3).
For this reason, this kind of experiments are usually conducted in a sort of rotating tanks.
For instance, a typical apparatus is represented in Fig. 4. The set-up consists in two coaxial
circular, thermally conducting cylinders, that can rotate around their common vertical axis.
The two cylinders are kept at constant (but different) temperatures. The lower and upper
boundaries are both thermally insulated. The lower boundary is generally horizontal (it can
be sloped to simulate the effect of the β-plane in the experiments, see e.g. Mason 1975),
while the upper one can be either rigid or free (i.e. without a lid). The working fluid is in
general a viscous liquid, such as water or silicone oil, however some other fluids such as
air (Maubert and Randriamampianina 2002; Castrejón-Pita and Read 2007) or liquid metals
(Fein and Pfeffer 1976) have been also used.

To generate Rossby waves in the previously described apparatus and study their features,
one can use several techniques which are summarised below.

– Moving an obstacle with respect to fluid in solid body rotation. This is the most tradi-
tional method since it was used first by Taylor (1923) in his original experiments on ro-
tating fluids. It was used later by several researchers with extending Taylor’s results, see
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Fig. 4 (a) Schematic diagram of
a rotating annulus; (b) schematic
equivalent configuration in a
spherical fluid shell. Adapted
from Read et al. (2015b)

Fig. 5 Stationary Rossby waves
generated by an obstacle in a
rotating annulus of liquid with a
free surface. Adapted from
Platzman (1968)

e.g. Fultz and Long (1951), Hide and Ibbetson (1966) and Davies (1972). For instance,
Rossby waves were generated by Fultz and Long (1951) by means of a circular obstacle
inserted between two concentric hemispheres. One example of Rossby wave created by
this technique can be seen in Fig. 5.

– Moving some portion of the surface of the fluid container. This is commonly obtained
by moving steadily or unsteadily one of the end walls of the annulus to produce an in-
terior flow intermediate in velocity between the velocity of the two cylinders. One can
create various inertial wave motions by either oscillating one of the cylinders (Firing and
Beardsley 1976), or the whole container (Aldridge and Toomre 1969) or paddles inside
the annulus (Ibbetson and Phillips 1967; Caldwell and Longuet-Higgins 1971).
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– Changing the speed of the tank rotation. Bringing the fluid in the rotating tank to a state
of solid-body rotation, any small changes in the angular velocity of the tank can be seen
as motion of the fluid with respect to the tank. However, this method is not very useful
to obtain quantitative results since the basic flow is unsteady, it is a good technique for
classroom demonstration.

– Pumping fluid in/out of the interior. This is one of the oldest methods since it was used
first by Stommel et al. (1958). Kuo and Veronis (1971) showed how disposing sources
and sinks distributed along the sidewall and the Ekman layers produce a uniformly rising
surface and a non-negligible solid-body azimuthal velocity. Later Baker (1971) simulated
the small Ekman layer suction by pumping and sucking fluid through several holes drilled
into one end plate of the rotating annulus.

– Moving the whole fluid container. One can move the spin axis of the rapidly rotating con-
tainer in some prearranged manner to study the fluid flow in precessing/nutating cavities.
This technique can be used to explain some features of the geomagnetism of our planet
(Malkus 1968).

– Applying wind stress to the fluid surface. One can place fans and blowers to apply a stress
to the free surface of a fluid as done by Von Arx (1952) to study the ocean circulation.
This is another method that gives mainly qualitative results since we do not know neither
the airspeed nor the value and distribution of the stress applied to the surface.

– Deforming a part of the container. This technique can be applied to special situations such
as studying tidal motions for instance (Suess 1970). Forced Rossby waves propagation
can be studied also combining this technique with a rotating source-sink (Holton 1971).

2.2.2 Experiments: History

Experiments trying to reproduce at the laboratory scale the circulation in the atmosphere
have been attempted long ago. The first ever examples were published in the nineteenth cen-
tury by Vettin (1857, 1884). Vettin’s experiments only explored the regime that now we call
the axisymmetric or “Hadley” regime since he did not observe clearly any instabilities such
as the baroclinic instability (Hide and Mason 1975). Vettin’s experiments were followed
some decades later by Exner (1923) in which it seems that the baroclinic instability was
present. Exner observed clearly disordered and irregular flows due to the parameters range
of this work but unfortunately also due to a lack of control of the key parameters. For more
details about these pioneering works the reader is referred to the review by Fultz (1951).

In a similar period, Fultz at University of Chicago and Hide in Cambridge started in-
dependently a systematic series of experiments on rotating tanks (Fultz 1949; Hide 1958).
Fultz’s set-up was constituted by the so-called “dishpan experiment”, i.e. a rotating fluid
subject to horizontal differential heating in an open cylinder, see Fultz et al. (1959) for more
details on his experiment series. Hide conversely worked with a heated rotating annulus
focusing initially on the fluid motion in Earth’s liquid core (Hide 1969). Both researchers
explored a vast parameter range elucidating the nature of several circulation regimes and
laying the bases for successive research. Particularly they have unveiled the bifurcation and
the paths to chaos in rotating flows and measured them using sophisticated non-invasive
methods, such as using arrays of in-situ probes and optical techniques. It should be noted
that their works show an overall agreement in identifying most of the features of circula-
tion regimes and associating them to the correct dimensionless parameters space. The main
discrepancy between them was the lack of a regular wave regime in Fultz’s open cylinder
experiments, while in Hide’s annulus this regime was clearly visible. Despite some specula-
tions that this regular wave regime could exist just in presence of an inner cylinder bounding
the flow (Davies 1959), it was later shown that such a regime does exist also in flows rotating
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in open cylinder (Hide and Mason 1970; Spence and Fultz 1977). Furthermore, a remark-
ably accurate theory of the nonlinear behavior, e.g. mode selection, switching, vacillations,
etc., observed in Fultz and Hide’s experiments was formulated by Lorenz (1962). The reader
is referred to the detailed review written by Hide and Mason (1975) on the work conducted
during this period.

The presence of persistent baroclinic wave flows is also a characteristic of another class of
rotating stratified flows in which a two-layer stratification and a mechanically-imposed shear
are present (Hart 1972). This experimental setup was introduced by Hart (1972) finding
inspiration from the theoretical works of Phillips (1954) and Pedlosky (1970, 1971) on the
stability of two-layer rotating flows. Hart’s configuration can be more easily compared to
the theory than the thermally driven systems due to (i) the more straightforward way of
introducing forcing and (ii) the absence of boundary layers which significantly reduce the
flow complexity. Further extensive research on the two-layer setup have identified several
forms of vacillation and chaotic behaviour (Hart 1979, 1985; Ohlsen and Hart 1989b,a)
and how short-scale interfacial gravity waves can be excited through interactions with the
quasi-geostrophic Rossby waves (Lovegrove et al. 2000; Williams et al. 2005, 2008).

In the last decades, very significant advances have been made by different groups around
the globe on the experiments about (i) the classical axisymmetric instabilities of synoptic
variability, (ii) vacillations, and (iii) the transition to turbulence. For example, the reader is
referred to the works by the groups at Florida State University (Pfeffer et al. 1980; Buzyna
et al. 1984), at Japanese universities (Ukaji and Tamaki 1989; Tajima and Kawahira 1993;
Sugata and Yoden 1994; Tajima and Nakamura 2000; Tamaki and Ukaji 2003), at Oxford
(Read et al. 1992; Bastin and Read 1997, 1998; Wordsworth et al. 2008), in Bremen/Cottbus
(von Larcher and Egbers 2005; Harlander et al. 2011) and in Budapest (Jánosi et al. 2010).
Furthermore, researchers have introduced the β-effect in rotating tank experiments through
modifying the configuration to mimic the planetary curvature (Mason 1975; Bastin and Read
1997; von Larcher et al. 2013; Read et al. 2015a; Yadav et al. 2016) and zonally asymmetric
topography (Leach 1981; Li et al. 1986; Bernardet et al. 1990; Risch and Read 2015). Very
recently, Scolan and Read (2017) proposed a new experimental configuration to add the forc-
ing thermal convection in the cylindrical rotating annulus through heating the bottom near
the external wall and cooling the circular disk near the axis at the top surface of the annulus.

3 Theory of Rossby Waves

Theoretical background for Rossby waves has been developing over centuries (Hadley 1735;
Laplace 1893; Hough 1897, 1898), however, clear physical sense of the waves was described
by Rossby in his series of papers as a result of conservation of absolute vorticity (Rossby
1939, 1945).

In this section we will briefly review the basic theory of Rossby waves starting from
simplest two-dimensional description.

General equations governing the adiabatic dynamics of a fluid in the rotating frame are
the equations of momentum, mass continuity and energy

ρ

[
∂v
∂t

+ (v · ∇)v + 2� × v
]

= −∇p + ρ∇
, (6)

∂ρ

∂t
+ (v · ∇)ρ + ρ∇ · v = 0, (7)

∂p

∂t
+ (v·∇)p + γp∇ · v = 0, (8)
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where v is the fluid velocity, � is the angular velocity of the rotating system, p is the fluid
pressure, ρ is the fluid density, γ is the ratio of specific heats. Here 
 = V1 +�2r2

⊥/2, where
V1 is the gravitational potential and r⊥ is the perpendicular distance from the axis of rotation.
∇V1 can be also written as the gravitational acceleration, g. Note that nonconservative forces
are not taken into account in these equations. In the atmospheric science, the energy equation
is often written for a temperature or an entropy, along with an equation of state.

The last term in the left-hand side of Eq. (6), 2ρ�×v, is the Coriolis force, a centrifugal
force due to rotation, which plays a central role in rotating fluid dynamics. The force is
named after G.G. Coriolis, who wrote the correct expression for this force for the first time
and described it as a compound centrifugal force (Coriolis 1835). The force appears only
in rotating systems and has three main properties: acts only on moving bodies, deflects the
motion at right angles and does no work.

The ratio of the inertial to Coriolis accelerations given by

Ro = U

2�L
, (9)

where U and L are characteristic velocity and length scales, is called the Rossby number
(note that the Rossby number sometimes is also designated by ε). The Rossby number de-
scribes the importance of the rotation in the fluid dynamics: smaller Rossby numbers means
that the dynamics is mostly determined by the rotational effects. Large-scale flows (with
large L) lead to small Rossby number, therefore they are more significantly affected by the
rotation.

3.1 Absolute and Potential Vorticity

The preeminent dynamic variable in fluid dynamics is the vorticity vector, ω, defined as the
curl of the fluid velocity

ω = ∇×v. (10)

For uniformly rotating fluid the vorticity is ω = 2�, which can be also called planetary
vorticity. If we consider a rotating planet like the Earth, then the vertical component of the
planetary vorticity is just Coriolis parameter

f = 2� sinϑ, (11)

where ϑ is the latitude. If we consider the fluid motion relative to the rotating system then the
sum of planetary, 2�, and relative, ω, vorticity is defined as an absolute (or total) vorticity

ωa = 2� + ω, (12)

which is just the vorticity in an inertial frame.
Very important variable for the dynamics of Rossby waves is the potential vorticity


 = ωa

ρ
· ∇λ, (13)

where λ is some quantity which is conserved during the fluid motion, i.e. dλ/dt = 0 (for
two-dimensional barotropic flows λ is the z coordinate, while in the shallow water systems
λ is the relative height with regards to the bottom). Taking the curl of Eq. (6) and using
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the continuity equation, Eq. (7), leads to the conservation of potential vorticity (Ertel 1942;
Pedlosky 1987)

d


dt
= 0 (14)

for barotropic fluids, ∇ρ × ∇p = 0 or when λ is only the function of p and ρ.
The conservation of potential vorticity leads to the appearance of Rossby waves. In dy-

namic shallow water systems, the potential vorticity can be rewritten as 
 = (2� + ω0 +
ω)/H , where ω0 is the vorticity related with background flows and H is the layer thickness.
Spatial variations of each background vorticity i.e. planetary, 2�, and flow, ω0, vorticity as
well as H , may drive the Rossby-type waves. Latitudinal variation of the planetary vortic-
ity is the historical prototype, therefore we will mainly concern with the planetary waves.
However, the waves connected with the gradients of background flow vorticity and the layer
thickness, will be also discussed in the section of astrophysical disks.

3.2 Hydrodynamic Rossby Waves

If the perturbation of gravitational potential is neglected, then Eqs. (6)–(8) are written after
linearisation as

dv
dt

+ (v·∇)U + 2�×v = − 1

ρ0
∇p′ + ρ ′

ρ2
0

∇p0, (15)

dρ ′

dt
+ (v · ∇)ρ0 + ρ0∇·v = 0, (16)

dp′

dt
+ (v·∇)p0 + γp0∇·v = 0, (17)

where v, p′ and ρ ′ are small perturbations of velocity, pressure and density, respectively. U,
p0 and ρ0 are unperturbed values satisfying corresponding pressure balance. Here d/dt =
∂/∂t + (U·∇) is a material derivative.

Equations (15)–(17) are linear, but their solution is still complicated due to the vertical
stratification of the real atmospheres and hence one can use some approximations. The sim-
plest approximation is to consider homogeneous, incompressible purely horizontal motion
(the “barotropic non-divergent” model). This is a model of prototype atmosphere and it pro-
vides the basic properties of the Rossby waves (Platzman 1968). The next step is to consider
an incompressible fluid layer of uniform density, which is described by the shallow water
approximation. The final step is to study the influence of stratification on the dynamics of
the waves.

3.2.1 Two-Dimensional Rossby Waves

On two-dimensional isobaric (constant pressure) and isopycnic (constant density) surfaces
the absolute vorticity, Eq. (12), is conserved by each fluid element i.e. dωa/dt = 0 leading
to the appearance of two-dimensional Rossby waves.

We first consider that the spatial scales of perturbations are much smaller than the radius
of the sphere. Then, the curvature is neglected and one can use the Cartesian coordinates x

(directed prograde) and y (directed northward). Then the conservation of the absolute vor-
ticity in incompressible fluids leads to the single equation

(
∂

∂t
+ U

∂

∂x

)(
∂2

∂x2
+ ∂2

∂y2

)
ψ + ∂f

∂y

∂ψ

∂x
= 0, (18)
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where U is the velocity of a homogeneous (generally prograde) jet, ψ is the velocity stream
function (ux = −∂ψ/∂y, uy = ∂ψ/∂x). Expanding the Coriolis parameter, f , at the given
latitude ϑ0 and retaining the lowest order latitudinal variation gives (Rossby 1939)

f = f0 + βy, (19)

where

f0 = 2� sinϑ0, β = ∂f

∂y
= 2�

R
cosϑ0, (20)

where R is the planetary radius. This is so-called β-plane approximation, which is widely
used to describe the large-scale dynamics of the Earth’s atmosphere/oceans (Lindzen 1967;
Gill 1982; Pedlosky 1987). The harmonic solution of Eq. (18) can be easily found as

ψ = ψ0 cos(kxx + kyy − σ t) (21)

where σ is the frequency and kx, ky are the wave numbers, which satisfy the dispersion
relation

σ = kxU − kxβ

k2
x + k2

y

. (22)

The zonal phase speed of the Rossby waves is (see Eq. (1))

cphx = σ

kx

= U − β

k2
x + k2

y

= U − β

k2
= U − βL2

4π2
, (23)

where L is the wavelength. It is readily seen from Eqs. (22)–(23) that the frequency and

longitudinal phase speed, cph =
√

c2
phx + c2

phy , depend upon direction of phase propagation

and wavelength. But the zonal phase velocity, cphx , is independent of the direction of the
phase gradient and in absence of the jet (U = 0) it is always directed to the west (retrograde),
i.e., opposite to the rotation (note that the waves do not propagate strictly along latitudes, i.e.,
for kx = 0). This “retrograde drift” is the most charachteristic property of Rossby waves and
it is related to the latitudinal variation of the Coriolis force. Figure 6 shows five patterns of
plasma vorticity, initially at the same latitude in the northern hemisphere. If, randomly, two
of them are moved poleward and one equatorward, then the two poleward-moved patterns
will have increased relative vorticity and the equatorward-moved one will have decreased
vorticity, due to the conservation of total vorticity. Thus, the poleward (equatorward) patterns
will get an anticyclonic (cyclonic) relative vorticity. These anticyclonic/cyclonic motions
will tend to move the other two undisturbed patterns and will change their vorticity. This
vorticity will tend to restore the three patterns (first, third, and fifth patterns) back to their
original position. Thus, a wave pattern will be formed and will move westward.

Existence of the jet (U �= 0) crucially affects the phase propagation of Rossby waves.
There is a critical wavelength for each value of jet defined as

Lc = 2π

√
U

β
. (24)

When the wavelength is larger (shorter) than the critical value then the waves propagate in
retrograde (prograde) direction of rotation, respectively. When the wavelength equals to Lc

then the waves become stationary, i.e., they do not propagate with regards to the Earth.
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Fig. 6 Illustration of retrograde
drift of Rossby waves due to the
conservation of absolute vorticity.
Starting from five plasma flow
patterns, initially at the same
latitude, the first and the fifth
patterns are moved poleward and
the third equatorward (panel (a)).
Due to conservation of vorticity,
the first and the fifth patterns will
have an anticyclonic (clockwise
in northern hemisphere) and the
third pattern a cyclonic relative
vorticity (panel (b)). As a result,
all five patterns will move in the
direction shown by vertical
arrows in panel (c), forming a
westward-moving wave pattern.
The figure is reproduced from
Dikpati et al. (2018b) by
permission of the AAS

The components of the group speed of Rossby waves are

cgx = ∂σ

∂kx

= U + β(k2
x − k2

y)

(k2
x + k2

y)
2
, cgy = ∂σ

∂ky

= 2kxkyβ

(k2
x + k2

y)
2
. (25)

It is evident that the zonal group speed is prograde for kx > ky and retrograde for kx < ky

in the absence of the jet. Therefore, for purely zonal propagation, the energy of wave packet
propagates exactly opposite to the phase speed i.e. in the direction of rotation.

For sufficiently large-scale perturbations the Earth’s curvature should be taken into ac-
count. Haurwitz (1940) considered the conservation of absolute vorticity in spherical coor-
dinates θ,φ, where θ is the colatitude increasing southward and φ is the longitude increasing
eastward. Using the stream function χ defined as

uθ = − 1

sin θ

∂χ

∂φ
, uφ = ∂χ

∂θ
, (26)

the absolute vorticity conservation leads to the single equation for U = 0 (note that Haurwitz
(1940) additionally considered homogeneous zonal flow)

∂

∂t

[
1

sin θ

∂

∂θ

(
sin θ

∂χ

∂θ

)
+ 1

sin2 θ

∂2χ

∂φ2

]
+ 2�

∂χ

∂φ
= 0. (27)

One can assume that

χ = cos(−σ t + mφ)χ1(θ), (28)
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which allows to obtain the associated Legendre equation (see also Longuet-Higgins 1964)

1

sin θ

∂

∂θ

(
sin θ

∂χ1

∂θ

)
+

(
− m2

sin2 θ
− 2m�

σ

)
χ1 = 0. (29)

When 2m�/σ = −n(n + 1), then this equation has bounded non-singular (at poles i.e.
θ = 0,π ) solutions in terms of associated Legendre functions, P m

n (cos θ), Qm
n (cos θ), where

n = 1,2,3. . . . . This condition leads to the dispersion relation of Rossby waves (see Eq. (4))

σ = − 2m�

n(n + 1)
. (30)

Each solution with fixed n and m �= 0 (|m| < n) has n − |m| zeros between the poles. They
are called tesseral harmonics. If m = 0 then there is no nodal meridians and the solutions
are zonal harmonics (or ordinary Legendre polynomials). When n = |m| then there are no
nodal parallels and solutions are sectoral harmonics.

3.2.2 Rossby Waves in Shallow Water Approximation

Two dimensional horizontal dynamics generally catches most properties of planetary waves,
therefore these waves are sometimes called Rossby-Haurwitz waves. However, consideration
of vertical density stratification is necessary for the complete description of wave dynamics.
For small Rossby number, the vertical distribution of pressure will be only slightly dis-
turbed from its static form which leads to vertically hydrostatic assumption for geophysical
and astrophysical flows. The next approximation to take into account the vertical motion
is shallow water theory. Shallow water model has been used to study the atmospheric and
ocean dynamics on the Earth starting from tidal theory of Laplace (1893).

The shallow water approximation considers a shallow fluid layer of uniform density. This
approximation can be safely used if the thickness of the layer is smaller than the density
scale height. Laplace tidal equations for small perturbations can be written in the spherical
coordinates (see previous subsection) as (Love 1913)

∂uφ

∂t
+ 2� cos θuθ = − g

R sin θ

∂η

∂φ
, (31)

∂uθ

∂t
− 2� cos θuφ = − g

R

∂η

∂θ
, (32)

∂η

∂t
= − 1

R sin θ

[
∂

∂θ
(Huθ sin θ) + ∂Huφ

∂φ

]
, (33)

where H is the equilibrium thickness of the layer (which in principle can be nonuniform) and
η(t, θ,φ) is the elevation. Here the perturbation of gravitational potential and external forces
are neglected. The fluid is considered to be incompressible and inviscid. The scaling of the
equations implies that the horizontal velocities remain independent on radial coordinate if
they are initially. Divergent-free condition means that the radial velocity is linear function
of radial coordinate inside this shallow layer. Pressure at any point is equal to the weight of
the unit fluid column above that point at this instant. Fundamental parametric condition of
shallow water approximation is

δ = H

L
� 1, (34)

where L is the horizontal scale of perturbations.
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To study the general properties of Rossby waves in shallow water approximation it is
useful to consider first the Cartesian coordinates. In this case, Eqs. (31)–(33) can be rewritten
as (e.g. Longuet-Higgins 1965)

∂ux

∂t
− f uy = −g

∂η

∂x
, (35)

∂uy

∂t
+ f ux = −g

∂η

∂y
, (36)

∂η

∂t
+ H

(
∂ux

∂x
+ ∂uy

∂y

)
= 0, (37)

where x and y are directed prograde and northward, respectively and f = 2� sinϑ . θ and
y are directed in opposite directions, which results in opposite signs in front of the Coriolis
terms in Eqs. (31)–(32) and Eqs. (35)–(36).

These equations can be easily cast into the single equation

[
∂

∂t

(
∂2

∂x2
+ ∂2

∂y2

)
+ β

∂

∂x
− 1

c2

(
∂3

∂t3
+ f 2 ∂

∂t

)]
uy = 0, (38)

where

c = √
gH (39)

is the surface gravity speed. This equation has high-frequency and low-frequency solutions.
High-frequency solutions are surface gravity waves and the low-frequency solutions are
Rossby waves. In order to exclude the high-frequency waves from consideration, one has
to neglect the term with third derivative of time, retaining only the Rossby waves. Then the
solution of Eq. (38) depends on considered latitudes.

Away from the equator, βy � f0 in the Eq. (19), therefore, f 2 ≈ f 2
0 and the plane wave

analysis on β-plane leads to the dispersion relation (for σ/f0 � 1)

σ = − kxβ

k2
x + k2

y + f 2
0 /c2

. (40)

The dispersion relation is very similar to the two-dimensional case – Eq. (22). The only
difference is the last term in denominator, f 2

0 /c2. This term is related with the Rossby radius
of deformation

RD = c

f0
, (41)

which describes relative importance of rotation with regards to the buoyancy effects. Note
that RD is an external radius of deformation, while for stratified fluids an internal radius of
deformations is used (see the Sect. 3.2.3). When horizontal scale of perturbations is much
smaller than the Rossby radius of deformation (kx, ky � R−1

D ), then Eq. (40) is completely
transformed into Eq. (22).

The zonal phase speed of shallow water Rossby waves is

cphx = σ

kx

= − β

k2
x + k2

y + f 2
0 /c2

. (42)
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The frequency and longitudinal phase speed depend upon direction of phase propagation
and wavelength, but the zonal phase velocity is independent of the direction of the phase
gradient and it is always prograde i.e. opposite to the rotation.

Near the equator, f ≈ βy and after Fourier analysis with exp(−iσ t + ikxx) Eq. (38) is
transformed into the equation (Matsuno 1966)

[
∂2

∂y2
+ σ 2

c2
−

(
k2

x + kxβ

σ

)
− β2

c2
y2

]
uy = 0. (43)

This is the equation of parabolic cylinder (also known as the equation of quantum harmonic
oscillator) and it has the bounded solutions

uy = C exp

[
−β

c

y2

2

]
Hν

(√
β

c
y

)
, (44)

where Hν is a Hermite polynomial of order ν and C is a constant, which implies the disper-
sion relation (Matsuno 1966)

σ 3 − (k2
xc

2 + βc(2ν + 1))σ − kxβc2 = 0. (45)

Polynomial order ν corresponds to the poloidal wavenumber and defines the number of
zeroes from north to south. The solutions are oscillatory inside the interval

|y| < Le

√
2ν + 1, (46)

where Le = √
c/β is the equatorial deformation scale, and exponentially tend to zero out-

side. The turning points or critical latitudes are defined by y/R = √
(2ν + 1)/

√
ε, therefore

when the Lamb parameter is large (ε � 1), then the solutions are confined near the equator.
The dispersion relation Eq. (45) describes several different wave modes. For ν ≥ 1 there are
low and high frequency waves. For the lower frequency waves the dispersion relation can be
approximated as

σ = − kxβ

k2
x + (2ν + 1)β/c

. (47)

These are equatorially trapped or equatorial Rossby waves as discussed at the end of the
Sect. 2.1. The higher frequency waves are inertia-gravity waves, which are beyond the scope
of the current review. When the wavelength of the equatorial waves is sufficiently large, so
that k2

x � (2ν + 1)
√

ε/R2, then the dispersion relation of equatorial Rossby waves can be
approximated by

σ ≈ − kxc

(2ν + 1)
, (48)

so that the wave frequency depends on the surface gravity speed. For ν = 0 Eq. (45) de-
scribes mixed Rossby-gravity waves (sometimes called the Yanai modes), which include
westward propagating Rossby-gravity mode and eastward propagating inertia-gravity mode
(Matsuno 1966). Note that the equatorial treatment also includes Kelvin waves, which have
zero poleward velocities and formally described with ν = −1 in Eq. (45).
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Now we turn back to the spherical coordinates. Considering the plane wave solution in
the form of exp(−iσ t + imφ), the Eqs. (31)–(33) lead to the single equation (Longuet-
Higgins 1968)

(
∇2 − m

λ
− 2ελ2μ

m2 − ελ2(1 − μ2)

[
(1 − μ2)

∂

∂μ
− mμ

λ

]
+ ε(λ2 − μ2)

)
u∗

θ = 0, (49)

where μ = cos θ , λ = σ/2�, u∗
θ = i

√
1 − μ2uθ and

∇2 = ∂

∂μ

[
(1 − μ2)

∂

∂μ

]
− m2

1 − μ2
(50)

is the horizontal Laplace operator in spherical coordinates. This equation can be solved
analytically by expansion in Legendre functions and using corresponding recurrent relations
(Hough 1897, 1898). Particularly easy solutions can be found in the case of two extreme
cases of the Lamb parameter, ε.

When the Lamb parameter is small, ε � 1, then for the Rossby waves (i.e. λ � 1)
Eq. (49) is transformed into the equation (Longuet-Higgins 1965)

[
∂

∂μ

(
(1 − μ2)

∂

∂μ

)
−

(
m2

1 − μ2
+ m

λ
+ εμ2

)]
u∗

θ = 0. (51)

This is the spheroidal wave equation, those finite solutions over the whole range −1 ≤
μ ≤ 1 are spheroidal wave functions, Sm

n (
√

ε,μ). The functions have n − m zeros over the
interval −1 < μ < 1 and tend to associated Legendre functions for ε = 0. The tables of
spheroidal wave functions and associated eigenvalues Am

n = −m/λ can be found elsewhere
(e.g. Stratton et al. 1956). Spheroidal wave functions and eigenvalues can be expanded as
series of associated Legendre polynomials and power of ε, respectively. Then the dispersion
relation for the Rossby waves for the lowest order of ε can be obtained as (Longuet-Higgins
1965)

σ = −2m�

[
n(n + 1) + ε

2

(
1 − (2m − 1)(2m + 1)

(2n − 1)(2n + 3)

)]−1

. (52)

For ε = 0 it is transformed into the dispersion relation of 2D Rossby waves (Eq. (30)) as
expected.

When the Lamb parameter is large so that ελ � 1, then for the Rossby waves (λ � 1)
Eq. (49) leads to (Longuet-Higgins 1968)

[
∂2

∂ξ 2
− m

λ
√

ε
− ξ 2

]
u∗

θ = 0, (53)

where ξ = ε1/4μ. This is the same equation as Eq. (43) and therefore leads to the equatorially
trapped Rossby waves with the dispersion relation

σ ≈ − 2m�

(2ν + 1)
√

ε
= − mc

(2ν + 1)R
. (54)

The dispersion relation is identical with the dispersion relation in equatorial beta-plane,
Eq. (48), where kx is replaced by m/R. Hence, spherical and rectangular geometries give
the same dispersion relations for equatorially trapped Rossby waves.
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3.2.3 Rossby Waves in a Stratified Fluid

In real situations fluids are stratified due to the gravity i.e. the density is vertically inho-
mogeneous. For complete description of Rossby waves, one should take into account the
density stratification, which for small Rossby number is nearly hydrostatic. To uncover the
properties of Rossby waves in stratified fluids, it is much easier to consider the beta-plane
approximation. Linearised equation governing the dynamics of Rossby waves can be written
as follows (Pedlosky 1987)

∂

∂t

[
∂2ψ

∂x2
+ ∂2ψ

∂y2
+ 1

ρ

∂

∂z

(
ρ

S

∂ψ

∂z

)]
+ β

∂ψ

∂x
= 0 (55)

where S = N2D2/f 2
0 L2 is the stratification parameter and ψ is the stream function. Here

N = √−gρ ′/ρ is the buoyancy or Brunt-Väisälä frequency (′ sign means the derivative
by z) and D is the vertical scale of motion. Stratification parameter can be also rewritten as
S = L2

D/L2, where LD = ND/f0 is the internal deformation radius.
One can search the solution of this equation in the form of ψ(x, y, z, t) =

exp i(−σ t + kxx + kyy)ψ̃(z), where ψ̃(z) is vertical structure function satisfying the equa-
tion

1

ρ

∂

∂z

(
ρ

S

∂ψ̃

∂z

)
= −l2ψ̃, (56)

and corresponding boundary conditions. When l = l0 = 0 then the solution does not de-
pend on vertical coordinate, which means that the horizontal velocities also do not depend
on z, while vertical velocity and density perturbations are zero. For nonzero l Eq. (55) is
eigenvalue problem and may have infinite number of solutions, each associated with a real,
discrete eigenvalue lj (j = 1,2,3, . . . ). Inserting Eq. (56) into Eq. (55) the dispersion rela-
tion of Rossby waves can be obtained in the form of

σj = − kxβ

k2
x + k2

y + l2
j

. (57)

Each σj is the frequency of the Rossby mode with corresponding lj . l0 = 0 solution corre-
sponds to the barotropic mode, while lj �= 0 solutions correspond to baroclinic modes. In all
cases, this dispersion relation is identical to the dispersion relation of shallow water Rossby
waves with homogeneous density Eq. (40) when l2

j = f 2
0 /c2, which can be also written as

l2
j = f 2

0

ghj

, (58)

where hj is called the equivalent depth. Then, one can formulate a statement that the dynam-
ics of j th Rossby-wave mode in a stratified fluid is identical with the dynamics of Rossby
waves in a homogeneous layer, which has a depth hj . This theorem was derived by Taylor
(1936) and it is valid for all wave modes in stratified and compressible atmosphere. There-
fore, Rossby waves in stratified atmospheres can be modelled with shallow water equations
with corresponding parameters. However, this statement is valid in completely spherical ge-
ometry. When the geometry differs from sphericity, then new properties of Rossby waves
may arise and the corresponding modes are called quasi-toroidal modes or r-modes.
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3.2.4 R-Modes in Stellar Interiors

Oscillation of a rotating fluid spheroid of finite ellipticity was first studied by Bryan (1889)
considering incompressible Maclaurin’s spheroid which arises when a self-gravitating fluid
body of uniform density rotates with a constant angular velocity. Bryan (1889) found the
solution to this problem in terms of spheroidal harmonics and calculated oscillation periods
of several harmonics with fixed wave numbers. Then Dahlen (1968) computed the normal
mode eigenfrequencies of any Earth model which is slowly rotating, slightly aspherical and
anisotropic.

To our knowledge the term r-mode for Rossby waves first was used by Papaloizou and
Pringle (1978) in studying the non-radial oscillations of rotating stars and their relevance to
the short-period oscillations of cataclysmic variables (binary stars, which consist of a white
dwarf primary and mass transferring secondary, with irregular large variations of bright-
ness). They estimated the correction to the Rossby waves dispersion relation, Eq. (30),
due to the aspherical stellar form for high degree modes (in our notations n � 1 modes).
The authors found that the correction to the dispersion relation is small for the modes.
Provost et al. (1981) studied the same problem in the approximation of slow rotation,
(�/�g)

2 � 1, where �g = √
GM/R3 is the characteristic frequency of the star. Then the

speed �gR = √
gR is the surface gravity speed for the complete sphere and the parameter

4(�/�g)
2 is just Lamb parameter if one replaces H with the stellar radius, R, in Eq. (5).

They expanded the oscillation frequency

σ = σ0

[
1 +

(
�

�g

)2

σ1

]
, (59)

and all eigenfunctions in terms of small parameter (�/�g)
2 � 1 and solved the basic HD

equations for zero and first order approximations. In the zero order approximation, they
obtained the Rossby waves dispersion relation (the authors used the term quasi-toroidal
mode), Eq. (30) as expected and zero order eigenfunctions. Then they used these values to
solve the equations in the first order approximation for the model of polytropic star (i.e. the
star with polytropic pressure law). The eigenvalues (σ1) and radial eigenfunctions have been
calculated numerically for convective and radiative polytropes for first several lower order
spherical harmonics. Resulted corrections due to the deviation from spherical symmetry
were found to be significant, especially for the convective polytrope (σ1 reaching the value
of 21.5 for the wavenumber of n = 3 and m = 1 in our notations, see the Table 2 in Provost
et al. 1981). However, the correction to the Rossby wave dispersion relation, Eq. (30), is
still negligible due to the smallness of expansion parameter, which for the Sun is estimated
as (�/�g)

2 ≈ 3 · 10−6. Note that the perturbation of the gravitational potential is not con-
sidered neither by Papaloizou and Pringle (1978) nor by Provost et al. (1981). It has been
shown, however, that taking the perturbations of the gravitational potential into account does
not significantly affect the r-mode frequency (Smeyers et al. 1981; Saio 1982).

It is clear from the discussion that neither perturbations in gravitational potential nor
the deviation from the spherical symmetry have significant influence on the properties of
r-modes, therefore standard Rossby wave theory in stratified rotating fluids considered in
the previous subsection is a quite good approximation for, at least, slowly rotating stars.

3.3 Magnetohydrodynamic Rossby Waves

Hydrodynamic description of Rossby waves is valid in the neutral atmospheres like on the
Earth. However, astrophysical objects usually contain magnetic fields, which have important



15 Page 20 of 93 T.V. Zaqarashvili et al.

influence on the dynamics of Rossby waves. The magnetic Rossby waves were first studied
in the context of the Earth liquid core (Hide 1966). Acheson and Hide (1973) wrote an
excellent review about dynamics of rotating fluids with the presence of magnetic fields,
where the influence of magnetic fields on Rossby waves have been intensively discussed.
Gilman (2000) transformed Laplace tidal equations into magnetohydrodynamics (MHD)
shallow water system for nearly horizontal magnetic fields, which are typical for the solar
tachocline (a thin layer below the solar convection zone (Spiegel and Zahn 1992), where the
solar dynamo magnetic field is presumably amplified).

In MHD, Eqs. (7)–(8) remain unchanged, while Lorentz force is added to Eq. (7), which
now becomes

ρ

[
∂v
∂t

+ (v · ∇)v + 2�×v
]

= −∇p + 1

μ0
(∇ × B)×B + ρ∇
, (60)

where B is the magnetic field strength and μ0 is the magnetic permeability. The induction
equation

∂B
∂t

= ∇ × (v×B), (61)

which governs the dynamics of magnetic field strength, closes the system of equations (note
that magnetic diffusion is neglected in the equation). Taking the curl of Eq. (60) shows that
the absolute vorticity is no longer conserved owing to the presence of the Lorentz force.

3.3.1 Two-Dimensional Magnetic Rossby Waves

As in the hydrodynamic case, we start with the simplest two-dimensional problem on β-
plane using the Cartesian coordinates x (directed towards rotation) and y (directed north-
ward). Consideration of a uniform unperturbed magnetic field, B = (Bx,By,0), and using
the Fourier transform exp(ikxx+ikyy−iσ t) leads to the following dispersion relation (Hide
1966; Gilman 1969c; Acheson and Hide 1973; Zaqarashvili et al. 2007)

σ 2 + kxβ

k2
x + k2

y

σ − (k·VA)2 = 0, (62)

where VA = B/
√

μ0ρ is the Alfvén speed (the propagation speed of transverse displace-
ments along magnetic field lines). For zero magnetic field, the dispersion relation transforms
into the dispersion relation of β-plane Rossby waves, Eq. (22).

This equation has two solutions, therefore the magnetic field splits the ordinary Rossby
mode into two different modes. The physical properties of the modes depend on the di-
mensionless parameter γ = 2k2(k·VA)/kxβ (Acheson and Hide 1973), where k2 = k2

x + k2
y ,

which is the twice the ratio of Alfvén (σA = k·VA) to Rossby (σR = kxβ/k2) wave frequen-
cies. When γ � 1, i.e., strong magnetic field limit, then the two solutions transform into the
solutions of Alfvén modes

σ+ ≈ −(k·VA)
(
1 + γ −1

)
, (63)

σ− ≈ (k·VA)
(
1 − γ −1

)
, (64)

which are slightly modified by the rotation. The waves propagating in the opposite direc-
tion of rotation have slightly higher phase speed than those propagating in the direction of
rotation.
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When γ � 1, i.e., weak magnetic field limit, then the two solutions can be approximated
as (Acheson and Hide 1973; Zaqarashvili et al. 2007)

σ+ ≈ −βkx

k2
, (65)

σ− ≈ (k·VA)2k2

βkx

. (66)

The first solution is the HD Rossby wave dispersion relation, while the second solution
corresponds to the dispersion relation of a new wave mode, which depends on both, the ro-
tation and magnetic field strength. The second mode is called “hydromagnetic-planetary
mode” (Acheson and Hide 1973) or “slow magnetic Rossby mode” (Zaqarashvili et al.
2007). Hence, the weak magnetic field splits the ordinary Rossby waves into fast (propagat-
ing opposite to the rotation) and slow (propagating towards the rotation) magnetic Rossby
waves. We note that the frequency ratio γ can be very small for (k·VA) → 0, which does not
necessarily require the weak field limit. Even small magnetic field component perpendicular
to the rotation (in our case By ) allows wave modes satisfying (k·VA) ≈ 0 condition to exist
(the modes propagate almost perpendicular to the magnetic field). For these modes, the dis-
persion relation Eq. (62) governs HD Rossby waves while the slow magnetic Rossby waves
are absent. The velocity perturbations for the modes with (k·VA) ≈ 0 are almost parallel to
the magnetic field (because of their transverse nature), therefore the action of the Lorentz
force is negligible. The solutions of Eq. (62) for different magnetic field strengths are plotted
in Fig. 7. Left panels show the dispersion diagram of fast and slow magnetic Rossby waves
for different magnetic field strengths when the poloidal magnetic field component is zero
(By = 0). Upper left panel corresponds to the weak magnetic field, which shows that fast
magnetic Rossby waves follow the HD Rossby waves dispersion curves for small wavenum-
ber, kxR ≤ 1. At the same time slow magnetic Rossby waves differ from the corresponding
Alfvén wave dispersion curve. For larger wavenumber, both magnetic Rossby waves tend
to Alfvén wave dispersion curves as the increased magnetic tension suppresses the Coriolis
force. For stronger magnetic fields (left middle and bottom panels), the magnetic Rossby
waves tend to Alfvén wave solutions almost on all wavenumber range. Right panels show
the dispersion diagram of fast and slow magnetic Rossby waves for same magnetic field
strength, but now the poloidal magnetic field component equals the toroidal field so that
By = −Bx . It is clearly seen that when kx = ky , which happens at kxR = 1 (as we consider
kyR = 1), the fast magnetic Rossby wave dispersion curve crosses the HD Rossby wave dis-
persion curve, while slow magnetic Rossby wave disappears. Hence (k·VA) = 0 condition
corresponds to the purely hydrodynamic case as was discussed above.

Zonal phase speeds of fast and slow magnetic Rossby waves have simple expressions for
the weak magnetic field approximation

cphx+ = σ+
kx

≈ − β

k2
, (67)

cphx− = σ−
kx

≈ (k·VA)2k2

βk2
x

, (68)

respectively. The fast magnetic Rossby waves are always retrograde (i.e., they propagate
in the opposite direction of rotation), while the slow magnetic Rossby waves are prograde
(propagating in the direction of rotation). The zonal group speed has particularly interesting
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Fig. 7 Dispersion diagram of fast and slow magnetic Rossby waves for different magnetic field strengths
and directions for kyR = 1. Left panels show the case of purely toroidal magnetic field (Bx �= 0,By = 0),
while the right panels show the case when the magnetic field has the angle of ∼ 45 degree with the toroidal
direction (By = −Bx ). The upper, middle and lower panels correspond to the normalised Alfvén speed of
VA/2�R = 0.2, 1 and 5, respectively. Red solid lines correspond to the fast magnetic Rossby waves. The
Blue solid lines correspond to the slow magnetic Rossby waves. Red dashed lines correspond to the solutions
of HD Rossby waves, while blue dashed lines correspond to pure Alfvén wave dispersion curves

expression, which is obtained after differentiating Eq. (62) with respect to kx (Hide 1966)

cgx = ∂σ

∂kx

=
(

(k2
x − k2

y)β

k2
+ 2(k·VA)VAx

σ

)(
1 + (k·VA)2

σ 2

)−1

. (69)

It is seen that (k·VA) = 0 condition again leads to the HD zonal group speed. Additionally,
if By = −Bx then the zonal group speed tends to zero for kx = ky harmonics. The poloidal
group speed can be also readily obtained as

cgy = ∂σ

∂ky

=
(

2kxkyβ

k2
+ 2(k·VA)VAy

σ

)(
1 + (k·VA)2

σ 2

)−1

. (70)

More of the physics of HD and magnetic Rossby waves can be demonstrated by comput-
ing fluid particle trajectories contained within a propagating wave. This involves integrating
in time the solutions for horizontal velocities ux,uy for a given wave solution (Dikpati et al.
2020)

dx(t)

dt
= ux = −∂ψ

∂y
= An sin(ny(t)) cos kx(x(t) − cphxt) (71)

dy(t)

dt
= uy = ∂ψ

∂x
= −Akx cos(ny(t)) sinkx(x(t) − cphxt), (72)



Rossby Waves in Astrophysics Page 23 of 93 15

Fig. 8 Upper panel: particle trajectories in fast magnetic (solid curve) and HD (dashed curves) Rossby
waves of same wavelength in x and same stream function amplitude, for both clockwise and anticlockwise
flow starting points. If a particle starts from a point in the clockwise (or anticlockwise) flow, then it moves in
a clockwise (or anticlockwise) spiral, represented in blue (or red) curves. Lower panel: particle trajectories
in slow magnetic Rossby waves for strong toroidal magnetic field of 100 kGauss (a = 1 in nondimensional
unit). Trajectories for two particles, the starting points of which are spaced a half wavelength apart (namely 0
and π in x), show clockwise (blue) and anticlockwise (red) spiralling prograde propagations. The figures are
reproduced from Dikpati et al. (2020) by permission of the AAS

where A is an amplitude and n plays the role of wavenumber along y direction. These are
coupled nonlinear equations in time, which are solved using an implicit method for calcu-
lating the fluid particle trajectory (see Dikpati et al. (2020) for details). The resulting trajec-
tories for an HD Rossby wave and a fast magnetic Rossby wave of the same longitudinal
wave length are shown in upper panel of Fig. 8. Both of these waves propagate to the left in
the figure, that is, opposite to the sense of rotation of the system (retrograde). Figure 8 also
illustrates that there can be both anti-clockwise and clockwise spirals in the trajectory of a
fluid particle, depending on their starting point. Since the fast magnetic Rossby mode propa-
gates retrograde faster than the HD wave, its spiral is more spread out. The latitude range of
the spiral and the degree of overlap between adjacent spirals depends on whether the particle
starts to move in a clockwise or anticlockwise part of the Eulerian streamline pattern. Lower
panel of Fig. 8 shows a particle trajectory for the slow magnetic Rossby wave (prograde),
for a disturbance of the same wavelength as in the previous figure. Being slow, the prograde
spiralling trajectories of adjacent spirals strongly overlap. The same fluid particle traverses
its trajectory before the wave pattern has moved very much, in contrast to what we see in
the previous figure. Despite the differences just described, it is remarkable that qualitatively
the particle trajectories in all these waves are quite similar.

To study the magnetic Rossby waves in spherical coordinates is obviously more com-
plicated even in the two-dimensional case. However, one gets easy solution for the toroidal
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magnetic field

B = Bφeφ, (73)

where

Bφ = B0 sin θ. (74)

This profile was first used by Malkus (1967) in studying the hydromagnetic planetary waves
in rotating and stratified sphere. Using the Fourier analysis with exp(−iσ t + imφ) one
can get the exact solution in terms of associated Legendre polynomials with the dispersion
equation (Zaqarashvili et al. 2007)

( σ

m

)2 + 2�

n(n + 1)

( σ

m

)
− V 2

A

R2

n(n + 1) − 2

n(n + 1)
= 0. (75)

As in the Cartesian geometry, there are two solutions of the dispersion equation correspond-
ing to the fast and slow magnetic Rossby waves. The parameter γ now is proportional to
∼ 2n(n+1)VA/(2�R). For the strong magnetic field case, i.e. γ � 1, there are two Alfvén-
like modes propagating both in the direction of and opposite to the rotation with the same
speeds.

When γ � 1, i.e., weak magnetic field limit, then the two solutions can be approximated
as

σ+
m

= − 2�

n(n + 1)
− V 2

A

2�R2
[n(n + 1) − 2], (76)

σ−
m

= V 2
A

2�R2
[n(n + 1) − 2]. (77)

The higher-frequency solution, σ+, corresponds to the fast magnetic Rossby waves, which
propagates opposite to the rotation and completely transforms into the HD Rossby waves
for the zero magnetic field, Eq. (30). Therefore, this is the HD Rossby-Haurwitz mode mod-
ified by the magnetic field. The lower frequency solution, σ−, propagates in the direction
of rotation and corresponds to the slow magnetic Rossby mode. The two solutions are ex-
act spherical counterparts of rectangular magnetic Rossby waves, Eqs. (65)–(66). The zonal
phase speed σR/m does not explicitly depend on the toroidal wave number m, which might
suggest that the spherical Rossby waves are non-dispersive in the toroidal direction unlike
to the Cartesian case. However, angular degree n is defined as the total number of zeroes
on spherical surface, hence it automatically includes the variation along toroidal direction.
Therefore, spherical Rossby waves are also dispersive as in the rectangular case.

To find the dispersion relations of magnetic Rossby waves is more complicated for other
magnetic field profiles. Recently, Gachechiladze et al. (2019) found the dispersion relation
of fast magnetic Rossby waves for the magnetic field profile

Bφ = B0 cos θ sin θ (78)

in the weak field approximation as1

σ+
m

= − 2�

3n(n + 1)

⎛
⎝1 + 2

√
1 + 27

8

V 2
A

�2R2
n(n + 1)

⎞
⎠ . (79)

1Note that this equation has typo in Gachechiladze et al. (2019): there is number 81 instead of 27 in the
square root. The correct number is 27 as it is written here.
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The field profile, Eq. (78), was first used by Gilman and Fox (1997) and it generally re-
sembles the solar magnetic field having maximum at mid-latitudes and changing the sign at
the equator. The dispersion relation is transformed into Rossby-Haurwitz formula, Eq. (30),
in the nonmagnetic case. The dispersion relation of slow magnetic Rossby waves was not
discussed in Gachechiladze et al. (2019), therefore it is an interesting problem in the future.

3.3.2 Rossby Waves in Shallow Water Magnetohydrodynamics

The next obvious step is to consider a shallow magnetised fluid layer with uniform density.
The MHD shallow water equations for almost horizontal magnetic field were written by
Gilman (2000) for the solar tachocline

∂v
∂t

+ (v · ∇)v + 2�×v = −g∇H + 1

μ0ρ
(B · ∇)B, (80)

∂B
∂t

+ (v · ∇)B = (B · ∇)v, (81)

∂H

∂t
+ ∇ · (Hv) = 0, (82)

∇ · (HB) = 0, (83)

where B and v are horizontal magnetic field and velocity, ∇ is the horizontal gradient, and
H is the layer thickness.

The β-plane analysis away from equator leads to the dispersion equation for magnetic
Rossby waves in the case of zonal uniform magnetic field, Bx = B0 (Zaqarashvili et al.
2007) (

k2c2 + f 2
0 + 2k2

xV
2
A

)
σ 2 + kxβc2σ − k2

xV
2
A

(
k2c2 + k2

xV
2
A

) = 0. (84)

For zero magnetic field, the dispersion relation is transformed into the dispersion relation
of the β-plane Rossby waves, Eq. (40). When k2c2 � f 2

0 , k2
xV

2
A , then the dispersion equa-

tion is transformed into the dispersion relation of two-dimensional magnetic Rossby waves,
Eq. (62). The parameter γ is now written as

γ = (2k2VA/β)

√
1 + k2

xV
2
A/(k2c2)

√
1 + (kRD)−2 + 2k2

xV
2
A/(k2c2).

For the strong magnetic field (or γ � 1), the dispersion equation corresponds to the two
Alfvén-like waves propagating in and opposite the rotation. For the weaker magnetic field
(or γ � 1), the dispersion relations for the fast and slow magnetic Rossby waves can be
approximated as

σ+ ≈ − kxβ

k2 + R−2
D + 2k2

xV
2
A/c2

, (85)

σ− ≈ kxk
2V 2

A

β

(
1 + k2

x

k2

V 2
A

c2

)
. (86)

Fast magnetic Rossby waves propagate westward (opposite to the rotation), while the slow
waves propagate eastward. Magnetic Rossby waves in the rotating channel of nonuniform
height with horizontal magnetic field are also governed by similar equations (Zaqarashvili
2009). Vertical uniform magnetic field, Bz = B0, also leads to the same equation, Eq. (84), if
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one replaces k2
xV

2
A by V 2

A/H 2 (Heng and Spitkovsky 2009; Heng and Workman 2014). The
influence of geomagnetic field on the dynamics of planetary waves in the Earth’s ionosphere
has been also intensively studied (Khantadze et al. 2010).

Equatorial β-plane approximation for zonal uniform magnetic field results in the disper-
sion equation (Zaqarashvili 2018)

(σ 2 − k2
xV

2
A)

[
σ 2 − k2

x(c
2 + V 2

A)
] − kxβc2σ = βcσ(2ν + 1)

√
σ 2 − k2

xV
2
A. (87)

When the magnetic field is zero, the dispersion relation in the low frequency limit transforms
into that of equatorial HD Rossby waves, Eq. (47). The remarkable difference with regard
to the HD case is that the uniform toroidal magnetic field creates low frequency cut-off
areas in the dispersion relation caused by the existence of k2

xV
2
A term in the square root

on the right hand-side. Hence the low-frequency magnetic Rossby wave, σ 2 < k2
xV

2
A , is no

longer a solution of the dispersion relation: it is prohibited by the horizontal magnetic field
through the action of the Lorentz force. The strong magnetic field opposes the vortex motion
and prohibits the Rossby waves. Inhomogeneous magnetic field with the profile of Eq. (78),
which can be approximated near the equator as Bx ∼ B0y/R, produces interesting behaviour
of equatorial magnetic Rossby waves. The dispersion relations for equatorial fast and slow
magnetic Rossby waves can be approximated for small wavenumber as (Zaqarashvili 2018)

σ+ ≈ − kxc

2ν + 1
, (88)

σ− ≈ − (2ν + 1)2 − 1

(2ν + 1)2 + 2

kxV
2
A

βR2
. (89)

The equatorial fast magnetic Rossby waves have a similar dispersion relation to the HD
equatorial Rossby waves for smaller wavenumber (because the magnetic field becomes very
small in neighbourhood of the equator) and they propagate westward. Equatorial slow mag-
netic Rossby waves also propagate westward, which is opposite to the higher latitudes,
where the slow waves propagate eastward (see Eq. 86). This point needs further detailed
study. Dispersion diagrams of fast and slow magnetic Rossby modes from full dispersion
equation with ν = 1 from Zaqarashvili (2018) are shown on Fig. 9. There is a cut-off region
of fast magnetic Rossby waves for kxR > 16.5. The physical reason of the cut-off is not yet
explained.

Shallow water magnetic Rossby waves in the spherical geometry are more difficult to
analyse. Márquez-Artavia et al. (2017) performed detailed analysis of the shallow water
waves in the case of magnetic field profile Eq. (74). They found that the fast magnetic Rossby
waves for the weak magnetic field and large Lamb parameter are equatorially trapped and
can be expressed as

σ+
m

= −
√

4�2

ε(2ν + 1)2
+ V 2

A

R2
. (90)

Hence the waves propagate westward similar to the HD case, but the slow magnetic Rossby
waves propagate eastward (except anomalous m = 1 mode, which propagates westward).
Márquez-Artavia et al. (2017) found that the fast and slow magnetic Rossby waves are
trapped near the poles for the stronger magnetic field. The polar trapping of magnetic Rossby
waves can also happen in the case of rapid rotation and/or reduced gravity (Zaqarashvili et al.
2009, 2011).
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Fig. 9 Dispersion diagram of equatorial fast and slow magnetic Rossby modes with ν = 1 vs normalised
zonal wavenumber kxR. Here the Lamb parameter of ε = 4 · 103 and the magnetic field strength of
B0 = 104 G are used

Density stratification due to the gravity may influence the dynamics of magnetic Rossby
waves causing vertical structuring of the waves. Unfortunately, not much is currently known
about the influence. Recently, Zeitlin (2013) showed that the shallow-water MHD model
may be systematically derived by vertical averaging of the full MHD equations for the ro-
tating fluid under the influence of gravity. Utilising similar scaling techniques and building
on Gilman’s earlier pioneering work on magnetohydrodynamic modified quasigeostrophic
flow (MQG, Gilman 1967a,c,b), Umurhan (2013) derived a set of model equations that is
intermediate between MQG and shallow water MHD in a stably stratified atmosphere, ar-
guing that this intermediate set of equations provide a conceptual framework to link MQG
to MHD shallow water equations. In both instances, the procedures employed highlight the
main approximations and the domain of validity of the two models, and allows for multi-
layer generalisations and, hence, inclusion of baroclinic effects. This statement is similar to
the theorem derived by Taylor (1936) for HD rotating systems (see Sect. 3.2.3). Certainly,
much more can be done in exploring these directions in future. Furthermore, these equations
may quite possibly be applied to the atmospheres of hot exoplanets, where the upper layers
may be both sufficiently dense to be a fluid and ionised to be described by MHD processes.

3.4 Instability of Rossby Waves

Shear flow or differential rotation could lead to the destabilisation of Rossby waves in certain
conditions. The instability conditions are similar to Rayleigh (Rayleigh 1880) and Fjørtoft
(Fjørtoft 1953) conditions and/or to Howard semi-circle theorem (Howard 1961). In this
subsection we review the basic properties of Rossby wave instability in plane-parallel shear
flows. The instability of magnetic Rossby waves on differentially rotating spherical surface
is briefly reviewed in Sect. 4.2.5.
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Fig. 10 Schematic of interacting vorticity waves in a shear flow. A hyperbolic tangent shear layer, and
the corresponding vorticity gradient profile are shown on the left-hand side. On the right-hand side, the
cross-stream displacement, the associated cross-stream velocity and the associated sign of vorticity for each
wave are shown, and represented by the same colour. Position of each undulating material line after a short
time interval is shown by dashed line. Interaction leads to an additional cross-stream velocity (shown by a
different colour). Note that cross-steam velocities due to undulations of the other material line are weaker
(represented by shorter arrows) than those due to the self-induced vorticity anomalies. The horizontal arrow
associated with a wave indicates the intrinsic wave propagation direction. Both waves are counter-propagat-
ing, i.e. moving opposite to the background velocity at that location. Adapted from Heifetz and Guha (2019)

3.4.1 A Minimal Model for Rossby Wave Instability

In this section we would like to provide a minimal model for the essence of the mechanism
by which Rossby waves interact in a distance to perform instability. For clarity we then
demonstrate the mechanism on the simple configuration of the Rayleigh model, where the
Rossby waves are concentrated into two delta functions and then compare it with a more
realistic scaled hyperbolic tangent shear layer. The two Rossby wave interaction paradigm
was shown to be applicable for baroclinic instability (Heifetz et al. 2004) and to MHD shear
flow dynamics (Heifetz et al. 2015), hence relevant to astrophysical setups.

In their seminal paper, Hoskins et al. (1985) presented a heuristic minimal model for
barotropic shear instability based on the interaction at a distance between two counter-
propagating Rossby waves. This model has been formulated mathematically by Heifetz et al.
(1999) for the simple barotropic model of Rayleigh (1880) and by Davies and Bishop (1994)
for the simple baroclinic model of Eady (1949). Later on, Methven et al. (2005) showed that
this minimal model catches, surprisingly well, the essence of the instability of realistic atmo-
spheric jets with complex baroclinic-barotropic structures. Heifetz et al. (2015) generalised
then this model for magnetohydrodynamic shear flows to include the instability mechanism
of mixed Rossby-Alfvén waves. Here we review this minimal model in a simple generalised
from, based on the recent paper by Heifetz and Guha (2019).

The schematic picture of the interaction in its simplest form can be drawn as follows.
Consider a 2D shear flow profile, plotted in Fig. 10, in the (x, y) plane. The mean flow
U(y) is pointing only in the x direction but the speed varies with y. Furthermore, U(y)

is positive in region I and negative in II. The vorticity, �, for a 2D flow is a scalar and
for this shear flow profile, �(y) = −dU/dy is non-positive everywhere. Its cross-stream
derivative however, d�/dy = −d2U/dy2, is positive in region I and negative in II. Such
flow satisfies the two celebrated necessary conditions for shear instability Rayleigh (1880)
and Fjørtoft (1953). The Rayleigh inflection point criterion requires that the mean vorticity’s
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cross-stream derivative changes sign within the shear region, whereas the Fjørtoft condition
has an additional requirement – the signs of the cross-stream vorticity derivative and the
mean flow should be positively correlated. In our case, both fields are positive in region
I and negative in region II, thereby satisfying Fjørtoft’s criterion in addition to Rayleigh’s
criterion.

The Rayleigh and Fjørtoft conditions were derived originally for normal mode instability
and only in 1985 (Hoskins et al. 1985) were related to the more general constants of motion
in linearised dynamics of pseudo-momentum (or equivalently wave-action, for monochro-
matic waves) and pseudo-energy, respectively. In that seminal paper, the authors provided
a minimal model as well to rationalise these conditions, as is illustrated below. In a 2D
inviscid, incompressible flow, a fluid element with the velocity field u = (u, v) materially
conserves its vorticity, q̃ = ∂v/∂x − ∂u/∂y, as it moves. Since in region I the cross-stream
derivative of the mean vorticity is positive, a fluid element that is displaced southward (in the
negative y direction) conserves its relatively high vorticity and consequently develops a pos-
itive vorticity anomaly, q , which induces a counter-clockwise circulation. Similarly, a fluid
element that is displaced northward develops a negative vorticity anomaly with clockwise
circulation. Thus, an undulated sinusoidal material line in region I (indicated by the grey
solid line in Fig. 10) will tend to propagate to the west (in the negative x direction, the
dashed grey line), counter to the mean flow U , because the induced cross-stream velocity
will shift fresh vorticity anomalies to the left of the existing ones.

Applying the same logic to region II, an undulated sinusoidal material line here will
propagate to the east (black solid and dashed lines in Fig. 10), counter as well to the mean
flow there. These shear Rossby waves are the building blocks of the minimal model. The sign
of the cross-stream mean vorticity gradient determines the direction of their intrinsic phase
speed. Therefore, when the Rayleigh’s criterion is satisfied, the waves propagate counter to
each other, and when the Fjørtoft condition is satisfied as well, the waves also propagate
counter to their local mean flow. Consequently, despite the mean shear, and even in the
absence of interaction between the waves, the difference between the waves’ phase speeds
is relatively small.

The second essential ingredient in this minimal model is the interaction at a distance
between those building blocks. While the waves’ vorticity fields are localised, the veloc-
ity field attributed to each vorticity field is non-local by nature and decays away from each
vorticity wave. Consequently, the two waves can interact at a distance by inducing on each
other their individual cross-stream velocities. If the two waves’ vorticity fields are in phase
(Fig. 11(a)), their cross-stream velocity will be in phase as well. Therefore, the induced
velocity of one wave on the other will “help” the latter to translate its displacement faster
and as a result, each wave will be propagating faster counter to its mean flow. In contrast,
if the vorticity of the waves is in anti-phase (Fig. 11(b)), the waves will hinder each other’s
counter-propagation rate. If the upper wave’s vorticity lags the lower one by a quarter of a
wavelength (so that the waves are π/2 out of phase), the far field velocity induced by each
wave will not affect the propagation rate but will amplify the waves’ displacements. As each
wave’s displacement amplitude is tied to its vorticity, increase in the vorticity amplitude of
one wave will lead to an amplification of the vorticity amplitude of the other wave. There-
fore, this scenario describes a mutual instantaneous amplification at a distance (Fig. 11(c)).
In contrast, if it is the lower wave’s vorticity which is lagging the upper one by a quarter of a
wavelength, the waves will mutually decay each other’s amplitudes (Fig. 11(d)). Generally,
any setup of phase difference between the two waves yields mutual interactions that affect
both on the waves’ amplitudes and the waves’ propagation rates (Fig. 11(e)). Figure 10
demonstrates a configuration where the waves amplify each other’s amplitude but hinder
each other’s counter-propagation rate.
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Fig. 11 Schematic description of the linear interactions between counter-propagating vorticity waves. The
waves depict interfacial displacement, while the horizontal and vertical arrows respectively denote stream–
wise (background) and cross-stream velocities. Note that cross-steam velocities due to undulations of the
other material line are weaker (represented by shorter arrows) than those due to the self-induced vorticity
anomalies. (a) Fully helping, (b) fully hindering, (c) fully growing and (d) fully decaying configurations.
(e) Depending on the phase difference ε between the vorticity perturbations at the upper and lower undulat-
ing material lines, different kind of linear interactions can be expected, as shown by the “concentric circles”.
The locations where the configurations (a)–(d) occur have been marked. The configuration given in Fig. 10
lies in the second quadrant (shaded in gray), which is the “growing-hindering configuration”. Adapted from
Heifetz and Guha (2019)

The wave interaction picture described above can be translated into a generic set of equa-
tions constructing the minimal model. Denote the vorticity waves’ anomaly in the two re-
gions as q1,2(t) (indices 1 and 2 correspond to the two regions), and writing them in terms
of their amplitudes and phases q1,2 = Q1,2e

iε1,2 , we obtain (Heifetz et al. 2004):

Q̇1 = σ1Q2 sin ε, Q̇2 = σ2Q1 sin ε, (91)

ε̇1 = −ω̂1 + σ1
Q2

Q1
cos ε, ε̇2 = −ω̂2 − σ2

Q1

Q2
cos ε. (92)

Consider first Eq. (91), which relates to the inner circle of Fig. 11(e) and describe the in-
stantaneous growth or decay of the wave amplitudes due to the interaction at a distance. The
relative phase of the waves is ε ≡ ε1 −ε2, while the interaction at a distance coefficients, σ1,2
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depend on the details of the problem. Note that σ1 is determined by the evanescent structure
of the cross-stream velocity of wave 2, the effective distance between the two waves and the
cross-stream mean vorticity gradient in region I (where equivalent arguments are implied
for σ2). It indeed indicates that ε = π/2 (Fig. 11(c)) is the optimal phase for mutual instan-
taneous amplification. Equation (92) relates to the outer circle of Fig. 11(e). The frequencies
of the waves, ω̂1,2, in the absence of interaction include both the effects of advection by the
mean flow, U1,2 (which provides the Doppler shift) and the counter-propagation rate (which
is the intrinsic frequency). The frequency of each wave can be either positive or negative.
Positive values of ω̂1,2 > 0, indicate eastward wave propagation (in the positive x direction)
in the absence of interaction, where the minus sign in front of them, at the RHS of Eq. (92), is
because the waves’ phases increase when they propagate westward. Thus, when the waves’
vorticity fields are in phase (cos ε = 1, see Fig. 11(a)), the waves help each other to counter-
propagate in agreement with the plus and minus signs in the last terms of Eq. (92) (Note that
in Fig. 11, the displacement fields have been plotted. In Fig. 11(a) the displacement fields
are anti-phased however the vorticity fields are in phase). The same logic can be applied for
ε = π , Fig. 11(b), where the waves hinder each other’s propagation rate. The detailed dy-
namical properties of the Rossby wave interaction system can be found elsewhere (Heifetz
et al. 2004; Heifetz and Guha 2018; Guha and Lawrence 2014; Pikovsky et al. 2001). Re-
cently, the effect of finite Rossby radius of deformation on the Rossby wave interaction was
analysed by Biancofiore and Umurhan (2019). They found that the two Rossby waves lose
their counter-propagative character for small values of the Rossby radius of deformation.
Thus, a less hindering, or eventually helping, configuration is needed to phase lock.

3.4.2 Application to the Rayleigh Model of Shear Instability

We wish to provide a concrete example for the wave interaction mechanism. One of the
simplest setups for shear instability has been suggested by Lord Rayleigh in 1880 (Drazin
and Reid 2004) for a piecewise version of the shear profile in Fig. 10:

U (y) =

⎧⎪⎨
⎪⎩

1 y ≥ 1

y −1 ≤ y ≤ 1

−1 y ≤ −1.

(93)

Detailed analysis of the problem in terms of wave interaction can be found in Heifetz et al.
(1999) for modal instability, and in Heifetz and Methven (2005) for non-modal growth.
Here we note that for this piecewise version of shear profile the mean vorticity gradient is
concentrated in y = ±1:

d�

dy
= −d2U

dy2
= δ(y − 1) − δ(y + 1). (94)

Thus, the two vorticity waves are interfacial so that the perturbation vorticity q satisfies:

q = [q1(k, t)δ(y − 1) + q2(k, t)δ(y + 1)]eikx, (95)

where k > 0 denotes the stream-wise wavenumber.
The instability growth rates for the piece-wise linear and the mixing layer continuous

profiles are plotted in Fig. 12(a), whereas the vorticity and the stream-function structures of
their most unstable modes are plotted in Fig. 12(b, c), respectively.
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Fig. 12 (a) Dispersion relation i.e. growth rate vs wave number for Rayleigh (grey) and scaled hyperbolic
tangent shear layer (black). (b) Normalised perturbation vorticity for Rayleigh (black and white contour lines;
black denotes positive and white denotes negative) and scaled hyperbolic tangent shear layer (filled coloured
contours). (c) Normalised perturbation stream-function following the same colour as in panel (b). Adapted
from Heifetz and Guha (2019)

3.4.3 Multi-wave Interactions

The interaction between the two vorticity waves, described in previous subsection, can be
generalised straightforwardly to the case of N number of interacting waves, as is illustrated
schematically in Fig. 13, and explained in Heifetz et al. (2009) for Rossby waves and in
Heifetz and Guha (2018) for gravity waves. Multiple vorticity waves are located in concave
and convex regions where the mean cross-stream vorticity derivative have local extrema.
The cross-stream velocity field at every level is now composed of the in-situ velocity field,
induced by the wave located at that level (indicated hereafter by the index, i, and the contri-
butions of the far field velocity induced by all of the other remote waves, indicated generally
by the index, j ). Naturally, the magnitude of the induced velocity decreases with the distance
according to the evanescent structure of the Green function, which translates the vorticity
source to the far field velocity field it induces. This structure is determined by the details
of the problem setup (cf., different examples in Heifetz and Methven 2005) however it only
depends on the cross-stream distance between waves i and j . In the following formulation
Gij represents the Green function induced by a remote wave j on an in-situ wave i. Since
only the distance between the two waves matters for G, it is symmetric, i.e., Gij = Gji .
Generally, we may expect that adjacent pairs of vorticity waves will affect each other more
pronouncedly than remote pairs. Nonetheless, a remote vorticity wave with a large ampli-
tude Qj may affect a distant wave more strongly than a closer neighbour wave with a smaller
amplitude.

Furthermore, as illustrated in Figs. 10 and 13 the cross-stream velocity field acts directly
on the wave displacement. Thus, if the displacement and the vorticity wave anomalies are
in phase (like in wave “2” in Fig. 10) a positive far field cross-stream velocity, acting to
amplify the wave displacement, is also amplifying the positive vorticity anomaly. In contrast,
when the wave displacement and vorticity anomalies are in anti-phase (as in wave “1” in
Fig. 10) such far field velocity will increase the negative value of the vorticity anomaly. The
amount by which an induced velocity increases the vorticity amplitude of an in-situ wave
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Fig. 13 Schematic of a general shear layer, the complex instability dynamics of which can be understood
using the minimal model of N (= 4 in this case) interacting vorticity waves. The colour convention is same
as that of Fig. 10. Adapted from Heifetz and Guha (2019)

depends on the restoring mechanism of the wave itself and is generally different for Rossby,
gravity, capillary or Alfvén waves. As we are interested in the prototype of the interaction
we therefore indicate this factor by αi , which is positive when the displacement and the
vorticity wave anomalies of wave i are in anti-phase and negative when they are in phase.
Denote εij ≡ εi − εj , and σij ≡ αiGij , the generalisation of Eqs. (91)–(92) to N interaction
waves read:

Q̇i =
N∑

j=1

σijQj sin εij , (96)

ε̇i = −ω̂i +
N∑

j=1,j �=i

σij

Qj

Qi

cos εij (97)

Thus, from this wave interaction perspective modal phase locking is achieved when a config-
uration is set to synchronise all waves to propagate with the same frequency: −ω∗ = λNM

i =
ε̇1 = ε̇2 = · · · = ε̇N , and to exhibit the same growth rate λNM

r = Q̇1/Q1 = Q̇2/Q2 = · · · =
Q̇N/QN .

3.5 Nonlinear Rossby Waves

Finite amplitude waves lead to the nonlinear phenomena, which may become of importance
in different situations like wave steepening, wave-wave interaction, turbulence etc. We will
briefly review two different aspects of nonlinear effects connected to Rossby waves: soliton
solution and wave-wave interactions.

3.5.1 Rossby Soliton

Solitary waves or solitons arise when the nonlinear steepening of waves is balanced by the
wave dispersion (Zabusky and Kruskal 1965). In this case, the steady structure is formed
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which propagates without change of form and properties. In the case of rotating shallow
water system, a soliton can be formed as a nonlinear vortex monopole, which moves opposite
to the rotation with slightly higher speed than the Rossby wave phase speed. The equation
governing the nonlinear dynamics of shallow water layer with width H on a sphere rotating
with angular velocity � was derived by Petviashvili (1980)

∂

∂t

[
η − r2

D�η
] − vR

1

R sinϑ

∂

∂φ

(
η + η2

2

)
= 2� sinϑr4

DJ (η,�η), (98)

where η is the elevation of the surface, rD = c/f is the Rossby radius of deformation,
vR = c2/f = crD is the phase speed of linear Rossby waves, � is the Laplacian, ϑ and
φ are the latitude and the longitude, respectively, J (η,�η) is the Jacobian of the functions
η and �η. Derivation of this equation requires two assumptions that the wavelength of per-
turbations is much longer than the layer thickness, L � H (Eq. (34)), and that the time-scale
of perturbations is much longer than the rotation period, d/dt � �. The second condition
means that the approximation neglects surface gravity waves. This equation allows a steady
state solution in the form of soliton (i.e., isolated vortex), η = h(φ + ut/R,ϑ), which satis-
fies the equation (Petviashvili 1980)

r2
D�h =

(
1 − vR

u sinϑ

)
h − 3

2

vR

u sinϑ
h2, (99)

where −u is the soliton displacement speed along the longitude. Exact solution of Eq. (99) is
not yet found. Petviashvili (1980) derived an approximate solution through expansion near
the latitude ϑ0 (similar to β-plane) as

h = 1.6

(
rD

Ls

)2 (
cosh

(
3

4

r

Ls

[1 + ξ(ϑ − ϑ0)]
))−4/3

, (100)

where r is the distance from the soliton centre, Ls > rD is the soliton radius and

ξ = Ls

rD

2 cosϑ0

sinϑ0
<

Ls

R
(101)

is the expansion parameter. All the quantities of the soliton are determined by the character-
istic radius of the soliton

Ls = rD√
1 − vR/(u sinϑ0)

. (102)

The value of the longitudinal speed of soliton is directly proportional to the amplitude and
inversely proportional to the soliton radius. Petviashvili (1980) obtained that the rotation
of the vortex and the propagation direction are opposite to the rotation, hence the soliton is
anticyclonic. The pressure in the vortex centre is higher than in the edges like in anticyclone.

Equation (99) is sufficiently general and can be applied to any latitude of the rotating
sphere. The soliton solution has been found on the β-plane away from the equator by many
authors (Williams and Yamagata 1984; Stegner and Zeitlin 1996; Tan and Boyd 1997). Nu-
merical solution of the Petviashvili equation is presented on Fig. 14, which shows the prop-
agation of stable structure in the opposite direction of rotation (Tan and Boyd 1997). The
anticyclonic soliton propagates westward with slightly grater speed than the speed of long
Rossby waves (Stegner and Zeitlin 1996; Tan and Boyd 1997). The Rossby soliton was also
found in laboratory experiments (Antipov et al. 1981; Antonova et al. 1983), though they
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Fig. 14 Propagation of a soliton
in the opposite direction of
rotation. Here the contour lines
of non dimensional surface
elevation η/H is plotted. Here,
the horizontal axis shows
longitude and the vertical axis
shows the latitude. Adapted from
Tan and Boyd (1997)

used the paraboloidal geometry, while the Petviashvili equation was derived in the spheri-
cal geometry (see discussion in Stegner and Zeitlin 1996). Rossby soliton solution on the
β-plane may explain the basic properties of the Great Red Spot of Jupiter (see the Sect. 4).

On the other hand, Boyd (1980) obtained Korteweg-deVries equation for long, weakly
nonlinear waves near equatorial region using the method of multiple scales. This equation
permits the existence of equatorial Rossby soliton solution. Equatorial Rossby soliton has
been subject to intensive study in the Earth’s context (Majda and Biello 2003; London 2017;
Yano and Tribbia 2017).

Rossby soliton solutions have been discussed in many different aspects from planetary
vortices to spiral galaxies (Nezlin et al. 1993). General problem of soliton stability was
reviewed by Kuznetsov et al. (1986).

3.5.2 Nonlinear Wave-Wave Interactions

Waves with large amplitudes may interact with each other and lead to mutual energy ex-
change. The simplest process is the three-wave interaction when either one wave (pump
wave) decays into two different waves or two waves merge into one wave through nonlinear
interaction. Both momentum and energy must be conserved during the interactions, which
leads to the following resonant conditions for two dimensional waves:

⎧⎪⎨
⎪⎩

kx1 + kx2 + kx3 = 0,

ky1 + ky2 + ky3 = 0,

σ1 + σ2 + σ3 = 0,

(103)

where (kx1, ky1, σ1), (kx2, ky2, σ2), and (kx3, ky3, σ3) are wave numbers and frequencies of
resonant waves (or resonant triad). In the case of Rossby waves, the wave numbers and
frequencies must satisfy the dispersion relation, Eq. (22) (Longuet-Higgins and Gill 1967;
Pedlosky 1987). Resonant interaction may also occur between different shallow water waves
e.g. Rossby and inertial-gravity waves (Duffy 1974; Domaracki and Lossch 1977; Loesch
and Deininger 1979; Eden et al. 2019). Hydrodynamic resonant decay has been recently
generalised to the MHD shallow water wave-wave interaction where magneto-Rossby and
magneto-inertial gravity waves take part (Raphaldini and Raupp 2015; Raphaldini et al.
2019; Klimachkov and Petrosyan 2016, 2017a,b). The ways that these nonlinear processes
affect different astrophysical objects are still under investigation.
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4 Rossby Waves in Astrophysical Objects

4.1 Rossby Waves in Solar System Planets

Besides the Earth, the Rossby waves were first observed on solar system planets, mostly
on Jupiter and Saturn. This section summarises key observations of the waves in planetary
atmospheres.

4.1.1 Jupiter

The Voyager spacecraft infrared, radio occultation, and imaging measurements provided
an observational evidence for planetary-scale waves latitudinally trapped within Jupiter’s
equatorial jet (Smith et al. 1979). The visually prominent plumes showed an organisation by
longitudinal wavenumber 11–13 and have been interpreted as equatorially trapped Rossby
waves (Allison 1990). Several years later, observations detected eight to nine longitudinal
areas with high likelihood of containing a hot spot moving slowly westward. The wave
numbers and phase speeds were found to be consistent with equatorial Rossby waves (Ortiz
et al. 1998). Arregi et al. (2006) studied motion and spatial distributions of hot spots at 7 ◦N
latitude of the Jupiter using 7 years observations at visible wavelengths between 1979 and
2002 combining the data of Voyagers 1 and 2, Hubble Space Telescope and ground based
observatories. They estimated the velocity of spots as 97–113 m/s and zonal wave numbers
as 6–20 (usually 8–12), which were interpreted as equatorial Rossby waves travelling along
the planet and confined to upper troposphere. Comparing to the theoretical dispersion curves
of the Rossby waves (obtained from the dispersion equation of Allison (1990), which is the
same as Eq. (47)), the authors estimated the equivalent depth of the waves as 1–2 km and
the background flow of 140 m/s (Fig. 15).

Cassini reported an obvious signature of longitudinal wave pattern centered at 14 ◦N in
both UV and near-IR brightness with a suggestion of the same wave in the cloud structures
seen in the blue (Fig. 16). At its southern boundary, the zonal flow was moving at 100 m/s
(eastward, i.e. to right), whereas at the northern boundary, the jet was retrograde with a
velocity of −25 m/s (Porco et al. 2003). These observations were later interpreted as due to
the Rossby waves (Li et al. 2006).

Both equatorial and high latitude Rossby waves have been frequently observed in the
Jupiter atmosphere by the Cassini spacecraft, ground based and Hubble Space Telescope ob-
servations (Li et al. 2006; Barrado-Izagirre et al. 2008; García-Melendo et al. 2011; Simon-
Miller et al. 2012; Legarreta et al. 2016).

Great Red Spot of Jupiter (see the spot in the southern hemisphere of the planet on
Fig. 16) could be explained in terms of anticyclonic Rossby soliton solution (Petviashvili
1980; Williams and Yamagata 1984), which slowly moves in the direction opposite of rota-
tion (see details in the Sect. 3.5). The spot shows slow westward drift of 1–5 m/s (Mitchell
et al. 1981) corresponding to the barotropic soliton phase speed, however 3D numerical
simulations revealed its deep baroclinic structure (Williams 1997). Recent Juno gravity mea-
surements may shed light in the vertical structure of the Great Red Spot of Jupiter and in its
physical origin.

4.1.2 Saturn

Saturn’s Polar Hexagon is the hexagonal, pole-centered cloud feature in Saturn’s northern
atmosphere as revealed in Voyager close-encounter imaging mosaics. The hexagon has been
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Fig. 15 Comparison between the observed dispersion relationship measured from observed motions and
wave number at the Jupiter (dashed lines) and the theoretical dispersion curves of equatorial Rossby wave
(continuous line). Calculations for the meridional structure index j = 1 (left) and j = 2 (right) are shown,
with different values of the equivalent depth of the Rossby wave, h. The horizontal phase speed is measured
relative to the background mean zonal flow velocity, which is a free parameter indicated between parentheses
above each experimental (dashed) line. Adapted from Arregi et al. (2006)

Fig. 16 Three images of Jupiter (left) in blue (451 nm), (middle) in UV (258 nm), and (right) in the strong
methane band (889 nm). A wave pattern, which circumnavigates the globe, is easily seen near 14 ◦N latitude
in both UV and methane images (indicated by the arrow). It seems to be correlated with waves in the clouds
seen at the same latitude in the blue image. The Great Red Spot is seen in the southern hemisphere of the
planet. Adapted from Porco et al. (2003)

interpreted as a stationary Rossby wave embedded within a sharply peaked eastward jet (of
100 meters per second), forced by the interaction of the jet with one or more adjacent an-
ticyclonic ovals immediately to the south and meridionally trapped by the strong relative
vorticity gradient of the flow itself (Allison et al. 1990). Cassini re-observed the long-term
motion of Saturn’s north pole hexagon (Fig. 17) and has been again interpreted as a mani-
festation of a vertically trapped Rossby wave on the polar jet (Sánchez-Lavega et al. 2014).
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Fig. 17 Polar projected images of Saturn from the north pole to 60 ◦N. (a) Composition of Cassini ISS CB2
images on 3 January 2009. (b) Cassini ISS RGB colour composition showing features in the hexagon and
the jet stream on 26 August 2008. The red arrow marks the location of the hexagon. (c) Colour composite
from 13–16 July 2013 obtained with the AstraLux camera on the 2.2 m telescope at Calar Alto Observatory
(Spain). (d–f) Images obtained in 2013 by D.P. Milika (25 March), D. Peach (20 April), and C. Go (26 May),
respectively. The figure is reproduced from Sánchez-Lavega et al. (2014)

Another remarkable structure in Saturn’s blue-red filtered images obtained by the Voy-
ager spacecrafts is a ribbon; a dark wavy line (100 km across) encircling the planet at mid
northern planetographic latitudes (at 47 ◦N) and moving with the peak of an eastward jet
with velocity of 140 m/s. Sromovsky et al. (1983) measured the change in the ribbon’s
Fourier phase spectrum over time and found a Rossby wave-like relation between the phase
velocity and wavenumber of each Fourier component. Using images from the Cassini space-
craft, Gunnarson et al. (2018) recently analysed three ribbon waves in Saturn’s 42 ◦N east-
ward jet at 45 ◦N, 42 ◦N, and 39 ◦N planetocentric latitudes (Fig. 18). They demonstrated
that the morphology, wavelength, and propagation of the ribbon waves are consistent with
barotropic Rossby waves with a smaller baroclinic component.

Read et al. (2009) suggested that the longest Rossby waves could be frequently coher-
ent across its adjacent jets and almost stationary relative to its bulk planetary rotation pe-
riod on the basis of the atmospheric planetary-wave configuration (potential vorticity and
zonal wind). Then they determined the rotation period of Saturn to be almost 5 min shorter
(10 h 34 min 13 ± 20 s) than measured by Cassini spacecraft (10 h 39 min 24 ± 7 s). The
semi-stationary character of Saturn’s Polar Hexagon might be related with adjustment of
atmospheric flow towards a state of marginal dynamical stability as discussed by Read et al.
(2009).

The observed 10.7 hour modulation of various phenomena in Saturns’s magnetosphere
was recently explained by westward propagating Rossby waves (Smith et al. 2016).
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Fig. 18 Morphology of the 42 ◦N jet as seen by Cassini ISS. (a) WAC CB2 mosaic, 13 January 2008.
(b) WAC CB2 mosaic, 10 December 2012. (c) NAC CB2 image, 20 January 2012. (d) NAC MT2 image,
simultaneous with (c). (e) NAC MT2 image, 5 May 2013. ISS = Imaging Science Subsystem; WAC =
wide-angle camera; NAC = narrow-angle camera. East is to right. The figure is reproduced from Gunnarson
et al. (2018)

4.1.3 Mars

Wave-like planetary-scale perturbations on Mars are found in the Mariner 9 IRIS atmo-
spheric temperature data during late Northern Hemisphere winter in a latitude band between
45 ◦N and 65 ◦N (Conrath 1981). A suggested mechanism for the perturbations is that they
are forced, quasi-stationary planetary waves that arise predominantly via zonally asymmet-
ric surface properties (Hollingsworth and Barnes 1996). Later, Hinson et al. (2003) reported
new observations of stationary planetary waves in the southern hemisphere of Mars with
significant amplitudes at zonal wave numbers m = 1 and 2. The geopotential field of the
m = 2 component was barotropic in character and can be modelled as stationary planetary
waves.

4.1.4 Pluto

Observations of the 2007 March 18 occultation of the star P445.3 by Pluto resulted in light
curves with unprecedented high signal-to-noise ratios, which revealed significant oscilla-
tions in the number density, pressure, and temperature profiles of Pluto’s atmosphere (Person
et al. 2008). Detailed analysis of light curves indicated that these variations in Pluto’s upper
atmospheric structure exhibit a previously unseen oscillatory structure with strong corre-
lations of features among locations separated by almost 1200 km in Pluto’s atmosphere.
Person et al. (2008) concluded that these variations are caused by large-scale atmospheric
Rossby waves.
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4.2 The Sun

The detection of Rossby waves is more complicated in other astrophysical objects like the
Sun, stars or accretion/galactic discs. In recent years, however, the study of the waves is
rapidly developing in the solar context. First of all, helioseismology can provide us with
surface and internal velocity maps, which can be used to reconstruct the Rossby wave pat-
terns. The Rossby waves can also influence solar magnetic fields and hence can be detected
through solar magnetic activity variations.

First attempt to interpret observations in terms of Rossby waves on the Sun was made by
Suess (1971), who reported the direct detection of the waves in global velocity field on the
solar surface. However, this preliminary study remained unexpanded and the subject was not
studied further until the new century, when Kuhn et al. (2000) have reported observations
of a regular structure of 100 m “hills” uniformly spaced over the surface of the Sun with a
characteristic separation of 90,000 km. They suggested that this structure is the surface man-
ifestation of Rossby waves, or r-modes oscillations. However, several years later Williams
et al. (2007) showed that the observation was a signature of super-granulation rather than
Rossby waves. Therefore, the subject of direct detection of Rossby waves was again not
discussed in literature until recent years, when attempts to detect the waves again revived.
On the other hand, relation of Rossby waves to intermediate periodicity in solar activity has
been the subject of continuous discussion during years. It must be clearly distinguished be-
tween direct and indirect detections of Rossby waves on the Sun. Measurement of velocity
(helioseismic or granulation tracking) and longitude-dependent patterns of solar magnetic
structures (coronal bright points or coronal holes) are direct methods to observe the Rossby
wave characteristics (phase speed, wavenumber etc.). While the periodic variation in solar
activity with Rossby wave time scales is an indirect method, though it may reveal an im-
portant information about the waves in the solar interior. This subsection reviews the theory
and observations of Rossby waves on the Sun.

4.2.1 Evidence for Magnetic Rossby Waves in the Sun

Surges of magnetic flux emergence give rise to the quasi-periodic occurrence of flares (and
CMEs) on the Sun’s magnetic activity bands at mid solar latitudes, as discussed in McIn-
tosh et al. (2015). The surges are easily observed in the daily sunspot record, see panel A of
Fig. 19. At latitudes above these activity bands, in the first few years of the descending phase
of cycles, recurrent high-speed solar streams are observed (e.g., Legrand and Simon 1981).
The source of these fast wind streams quasi-rigidly rotate. McIntosh et al. (2015) demon-
strated the quasi-periodic nature of the fast solar wind speed and density. The coupling of
these phenomena shows that the magnetic activity bands of the 22-year Hale magnetic cycle
(those that comprise the present and upcoming sunspot cycles) are stacked in latitude, and
are present on the solar disk almost all of the time (McIntosh et al. 2014).

As discussed earlier (Fig. 1) a diagnostic to demonstrate the motion of the observed phe-
nomena in longitude and connect it to the underlying process comes from the construction
of a Hovmöller diagram (Hovmöller 1949). We remind the reader that the axes of a Hov-
möller diagram are longitude (abscissa) and time (ordinate) for fixed latitudes. Combining
the analysis of EUV images in the broadband channels taken by the twin STEREO/EUVI
(195 Å) and SDO/AIA (193 Å) telescopes allowed to develop the 360 degree density map
of coronal bright points (BPs; ubiquitous compact bipolar magnetic regions that have en-
hanced coronal emission above them, e.g., McIntosh and Gurman 2005; Madjarska 2019).
The three spacecraft enabled imaging of the entire solar corona from February 6, 2011 until
July 1, 2014.
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Fig. 19 Coronal EUV BP density Hovmöller diagrams derived from the combined observations of STEREO
and SDO. We show the southern (Panel B) and northern (Panel C) activity bands with respect to the daily
hemispheric sunspot number (Panel A). These BP density Hovmöller diagrams illustrate features of rising
phase of sunspot cycle 24 and highlight, in particular, the rapid longitudinal growth of activity after the
middle of February 2011 and strong correspondence between the enhanced density of the activity trains
(drifting slowly from right to left) and global surges of flux emergence (as seen in panel A)
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The systematic analysis of the BPs present in the images of the three spacecraft per-
mit the tracking of the magnetic activity bands of the 22-year magnetic cycle of the Sun
(McIntosh et al. 2014). Visible in the panels of Fig. 19 are episodes of quasi-periodic small-
scale magnetic flux emergence for comparison with the production of the sunspots seen in
Panel A. McIntosh et al. (2017) used a BP detection algorithm on a series of coronal images
taken by twin STEREO spacecraft and the SDO spacecraft and combined the detected BPs
(at 4 hour cadence) across the solar sphere to construct latitude-longitude images of the BP
density from which Hovmöller diagrams could then be constructed. Typically, due to their
sparsity, these BP diagnostic maps are running averages over time and over a narrow range
of latitudes, for panels panel B and C of Fig. 19 we show the evolution in circular bands that
are centered on the latitude of the magnetic activity bands that gave rise to sunspot cycle
24. We see the rapid change in longitudinal behaviour in the activity bands as the sunspot
cycle is initialised – this is most pronounced in the northern hemisphere (McIntosh et al.
2019). Note also the large periods of no activity before the slanted features start in both
hemispheres and the clear asymmetry of magnetic activity between the southern (panel B)
and northern (panel C) hemispheres in the short span of time depicted.

In mid-February 2011 there is an abrupt switch-on of activity in the northern hemisphere
that over time begins to encompass more longitudes (McIntosh et al. 2019). Note that the
southern hemisphere lags the north, but short episodes of activity are noticeable in longitude.
McIntosh et al. (2017) measured the characteristics of the regions with enhanced BP density
to capture the presence of two, oppositely directed velocities in the data as we have men-
tioned above; a slow ∼ 3 m s−1 westward (prograde) phase velocity, of individual clusters
while analysing the apparent motion of clusters revealed a 24 m s−1 eastward (retrograde)
group velocity. These patterns can be explained by magnetic Rossby waves (see Sect. 3.3.1,
Eqs. (68)–(69) for kx < ky ). Furthermore, McIntosh et al. (2017) noted that the BP clusters
exhibit lifetimes that are integer numbers of the rotational period at the latitudes sampled,
hinting further that the processes governing the magnetic flux emergence underlying the
signal was intrinsically tied to the rotation of the plasma.

Further, using Hovmöller diagrams constructed from the raw EUV images of STEREO
and SDO, the lifetimes and propagation characteristics of coronal holes in longitude were
studied (Krista et al. 2018) where three distinct populations of “low-latitude” (below 65◦
latitude) coronal holes were readily detected. One population rotates in retrograde direction
and coincides with a group of long-lived (over sixty days) coronal holes in each hemisphere.
These recurrent (from the perspective of the Sun-Earth line) coronal holes were located be-
tween 30◦ and 55◦, and displayed velocities of around 55 m s−1, slower than the local rota-
tion rate. A second, smaller population of long-lived coronal holes were observed inside 10◦
latitude – those exhibit prograde motion with velocities between 20 and 45 m s−1. A third
population of CHs exist that are short-lived (they live less than two solar rotations). They
appear over a very wide range of latitudes and also exhibit a wide range of velocities (−140
and 80 m s−1). A butterfly diagram of the rising phase of sunspot cycle 24 showed a system-
atic evolution of the longer-lived holes at mid-latitudes, appearing to connect them with the
overlapping band picture developed by McIntosh et al. (2014) and hinted at by Legrand and
Simon (1981), but the sample was too short to draw concrete conclusions.

4.2.2 The Solar Convection Zone

Rossby waves are waves of radial vorticity and produce a distinct pattern in the horizontal
velocity field at the solar surface. Various methods have been used to produce maps of
horizontal flows at the surface and in the shallow near-surface layers of the Sun. We briefly
review recently used methods to detect the Rossby waves.
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Granulation Tracking The method known as “granulation tracking” consists of follow-
ing the motion of solar granules in the photosphere in consecutive images of the solar con-
tinuum intensity. Solar granules are bright convective cells with a typical size of 1500 km
and a lifetime of several minutes, that act as tracers of the larger-scale flows in which they
are embedded. SDO/HMI intensity images have sufficient spatial resolution (700 km at disk
centre) and sufficient temporal cadence (45 sec) to be used for granulation tracking: gran-
ules do not evolve substantially from one image to the next and thus can be used as passive
tracers of horizontal flows. After averaging these flows in time to reduce noise level, the
radial vorticity can be obtained from the two horizontal components of the velocity. Löptien
et al. (2018) used this method to obtain maps of the radial vorticity on the solar surface every
30 min since May 2010. These maps contain sufficient signal-to-noise ratio to study Rossby
waves.

Helioseismology Helioseismology is another method to measure flows in the upper con-
vection zone. In helioseismology, line-of-sight velocity observations of solar acoustic waves
at the surface are used to probe flows in the solar interior (Gizon et al. 2010).

Ring-Diagram Helioseismology Ring-diagram analysis is a particular method of helio-
seismology that has been used to study solar Rossby waves. This method is based on measur-
ing the local frequencies of solar acoustic modes; these frequencies are shifted by internal
flows through the Doppler effect. Löptien et al. (2018) and Proxauf et al. (2020) applied
ring-diagram helioseismology to SDO/HMI observations to map horizontal flows at dif-
ferent depths in the solar interior at a cadence of approximately one day. Maps of radial
vorticity from helioseismology and granulation-tracking correlate very-well with each other
at the largest spacial scales, thus implying that these maps contain little noise.

Time-Distance Helioseismology Time-distance helioseismology is another method for
measuring flows in the solar interior. It is based on extracting the travel times of solar seis-
mic waves from two-point correlations in the observed surface wavefield. The larger the
separation distance between the two surface points, the deeper the ray path connecting the
two points. The travel times are perturbed by the presence of local subsurface flows. A travel
time is reduced when seismic waves travel in the direction of the flow, while it is increased
when the waves travel against the direction of the flow. Since vertical flows are much smaller
than horizontal flows in the near-surface layers, the travel-time difference for waves traveling
in opposite directions along the same ray path are proxies for horizontal flows in the interior
(more sophisticated interpretations require inversion methods). Langfellner (2015) exten-
sively explored the use of time-distance helioseismology for the measurement of radial vor-
ticity near the solar surface. In particular, he showed that for intermediate and large scales,
the near-surface radial vorticity inferred from f and p1 time-distance helioseismology is in
excellent agreement with the granulation-tracking results. More recently, Liang et al. (2019)
measured p-mode travel-time differences in the north-south direction in the low-latitude re-
gions from 21 years of SOHO/MDI and SDO/HMI data. The acoustic ray paths that they
used mostly probe the upper half of the convection zone. The longitudinally-varying north-
south flows near the equator are diagnostics of the radial vorticity of the equatorial Rossby
modes.

Evidence for Classical Rossby Waves in the Sun Rossby waves were first identified in
the Earth atmosphere as giant meanders in the northern hemisphere jet stream (see Sect. 2.1).
These waves may exist in any rotating fluid (or plasma) body, including the Sun which ro-
tates with a period of 25 days at the equator. Even though they were predicted to exist in the
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Fig. 20 (a) Sectoral (� = m) power spectrum of the radial vorticity in the corotating frame as a function of
longitudinal wavenumber, m, and temporal frequency, ω/2π , from SDO/HMI ring-diagram helioseismology
at a depth of 9.9 Mm for the period May 2010 to December 2017 (Proxauf et al. 2020). For clarity, the power
in the plot is normalised at each m to the total power between −300 and 100 nHz. The blue solid line shows
the theoretical dispersion relation ω = −2�/(m + 1), where �/2π = 453.1 nHz is the equatorial rotation
rate at the solar surface. The minus sign indicates a retrograde propagation. (b) Cut of panel (a) at m = 7.
(c) Estimate of the latitudinal dependence of the eigenfunction for mode m = 7, obtained from the correlation
of the mode’s radial vorticity between the equator and other latitudes

Sun and stars more than forty years ago (Papaloizou and Pringle 1978), they were unam-
biguously detected on the Sun only two years ago (Löptien et al. 2018). Classical Rossby
waves leave their signature in maps of horizontal motions on the solar surface as patterns of
radial vorticity that propagate in the direction opposite to rotation in the corotating frame.
They are identified by a well-defined dispersion relation, Eq. (4).

The dispersion relation can be observed in Fourier space: The time series of radial vortic-
ity maps at high cadence are Fourier-transformed in time and a spherical harmonic transform
is applied with respect to the spatial coordinates. Löptien et al. (2018) discovered classical
Rossby modes only in the sectoral (m = �) power spectra thus obtained. Notice that, in this
section, we use the notation � to refer to the spherical harmonic degree (called n in the most
of the rest of the paper). Löptien et al. (2018) only saw these equatorial Rossby modes very
clearly for m values in the range 3 ≤ m ≤ 15. Figure 20a shows a similar sectoral power
spectrum of the radial vorticity at a depth of 9.9 Mm obtained by Proxauf et al. (2020) us-
ing ring-diagram analysis of SDO/HMI data. Peaks of power (see Fig. 20b for m = 7) are
seen at the resonant frequencies ω = −2�/(m + 1) in the frame rotating at the equatorial
surface rotation rate �. This was confirmed by Liang et al. (2019) using time-distance helio-
seismology of north-south flows, by Hanasoge and Mandal (2019) using normal-mode cou-
pling helioseismology, and by Alshehhi et al. (2019) using fast inversions of ring-diagram
fit parameters. Recently, Hanson et al. (2020) confirmed the Rossby modes in GONG++
ground-based ring-diagram flow maps.

The horizontal eigenfunctions can also be measured from the observations by cross-
correlating the vorticity signal for any particular mode between the equator and other lat-
itudes (Fig. 20c). Horizontal eigenfunctions peak at the equator, but decay faster with un-
signed latitude than sectoral spherical harmonics. Figure 21 shows a schematic representa-
tion of the radial vorticity of the solar Rossby modes with m = 3, 7, and 11.
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Fig. 21 Sketch of the radial vorticity of the equatorial Rossby waves observed in the solar near-surface
layers by Löptien et al. (2018), for longitudinal wavenumbers m = 3, 7 and 11. The red and blue patches
indicate clockwise and counter-clockwise radial vorticity. In the corotating frame, the patterns propagate in
the retrograde direction (to the left)

Table 1 Measured frequencies and linewidths of the solar equatorial Rossby waves with m ≤ 12. The fre-
quencies are measured in the frame rotating at the equatorial rotation rate �/2π = 453.1 nHz. Observed
mode frequencies are compared to the classical values ω = −2�/(m + 1) (column Theory). The parameter
SNR is the ratio of the mode amplitude to the background noise in the power spectrum

Mode
m

Frequencies Linewidth
observed (nHz)

SNR Dates Reference

Theory (nHz) Observed (nHz)

2 −302 missing – – 1996–2017 Liang et al. (2019)

3 −227 −253 ± 2 7+4
−3 9.2 1996–2017 Liang et al. (2019)

4 −181 −194+5
−4 18+14

−7 10.8 2010–2016 Löptien et al. (2018)

5 −151 −157 ± 4 11+14
−6 14.3 2010–2016 Löptien et al. (2018)

6 −129 −129 ± 8 47+28
−16 2.7 2010–2016 Löptien et al. (2018)

7 −113 −112 ± 4 17+10
−7 6.6 2010–2016 Löptien et al. (2018)

8 −101 −90 ± 3 12+7
−5 7.5 2010–2016 Löptien et al. (2018)

9 −91 −86 ± 6 37+21
−11 2.3 2010–2016 Löptien et al. (2018)

10 −82 −75 ± 5 28+12
−10 2.7 2010–2016 Löptien et al. (2018)

11 −76 −75 ± 7 43+23
−13 1.7 2010–2016 Löptien et al. (2018)

12 −70 −59 ± 6 42+20
−12 1.4 2010–2016 Löptien et al. (2018)

Mode Parameters: Frequencies, Lifetimes and Amplitudes The parameters of the
global-scale modes have been measured by several authors (Löptien et al. 2018; Liang et al.
2019; Hanasoge and Mandal 2019; Mandal and Hanasoge 2020; Proxauf et al. 2020; Han-
son et al. 2020). The parameters of each mode (each m value) were extracted by fitting
the Lorentzian function to the corresponding sectoral power spectrum (see, e.g., Fig. 22).
The fits provide the mode frequency, mode linewidth (full width at half maximum), mode
amplitude, and the background noise level. Table 1 shows a subset of the measurements of
mode frequencies and linewidths. The mode frequencies are negative to indicate a retro-
grade phase speed. The frequencies are close to the classical dispersion relation for Rossby
waves. The frequencies for the modes m = 3, 4, and 8 are close but different from the clas-
sical values by more than two σ s (about 25 nHz below for m = 3). As shown by Liang
et al. (2019), the m = 2 mode is not visible in the spectrum. Hanson et al. (2020) find that
the mode frequencies from various authors are consistent with each other for the lowest
m values, 3 ≤ m ≤ 7. The mode linewidths are in the range from 20 to 50 nHz for most
modes. For m = 3, the linewidth is very small with a value of 7 nHz measured by Liang
et al. (2019) using 21 years of combined SOHO and SDO time-distance helioseismology
data. The linewidths imply typical lifetimes of two to six months, with a maximum of about
1.4 year for m = 3. Löptien et al. (2018), Liang et al. (2019), and Mandal and Hanasoge
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Fig. 22 Power spectra of solar Rossby modes for different azimuthal orders m (black curves) from 21 years
of north-south travel-time differences around the equator (Liang et al. 2019). The red curves are Lorentzian
fits to the power spectra. Due to incomplete data coverage, there are leaks from modes with wavenumber
m − 1 and leaks from very low frequency power (active region flows or convection) indicated by the purple
and orange segments. Figure adapted from Liang et al. (2019)

(2020) measured the velocity amplitudes associated with each mode. These are of order
1 m/s, i.e. small in absolute value, but very significant in comparison to other motions (e.g.,
convection) at the same scales.

Horizontal Eigenfunctions The amplitudes of solar equatorial Rossby waves at each lat-
itude can be estimated from the vorticity maps. Using a correlation technique, Löptien et al.
(2018) and Proxauf et al. (2020) measured these horizontal eigenfunctions for each longitu-
dinal wavenumber. They found that the eigenfunctions are maximal at the equator, change
sign at latitudes around 20◦–30◦, and decay above this latitude (see Fig. 20c for the case
m = 7). These eigenfunctions differ from the sectoral spherical harmonics, which would be
expected for modes in a uniformly rotating star. Recently, Proxauf et al. (2020) also mea-
sured the imaginary parts of the eigenfunctions, which are significantly non-zero for several
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modes. The imaginary part implies a small variation of the phase of the eigenfunctions with
latitude. Recent work by Gizon et al. (2020) demonstrates that the decrease of the solar ro-
tation rate with latitude plays a key role in shaping the Rossby wave eigenfunctions. In this
work, they consider a parabolic shear flow in the equatorial β-plane to model solar differ-
ential rotation. In the inviscid case, the eigenfunctions are singular at critical latitudes such
that U − c = 0, where c < 0 is the wave speed (retrogade in the corotating frame) and U < 0
is the shear flow measured from the equator in the corotating frame (U < 0). In the presence
of eddy viscosity, the singularities are removed and the eigenfrequencies are complex and
discrete. For reasonable values of the viscosity, all modes are stable. At fixed longitudinal
wavenumber, the least damped mode is a symmetric mode with a real frequency close to
that of the classical Rossby mode. The real part of the eigenfunction has the same functional
form as the one that is observed: its amplitude decays faster than the sectoral spherical har-
monic function and switches sign near the critical latitude. Gizon et al. (2020) conclude that
each longitudinal wavenumber is associated with a latitudinally symmetric Rossby mode
trapped at low latitudes by solar differential rotation.

Radial Eigenfunctions Observationally, little is known about the radial variations of the
solar Rossby wave eigenfunctions. Proxauf et al. (2020) used ring-diagram analysis to study
their amplitudes at different depths down to about 17 Mm in the interior. Above 7 Mm, the
vorticity amplitudes increase with radius by about 10% to their surface values. The results
below 7 Mm depend on distance from the central meridian, which indicates the existence
of systematics and prevents a firm conclusion. Duvall et al. (2018) detected Rossby waves
down to 70 Mm using deep-focusing time-distance helioseismology. In this depth range, the
north-south velocity is consistent with an rm dependence, with r the distance to the Sun’s
centre, although the constraint is not very tight. No detection was made at target depths
105 Mm and 210 Mm. Mandal and Hanasoge (2020) described and tested with synthetics
the use of a helioseismic technique known as mode coupling to retrieve the depth profiles of
Rossby modes.

4.2.3 Distinction Between Observed Classical Rossby Waves in the Upper Solar
Convection Zone and Magnetic Rossby-Like Waves in the Outer Solar
Atmosphere

We would like to clarify here that there is no apparent connection between the non-magnetic
classical Rossby waves seen in the solar near-surface layers (Löptien et al. 2018, and
Sect. 4.2.2) and the magnetic Rossby-like waves seen in the solar atmosphere (McIntosh
et al. 2017).

Most importantly, these two types of waves have opposite phase velocities and opposite
group velocities from each other. On the one hand, Löptien et al. (2018) report waves of
radial vorticity at the surface and below with phase propagation in the retrograde direction
and group propagation in the prograde direction (see their Figs. 2 and 3). On the other hand,
McIntosh et al. (2017) report features in maps of magnetic bright points in the atmosphere
with phase propagation in the prograde direction and group propagation in the retrograde
direction (see their Fig. 3).

The waves seen by Löptien et al. (2018) have the same characteristics as the classical
non-magnetic Rossby waves (retrograde phase propagation and same dispersion relation as
Eq. (4)). The opposite propagation direction seen by McIntosh et al. (2017) is attributed to
the effect of the magnetic field which controls the dynamics in the atmosphere.
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We would also like to clarify the terminology. In the Earth eastward is prograde while
westward is retrograde. Solar physicists use a convention that is opposite for the Sun: solar
eastward is retrograde and solar westward is prograde. This solar convention arises from
the fact that an observer in the northern hemisphere will see, in the south, the left limb of
the Sun in Earth’s east and the right limb of the Sun in Earth’s west (sunspots move from
east to west in the sky, see, e.g., Scheiner 1630; Bray and Loughhead 1964). This provides
some context for understanding the abstract of McIntosh et al. (2017). We also note that
Mathis (2017) commented on McIntosh et al. (2017). The figure from Mathis (2017) shows
group propagation in the prograde direction, which is not what is reported by McIntosh et al.
(2017) in their Fig. 3.

4.2.4 Intermediate Periodicities in Solar Activity

Stellar activity, i.e., the phenomenology produced by magnetic fields in the atmospheres of
late-type stars, has been known for a long time. Solar activity varies cyclically with an aver-
age period of about 11 yr but a full understanding of the solar cycle with its multiple and/or
varying periodicities is still lacking (Hathaway 2015). A detailed theory of the solar cycle
requires an understanding of solar magnetic activity, a very complex astrophysical problem
involving dynamo theory (Brun and Browning 2017a). On the other hand, magnetic cycles
have also been detected in other main sequence stars. This solar-stellar connection allows
us to use the Sun as an empirical model to explain stellar activity, and observations of stars
to improve our understanding of the solar cycle. For these reasons, the behaviour of solar
activity has been the subject of many studies searching for cycles, asymmetries, periodici-
ties, active longitudes, etc. Rossby waves can be important features for the layer where the
solar/stellar magnetic field is generated. This dynamo layer is probably located inside or
below the convection zone. The magnetic flux erupts from this layer towards the surface to
form sunspots, which basically determine the magnetic activity. Rossby waves can lead to
the modulation of the dynamo magnetic field and hence to the quasi-periodic eruption of
magnetic flux to the surface, which may lead to the appearance of Rossby wave periodicites
in solar activity (Zaqarashvili et al. 2010a). The theory that links the observations presented
in this section with Rossby waves is described in Sect. 4.2.5.

The existence of periodicities in different manifestations of solar activity has been de-
termined from observations with various degrees of certainty. While some of the reported
periodicities are close to the rotation period (Mursula and Zieger 1996) others lie close to the
11- or 22-yr cycles, although many other different values have also been proposed. There-
fore, solar periodicities have been classified as short-, intermediate- and long-term periodic-
ities. In the following, we focus on a short-term periodicity, the so-called Rieger periodicity
(RP), with a period in the range of 150–160 day, and on two intermediate periodicities with
periods of ∼ 1.3 and ∼ 2 yr.

The Rieger Periodicity The interest in solar periodicities was renewed by the discovery
of a periodicity between 152–158 day in the flare rate occurrence during solar cycle 21
(Rieger et al. 1984; Dennis 1985). Since then, most of the research in this field has been
devoted to confirming whether or not this periodicity has been present in previous and later
solar cycles through the analysis of time series of different solar activity indicators (flares,
flare-related phenomena, sunspots, photospheric magnetic flux, etc.). For these studies, a va-
riety of techniques such as Rayleigh power spectrum, maximum likelihood method, Scargle
periodogram, complex demodulation, wavelets, etc., devised to search for and characterise
periodicities in time series have been used.
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Table 2 Columns 3 to 5 give the
estimated Rieger periods (in day)
from Greenwich Royal
Observatory sunspot area data
(http://solarscience.msfc.nasa.
gov/greenwch.shtml), obtained
for the whole disk and the
northern and southern
hemispheres separately during
solar cycles 12–24. The table is
reproduced from Gurgenashvili
et al. (2016, 2017) by permission
of the AAS

Cycle
number

Time
interval

Period
total

Period
North

Period
South

12 1878–1889 145 160 145

13 1889–1901 185 168 187

14 1901–1913 146 150 145

15 1913–1923 190 171 185

16 1923–1933 158 160 195

17 1933–1944 160 153 193

18 1944–1954 160 160 175

19 1954–1964 157 158 177

20 1964–1976 166 165 190

21 1976–1986 160 183 158

22 1986–1996 181 180 160

23 1996–2008 159 175 160

24 2008–2016 192 192 140

12–24 1878–2016 160; 192 160 187; 140

RP observations are summarised in Tables 2 and 3. Table 2 contains the period values de-
tected in the Greenwich Royal Observatory (GRO) and the Royal Observatory of Belgium
(ROB) sunspot area data in each of the cycles 12–24; see Gurgenashvili et al. (2016), where
exhaustive information of earlier detections of RPs in many solar activity indicators is in-
cluded. The data sets used to construct Table 2 contain the contributions to the total sunspot
area from the north and south hemispheres, hence the RP has been studied separately in the
two hemispheres. This is an important issue because in cycles 16–21 it has been found that
in those cycles characterised by a strong North-South asymmetry of solar activity, the peri-
odicity was only present in the hemisphere most favoured by solar activity (Carbonell and
Ballester 1990, 1992). Furthermore, in order to study whether or not the RP depends on the
activity strength and the hemispheric asymmetry, Gurgenashvili et al. (2017) have analysed
the relationship between North-South asymmetry of solar activity and the RP during solar
cycles 19–23 and have concluded that the RP period correlates with hemispheric activity
levels. This is an important constraint that must be explained by the theoretical models.

Sunspot area data also reveal that the periodicity is only present during epochs of max-
imum activity (e.g., Lean 1990). Furthermore, it has been recently shown that Rieger-type
periods correlate with solar cycle strength, being shorter during stronger cycles (Gurge-
nashvili et al. 2016). Figure 23 shows the wavelet analysis of more than one hundred yr
sunspot area data from GRO. It is clearly seen in this figure that solar activity has increased
from the beginning of the 20th century, reached a maximum near the middle of the century
and then declined towards the end of the century (upper panel). On the other hand, the Rieger
period decreased until the middle of the century and then began to increase again towards
the end of the century, opposite to the activity magnitude trend.

Table 3 is a compilation of RPs classified by the time interval and the indicator in which
they are detected. It is reasonable to think that simultaneous manifestations of the RP possess
a common underlying mechanism. Lean (1990), Brueckner and Cook (1990), Carbonell and
Ballester (1990, 1992) proposed that the increase in flare rate occurrence is linked to a peri-
odic emergence of magnetic flux through the photosphere. A causal link between different
indicators was suggested by Ballester et al. (2002, 2004), who reported the presence of the
periodicity in photospheric magnetic flux during solar cycles 21 and 23. In the case of solar

http://solarscience.msfc.nasa.gov/greenwch.shtml
http://solarscience.msfc.nasa.gov/greenwch.shtml
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Table 3 Reported detections of Rieger periodicity (in day) in solar activity indicators. The first two columns
indicate the solar cycles and time interval in which the periodicities have been found. The next columns
give the indicator used for the detection, namely: flare data, which comprise observations in γ -, X-rays and
microwaves, Hα, protons and energetic electrons, and the solar flare index; sunspot data, covering sunspot
areas, the Zurich sunspot number, the group sunspot number and the sunspot blocking function; photospheric
magnetic flux; the Sun’s apparent diameter; the solar irradiance; the 10.7 cm radio flux; the plage index; and
Earth’s aurorae. The superscripts identify the paper in which the periodicity is reported. a: Bogart and Bai
(1985), b: Kile and Cliver (1991), c: Ichimoto et al. (1985), d: Bai and Cliver (1990), e: Droege et al. (1990),
f: Ozguc and Atac (1989), g: Wolff (1983), h: Ribes et al. (1989), i: Lean and Brueckner (1989), j: Vaquero
et al. (2010), k: Rieger et al. (1984), l: Bai and Sturrock (1987), m: Kiplinger et al. (1984), n: Delache et al.
(1985), o: Silverman (1990), p: Ballester et al. (2002), q: Ballester et al. (2004), r: Ballester et al. (1999),
s: Gurgenashvili et al. (2016), t: Carbonell and Ballester (1992), u: Pap et al. (1990)

Solar
cycle

Time
interval

Flares Sunspots Magnetic
field

Apparent
solar
diameter

Solar
irradiance

10.7 cm
radio
flux

Plage
index

Aurorae

1683–1718 155h

2 1766–1775 158r

3 1775–1784 150j

9 1842–1845 150o

12 1878–1889 145t 141–150o

13 1889–1901 185.6t

14 1901–1913 195s 146o

15 1913–1923 190s

16 1923–1933 158s

163r

17 1933–1944 160s

162r

18 1944–1954 160s

19 1954–1964 157s

153r

159i

20 1964–1976 166s 159i

159i

159i

21 1976–1985 154k 160s 163p 155n 157u 159i 159i

158m

152l 159i

153e 159i

154b

154d

22 1986–1996 181s

23 1996–2008 159s 163q

24 2008–2016 192s

1–21 1749–1979 155.4g

12–21 1878–1982 156.1t

19–20 1958–1971 154d

19–21 1954–1982 155i 155i

155i

20–21 1965–1986 155c

152f

152a
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Fig. 23 Rieger periodicity during solar cycles 14–24. Top panel: daily and monthly averaged sunspot area
data with black and red colour, respectively, from the data of the Greenwich Royal Observatory. Lower panel:
Morlet wavelet analysis of the daily sunspot data. Vertical solid lines correspond to solar activity minima.
Hatched areas in the cone of influence (COI) indicate the regions where the wavelet transform is not reliable.
The figure is reproduced from Gurgenashvili et al. (2016) by permission of the AAS

cycle 21, these authors pointed out the time and frequency coincidence between solar flares
and photospheric magnetic flux periodicities, which suggests a causal connection between
them.

The 1.3 yr Periodicity The Sun’s magnetic activity also shows significant variation in
time scales between one and two yr. These periodicities have been detected in many indices
of solar activity along many solar cycles, and have been the subject of extensive studies
using ground and space-based data (Oliver et al. 1992; Ballester 1994; Gachechiladze et al.
2019). Furthermore, these periodicities have also been found in Sun-as-a-star data obtained
with different instruments devoted to helioseismological studies (Broomhall et al. 2011).

The first reports of this periodicity come mainly from heliospheric data. Silverman and
Shapiro (1983) found a periodicity at 1.4 yr in a data set of auroras for the period 1721–
1943, while solar wind oscillations, with a period of 1.3 yr, were found by Richardson
et al. (1994). Furthermore, solar wind measurements performed during three solar cycles
and analysed by Gazis et al. (1995) confirmed the results reported by Richardson et al.
(1994) about the presence of the periodicity around the maximum of solar cycle 22. A similar
periodicity, during the same time period, was identified in the North-South component of the
interplanetary magnetic field at 1 AU (Szabo et al. 1995), and in the North-South component
of the magnetic field observed with IMP-8 (Paularena et al. 1995).
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Lockwood (2001) analysed terrestrial parameters, such as the near Earth IMF and the aa
index, that depend on the open solar flux such and found that both data sets display a clear
peak at 1.3 yr during the time interval 1995–2000.

The interest in this periodicity was renewed when Howe et al. (2000) used helioseis-
mological data, between 1995 and 1999, from GONG and MDI onboard SOHO to study
the changes in rotation profiles near the tachocline along the solar magnetic cycle. They
reported variations in the rotation rate just above and below the tachocline with a period
around ∼ 1.3 yr. These changes were largest at the equator but were also present at 60◦ lat-
itude. However, Howe et al. (2011) later analysed 15 year of GONG and MDI observations
of the solar interior rotation, finding that the ∼ 1.3 yr period disappeared after 2000 and
had still not returned. In spite of this, the correlation between GONG and MDI observations
suggests that variations seen in this region have a solar origin, consistent with the presence
of a periodic signal at the base of the convection zone.

Regarding solar activity data, Knaack et al. (2005) analysed synoptic Carrington rotation
maps of the photospheric magnetic field from NSO/Kitt Peak National Observatory between
1975 and 2003. The FFT power density of the total magnetic flux shows significant power
at ∼ 1.3 yr in two latitude bands. Averaging the total magnetic flux over these two bands
and computing the corresponding wavelet spectra also shows significant power around ∼
1.3 yr during the maxima of solar cycles 21–23, although when the total magnetic flux
is averaged over all latitudes the periodicity is not detected because of the weakness of
the signal. Furthermore, Krivova and Solanki (2002) analysed different sunspot data sets
and reported that the power at the ∼ 1.3 yr periodicity fluctuates considerably with time.
These fluctuations were dominant between 1920–1965, appearing again in solar cycle 21
and subsequent cycles with diminished strength.

Going back to helioseismological data, Broomhall et al. (2011) observed power excess
at ∼ 1.3 yr in periodograms of VIRGO data. This power excess was also visible in the high-
frequency range in BiSON and GOLF data. The signal detected in VIRGO data was signifi-
cant in the low- and high-frequency bands but was almost insignificant in the total-frequency
band because the signal is out of phase in the two different regions of the frequency spec-
trum.

The Quasi-Biennial Oscillation (QBO) The existence of a quasi-biennial oscillation,
with a period of ∼ 2 yr, has also been detected in interplanetary, solar interior, solar ac-
tivity and helioseismological data sets by a large number of authors (see Bazilevskaya et al.
2014, for a review). Early reports about the presence of this oscillation were made by Sakurai
(1979, 1981) by analysing the Sun’s neutrino flux between 1970–1978. This analysis shows
that the neutrino flux has been varying with a period of 26 months. Later on, strong evidences
about the presence of the QBO in photospheric magnetic flux have been provided, for in-
stance, by Stenflo and Vogel (1986), Stenflo and Guedel (1988), Erofeev (2001), Obridko
and Shelting (2001), Knaack et al. (2005). All these authors used a similar approach which
involved to expand the magnetic field in spherical harmonics and to analyse the harmonic
coefficients. They concluded that the QBO was present in the first harmonics of the mag-
netic field. On the other hand, Vecchio et al. (2012) used the Empirical Mode Decomposition
(EMD) to investigate the spatio-temporal dynamics of the solar magnetic field, concluding
that the QBO is a fundamental timescale in the variability of the magnetic field. Regard-
ing helioseismological data, Broomhall et al. (2012) and Simoniello et al. (2013) studied
the seismic QBO using solar p-modes and tried to explain the origin of the QBO in terms
of solar dynamo magnetic configuration. Further evidence for the QBO coming from inter-
planetary data was provided by Laurenza et al. (2012) when the time variability of cosmic
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ray intensity was studied by means of the EMD, since modulation of cosmic rays is strongly
linked to solar activity.

More extensive and exhaustive information about the observational aspects of the QBO
and the physical mechanisms proposed to explain it can be found in the thorough review by
Bazilevskaya et al. (2014). A mechanism based in magnetic Rossby wave instabilities has
also been recently proposed to explain the QBO (Zaqarashvili et al. 2010b; Gachechiladze
et al. 2019, see Sect. 4.2.5).

4.2.5 Rossby Waves in Solar Activity

Observed intermediate periodicities in solar activity (Sect. 4.2.4) are probably connected
with Rossby waves on the Sun. Wolff (1992) suggested that the Rossby waves can ex-
plain observed Rieger-type periodicities in solar activity. Wolff (1992) assumed that the
beating of Rossby waves (r-modes in his notation) with internal g-modes may explain the
observed 155-day periodicity. Then, Sturrock et al. (1999) used the Haurwitz dispersion re-
lation, Eq. (30), and suggested that the periodicities of 52 and 154 day observed in solar
neutrino flux data can be explained by the n = 3, m = 3 and n = 3, m = 1 harmonics of
r-mode oscillations. Lou (2000) connected the intermediate periodicities to the equatorially
trapped HD shallow water waves in the solar photosphere, where the harmonic of equatorial
Rossby waves with m = 1, n = 12 give the period of 151.6 day using Eq. (47). Regard-
ing intermediate-period oscillations, Dzhalilov et al. (2002) proposed Rossby-like modes as
responsible for their existence, although, as pointed out by Knaack et al. (2005), it is still un-
clear whether or not the ∼ 1.3 yr periodicity in the rotation rate at the base of the convection
zone is related with the same periodicity in the photospheric magnetic flux. In view of all the
evidence of intermediate-period oscillations, it is not clear why only particular harmonics
are manifested in solar activity and related phenomena.

The results of Gurgenashvili et al. (2016, see Sect. 4.2.4) suggest that the Rieger-type pe-
riodicity likely depends on the strength of the dynamo magnetic field and hence is connected
to the dynamo layer below the convection zone, which immediately requires to include the
magnetic field in the theory of Rossby waves. Zaqarashvili et al. (2010a) showed that the
Rieger-type periods of 155–160 day could be explained by magnetic Rossby waves in the
solar tachocline, which are unstable owing to the differential rotation and the toroidal mag-
netic field. Variation of the differential rotation and the magnetic field strength throughout
the solar cycle enhance the growth rate of a particular harmonic in the upper part of the
tachocline around the maximum of the solar cycle. Unstable harmonics lead to the periodic
emergence of magnetic flux at the solar surface due to magnetic buoyancy, which causes the
observed periodicity in the magnetic activity. The dispersion relation of the magnetic Rossby
waves (see the Sect. 3.3) depends on the unperturbed magnetic field strength, therefore, the
possible variation of the mean dynamo magnetic field from cycle to cycle may influence the
Rieger periodicity, which could be correlated with the strength of the solar cycle. Since the
Rieger periodicity displays a North-South asymmetry (Gurgenashvili et al. 2017), the use of
the theoretical mechanism proposed in (Zaqarashvili et al. 2010a) may allow to estimate the
difference in magnetic field strength in the dynamo layer over solar hemispheres, providing
clues for the understanding of hemispheric asymmetry.

The observed solar latitudinal differential rotation can be approximately described by the
expression

�(θ) = �0
(
1 − s2 cos2 θ − s4 cos2 θ

) = �0 + �1(θ), (104)
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where �0 is the equatorial angular velocity and θ is the co-latitude. The coefficients s2,
s4 are determined by observations and their values vary with depth in the Sun and the so-
lar cycle phase. Near the surface they are estimated as s2 = 0.1–0.14 and s4 = 0.14–0.18
(Schou et al. 1998). Stability properties of such differential rotation was studied by Wat-
son (1980) in nonmagnetic situation (note that s4 = 0 is assumed during the calculations),
who showed that the rotation is unstable when the difference between equatorial and polar
angular velocities is > 29%, which from Eq. (104) gives s2 + s4 > 0.29. Observed values
of s2 and s4 are just below the threshold, therefore the solar differential rotation is believed
to be hydrodynamically stable (see also Dziembowski and Kosovichev 1987; Charbonneau
et al. 1999), though local transient growth of Rossby wave harmonics in beta-plane approx-
imation still may occur through non-modal approach (Chagelishvili and Chkhetiani 1995;
Kaghashvili et al. 2005). However, it was shown that the inclusion of toroidal magnetic field
triggers an instability of the differential rotation (Gilman and Fox 1997; Charbonneau et al.
1999). Unstable harmonics were Rossby waves in both cases, though it was not explicitly
mentioned as both papers considered inertial non-rotating frame of reference. On the other
hand, Zaqarashvili et al. (2010a) used rotating reference frame, therefore unstable Rossby
waves emerged with their full properties. They derived a criterion of instability

(
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1 − V 2
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where σr and σi are the frequency and growth rate of Rossby waves, VA is the Alfvén speed
in toroidal magnetic field, which is generally a function of latitude. When magnetic field is
zero then this condition is transformed into the Rayleigh criterion claiming that the phase
speed of unstable modes must locate inside the interval of background velocity field. In the
solar case, it leads to the criterion σr < m(s2 + s4)�0, which for the tachocline equatorial
angular velocity of �0 = 2.7 · 10−6 s−1, and for the observed differential rotation parame-
ters, s2 = s4 = 0.13 gives the minimum period of m = 1 unstable harmonics as ∼ 100 day.
Then using the Haurwitz dispersion relation, Eq. (30), we get that first unstable harmonic
is m = 1, n = 3, which has a period of 162 day well matching with observed Rieger-type
periods. Moreover, Zaqarashvili et al. (2010a) used the general technique of Legendre poly-
nomial expansion (Longuet-Higgins 1968; Watson 1980) to find a spectrum of unstable
harmonics for different values of differential rotation parameters and toroidal magnetic field
strength (Eq. (78) was used for the magnetic field profile), which is shown on Fig. 24. For
each value of magnetic field strength, there is a particular unstable harmonic with a growth
rate much stronger than for the other harmonics. This harmonic is symmetric with respect
to the equator and has the frequency of 0.17–0.18 �0 (yielding periods of 150–160 day)
for the magnetic field strength of ≤ 2 · 104 G. If one uses the dispersion relation of mag-
netic Rossby waves (e.g., Eq. (79)) instead of Haurwitz HD formula (Eq. (30)), then one
can see that the stronger magnetic field strength leads to the higher frequencies of magnetic
Rossby waves. Therefore, the period of magnetic Rossby waves should appear shorter dur-
ing stronger cycles in good agreement with the observations of Gurgenashvili et al. (2016,
2017). The magnetic Rossby waves may also explain why the Rieger periodicity appears
only near the maxima of solar cycles (see Fig. 23). As we already noted above, the observed
differential rotation is stable for non-magnetic regime (Watson 1980), therefore the growth
of unstable harmonics is decreased near the minima of solar cycles when the toroidal mag-
netic field becomes very weak (or nearly zero). The instability starts again when the toroidal
field is increased throughout the cycles and hence the periodicity appears near the maxima.
Gurgenashvili et al. (2016) used a dispersion relation of magnetic Rossby waves and ob-
served periods of Rieger type periodicity to estimate the dynamo magnetic field strength in



Rossby Waves in Astrophysics Page 55 of 93 15

Fig. 24 imaginary (mci ) vs Real (mcr ) parts of all unstable harmonic frequencies for the differential rotation
parameters s2 = s4 = 0.13 and magnetic field strengths. The toroidal wave number m equals 1. Blue, green,
yellow and red colours correspond to magnetic field strengths of 2 · 103 G, 6 · 103 G, 2 · 104 G and 4 · 104 G,
respectively. Asterisks denote the symmetric harmonics with respect to the equator, while circles denote
the antisymmetric ones. The frequencies are normalised by equatorial angular velocity, �0; for example,
mcr = 0.18 corresponds to the period of ∼ 150 day. Adapted from Zaqarashvili et al. (2010a)

Fig. 25 Morlet wavelet analysis of GRO daily sunspot area data in the southern hemisphere during the cycle
23. Global wavelet frequencies are computed and plotted on the right, where the most powerful peaks are
denoted. The figure is reproduced from Gachechiladze et al. (2019) by permission of the AAS

the solar tachocline for the solar cycles 14–24. They found the field strength to be ∼ 40 kG
in stronger cycles and ∼ 20 kG in weaker ones. This was the first step to use the interme-
diate periodicities to probe the solar dynamo layer (see also Zaqarashvili and Gurgenashvili
2018). Surely, more can be done in this direction in future.

Magnetic Rossby Waves and Multiple Periodicities in Solar Activity In Sect. 4.2.4 we
discussed the occurrence of periodicities in solar magnetic activity and other solar activity-
related indicators over different time scales. If the Rieger periodicity is due to a particular
harmonic of magnetic Rossby waves, then the other periodicities corresponding to other
harmonics may be seen in the data. Figure 25 shows the wavelet analysis of GRO sunspot
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area data in the southern hemisphere during cycle 23 (Gachechiladze et al. 2019). Five
distinct clear peaks located at the periods of 160 day, 270 day, 320 day, 380 day and 460
day are seen in this figure. The shortest (160 day) and longest (460 day) periods correspond
to the Rieger and 1.3 yr periodicity (see Sect. 4.2.4). Using the dispersion relation of fast
magnetic Rossby waves, Eq. (79), Gachechiladze et al. (2019) showed that the harmonics
of magnetic Rossby waves with m = 1 and n = 3,4,5,6 correspond to periods of 380 day,
320 day, 270 day and 160 day, respectively. The period of 460 day (∼ 1.3 yr) was explained
by these authors by equatorial magneto-Kelvin waves in the upper overshoot tachocline.

4.2.6 The Solar Tachocline

As mentioned in Sect. 4.2.2, Rossby waves can be studied using a shallow-water model,
which can capture much larger horizontal than vertical extent of such waves. Although mag-
netic Rossby waves have recently been observed in the solar atmosphere, the tachocline is
one of the most plausible places where solar MHD Rossby waves can occur, because that
shear-fluid layer is likely to be subadiabatically stratified compared to the turbulent con-
vection zone above. Solar tachocline fluid-layer is therefore more analogous to the lower
atmosphere of the Earth, where hydrodynamic Rossby waves play such an important role.

Since the formulation of shallow water models applied to the Sun, the theory of Rossby
waves developed rapidly, including toroidal magnetic fields, and became connected with the
theory of linear and nonlinear global MHD waves and instabilities of the solar tachocline.
Two-dimensional as well as quasi-3D shallow-water models have been employed to study
the global instabilities in the solar tachocline (Dikpati and Gilman 2001; Gilman and Fox
1997; Gilman and Dikpati 2002; Cally 2001; Dikpati and Gilman 2005; Zaqarashvili et al.
2007, 2009, 2010a,b; Raphaldini and Raupp 2015; Klimachkov and Petrosyan 2017a). Lin-
ear models provide phase propagation of Rossby waves as well as instabilities arising from
the energy stored in differential rotation and/or toroidal magnetic fields; nonlinear models
provide information on amplitudes of Rossby waves and the energetics of their interactions
with differential rotation and toroidal fields. Such models can also tell us how Rossby waves
of different longitudinal wavenumbers interact with each other and form wave packets.

Both, energetically neutral and unstable growing MHD Rossby waves have phase speeds
in longitude. In general, there are far more neutral oscillatory Rossby waves than there are
unstable ones. The neutral magnetic Rossby modes propagate in retrograde direction and
the phase speed with regard to the equatorial rotation depends on the tachocline magnetic
field strength and the spherical wave numbers (Gachechiladze et al. 2019). Therefore, dif-
ferent modes propagate with different phase speeds from 70 to 200 m/s. The latitudinal
differential rotation may lead to the latitudinal dependence of the apparent drift of Rossby
waves (Gachechiladze et al. 2019), which could be significantly reduced at middle latitudes
(around 40 degree) down to observed value of 3 m/s (McIntosh et al. 2017) and may become
even prograde at higher latitudes.

Recently Dikpati et al. (2018a) performed a detailed parameter space survey in an MHD
shallow water model of Rossby waves and have shown that the most unstable MHD Rossby
waves in tachocline differential rotation for banded toroidal fields have approximately the
same speed as the rotation rate at the latitude of the toroidal band. This agrees well with the
surface measures of phase speed from coronal holes and bright points at the same latitude.
This suggests that the origin of the measured phase speed is unstable MHD Rossby waves. It
also suggests that Rossby wave phase speeds can provide an estimate of the latitude location
of the tachocline toroidal field at any given time. The study also found that these magneti-
cally modified Rossby waves have primarily retrograde speeds in most of the latitudes, but
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Fig. 26 Ranges of phase speeds
(angular measure in
dimensionless unit) in the
rotating frame of reference for
unstable MHD Rossby waves as
function of latitude, for a wide
range of peak toroidal fields
strengths (0–150 kG). The solid
curve represents tachocline
differential rotation in the same
reference frame. Effective gravity
G = 0.5 represents the overshoot
tachocline, and G = 100 the
radiative tachocline. The figure is
reproduced from Dikpati et al.
(2018a) by permission of the
AAS

in very high latitudes the waves can have prograde speeds with respect to the local rotation
rate in the rotating frame of reference (see Fig. 26). Furthermore, the Rossby wave speed at
a given latitude is a modest function of toroidal magnetic field strength.

Tachocline Nonlinear Oscillations In the nonlinear evolution of a nearly dissipationless
system of tachocline latitudinal differential rotation, magnetic fields and Rossby waves, an
oscillation among energies of longitude-averaged flow and fields, and Rossby waves, should
be expected. Such back-and-forth exchange of energy among the reference state differential
rotation, magnetic fields and Rossby waves in tachocline has recently been demonstrated
(Dikpati 2012; Dikpati et al. 2017, 2018b). These oscillations are the so-called Tachocline
Nonlinear Oscillations (TNOs), which were demonstrated to have profound influence on
governing the quasi-periodic “seasons” of space weather.

Both HD and MHD Rossby waves participate in the interaction with the mean differential
rotation and magnetic fields. The HD and MHD Rossby wave patterns tend to have similar
tilt-patterns in longitude and latitude, but with a significant longitudinal phase difference
between them. When they are tilted “upstream” away from the Equator, there is angular
momentum transport towards the equator by the Reynolds stress in both hemispheres. But
the Maxwell stress from the upstream-tilted field lines signifies angular momentum transport
away from the equator. If the Maxwell stress is larger than the Reynolds stress, then the
Rossby waves will grow by extracting energy from differential rotation.

Figure 27 provides a schematic representation of the physical processes that create the
interactions among differential rotation, Rossby waves (HD and MHD forms), and magnetic
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Fig. 27 Physics of the TNO in a MHD system is depicted schematically, illustrating oscillatory interactions
among HD and MHD Rossby waves, differential rotation (DR) and toroidal field (TF) during a half-period of
an MHD tachocline nonlinear oscillation. Mean east-west flow (i.e. differential rotation) and velocity patterns
in the waves are coloured in red. Toroidal magnetic field profiles and magnetic patterns in the waves are
coloured in blue. Rightmost column shows the evolved mean flow and toroidal field profiles respectively in
thick-red and thick-blue curves; corresponding thin-dashed curves represent the original profiles. The figure
is reproduced from Dikpati et al. (2018b) by permission of the AAS

fields. The key to understand how the oscillation works is found in the tilt of perturbation
streamlines and field lines (see tilted red and blue ovals). HD and MHD Rossby wave pat-
terns having the same tilt, as they virtually always do, implies they are working against
each other, transporting angular momentum in opposite directions in latitude. The oscilla-
tion “starts” by the Maxwell stress extracting energy from the east-west flow (the differential
rotation) at a greater rate than the Reynolds stress can replenish it. The former is transporting
angular momentum toward the poles, and the latter toward the equator, as shown near the top
of the schematic. The energy extracted goes into the perturbation velocities and magnetic
fields, in the form of MHD Rossby waves. This has the effect of weakening the differential
rotation, as shown in the middle time period (left edge). Thus, the kinetic energy cannot be
extracted, and as a result, the Rossby wave amplitude ceases to grow. In this phase (middle
of Fig. 27), the perturbation streamlines and field lines are no longer tilted. But the system
does not stop evolving there; instead, the tilts reverse, and energy comes out of the Rossby
waves and back into the differential rotation.

Such tachocline nonlinear oscillations have been simulated, and displayed in Dikpati
et al. (2017, 2018b). In those simulations (see, e.g. Fig. 3 in Dikpati et al. 2017 and Figs. 8
and 10 in Dikpati et al. 2018b), there are tilted flow and field patterns, signifying the presence
of Maxwell and Reynolds stresses. Phase shifts between velocity and magnetic field arrows
can also be seen, indicating that the so-called mixed stress, or cross correlation between
longitude dependent velocities and magnetic fields, is also at work. The overall patterns are
complex enough that both senses of tilt and both signs of phase difference can be seen at
different locations.

To help understand the interactions among Rossby waves, toroidal fields and differential
rotations, it is useful to form energy equations for the potential, kinetic and magnetic en-
ergies in the nonlinear shallow water system, integrated over the whole spherical shell that
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Fig. 28 P ,K,M represent respectively the energies of the longitudinally averaged tachocline thickness,
east-west flow (differential rotation) and magnetic fields, and P ′,K ′,M ′ represent the potential, kinetic and
magnetic energies of the Rossby waves. All allowed energy flows from one energy reservoir to the other are
symbolically shown by arrows

represents the tachocline. This set of energy reservoirs and energy conversions form a closed
set, in that the total energy of the system is conserved. With this formulation, interactions
among all the waves and the longitudinally averaged flow and fields can be accounted for.
The details of energy equations and their conversion integrals can be found in the appendix
of Dikpati et al. (2018b); here Fig. 28 schematically presents the allowed transfers from one
energy reservoir to another through the action of Reynolds, Maxwell and mixed stresses.

Equatorially Trapped Magnetic Rossby Waves in the Solar Tachocline Equatorially
trapped magnetic Rossby waves reviewed in the Sect. 3.3 have important consequences in
the solar tachocline. Sub-adiabatic temperature gradient in the upper overshoot part of the
tachocline provides negative buoyancy force on deformed upper surface and leads to reduc-
tion of surface gravity speed owing to the so called reduced or effective gravity (Gilman
2000). Therefore, the surface feels less gravitational field compared to the real gravity. Neg-
ative buoyancy force is proportional to the fractional difference between actual and adiabatic
temperature gradients |∇ − ∇ad |, which is in the range of 10−4–10−6 in the upper overshoot
part of the tachocline and may reach up to 10−1 in the lower radiative part of the tachocline
(Dikpati and Gilman 2001). The dimensionless reduced gravity is expressed as

G = gH

�2R2
= 4

ε
, (106)

where ε is the Lamb parameter (see Eq. (5)), which in tachocline parameters can be related
with the temperature gradient difference as G = 103(|∇ −∇ad |) (Dikpati and Gilman 2001).
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Fig. 29 Period of equatorial fast (blue line) and slow (red line) magneto-Rossby waves vs Lamb parameter, ε.
The waves have wave numbers ν = 1 and kxR = 1. The magnetic field strength is 10 kG

The value of Lamb parameter in the overshoot region is then 1.5 · 102–1.5 · 104. The disper-
sion relation for equatorial fast magnetic Rossby waves, Eq. (90), shows that the frequency
of the waves is proportional to the surface gravity speed, which is significantly reduced ow-
ing to the reduced gravity. Therefore, the period should be significantly increased in the
upper part of the tachocline.

Figure 29 displays the dependence of the periods of fast and slow magnetic Rossby waves
on the Lamb parameter in the conditions of upper tachocline. The lines are plotted accord-
ing to the solutions of dispersion relation for equatorial shallow water waves (Eq. (37) in
Zaqarashvili 2018). The figure shows that the period of fast magnetic Rossby waves is in the
range of the time scale of solar cycles and reaches 10–11 years for the Lamb parameter of
ε = 1.5 · 104, which is upper limit of its suggested value. On the other hand, slow magnetic
Rossby waves have the period between 90–100 years for the same parameters and hence are
on a time scale of long-term modulation of solar cycles known as Gleissberg cycles (Gleiss-
berg 1939). This is a very interesting result and future studies will show if equatorial fast
and slow magnetic Rossby waves have some consequences for solar dynamo and activity
cycles.

Slow Magnetic Rossby Waves and Long-Term Modulation of Solar Cycles The disper-
sion relation for equatorial slow magnetic Rossby waves, Eq. (89), shows that the frequency
of the waves is proportional to the Alfvén speed rather than to the Lamb parameter. This is
also seen in Fig. 29, where the frequency of slow magnetic Rossby waves is independent of
the Lamb parameter. Therefore, smaller magnetic field produces rather long periods of slow
magnetic Rossby waves.

Long-term records of sunspot numbers (Gleissberg 1939) and concentrations of cos-
mogenic radionuclides on the Earth (Stuiver and Braziunas 1989; Steinhilber et al. 2012;
Usoskin 2017) reveal the variation of the Sun’s magnetic activity over hundreds and thou-
sands of years. Zaqarashvili et al. (2015) analysed solar activity data reconstructed from cos-
mogenic isotopes (Usoskin et al. 2007) 10Be and 14C measured in the Greenland GRIP ice
core and in tree rings, respectively, during the past 10 millennia and identified several distinct
periods such as 1000, 500, 350, 200 and 100 years. Then they found that the periods of the
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Fig. 30 Comparison of observed long-term periods in solar activity and the periods of slow magnetic Rossby
modes with different poloidal wave number, n. Blue and red circles indicate the periods found by periodogram
analysis of sunspot and radionuclide data, respectively. Blue and magenta asterisks indicate the periods of
slow magnetic Rossby wave harmonics calculated from Eq. (77) for m = 1 and n = 2,3,4,5,6 for magnetic
field strength of 1200 and 1300 G, respectively. Blue and magenta triangles indicate the periods of the first
five unstable harmonics calculated by the Legendre polynomial expansion for the same field strength. The
figure is reproduced from Zaqarashvili et al. (2015) by permission of the AAS

first five spherical harmonics (m = 1, n = 2,3,4,5,6) of the slow magnetic Rossby mode in
the presence of a steady toroidal magnetic field of 1200–1300 G in the lower tachocline are
in good agreement with the time scales of observed variations (Fig. 30). They suggested that
the steady toroidal magnetic field can be generated near the bottom of the tachocline either
due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action
of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which
penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations
of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo
magnetic field and consequently the solar cycle strength.

4.3 Stars

4.3.1 Solar-Like Stars

Introduction Solar-like stars show dark spots in their photospheres produced by magnetic
fields in the kilogauss magnitude range (e.g. Brun and Browning 2017b, and references
therein). The spots modulate stellar optical flux as they rotate. The photometric variations
range from 0.1% in stars with a magnetic activity level comparable with our Sun to about
30% in the most magnetically active stars. In the chromosphere, magnetic fields lead to a
localised heating that can be detected in the emission cores of specific spectral lines such as
Ca II H&K.

The magnetic fields of late-type stars are highly inhomogeneous and vary on a range of
timescales from a few hours or days, characteristic of the intrinsic evolution of individual
active regions, to several years, the timescales of stellar activity cycles, akin to the 11-yr
sunspot cycle. The solar 11-yr cycle is characterized by a cyclic migration of the latitude of
sunspot appearance and by an inversion of the polarity of the global poloidal field close to
the maximum of activity. Oscillations of the total sunspot area and of the flare occurrence
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rates with periodicities around 150–160 d have also been observed around the maxima of
some 11-yr cycles and have been called Rieger cycles (see Sect. 4.2.4).

In the case of distant stars, short-term activity cycles, similar to the solar Rieger cycles,
can be of interest in the framework of our discussion because Rieger cycles have been in-
terpreted as the manifestation of Rossby waves in the Sun (Lou 2000; Zaqarashvili et al.
2010a). Nevertheless, an unambiguous detection of stellar Rieger cycles is difficult because
of our limited knowledge of stellar activity and the limited time span of our observations.
Ground-based monitoring suffers from seasonal quasi-periodic interruptions, often compa-
rable with the periodicities we are looking for. Space-borne telescopes such as CNES/ESA’s
CoRoT (Convection, Rotation and planetary Transits) and NASA’s Kepler were designed
to search for planetary transits with typical timescales of hours or tens of hours. Therefore,
their light curves are generally affected by residual instrumental effects, data gaps, and dis-
continuities over timescales longer than 7–10 days that were not eliminated by their data
reduction pipelines because they do not hamper the detection of transits.

Other phenomena, in addition to the variation in the area of the active regions, may pro-
duce a variation in the photometric and spectroscopic proxies of activity. For example, the
intrinsic evolution of large activity complexes (Castenmiller et al. 1986) or the redistribu-
tion of active regions in longitude due to surface differential rotation. Disentangling these
phenomena from the overall variations in the total starspot area is difficult, especially if we
limit ourselves to monitoring only the variation in the amplitude and the mean value of the
stellar flux. Better results can be obtained by applying spot modelling techniques (cf. Lanza
2016).

Possible Rieger Cycles from Ground-Based Observations Among the late-type stars
monitored by the famous Mt. Wilson program (Baliunas et al. 1995; Oláh et al. 2016; Olspert
et al. 2018, e.g.,), only two have been reported to show some evidence of short activity
cycles, that is, α Comae (HD 114378) with a period of ∼ 132 d (Maulik et al. 1997) and
τ Bootis (HD-120136) with a period of 110–120 d that persisted for ≈ 25 yr (Baliunas et al.
1997; Henry et al. 2000; Schmitt and Mittag 2017) accompanied by a parallel coronal cycle
(Mittag et al. 2017). The case of α Com has never been published in a referred journal, while
τ Boo has received considerable attention thanks to its close-by massive planet (e.g., Borsa
et al. 2015). An activity cycle of 11.6 ± 0.6 yr has been proposed for τ Boo in addition to
the above short-term cycle, although it is not very significant (Baliunas et al. 1995). The
interpretation of the short-term chromospheric cycle of τ Boo in terms of a Rieger-like
cycle is disfavoured by spectropolarimetric observations showing simultaneous inversions
of the large-scale polarity of the stellar magnetic field (cf. Mengel et al. 2016; Jeffers et al.
2018), not observed in solar Rieger cycles. An analysis of the Ca II H&K index of other
four F-type dwarfs by Mittag et al. (2019) suggested cycles shorter than one year in three
of them, although τ Boo is still the one with the shortest cycle. These stars have rotation
periods between 3.45 and 7.73 d. This suggests that cycles shorter than ≈ 300 d may be
rather common in rapidly rotating F-type stars, although their relationships with the solar
11-yr or Rieger cycles are still unclear (cf. Arkhypov et al. 2015).

Evidence for a short-term cycle of ∼ 294 d was found in the close binary system
UX Arietis by Massi et al. (2005) through a long-term monitoring at radio frequencies (1.4–
43 GHz). A similar period is found in the optical light curve, while a longer spot cycle of
≈ 4 yr has been detected by Oláh et al. (2009). This system hosts a rapidly rotating late-type
subgiant star, remarkably different from our Sun, thus it is unclear whether such a short-term
cycle can be similar to solar Rieger cycles.

Young main-sequence stars have been investigated by Distefano et al. (2017) who anal-
ysed several seasons of ASAS photometry. The sample consists of 90 stars of spectral types
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Fig. 31 Total spotted area of
CoRoT-2 versus the time as
derived from a maximum-entropy
spot model without faculae (filled
symbols, solid line) or including
solar-like faculae with a ratio of
the facular to the spotted area
fixed at 1.5 (open symbols,
dotted line). The area is
measured in units of the stellar
photosphere. A periodicity
around 29 days is evident. Credit:
Lanza et al. (2009), reproduced
with permission ©ESO

from G5 to M4 belonging to associations with ages between 4 and 95 Myr. Approximately
40 percent of these stars show some evidence of cycles shorter than 300 d in their optical
photometry, but no definite conclusion on their nature can be drawn because of the high
intrinsic variability of the targets, the seasonal interruptions, and the limited precision of
ground-based photometry. Another work based on ASAS photometry and targeting 31 M
dwarfs was published by Savanov (2012) who found cycles with periods from hundred to
thousands of days without correlation with the stellar mass or mean rotation period.

Possible Rieger Cycles from Space-Borne Telescope Observations CoRoT-2 is a G7
dwarf star accompanied by a hot Jupiter (Alonso et al. 2008). A maximum-entropy spot
modelling was made by Lanza et al. (2009) and revealed a mean stellar rotation period of
∼ 4.52 d and a modulation of the total spotted area with a period of ∼ 29 d (Fig. 31) during
which the rotation of the main starspots remained constant. Therefore, this target is a good
candidate for a Rieger-like short-term spot cycle. Unfortunately, we do not have information
on stellar activity on timescales longer than ∼ 150 d, in particular we do not know whether
this short-term cycle is a persistent feature.

Analysing CoRoT and ground-based observations, García et al. (2010) reported a single
cycle with a period of ∼ 120 d in the F5 dwarf HD 49933 using both the chromospheric
index and the variation of the p-mode frequencies as proxies for its magnetic activity. Mittag
et al. (2019), using a more extended dataset, suggest a longer period of ∼ 212 d.

A short-term spot cycle of ∼ 48 d was discovered in Kepler-17 by Bonomo and Lanza
(2012). It is a G2V star with a rotation period of 12 d accompanied by a hot Jupiter. A re-
analysis of the entire four-year Kepler dataset confirmed this periodicity (Fig. 32) and proved
it to be intermittent, while a longer-term cycle of ≈ 400–500 d was revealed (Lanza et al.
2019b). Therefore, the short-term cycle of ∼ 48 d in Kepler-17 is a good candidate to be a
Rieger-like cycle with the longer-term cycle appearing more similar to the solar 11-yr cycle
because of the inferred systematic migration in the latitude of spot formation.

Interesting works dedicated to the detection of activity cycles by means of time series
analysis of CoRoT or Kepler photometry are, for example, Ferreira Lopes et al. (2015),
Mathur et al. (2014), Vida et al. (2014), Arkhypov et al. (2015), Reinhold et al. (2017), and
Montet et al. (2017). They found some cycles with periods around a few hundred days, but
their nature is unclear and the available data are not sufficient to conclude whether they are
Rieger-like cycles or not.
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Fig. 32 Amplitude of the Morlet
wavelet of the total spotted area
variation in Kepler-17 vs. period
and time. The amplitude was
normalised to its maximum
value. Different colours indicate
different relative amplitudes from
the maximum (orange) to the
minimum (dark blue) as indicated
in the colour scale in the right
lower corner. A periodicity
around 50 days is apparent over
most of the covered time interval,
while a periodicity around 30
days appears sporadically. Credit:
Lanza et al. (2019b), reproduced
with permission ©ESO

4.3.2 Main-Sequence Stars

The analysis of photometric time series by Kepler has shown periodicities interpreted in
terms of Rossby waves (called r-modes in the stellar research community). Van Reeth et al.
(2016) reported such signatures for rapidly rotating γ Dor stars (the stars show luminosity
variations due to non-radial pulsations of their surface). Then Saio et al. (2018) showed that
the frequencies of r-modes of azimuthal wavenumber m are less than m times the rotational
frequency in the corotating frame. In the inertial frame of the Kepler time series, the fre-
quencies are m� − 2m�/(l(l + 1)). They found the same phenomena in spotted early A to
B stars, rapidly rotating γ Dor variables, and components of close eccentric binaries with
strong tidal interactions (for more discussion and candidates, see Saio 2018). Just recently,
Li et al. (2019) reported the observations of r-modes in 82 γ Dor stars.

Regarding solar-type stars, we may consider sectoral r-modes similar to those observed
in the Sun (see Sect. 4.2.2). If those modes have the same amplitudes as in our star, we can
predict oscillations of the stellar radial velocity of several tens of cm/s in the case of the
l = m = 2 mode or ≈ 5–10 cm/s in the case of the l = m = 3 mode (note that in stellar
science l is usually used instead of n). Given measured lifetimes of solar r-modes of several
hundreds days, such oscillations could be a source of false positives in the detection of
Earth-mass planets around Sun-like stars by means of the radial velocity technique (Lanza
et al. 2019a).

4.3.3 Compact Stars

According to the Chandrasekhar-Friedman-Schutz mechanism (Chandrasekhar 1970; Fried-
man and Schutz 1978), the rotating self-gravitating body with non axial symmetry (e.g. the
triaxial Jacobian ellipsoid) may radiate gravitational waves and lead to the secular instability
of a body. Based on this mechanism, Andersson (1998) and Friedman and Morsink (1998)
performed the relativistic calculation of r-modes and showed that they are unstable due to the
emission of gravitational radiation for all rotating perfect fluid compact stars (see also An-
dersson et al. 1999). This is of importance in astrophysical applications since gravitational
wave asteroseismology would allow us to probe the interior structure and composition of
rapidly rotating stars (neutron stars, white dwarfs etc.) in great detail. One may consider
an “instability” window, i.e., a region in parameter space in which the r-mode is unstable.
Haskell et al. (2012) studied spin frequency and temperature of low mass X-ray binaries and
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Fig. 33 R-mode instability
window low mass X-ray binaries
(black) and milli-second radio
pulsars (red) that have estimates
of both spin frequency and the
surface temperature (arrows
indicate the upper limit). Error
bars show the uncertainty in the
modelling of outer layers of
neutron stars. Dashed line shows
the instability threshold, which
means that the stars in the lower
left (the upper right) region are
stable (unstable) for r-modes.
Adapted from Haskell et al.
(2012)

milli-second radio pulsars constructing their instability windows using the mass and radius
of stars as M = 1.4 M� and R = 10 km respectively. Figure 33 shows the instability window
for 19 low mass X-ray binaries and 3 milli-second radio pulsars. It is seen that the majority
of low mass X-ray binaries (11 out of 19) lay in the unstable region. On the other hand, one
should not expect to find many systems in the unstable region as the r-mode instability must
be quickly stabilised as for the realistic saturation amplitudes, a star can not heat up enough
to be inside the instability region. Therefore, probably additional physical mechanisms are
needed to reconcile theory with observations (Haskell 2015). Recent detections of oscilla-
tions in the X-ray light curve of low mass X-ray binaries may be interpreted as r-modes
perturbing the electromagnetic emission (Strohmayer and Mahmoodifar 2014), hence com-
bining gravitational waves and electromagnetic signals may open new opportunities to study
compact star interiors.

4.4 Accretion Disks: Rossby Waves and Their Instabilities

The dynamical significance of Rossby waves in thin astrophysical disks – whether they be
planet forming cold disks, hot magnetised disks around compact objects, or galactic scale
disks – has been appreciated only within the last 20 years.2 An astrophysical disk is con-
sidered thin when the typical sound speed of the disk gas (cs ) is much less than the az-
imuthal Keplerian velocity, �K · R = VK ≡ √

GM/R, where M is the mass of the central
object and R is the cylindrical radial location within the disk, and �K is the corresponding
Keplerian rotation rate. Gas in vertical hydrostatic equilibrium exhibits a Gaussian profile
characterised by a vertical scale height H ≡ cs/�K . Because the Keplerian velocity field is
strongly sheared in the radial direction, until the pioneering study of Godon and Livio (1999,
2000) it remained an open question for decades whether coherent vortical structures could

2Rossby waves were first envisioned to play a role in shaping the appearance of galactic disks by two very
early (and, sadly) over-looked studies Dickinson (1964a) and Dickinson (1964b).
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form and remain robust within cold astrophysical disks and, moreover, not breakdown. As-
suming such structures have circulation speeds U (as measured in the rotating frame of the
disk) assumed to be on the scale of but less than the local sound speed and supposing that
the spatial scales are no more than a gravitational scale height, from the definition Eq. (9)
it follows that astrophysical disks have Ro ≤ 3/4, where the less than part of the inequality
depends upon the strength of the underlying vortical structure. With such values of Ro close
to 1, the shape and character of Rossby waves ought to look very different from their known
characteristics on planetary atmospheres where Ro � 1.

At around the same time of Godon and Livio’s study, two other studies questioned the
role that Rossby waves may play in shaping dynamics of astrophysical disks. The first of
these is an often overlooked work by Sheehan et al. (1999) who identified the parallels be-
tween atmospheric settings and accretion disks with respect to Rossby wave propagation,
and also suggested that the Rhines scale mechanism (Rhines 1975) may be relevant in gen-
erating large scale structures governed by Rossby wave propagation in cold protoplanetary
disks. Drawing on the analogy of geophysical flow, Sheehan elucidate the parallels in the
Coriolis parameter (f ) and the β parameters in geophysical and disk contexts, namely,

fgeo = 2� sin θ ←→ fdisk = 1

2
�K,

βgeo = ∂fgeo

∂x
= 2� cos θ

Rp

←→ βdisk = ∂fdisk

∂R
= −3

4

�K

R
,

(107)

where Rp is the planetary radius. Using a small radial wavelength point analysis, they show
that the frequency and propagation properties of disk Rossby waves follow the same func-
tional form as those in the geophysical context. Their analysis also predicts that these modes
can be unstable with growth rates ∼ cs/R. This dependence upon the local sound speed has
been later confirmed and further refined (see below).

The Rhines scale corresponds to the length scale (Lc) of a turbulent eddy whose overturn
frequency matches the local Rossby wave frequency: If for whatever reason a fluid system
is both turbulent and characterised by an inverse cascade, then the inverse cascade turbulent
energy will go from small scale eddies into large scale propagating Rossby waves. The
connection noted in Sheehan et al. (1999) has opened up the deeper question regarding the
fundamental nature of cold protoplanetary disks that currently remains unanswered: are they
effectively nearly two-dimensional like the large horizontal scales of planetary atmospheres
or are they really three-dimensional? In this respect, it seems very likely that large scale
Rossby waves play an important role in shaping the character of accretion disk turbulence,
but the details of the physical mechanism remain to be understood (Lyra and Umurhan
2019).

In a second series of publications Lovelace et al. (1999), Li et al. (2000, 2001) showed
that cold magnetically inactive disks with no radial flow and with radially localised pressure
extrema (“pressure bumps”) can undergo a Rossby wave instability (RWI).3 In particular,
they showed through a series of analytical studies and numerical experiments in two dimen-
sional (radial-azimuthal) disk models, that a non-axisymmetric large-scale vortex generating
instability can happen in disks supporting a radially localised maximum in the quantity L
defined by

L ≡ QS2/�; Q ≡ ẑ · ∇ × v
�

, (108)

3These studies were inspired by two earlier quantitative studies (Dickinson 1964b; Lovelace and Hohlfeld
1978) exploring the role that Rossby waves might play in shaping the spiral arm structure of galactic disks.
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where � is the disk’s vertically integrated mass density and v is the gas velocity. The quan-
tity L is a product of the potential vorticity, Q, and a power of the entropy S ≡ P/�� , where
� is the polytropic index of the steady gas material. The core element in this process is that
there exist a local maximum in Q, which is a pre-requisite for the roll-up of shear layers
(Bretherton 1966; Heifetz et al. 1999). In practice for disk sections with constant tempera-
ture (� = 1), a radially localised enhancement of mass will imprint a deviation atop the basic
Keplerian flow which increases the severity of the shear. The instability has been interpreted
in terms of wave over-reflection and energy extraction in the Q-excess layer (Tsang and
Lai 2008; Fridman and Bisikalo 2008; Lai and Tsang 2009).4 Umurhan (2010) interpreted
the linear instability in terms of the resonant interaction of a pair of counter-propagating
Rossby waves (see also Sect. 3.4) – one on either side of the pressure maximum – and
showed that a pressure bump is necessary for the destabilising wave resonance as a pres-
sure minimum would lead to co-propagating Rossby wave pairs that never phase-lock (see
discussion in Harnik et al. 2008). Both viewpoints – counter-propagating Rossby waves and
over-reflection and negative energy modes – are essentially equivalent (Harnik and Heifetz
2007).

Once the condition on L is met, the excess Q layer rolls-up and turns into a coherent
elongated vortex by the background Keplerian velocity shear. Studies of the RWI in 3D disk
models reported by Meheut et al. (2010, 2012), Lin (2012, 2013), Barge et al. (2016) show
that the process brings about intricately complicated three-dimensional vortex structures
that appear to be sufficiently long-lived before they possibly succumb to elliptical vortex
instabilities (e.g., Lesur and Papaloizou 2009).5 Lin and Papaloizou (2011) and Lin (2012)
demonstrated that the inclusion of self-gravity within the gaseous component significantly
changes the resulting length scale of the emergent vortices at the outer gap edges, which is
consistent with the finding of the detailed linear theory study of the self-gravitating RWI by
Lovelace and Hohlfeld (2013).

The RWI also plays a role in enhancing angular momentum transport in disks as well as
providing a pathway for energy and enstrophy cascade in disks driven by other turbulence
generating processes. Before accretion disks were ever directly imaged they were conjec-
tured to be the source of the observed UV excess around T-Tauri stars (young variable stars)
and the occurrence of X-ray bursts around tightly orbiting compact objects (Prendergast
and Burbidge 1968; Shakura and Sunyaev 1973; Lynden-Bell and Pringle 1974). In rapidly
rotating accreting systems, inwardly spiralling matter must efficiently shed its orbital angu-
lar momentum and convert its orbital energy into radiation. Using the language of mixing-
length theory, Prendergast and Burbidge (1968) first invoked the necessity of some enhanced
form of viscosity to achieve the observed implied rate of mass transfer as molecular viscos-
ity is insufficient to do the job. These concepts were later placed on more solid mathematical
foundations and considered in terms of a wider set of astrophysical phenomena by Shakura
and Sunyaev (1973) and Lynden-Bell and Pringle (1974). Today the α-viscosity prescription
is used to quantify the degree of angular momentum transport delivered by a given dynami-
cal mechanism operating in a disk, and is defined in terms of the tangential Reynolds stresses
exerted by the fluid under the influence of the process. Typically, the tangential stresses of

4Note that in the astrophysics literature it is common to speak of the potential vorticity in terms of its inverse,
i.e., the vortensity. For example, in Lai and Tsang (2009) the process was discussed in the language of
over-reflection with negative-energy modes associated with a pair of resonantly interacting Rossby waves
propagating on either side of the co-rotation point centred on the pressure extremum.
5For simplified linear treatment of interaction between differential rotation and Rossby waves see Tagger
(2001).
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significance are based on the radial-azimuthal correlations of the fluctuating velocity field
(with respect to the local Keplerian flow) scaled on the local gas pressure, i.e.,

α ≡
〈
ρu′

ru
′
φ

〉/
P, P = ρc2

s , (109)

where the large bracket indicates a single azimuthal or a global spatial average of the fluc-
tuating quantities (also see discussion in the review of Lyra and Umurhan 2019). Li et al.
(2001) examined the nonlinear development of the RWI and found that it produces en-
hanced tangential stresses away from the nonlinearly saturated fully-developed vortex with
α ∼ 10−2 (recently also Bae et al. 2015), a figure that is 1–2 orders of magnitude larger than
other considered sources of disk turbulence (Colgate et al. 2003). Several authors (Varnière
and Tagger 2006; Lyra et al. 2009b; Regály et al. 2012; Lyra et al. 2015; Miranda et al. 2016)
examined the enhanced angular momentum transport of the RWI in a model of an already
turbulent disk and they find that the effective transport is significantly reduced (i.e., lower
values of α), but Lyra et al. (2015) also conclude that even weak gradients in the level of
turbulence from one part of the disk to another is sufficient to trigger the RWI suggesting its
possible more widespread prevalence (see further below).

Richard et al. (2016) observe that the RWI plays a role in facilitating secondary transi-
tions that contribute to the apparent turbulent cascade observed in the nonlinear development
of the Vertical Shear Instability (VSI, Nelson et al. 2013). In particular, the VSI – which is
fundamentally an axisymmetric linear instability – develops into radially short, vertically
extended oscillating motions which generate strong pressure axisymmetric pressure fluc-
tuations. When the amplitude of these fluctuations exceeds the criterion for the RWI, the
motions undergo a non-axisymmetric breakdown resulting in roll-up and subsequent cas-
cade of kinetic energy to smaller scale eddies. The RWI also plays a similar dynamical
role in the propagation of self-replicating vortices in stably stratified strongly rotating fluids
first reported by Marcus et al. (2013), where radially/vertically narrow axisymmetric jets
(i.e., an axisymmetric radially localised vorticity dipole) triggers the formation of a similar
axisymmetric jet at critical layers defined by the disk location whose local gravity oscilla-
tion frequency is resonant with the doppler shifted frequency of the distant triggering jet.
The generated jet eventually gets destroyed once it matures to a level in which it becomes
susceptible to the RWI (Umurhan et al. 2016).

What may bring about the required conditions on L and what role might the RWI play
in planet forming cold disks? It was immediately recognised that this process may provide
the critical link in the long-standing question of dust accumulation and planet formation.
The current leading hypothesis for the formation of planetary cores is that micron-sized
dust grains coagulate to form ever larger particles until the gravitational binding size of
100 km is reached, which also happens to be the minimum observed size of bodies of the
asteroid belt. However, there exists a long-standing problem of surpassing the so-called cm-
m barrier associated with various mechanisms that suppress particle growth.6 A hypothetical
resolution of this puzzle put forth by several authors conjectures that long-lived large-scale
strongly anticyclonic coherent vortices, if they exist in planet forming disks, could serve
as migration destinations for dust particles from the surrounding disk and promoting their
number density enhancement (Barge and Sommeria 1995; Adams and Watkins 1995; Tanga
et al. 1996). Chavanis (2000) explained that dust particles drift toward the pressure maxima
characterising accretion disk anticyclones and, further, noted that whether those maxima

6For a more comprehensive discussion of these barrier mechanisms see the varied discussions found in Brauer
et al. (2008), Zsom et al. (2010), Birnstiel et al. (2012), Estrada et al. (2016).
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occur at the very centre of the vortex or near its edges depends upon the character of the
emergent vortex itself. It has been since recognised that there are three possible ways to
generate conditions for the onset of the RWI and subsequent creation of the desired vortices:
(1) the outer boundary of gaps created in the disk by a planet (Lyra et al. 2009b, and many
others since), (2) the boundary between a magnetically active and magnetically inactive zone
(Varnière and Tagger 2006; de Val-Borro et al. 2006, 2007; Lyra et al. 2009a; Miranda et al.
2017), and (3) the sharp density boundary in a disk still growing by mass-infall from the
surrounding protostellar nebula (e.g., Bae et al. 2015).

Supposing a planetary core has already formed, Papaloizou and Lin (1984) and Lin and
Papaloizou (1986a,b) physically reasoned that tidal disruption should cause deep gaps (i.e.,
annuli with significant gas depletion) to from in the disk within the immediate vicinity of the
planet or protoplanet. This theoretical prediction has been borne out in countless numerical
experiments done since (e.g., most recently in Pierens et al. 2019). The regions around the
inner and outer gap edges have different radial gas pressure profiles: the RWI preferentially
develops along the outer gap of disks as the pressure profile has a local peak since it goes
from low (nearly) zero (in the gas depleted zone), to a maximum some way into the disk,
while proceeding to decline once again with further increased radius – although weaker vor-
tices can form on the inside gap as well. The effect is most pronounced on the outer edges of
self-gravitating disks and is clearly seen in the numerical experiments of Lin and Papaloizou
(2011), Les and Lin (2011, 2015, also see bottom row of Fig. 34). Initially the instability
generates the seeds of 3–6 anticyclones but these eventually merge with one another to form
a single, very-elongate and horseshoe resembling, anticyclonic vortex. These can, in prin-
ciple, serve as sites for particle accumulation. A similar mechanical sequence of processes
leads to vortices on the boundary between magnetically active (and turbulent) outer disk
regions and inner, relatively inactive, hydrodynamic zones (e.g., de Val-Borro et al. 2007,
and see top row of Fig. 34).

The foregoing discussion of RWI generated vortices outside gaps formed by nascent
planets has possible observational significance and applications. The last ten years have
seen an explosion of sub-millimeter and millimeter observations of circumstellar disks ob-
tained by ALMA (Atacama Large Millimeter Array) and other telescopes (e.g. Casassus
et al. 2013; van der Marel et al. 2013; Isella et al. 2013; ALMA Partnership et al. 2015),
and the more recent DSHARP survey Andrews et al. (2018), Pérez et al. (2018). Most re-
markably, these observations show that these disk systems are characterised by banded gaps
and rings and, moreover, a significant subset of these show significant non-axisymmetric
asymmetries including horseshoe features, presumably arising from dust particle emission
in the millimetre. These structures are observed in one or more annuli in several objects ob-
served by ALMA (Huang et al. 2018). Figure 35 showcases an abbreviated gallery of some
of these observations. The localisation of dust is consistent with the picture of long-lived
vortices drawing upon the dust grains and particles in the surrounding disk (Lyra and Lin
2013) and has been conjectured to be the result of ongoing – however, as yet, unresolved –
planet formation in the low-emitting gaps (Stammler et al. 2019). Whether the RWI or some
other mechanism – perhaps working in tandem with the RWI – is responsible for the ob-
served asymmetries remains to be established and is currently an active field of research.
The foregoing discussion shows that Rossby waves and their dynamical influence likely
play a central role in the formation of structures in planet forming circumstellar disks.

While the foregoing discussion has focused on cold planet forming disks owing primarily
to the recent direct imaging of these objects, the RWI has also been invoked to answer a long-
standing question in galactic structure (Begelman et al. 2006; Volonteri 2010): what set of
processes lead to the formation of supermassive massive black holes (SMBH, 106–8 M�)
in non-active galaxies (nAGs) like our own? Surveys of nAGs indicate that the mass of the
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Fig. 34 Nonlinear disk simulations with embedded planets driving the RWI. Top row: 2D non-self gravi-
tating disk with planet (circled in black) inside a gap driving gaseous torques that trigger the RWI along its
edges which create coherent vortices – simulations adopted from de Val-Borro et al. (2007). The outer edges
express the resulting structure most prominently (black arrows). Left simulation corresponds to an early time
in which initially two coherent mature vortices eventually merge into a single one at latter times shown in the
right simulation. Vortex mergers in strongly sheared disks are one of their most generic features (Umurhan
and Regev 2004). Bottom row: 2D self-gravitating disks under similar circumstances, simulations of disk
annuli adopted from Lin and Papaloizou (2011) shown. The degree of disk self-gravity is quantified by the

Toomre parameter defined as Q0 ≡ hM/
(
πR2�(R)

)
, where � is the local disk surface mass density, h is

the disk opening angle defined as H/R. All quantities are evaluated at a nominal disk location and R = R0 is
the disk location. As the degree of self-gravity increases (decreasing Q0) the prominence of short scale RWI
appears on the outer disk edge

galactic bulge (Mbulge) is about 0.1 the luminous mass of the galaxy (Mgxy ≈ 1010 M�), and
furthermore, that the initial gas content within the bulge is also about one tenth the mass of
the bulge, or Mgas ∼ 108 M�.

The idea put forth in Colgate et al. (2003) is that this gas collapses into a Mestel disk7

whose gas subsequently accretes into a seed black hole – already at the galactic center – that
eventually matures into the SMBH. This mass drainage is not driven by disk turbulence char-
acterized by an α but, instead, by the far more efficient mass transport driven by the RWI.
In this scenario, mass transferring angular momentum removing coherent vortices form by
the RWI-process due to the expected strong pressure gradient characterizing the disk’s inner
edge (R = rin ∼ 10 pc). Triggering the mechanism requires that the RWI’s intrinsic growth

7Mestel disks are infinitely thin with a surface density profile ∼ 1/R (Mestel 1963). They were utilized as
a useful theoretical model of self-gravitating galactic disks exhibiting constant rotation profiles (Binney and
Tremaine 2008).
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Fig. 35 Various ALMA images (except where noted) of planet forming disks harbouring clear non-spiral
arm like structural asymmetries. Observations are varied across continuum and specific near and far infrared
spectral bands (consult individual papers for more details). Beam sizes for all images shown as circles or
ellipses on respective image corners. (Left column) IRS 48 observations adopted from van der Marel et al.
(2013) in the following wavelength bands from top to bottom (respectively): 0.44 mm continuum emission,
integrated CO (6-5) emission band, and 18.7 µm emission (in orange) with 4σ 0.44 mm contour lines super-
imposed (green). (Middle image) HD143006 observations adopted from Pérez et al. (2018) in the 1.25 mm
continuum emission. (Right image cluster) Observations of HD142527 adopted from Casassus et al. (2013)
in continuum at 345 GHz, CO (3-2) emission, near IR image at 2 µm image made by Gemini observatory,
and finally the HCO+ (4-3) emission intensity

timescale at the disk’s inner edge (i.e., ∼ rin

/
cs(rin), e.g., Sheehan et al. 1999) exceeds the

local thermal cooling time (τc, dominantly driven by optically thin radiative losses), and
Colgate et al. (2003) argue that such conditions are feasible in such environments. Given
that observational surveys indicate that the total bulge gas mass (Mgas ) should be accreted
into the SMBH in under 108 yr, Colgate et al. (2003) argue that this is feasible if the disk’s
inner edge is periodically heated up to 100 K, a condition that is met by the expected once in
a century rate of supernovae eruptions (with energy ∼ 1051 ergs) within the galactic core re-
gions – evoking the kind of limit-cycle behavior describing other astrophysical phenomena
like cataclysmic variables.

5 Outlook

5.1 Rossby Waves as Probes of the Solar Interior Using Helioseismology

Looking forward, helioseismology could be used to infer the depth dependence of the eigen-
functions of the solar internal Rossby waves. According to simplified modeling, the dis-
placement eigenfunctions of solar Rossby waves decrease with depth like rm (see Damiani
et al. 2020, and references therein). This implies that the kinetic energy density of the so-
lar Rossby waves (proportional to ρ(r) r2m) peaks deep inside the convection zone for the
smallest values of m. Thus, it is conceivable that solar Rossby waves could be used as di-
rect probes of the solar interior, in addition to the 5-min acoustic oscillations. An important
example would be the detection of the magnetic field deep in the convection zone.
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5.2 Rossby Waves as Probes of the Solar Interior Using Observed Periodicities in
Solar Activity

Observed intermediate periodicities in solar activity (Sect. 4.2.4) and theoretical spectrum
of magnetic Rossby waves could be used to probe the solar interior alongside the helioseis-
mology. First estimations of solar dynamo magnetic field near the base of convection zone
(Gurgenashvili et al. 2016, 2017; Zaqarashvili and Gurgenashvili 2018) led to the toroidal
field of 20 kG in weak solar cycles and 40 kG in stronger cycles (Sect. 4.2.5). The first
results are promising, but future detailed analytical, numerical and observational studies of
Rossby-type waves are necessary to increase the accuracy of magnetic field estimation.

5.3 Rossby Waves as Probes of Stellar Interiors

Possible observations of Rossby waves inferred from stellar light curves and from spectro-
scopic data open a new area of sounding stellar interiors. Van Reeth et al. (2016) already
made a first attempt to estimate internal rotation rate of γ Dor stars. Increased accuracy of
modern and future space missions and Earth’s based spectroscopic observations may sig-
nificantly improve our knowledge in stellar physics. Another important direction could be
the use of observed intermediate periodicity (probably caused by Rossby waves in dynamo
layers) in stellar light curves (Lanza et al. 2009; Bonomo and Lanza 2012) to estimate the
magnetic field strength in dynamo layers of stars at different stages of evolution (similar to
the Sun, see previous subsection). This approach may provide clues to the evolution of the
dynamo action throughout stellar evolution.

5.4 Role of Rossby Waves in Solar Large-Scale Dynamics

The discovery of solar Rossby waves has prompted many questions on their role in the
global dynamics of the solar convection zone. An important point is the observation that
global solar Rossby waves have nearly as much radial vorticity as the turbulent convection
on the same spatial scales (Löptien et al. 2018). This is an unexpected result, which ought
to inform us about the interaction between the waves and the convection. Another topic of
interest is the potential role played by Rossby waves in the transport of angular momentum in
the convection zone. The observed wave functions have an imaginary component (Proxauf
et al. 2020), which implies a small latitudinal momentum flux with amplitudes that are
less than 1 m2/s2 per mode. According to Proxauf et al. (2020), this flux is equatorward
for the smallest m values and poleward for other values. Angular momentum transport by
Rossby modes is discussed using the β-plane model of Gizon et al. (2020): in this model,
the momentum flux is always equatorward.

5.5 Rossby Waves and Solar Dynamo

With the increase in evidence that the Sun contains Rossby waves, perhaps of both HD and
MHD types, a natural question to ask is what role these waves might play in the workings
of the solar dynamo. There are at least two, somewhat related but distinct ways Rossby
waves could be involved. The first is that, provided that Rossby waves are not strictly two-
dimensional (longitude-latitude) they can in principle drive the magnetic dynamo. The sec-
ond is that Rossby waves in the tachocline could couple with, for example, a solar flux-
transport dynamo to create global three-dimensional magnetic structures that could be re-
sponsible for aspects of solar magnetic activity detected in the photosphere and corona.
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A self-excited Rossby wave dynamo for the Sun was first considered long ago by Gilman
(1968, 1969a,b), long before the solar tachocline was known to exist. Gilman showed that
if the convection zone of the Sun was baroclinic (thermodynamic surfaces not coinciding),
the differential rotation of the Sun could be a form of “thermal wind”, well known to me-
teorologists, in which the radial gradient of rotation is associated with a latitude gradient of
specific entropy. This entropy gradient implies the storage of potential energy, which could
be unstable to Rossby waves and grow finite amplitude global patterns. This “baroclinic
instability” is always three-dimensional, with radial motions that facilitate the release of po-
tential energy in the entropy gradient. Baroclinic instability will produce an alpha-effect that
will generate poloidal magnetic field from any toroidal fields present. These poloidal fields
then could generate new toroidal fields by shearing of the latitudinal and radial gradients
of the rotation. Gilman showed that indeed for plausible solar parameter choices such a dy-
namo mechanism is sustained, including with periodic field reversals. The particular periods
Gilman found were too short for the Sun by a factor of 4 or so, but the model was highly
idealised, constructed for the mid-latitude channel with the flow and fields represented by a
small number of Fourier components in longitude and latitude.

Now that the Sun is observed to have a tachocline where it is very likely Rossby waves
are generated and sustained, and there is abundant observational evidence of Rossby waves,
it may be the time to revisit the possibility that the Sun has a Rossby wave dynamo in
its tachocline, of which some effects are manifested in the photosphere. Computing power
available to run tachocline Rossby wave dynamo model is now several orders of magni-
tude larger than Gilman had available to him in the 1960’s, so a much more detailed model
could be built. If there is a Rossby wave dynamo, or components of one, residing in the
solar tachocline, it is very likely that it is coupled in some way with dynamo processes in
the convection zone above. The so-called Babcock-Leighton flux transport (BLFT) models
(see, e.g., Dikpati and Charbonneau 1999) have been very successful in simulating a num-
ber of important characteristics of a solar cycle, but these have mostly been functions of
latitude and depth, and independent of longitude. It is certainly feasible now to couple a
tachocline Rossby wave model (say, of the MHD shallow water type) to a 3D version of
a flux-transport dynamo model, to take the next step and simulate the longitude-dependent
features of global solar activity, such as the so-called “active longitudes”, as well as lon-
gitude dependent global coronal structures. With such a 3D model it will then be possible
to estimate the relative importance of dynamo action within the tachocline due to unstable
baroclinic Rossby waves, compared to dynamo action due to other effects in the rest of the
dynamo model, that includes both the tachocline and the convection zone above. Thus, it ap-
pears that modeling the role of Rossby waves in the solar dynamo could be a very promising
area for future research.

It must be noted that equatorially trapped Rossby waves may have periods with solar
cycle time-scales in the upper overshoot layer of the tachocline due to the sub-adiabatic
temperature gradient (see Fig. 29 in Sect. 4.2.6) and therefore can be coupled with dynamo
action giving essential ingredients to solar magnetic field generation process (Zaqarashvili
2018).

5.6 Rossby Waves and Space Weather

In the Earth’s atmosphere, the combination of Rossby waves and jet streams provide the
basic organization of large-scale weather patterns that are responsible for the atmospheric
weather conditions all over the world. As we have reviewed above, Rossby waves are also
prominent in the Sun, and may play an analogous role in organizing the solar origins of
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Fig. 36 Forecast of future solar
cycle strength using magnetic
Rossby wave theory. Red and
blue lines show yearly and
10-year averaged sunspot
numbers, respectively. Magenta
line shows the fit of the sum of 5
sinusoidal functions with periods
of 1000, 500, 350, 200 and 100
years. The figure is reproduced
from Zaqarashvili et al. (2015)
by permission of the AAS

space weather that affects the Earth. Observed global organization of velocity and magnetic
patterns (i.e. active regions arranged in a wavy form in synoptic magnetograms, and also the
Hale polarity law, organized torsional oscillations) indicates such organization originates in
a stable region like solar tachocline rather than in the turbulent convection zone. That is,
Rossby waves interacting with spot-producing toroidal fields and differential rotation have
the potential for determining the evolution of surface magnetic patterns. The interactions of
Rossby waves with toroidal fields and differential rotation, as well as, interactions within
families of Rossby waves, may be responsible for determining the longitude and latitude lo-
cations that give rise to major space weather events. Inclusion of data assimilation technique
(see, e.g., Dikpati et al. 2014, 2016; Dikpati and McIntosh 2020) into solar Rossby waves
models it may be possible to predict the “seasons” of enhanced space weather events a few
weeks to several months up to a few years ahead.

Slow magnetic Rossby waves, which may reproduce the observed long periods in so-
lar activity (see Sect. 4.2.6), can be used for the long-term forecasting of the activity level.
Zaqarashvili et al. (2015) fitted the linear superposition of five sinusoidal functions (with
periods of 1000, 500, 350, 200 and 100 years as observed in long-term sunspot and ra-
dionuclide data which were supposed to be the periods of the spherical harmonics of slow
magnetic Rossby modes) to the data of yearly mean total sunspot number from 1700 to
2013 (Fig. 36). The resulting curve fits rather well the long-term behavior of the activity.
The model predicts the next deep minimum of solar activity around year 2030, which means
that the next two solar cycles will be rather weak affecting the sources and types of the solar
wind (e.g., Ofman 2010; Abbo et al. 2016) and reducing the frequency of coronal mass ejec-
tions that can cause geomagnetic storms (e.g. Li et al. 2018), but then the activity will start
to increase again. The long-term prediction of solar activity is of importance in planning of
future heliospheric space missions and mitigation of adverse space weather effects.

5.7 Future Developments in Rossby Wave Modelling

Numerical simulations ought to provide useful insights into the physics of Rossby waves in
stellar interiors and convective envelopes. First, one may ask if the equatorial Rossby waves
that have been observed in the Sun with helioseismology are also present in numerical simu-
lations. Not all available simulations of solar convection are appropriate for this application,
since very long time series are required to obtain the necessary frequency resolution. Here
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Fig. 37 Simulation of fully-compressible solar convection inside a rotating spherical shell with
0.71 < r/R� < 0.96, with realistic solar stratification (Bekki et al. 2019). Impenetrable, stress-free boundary
conditions are applied at the bottom and top boundaries. Convection is driven by time-independent radiative
heating and cooling sources in the entropy equation. The spatial grid is a full-spherical Yin-Yang grid with
size (Nr ,Nθ ,Nφ) × 2 = (72,96,288) × 2. (Left) Cuts through a snapshot of the radial velocity. (Right)
Sectoral power spectrum of the latitudinal velocity near the base of the convection zone from a 15 year time
series. The power at each m is normalized to the average power over frequency. Global equatorial Rossby
modes with m ≤ 5 are easily seen. Note that the m = 1 and m = 2 modes are present in the simulation.
Overplotted is the dispersion relation ω = −2�/(m + 1) (red curve)

we review on preliminary work by Bekki et al. (2019), who simulated fully-compressible
convection inside a rotating spherical shell extending from 0.71 R� to 0.96 R�. In order to
run a simulation covering 15 years, the near-surface layers were excluded. In this simula-
tion, the rotation rate is faster at the equator, akin to the solar differential rotation profile.
As seen in Fig. 37 the sectoral power spectrum of the latitudinal velocity in the lower con-
vection zone shows global-scale equatorial Rossby waves with m ≤ 5. The eigenfunctions
corresponding to these Rossby modes can be extracted from the simulations and compared
with theory and observations.

In addition to equatorial Rossby waves, Bekki et al. (2019) also found two convective
modes near the top boundary of the simulation, one retrograde and the other prograde. Ac-
cording to the eigenfunction analysis, the prograde mode turns out to be a north-south anti-
symmetric thermal Rossby mode (see, e.g., Tilgner 2007) and the retrograde mode an equa-
torial Rossby mode modified by surface convection. This strong coupling between Rossby
waves and convection at the surface seen in the simulations is unexpected, and should trigger
interesting discussions between numerical dynamicists, theorists and observers.
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