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Abstract The magnetosphere is the lens through which solar space weather phenomena
are focused and directed towards the Earth. In particular, the non-linear interaction of the
solar wind with the Earth’s magnetic field leads to the formation of highly inhomogenous
electrical currents in the ionosphere which can ultimately result in damage to and problems
with the operation of power distribution networks. Since electric power is the fundamental
cornerstone of modern life, the interruption of power is the primary pathway by which space
weather has impact on human activity and technology. Consequently, in the context of space
weather, it is the ability to predict geomagnetic activity that is of key importance. This is
usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm
phenomenon which contains the crucial physics, and therefore prediction of substorm oc-
currence, severity and duration, either within the context of a longer-lasting geomagnetic
storm, but potentially also as an isolated event, is of critical importance. Here we review the
physics of the magnetosphere in the frame of space weather forecasting, focusing on recent
results, current understanding, and an assessment of probable future developments.
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1 Magnetospheric Space Weather—Initial Considerations

It is well known that space weather pertains to the conditions in all regions of space that can
harm or disrupt human activity and technology both in space and on the ground (Hapgood
2011, 2012; Schrijver et al. 2015). Space weather is distinct from solar-terrestrial physics,
and heliophysics more generally, because of its strong emphasis on societal impact (National
Research Council 2008; Cannon et al. 2013). Since space weather is defined by its down-
stream effects, it is common practice to distinguish between three specific phenomena: radio
blackouts, solar radiation storms and geomagnetic storms, which are monitored by various
agencies at the national and international level.

In this article we aim to examine different aspects of the scientific foundations behind
forecasting magnetospheric space weather. Although in some sense each of the three phe-
nomena mentioned above can be considered ‘magnetospheric’ space weather (since they all
generate impacts that occur inside the magnetosphere) only geomagnetic storms arise as a
fundamental consequence of magnetospheric dynamics. Therefore here we will restrict the
discussion to geomagnetic activity (of which storms are a manifestation), the underpinning
science, and forecasting.

Before discussing the physics that controls magnetospheric activity, it is important to
establish why geomagnetic storms are of interest for space weather as this immediately pro-
vides further focus and defines the processes that are relevant for magnetospheric space
weather forecasting. It is well established that the primary channel by which space weather
can generate a major socio-economic impact is through prolonged loss of power over
an extended spatial area (Eastwood et al. 2017 and references therein). In the context of
geomagnetic storms, the direct risk is from Ground Induced Currents (GICs). Ionospheric
current systems, driven by magnetospheric activity, can cause rapidly varying magnetic
field signatures at the Earth’s surface; in turn these induce geo-electric fields, which then
drive GICs that affect power grids in different ways: damage to physical infrastructure;
the introduction of voltage instability which may trigger a blackout (without infrastruc-
ture damage); and interference with protection systems (Cannon et al. 2013). The most
notable historical event with documented impact is the March 1989 geomagnetic storm,
which is the largest of the space age but still less severe than the Carrington event,
widely considered a reasonable worse-case scenario (Bolduc 2002; Erinmez et al. 2002;
Cliver and Dietrich 2013).

Consequently, viewed through the lens of the socio-economic impact, forecasting mag-
netospheric space weather ultimately revolves around understanding the magnetospheric
physics that controls the formation of GICs. Accurate forecasting of this, and magneto-
spheric space weather more generally depends on several factors. We will examine three in
particular:

• The translation of L1 measurements to the nose of the magnetosphere—are the correct
boundary conditions being applied to the magnetosphere?

• The physics that controls the behaviour of the magnetosphere—what is the current under-
standing of key processes based on recent spacecraft observations?

• Appropriateness of modelling approaches—in particular the use of global MHD sim-
ulations to capture dynamics and processes that are relevant for magnetospheric space
weather forecasting.

In the final part of this review article we consider future developments, in light of present
understanding and modelling capabilities. But first, we review fundamental aspects of the
solar wind magnetosphere interaction, providing an overview of magnetospheric dynamics
and discussing the relevance of substorms and storms for space weather.
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Fig. 1 A schematic of plasma circulation in the Earth’s magnetosphere for southward IMF conditions. As
originally proposed by Dungey, magnetic reconnection at the dayside magnetopause and in the magnetotail
results in the concept of the open magnetosphere

2 The Solar Wind Magnetosphere Interaction

The dynamics of the Earth’s magnetosphere are controlled by the solar wind Interplanetary
Magnetic Field (IMF) (Dungey 1961). In particular, the stress applied by the solar wind
on the Earth’s magnetic field results in reconnection at the dayside magnetopause, creating
open magnetic flux that is carried by the solar wind toward the night-side. The accumu-
lated stress of the open magnetic field lines on the night-side leads to the formation of an
elongated region called the magnetotail (see Fig. 1). Reconnection takes place between the
oppositely directed magnetic fields at the center of the cross tail current sheet and the closed
magnetic flux of the plasma sheet is transported back again toward the dayside completing
the magnetospheric convection cycle. In this way, the global structures and long-time scale
(> hours) properties of the Earth’s magnetotail are controlled by magnetic flux transport as
a consequence of the solar wind-magnetosphere interaction. The reconnection region in the
magnetotail responsible for the magnetospheric convection is considered to be nominally
located at a distance of about 100 to 200 Re downtail and is called the distant neutral line
(e.g., Walker et al. 1999).

Whilst the original Dungey (1961) picture captures the essence of magnetospheric be-
havior, and is well known, there are two key features fundamental to real magnetospheric
dynamics which it does not capture, and which are perhaps not as well known in the wider
space weather user community: the Expanding/Contracting Polar Cap paradigm and the
Near Earth Neutral Line model.

2.1 The Expanding/Contracting Polar Cap Paradigm

It should be emphasized that the rate of dayside and nightside reconnection are not in bal-
ance (Cowley and Lockwood 1992). This means that the amount of open flux in the mag-
netosphere (orange field lines in Fig. 1) varies with time (e.g., Milan 2015 and references
therein). This in particular means that energy can be stored in the magnetic field of the mag-
netotail, and subsequently released by magnetotail reconnection. The ionospheric polar cap
represents the region of magnetic field in the magnetosphere that is ‘open’, i.e. connected to
the Earth at only one end. Dayside reconnection will increase the size of the polar cap, as
it will reconnect solar wind plasma and magnetospheric field lines to form open field lines.
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Fig. 2 Example of how the size
of the auroral oval changes in
response to unbalanced dayside
and nightside reconnection. The
top two panels show the auroral
oval at the start and end of a
geomagnetic storm, as measured
using the Sym-H index in
panel (d). Panel (e) shows the
rate of solar wind magnetosphere
coupling. (Figure 2 from Milan
2009; Copyright 2009 by the
American Geophysical Union,
reproduced with permission.)

Nightside reconnection of open field lines in the northern and southern lobes will reduce
the size of the polar cap (see Fig. 2) (Milan 2009). Consequently, if the rate of reconnec-
tion at the dayside and in the magnetotail do not match, the polar cap will change in size,
and can expand or contract. Whilst the reality is more complex, with other modifying phe-
nomena at work, a very basic prediction is that the polar cap should grow in size before a
substorm onset, because energy is being deposited into the lobes by magnetopause recon-
nection, and it should reduce in size as a substorm occurs, because nightside reconnection
is returning closed flux to the inner magnetosphere. This overall picture is known as the ex-
panding/contracting polar cap paradigm. In summary, it may be interpreted as the extension
of the open magnetosphere model to time dependent behaviour where the reconnection rates
in the magnetotail and on the dayside do not match.

2.2 Formation of the Near-Earth Neutral Line (NENL)

It is now known that internal processes in the magnetotail lead to the formation of thin cur-
rent sheets also in the closed tail field regions closer to Earth. Consequently reconnection
may also take place closer to Earth (closer to 30 Re, down to about ∼ 12 Re) in a more ex-
plosive manner, resulting in the loss of the plasmasheet plasma tailward and drastic changes
in the magnetotail configuration (Hones 1977; Baker et al. 1996). The overall dynamics of
the magnetotail are quite well-defined in space and time, with the formation of a near-Earth
neutral line leading to plasmoid release downtail (Slavin et al. 1984). This is illustrated in
Fig. 3. A key feature of this process is that the inner edge of the magnetotail becomes more
dipolar relative to the originally stretched tail current sheet. It is also important to note that
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Fig. 3 Formation of the near Earth neutral line. This leads to the development of a plasmoid which is ejected
downtail

this picture represents a cut through the magnetotail. Whilst the X-line and plasmoid does
extend out of the page, it is limited in size (see, e.g., Eastwood and Kiehas 2015 and ref-
erences therein). Consequently the dipolar region is approximately confined to the central
region of the magnetotail, with consequences for magnetosphere-ionosphere coupling.

2.3 Magnetospheric Substorms and Storms

The elemental behaviour of the magnetosphere is the substorm (McPherron 1970; Rostoker
et al. 1980), which has both a magnetospheric and auroral manifestation. The basic nature
of substorms can be understood in terms of the overall Dungey model, modified by the
expanding/contracting polar cap model, and the near Earth neutral line model. Substorms
therefore involve both transient/localized signatures and also large-scale changes in the tail
current sheet configuration and energization of the plasma. The THEMIS mission in partic-
ular was designed to study the chain of events that lead up to the triggering of a substorm
(Angelopoulos et al. 2008) and more recent work on magnetospheric substorms and magne-
totail dynamics has been reviewed by Sergeev et al. (2012).

Magnetospheric substorms are relevant for magnetospheric space weather because the
reconfiguration of the magnetotail is associated with dynamic auroral emission—the auro-
ral substorm (Akasofu 1964). An auroral substorm has a well-defined behaviour in space
and time, which is directly associated with a reconfiguration of currents coupling the mag-
netosphere to the ionosphere, as well as the release of energy from the magnetotail, where it
is stored in the magnetotail lobes.

There are several current systems that connect the magnetosphere and ionosphere (e.g.
review by Milan et al. 2017). For example the region 1 field-aligned currents connect the
magnetopause to the polar ionosphere, and hence define the open/closed field line boundary
that is associated with the auroral oval (see Fig. 2). Region 2 field-aligned currents link the
inner magnetosphere and the ring current to the ionosphere at lower latitudes. Field aligned
currents are closed in the ionosphere by Pedersen currents in the auroral regions. During
substorms, the magnetic field in the magnetotail near the Earth becomes more dipolar. This
reduces the cross-tail current in a region transverse to the Sun-Earth line associated with
the dipolarization. To ensure current closure, a so-called substorm current wedge is formed,
whereby field aligned currents arise that connect the magnetotail with the ionosphere. This
occurs in the expansion phase of the substorm. In the ionosphere a corresponding substorm
electrojet forms.
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The strength of these current systems is often characterised using ground magnetic field
measurements. For example, the AE index is commonly used to monitor substorm occur-
rence and strength. However, fixed measurement points on the ground cannot completely
capture the properties of a dynamic auroral oval. The dynamics of these various currents
systems that connect the ionosphere to the magnetosphere can now also be monitored by
satellites and the associated deflection of the magnetic field. The Active Magnetosphere and
Planetary Electrodynamics Response Experiment (AMPERE) used the engineering magne-
tometers from the Iridium satellite constellation to monitor on a global level the region 1
and region 2 Birkeland current pattern and its variability during substorms (Anderson et
al. 2000, 2002; Clausen et al. 2013).

Geomagnetic storms arise when conditions conducive to dayside reconnection persist for
long periods, leading to enhanced magnetospheric circulation, injection of energetic parti-
cles into the inner magnetosphere, and enhancements of both radiation belt fluxes and the
ring current (Gonzalez et al. 1994). Coronal Mass Ejections and Corotating Interaction Re-
gions are the two drivers of geomagnetic storm activity (Gosling et al. 1991; Richardson et
al. 2001, 2006). To understand the severity and determine the occurrence rate of geomag-
netic storms, different indices are used. Space weather forecast providers often characterise
storm severity according to the Kp index (Kpmax = 9), which is designed to capture the
severity of the global perturbation to the quiet magnetic field on the surface of the Earth
(time resolution of 3 hours). Whilst the Kp index already rather coarse (not least in its mea-
sure of severity and its time resolution), for space weather end-users it is then translated into
a five-step scale of severity from G1 to G5. The physical measure of a G5 event would be a
Kp index of 9 and it is expected that there would be on average 4 such storm days per solar
cycle.

On the other hand, in the scientific literature the Dst index is commonly used to measure
the strength of geomagnetic storms, and is used to construct statistics about the severity of
geomagnetic storms. Dst, which captures the strength of the ring current via its perturbation
to the equatorial magnetic field on the surface of the Earth, provides information about
the occurrence of geomagnetic storms on a global level, and therefore its statistics are a
necessary part of understanding geomagnetic storm likelihood. The Dst index is usually
near 0, but during a storm it becomes negative. Dst = −30 to − 50 is a weak storm, Dst =
−50 to −100 is moderate and Dst < −100 is considered intense (Gonzalez et al. 1994;
Vasyliūnas 2011).

2.4 Relevance of Substorms and Storms for Magnetospheric Space Weather

As mentioned above in Sect. 2, it is the formation of GICs that are of primary concern
for magnetospheric space weather. Geomagnetic storms are usually understood as the pri-
mary phenomenon that is considered relevant in this regard; hence the classification of space
weather events used by NOAA and UKMO shown in Sect. 1. Much effort has been engaged
in understanding the likelihood of a Carrington-class event based on geomagnetic storm
indices (e.g., Love 2012; Riley 2012).

However, since geomagnetic indices reduce magnetospheric dynamics to a single num-
ber, although they may document occurrence, it is not clear that they adequately capture
the likely impact (Hapgood 2011). In particular, based on even a crude understanding of
the magnetospheric system, one can immediately deduce that GIC production is likely to be
highly inhomogenous in both space and time, but organised to some extent by the location
of the auroral oval and the substorm current wedge. In fact intense GIC events occur on
regional scales, as shown by the analysis of geoelectric fields for 1 in 100 year scale events
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(Pulkkinen et al. 2015). Dst (and by extension Kp) must be used with caution (Kamide
2006) as unexceptional storms can nevertheless have notable impact, for example the storm
of 4–5 August 1972 which had a Dst of −125 nT (Lanzerotti 1992). Furthermore, since it
is an hourly index, Dst naturally smooths over many important details and arguably may
hide both problems and physics that must be addressed to improve characterisation of space
weather impacts.

It is increasingly recognised in the space weather community that current levels of mag-
netospheric space weather monitoring and warning, based on the global Kp index, are not
fit for purpose, and better measures that more accurately define the threat to the power grid
and other similar systems must provide localised, regional information. Therefore there is
considerable current effort in developing forecasts that are capable of doing this (Pulkki-
nen et al. 2013). In particular, better physical understanding of the variation and severity
of parameters such as the AE index, dB/dt and the geoelectric field is required to fully
understand space weather impact statistics.

This leads to a new perspective whereby in fact intense substorms provide the major
space weather risk to power distribution networks, and whilst these may be associated with
geomagnetic storms, they may also arise individually. Consequently, forecasting effort is
also increasingly focused on improving the predictability of intense substorms at geomag-
netic latitudes where power distribution systems are located. Since the precise relationship
between geomagnetic storms and substorms is complex and still not well understood, this
represents a current challenge to scientific understanding of magnetospheric space weather.

In this article we focus on the following 3 areas where better knowledge of the physical
processes at work is key to improving magnetospheric space weather forecasting

• Transition from L1 to the magnetopause and the magnetosheath—i.e. the way in which
the solar wind may evolve from L1 to the bow shock, and the way in which it is processed
in the magnetosheath. Current knowledge and recent results are discussed in Sect. 3.

• Solar wind magnetosphere coupling—what is the physics that controls how solar wind
plasma, momentum and energy all enter the magnetosphere? Where does this occur and
on what timescale? This is examined in more detail in Sect. 4.1.

• Magnetotail energy release—formation of bursty bulk flows in the near Earth magnetotail
that is associated with particle injection and auroral activity. Considerable progress has
been made with spacecraft missions such as THEMIS and Cluster, discussed in Sect. 4.2.

All of these have an impact on the development of magnetospheric modelling and fore-
casting. This is examined further in Sect. 5.

3 Input to the Magnetosphere: Solar Wind Driving and the
Magnetosheath

3.1 Measuring the Inflowing Solar Wind

The best location to measure the inflowing solar wind for operational magnetospheric space
weather purposes is the L1 Sun-Earth Lagrange point. Historically, operational data has
been provided by ACE (Stone et al. 1998) and is now provided by DSCOVR. A potential
challenge associated with the measurement is that spacecraft in fact orbit around the L1
point, and so do not lie exactly on the Sun-Earth line. This may mean that simple models
that convect the solar wind from the upstream measurement point to Earth may be incorrect
because solar wind phase fronts are unlikely to be perpendicular to the flow (Collier et al.
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1998). Algorithms have been developed to account for this (e.g., Weimer and King 2008
and references therein) but different techniques can differ considerably in their prediction of
transit time (Case and Wild 2012). A more accurate assessment of the solar wind conditions
just upstream of the Earth is also made difficult by the fact that there can be variability in the
solar wind perpendicular to the flow direction, that on large scales phase fronts are not planar
and moreover that the solar wind evolves between L1 and the Earth (Kessel et al. 1999;
Lepping et al. 2003; Tsurutani et al. 2005). Nevertheless, recent analysis shows that for
operational modelling of the propagation delays from L1 to the Earth, interestingly there
is no significant difference between the assumption of perpendicular and tilted solar wind
phase fronts (Cash et al. 2016).

Before the solar wind actually reaches the magnetosphere, it first crosses the bow
shock, which slows down the incoming supermagnetosonic flow to submagnetosonic speeds.
Downstream of the bow shock, the magnetosheath plasma is denser, hotter, more turbulent,
and exhibits stronger magnetic fields. The presence of the magnetosheath influences solar
wind-magnetosphere coupling, since it is the magnetosheath plasma that interacts with the
magnetosphere at the magnetopause.

3.2 Influence of the Magnetosheath

Firstly, it should be noted that the conditions observed in the solar wind are not necessarily
representative of those encountered just upstream of the magnetopause. This may lead to
an incorrect prediction of their impact on the magnetosphere. The IMF orientation can be
significantly modified inside the magnetosheath (Coleman 2005; Longmore et al. 2006; Turc
et al. 2014b). In particular, it has been shown that the magnetic field Bz component can
have opposite signs upstream and downstream of the bow shock (Šafránková et al. 2009;
Turc et al. 2017). This is exemplified in Fig. 4, which shows the Bz along the magnetopause
for an IMF with a northward Bz, obtained from a magnetosheath model (Turc et al. 2014a).
As evidenced by the blue areas, Bz turns south in some parts of the magnetosheath. This can
in turn influence where reconnection occurs. The modification of the solar wind properties
across the bow shock may also explain the saturation of the polar cap potential during strong
magnetospheric driving. The polar cap potential is related to the solar wind electric field (and
therefore Poynting flux) and is the potential difference across the open field line region in
the ionosphere. Observationally, the polar cap potential is proportional to the solar wind
electric field up to a certain limit where it then saturates, no longer responding linearly (e.g.,
Pulkkinen et al. 2016). Pulkkinen et al. (2016) show that in fact the ionospheric response
correlates linearly with the Poynting flux normal to the magnetopause, whereas it saturates
when compared to the solar wind Poynting flux. This suggests that the saturation is related
to the processing of the solar wind through the bow shock and magnetosheath, and supports
the fact that the conditions just upstream of the magnetopause are a better proxy of the
magnetospheric driving.

It is also worth noting that the magnetosheath properties vary spatially. Many studies have
shown evidence of pronounced dawn-dusk asymmetries in the magnetosheath parameters,
such as the magnetic field strength and plasma velocity, the ion density and temperature
(Dimmock and Nykyri 2013; Dimmock et al. 2015, 2016; Paularena et al. 2001; Longmore
et al. 2005; Walsh et al. 2012). These asymmetries are due for the most part to the conditions
encountered at the bow shock, and in particular to the angle ΘBn between the IMF and
the normal to the shock’s surface, which is defined locally. This implies that the dawn-
dusk asymmetries are associated with the Parker-spiral IMF, but that other IMF orientations
would result in a different distribution of the magnetosheath parameters. In addition to the
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Fig. 4 Magnetic field Bz
component along the
magnetopause for a weakly
northward IMF (Turc et al.
2014a) semi-analytical
magnetosheath model based on
ideal MHD

bow shock processes, the draping of the field lines along the magnetosphere also contributes
to modifying spatially the magnetic field direction inside the magnetosheath. The spatial
variation of the magnetosheath properties can affect the onset of magnetic reconnection and
the development of the Kelvin-Helmholtz instability (e.g., Borovsky et al. 2008; Nykyri
2013).

Additionally, the bow shock and magnetosheath properties can be significantly modified
during low Alfvén Mach number conditions, which are often associated with ICMEs and
magnetic clouds. This may alter the solar wind-magnetosphere coupling during extreme
space weather events (Lopez et al. 2004, 2011; Lavraud et al. 2007; Lavraud and Borovsky
2008; Farrugia et al. 2013; Turc et al. 2016).

4 Magnetospheric Dynamics: Recent Observations and Current
Understanding

4.1 Solar Wind Coupling at the Magnetopause

At the magnetopause, the fundamental challenge for magnetospheric space weather fore-
casting is to understand when and where reconnection will occur, the physics by which
reconnection occurs (so that it may be modelled accurately), and its temporal variability.
It is also important to recognise other mechanisms transporting plasma across the magne-
topause, specifically the Kelvin Helmholtz instability which may be important when the
effects of magnetic reconnection are absent or reduced, for example during northward
IMF conditions. We note that there are many recent reviews of both magnetic reconnec-
tion in space (e.g., Fuselier and Lewis 2011; Hesse et al. 2011; Eastwood et al. 2013;
Paschmann et al. 2013) and the physics of the magnetopause (e.g., Lavraud et al. 2011;
Hasegawa 2012; Eastwood et al. 2015b). Here we focus on aspects that are of importance
for understanding magnetospheric space weather.

4.1.1 Where and When Will Reconnection Occur?

The concept of the open magnetosphere was cemented by the discovery of reconnection jets
at the magnetopause by ISEE (Paschmann et al. 1979). Subsequent satellite measurements
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provided considerable experimental data, including measurements of oppositely directed
exhausts either side of the X-line and extension of the X-line across a substantial fraction of
the dayside magnetopause, i.e. the X-line extends out of the plane of Fig. 1 (Phan et al. 2000;
Baker et al. 2002; Fuselier et al. 2002; Dunlop et al. 2011a, 2011b).

The extent of reconnection on the magnetopause fundamentally controls the coupling
between the solar wind and the magnetosphere (Cowley and Owen 1989). Observations
would appear to show that ‘component’ reconnection (i.e. reconnection where the mag-
netic shear across the magnetopause is less than 180°) prevails (Retinò et al. 2005;
Trenchi et al. 2008; Dunlop et al. 2011a, 2011b). In component reconnection the magnetic
field is decomposed into a guide field component and a reconnecting component. Models
of X-line location which follow the location of maximum rotation in the field across the
boundary match observations (Trattner et al. 2007a, 2007b, 2012). It should be noted that
the modelling is made more complex by the fact that the local geometry varies with position
on the curved magnetopause surface.

A further complicating factor is the asymmetry of the magnetopause: the different con-
ditions on either side of the current sheet, in particular density, field strength and temper-
ature (e.g., review by Eastwood et al. 2013 and references therein). An important result
is the prediction that the X-line and the stagnation point are separated if the reconnec-
tion is asymmetric (Cassak and Shay 2007). In combination with the guide field and flow
shear this could alter when and where reconnection is likely to occur (Tanaka et al. 2010).
The ‘beta-shear’ condition says that reconnection is suppressed for an increasingly wide
range of magnetic shear angles as the change in plasma beta (�β) increases (Swisdak et al.
2003, 2010), following earlier suggestions that magnetosheath plasma beta was a control-
ling factor (Paschmann et al. 1986). In particular, reconnection is predicted to be suppressed
if �β is too large according to the following formula

�β > 2

(
L

λi

)
tan

(
θ

2

)

Where L can be considered as the width of the magnetopause, λi is the ion inertial
length and θ is the rotation of the magnetic field across the magnetopause. A small value
of θ is equivalent to the statement that the guide field is large. This means that if �β is
large (i.e. if the magnetosheath plasma beta is high, since the magnetospheric plasma beta is
typically low), then reconnection will not occur if the guide field is too large. This relatively
simple relationship may therefore be important in producing more refined analytic/empirical
models of solar wind magnetosphere coupling, or could be introduced as a heuristic rule into
models. This effect has been tested in the solar wind and at the magnetopause, and appears
to be a good measure of reconnection occurrence (Phan et al. 2010, 2013). Figure 5a shows
49 magnetopause crossings where magnetic reconnection was observed. The majority of the
data points are above the line which is the region where reconnection is not suppressed. In
contrast, Fig. 5c shows 24 magnetopause crossings where no reconnection was observed.
In these cases, the data points are predominantly below the line. Figures 5b and 5d show
similar data but for events restricted in magnetic local time near the subsolar point, where
the division in behaviour is even more apparent.

Finally a new area of work is the impact of magnetospheric plasma on reconnection at
the magnetopause. In particular, plasmaspheric drainage plumes (caused by enhanced con-
vection electric fields eroding the plasmasphere) can extend to the dayside magnetopause,
where they influence reconnection and may reduce the reconnection rate (Borovsky et al.
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Fig. 5 (Adapted from Phan et al. 2013, Fig. 2; Copyright 2012 by the American Geophysical Union, re-
produced with permission.) Results of a statistical survey of reconnection (left) and nonreconnection (right)
events. (a, c) Scatter plot of magnetic shear versus �β across the magnetopause for all magnetic local time
(MLT); (b, d) magnetic shear versus �β in the vicinity of the subsolar region (10 < MLT < 14)

2013; Walsh et al. 2014). This suggests that it is important to account for these cold popu-
lations in modelling the solar wind magnetosphere coupling at the magnetopause for space
weather forecasting purposes.

4.1.2 Physics of Reconnection and the Diffusion Region

Whilst magnetic reconnection has large-scale magnetospheric consequences, reconnection
itself occurs within the small-scale diffusion region where the plasma decouples from the
magnetic field and the frozen in field theorem no longer applies. In fact, the diffusion region
is structured: because of their larger mass, the volume over which the ions are not frozen
in (the ion diffusion region), is much larger than the electron diffusion region (EDR) where
the electrons decouple and reconnection actually occurs. The length scales for these regions
is roughly comparable to the relevant particle’s gyroradius (or more precisely the inertial
length) (Vasyliunas 1975). At the magnetopause the EDR region is only a few kilometres in
size.

The physics of the diffusion region has been the subject of much recent investigation to
understand precisely how the plasma and the magnetic field decouples. A key signature of
the ion diffusion region which has received considerable attention is the formation of Hall
magnetic fields due to the different motion of the ions and electrons (see e.g. recent reviews
by Fuselier and Lewis 2011; Paschmann et al. 2013; Goldman et al. 2016). The structure
and properties of the ion diffusion region has been resolved by spacecraft missions such as
Cluster, Geotail and THEMIS which typically measure the plasma on timescales of a few
seconds.

More recent observations from the Magnetospheric Multiscale mission (MMS) have fo-
cussed on the electron diffusion region (EDR). MMS is a four spacecraft mission (Burch
et al. 2016a) and each spacecraft carries an identical payload of instruments to measure the
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electric and magnetic fields, the plasma population and composition, and energetic particles.
In particular, the MMS fast particle instrument (FPI) can measure the electron and ion all
sky distribution function at 30 ms and 150 ms resolution respectively (Pollock et al. 2016),
meaning that it is able to probe in detail electron physics and the properties of the EDR.
The first major success of the MMS mission has been to record multiple encounters with the
EDR, and measure the properties of the electrons there. Prior to the launch of MMS it was
suggested that crescent-shaped features should be expected to occur in the plane perpen-
dicular to the magnetic field and MMS has shown that electron orbits in the vicinity of the
EDR are coherent, being observed in multiple events (Hesse et al. 2014; Burch et al. 2016b;
Burch and Phan 2016 and references therein). This new knowledge about diffusion region
physics can help guide the development of new models and theory that accurately captures
reconnection physics in the magnetospheric context.

4.1.3 Temporal Variability of Reconnection and Transient Behaviour

Whilst overall magnetic reconnection can be steady at the magnetopause, temporal vari-
ations are often observed. In particular, flux transfer events are bipolar signatures in the
component of the magnetic field along the magnetopause normal (Russell and Elphic 1978).
They are associated with reconnection, which produces the normal magnetic field compo-
nent and various different models have been proposed to explain their production, including
patchy reconnection, multiple X-line reconnection and time-variable reconnection (Russell
and Elphic 1978; Lee and Fu 1985; Scholer 1988; Southwood et al. 1988). Of these var-
ious production methods, multiple X-line reconnection has received recent attention, be-
ing observed in simulations and spacecraft data (Raeder 2006; Omidi and Sibeck 2007;
Hasegawa et al. 2010; Oieroset et al. 2014; Pfau-Kempf et al. 2016).

Flux transfer events are therefore important in the context of magnetospheric space
weather because they contribute to the transfer of solar wind plasma and energy into the
magnetosphere. A key question in this regard is their magnetic topology. If they are con-
nected to the magnetosphere at only one end, then they will indeed transport flux into the
magnetotail. However, they may be connected to the magnetosphere at one end, both ends,
or neither end. Consequently, flux rope topology is crucial to investigate, and evidence sug-
gests that this may be highly complex (Pu et al. 2013). An alternative approach is to use
multi-spacecraft observations of FTE geometry to constrain their shape, size and therefore
formation mechanism (Fear et al. 2008, 2012). Together with analysis of FTE transport
along the tail magnetopause (Eastwood et al. 2012), this may elucidate how FTEs contribute
to flux transport and whether they possibly modulate the rate at which the magnetosphere
reaches substorm onset conditions.

4.1.4 Other Plasma Transport Mechanisms: The Kelvin-Helmholtz Instability

It is important to recognise that other mechanisms contribute to the transport of plasma into
the magnetosphere, in particular the Kelvin-Helmholtz instability. It arises in association
with the large velocity shear on the flank magnetopause and causes magnetopause surface
waves to steepen into vortices and break (Hasegawa et al. 2004). It will occur most easily
if the field is perpendicular to the flow, and is therefore important for northward IMF con-
ditions, although it has been observed for southward IMF as well (Hwang et al. 2011). In
the nonlinear stage microscale instabilities or reconnection can occur, enabling plasma to be
transported across the boundary; this is now being resolved by MMS (Eriksson et al. 2016;
Stawarz et al. 2016). Ultimately, the KHI is important for space weather because it allows
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solar wind plasma to enter on the flanks during northward IMF and in fact mass transport
across the magnetopause appears to be enhanced for northward IMF (Palmroth et al. 2006).
Better quantification of the plasma transport rate from new measurements and simulations
will improve knowledge of cold dense plasma sheet formation and magnetospheric ‘pre-
conditioning’ prior to intervals of southward IMF driving geomagnetic activity.

4.2 Magnetotail Dynamics

Magnetic flux transport in the near Earth tail region is dominated by high-speed plasma
flows called Bursty Bulk Flows (BBFs), which are considered to be the outflow of the
near-Earth reconnection. Associated electromagnetic field disturbances transport energy
closer in towards the Earth’s inner magnetosphere, are responsible for energetic particle
injection and also for enhanced auroral precipitation. These energetic particle signatures
of intense substorms are identified as important space weather phenomena that lead to
spacecraft anomalies such as surface charging and deep dielectric charging (Bodeau 2015;
Loto’aniu et al. 2015).

Ongoing multi-point spacecraft measurements have significantly contributed to enhanc-
ing our understanding in this area from the ability to determine spatial gradients and tem-
poral evolution to the non-adiabatic/adiabatic acceleration processes of the particles related
to the transient electric fields. For example, observations by THEMIS and Cluster have
enabled advances in our understanding of substorm dynamics and current sheet dynam-
ics relevant to near-Earth magnetotail reconnection (e.g. reviews by Sergeev et al. 2012;
Petrukovich et al. 2016). The newly launched MMS spacecraft have started to/will resolve
the physical properties of near-Earth magnetotail reconnection and associated disturbances
down to electron scales. Whilst there are a number of important physical processes occur-
ring in the magnetotail (reconnection itself, current sheet instabilities, waves, turbulence,
etc.) in the following section we highlight the interaction between the reconnection jet and
the Earth’s dipole region, as this leads to two tail phenomena that are key for magnetospheric
space weather: energetic particle injection and auroral precipitation.

4.2.1 Reconnection Jets, Bursty Bulk Flows, Dipolarization Fronts and Dipolarization
Flux Bundles

In recent years, a plethora of different terms have arisen to identify different features of
magnetotail dynamics. Here we provide a brief summary:

• As mentioned above, Bursty Bulk Flows (BBFs) are high speed flows in the plasma
sheet. Although their occurrence rate is low, BBFs contribute a significant part of the
total magnetic flux transport in the near-Earth magnetotail (Angelopoulos et al. 1999;
Schödel et al. 2001). BBFs have 10-min time scales, with embedded velocity peaks of
1-min duration, which are called flow bursts (Baumjohann et al. 1989; Angelopoulos
et al. 1992). They are localized in the dawn-dusk direction with scales of about 1–5 RE
(Sergeev et al. 1996; Angelopoulos et al. 1997; Nakamura et al. 2001, 2004).

• The Dipolarization Front (DF) is a thin (ion scale, about 800–2000 km) boundary of-
ten observed on the leading edge of a BBF where the Bz component sharply increases
(Nakamura et al. 2002).

• The Dipolarization Flux Bundle (DFB) (Liu et al. 2013) corresponds to the entire Bz
enhancement following the DF.
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The most popular model describing flow burst/BBFs and their connection to the iono-
sphere is the plasma bubble model, where flow burst is a plasma-depleted and dipolarized
magnetic flux tube (Pontius and Wolf 1990). Multipoint spacecraft measurements have ob-
served the Earthward propagation of the DF from the midtail to the near-Earth region (Runov
et al. 2011). As it propagates Earthward flux piles up and tailward pressure gradient force
develops that leads to braking of the flows in the near-Earth dipolar region (Panov et al.
2010). In the flow braking region both the Earthward propagating dipolarization front and
subsequent tailward progressing dipolarization can be detected (Nakamura et al. 2009). The
plasma bubble model predicts that the bubble penetrates Earthward until the flux tube plasma
content matches with that of the ambient dipolar magnetic field, a prediction observationally
confirmed by statistical study (Dubyagin et al. 2011). Tailward flow bouncing and oscilla-
tory signatures were also reported in this region indicating that the flow braking is a dynamic
process (Panov et al. 2013a, 2013b).

The combined Flow bursts/DF/DFB entity can be regarded as a region of enhanced elec-
tric field so that different ions and electrons in the plasma sheet, depending on their pitch an-
gle and energy can enter this region (or, alternatively, enter as the dipolarization front passes
the ambient plasma region) for a limited time in a localized region of space as the front prop-
agates Earthward, and are accelerated accordingly. Such a concept of an Earthward propa-
gating electric field pulse has been considered as a source mechanism of injection (Quinn
and Southwood 1982; Li et al. 1993). Recent multi-point spacecraft observations have al-
lowed the physical processes around the boundary to be revealed in a more quantitative
way. Since the dipolarization front thickness is usually ion-scales (typically less than 5 ion
inertial lengths or 3 ion gyroradii) or even smaller, the Hall-electric field and the electron-
pressure gradient play a role in forming the front structure and 1-2 electron inertial length
structure dominates the dissipation at the front (Fu et al. 2012; Angelopoulos et al. 2013;
Balikhin et al. 2014).

Not all, but a large fraction of the fronts were shown to be tangential discontinuities
meaning that at least for those boundaries the dipolarization front is simply a thin boundary
dividing two different plasma regions (tenuous, hot BBF plasma and denser, colder ambient
plasma) without net bulk flow across the boundary (Schmid et al. 2011). Particles that are
trapped in the collapsing field line of BBF/DFB can gain energy from Fermi/betatron accel-
eration as was simulated and observed behind the dipolarization front (Ashour-Abdalla et al.
2011; Fu et al. 2012; Birn et al. 2013). On the other hand, other cases of dipolarization fronts
were reported in which ambient ions are passing the front layer, accelerated by the electric
field at the dipolarization front and then reflected back ahead of the front (Zhou et al. 2014;
Eastwood et al. 2015a). While the occurrence of rapid flux transport rate observations signif-
icantly drops between 10 to 15 Re (Schödel et al. 2001), the dipolarization front grows (Bz
amplitude increases) closer in to the Earth, and a large dawn-to-dusk electric field in the flow
braking region is both predicted from simulations and reported from observational studies
(Birn et al. 2011; Liu et al. 2014; Schmid et al. 2016). Energetic particle injections accompa-
nied by DFBs that were found from the midtail reconnection region (30 Re) to inside geosyn-
chronous orbit also suggest the importance of the transient/localized electric field enhance-
ments of BBF and flow braking for the particle acceleration process (Gabrielse et al. 2014;
Liu et al. 2016).

Note that the total energy gained from this process is, however, limited by the strength of
the dawn-to-dusk (induced) electric field and the width of the dipolarization front. For a typ-
ically localized dipolarization front case, the above mechanisms explain acceleration of few
keV to hundreds of keV for electrons, and a few tens of keV to hundreds of keV for protons
(Birn et al. 2013). These particles are considered as the seed population of the radiation belt
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particles that are subsequently further accelerated by different mechanisms such as by waves
in the inner magnetosphere. Recent observation of a global injection front accompanied by
MeV particles detected inside 4 Re during storm time conditions (Dai et al. 2015), indicates
that the maximum energy may be enhanced during those active events. Such observations
suggest that for an intense substorm case, DF/DFB/BBF related acceleration may also con-
tribute significantly to particle acceleration in the inner magnetosphere/radiation belt.

4.2.2 BBF Size and Magnetotail Flux Transport

From considerations of global flux balance (lobe flux reduction and associated closed flux
transport), it is required that BBF should have an effective dawn-dusk size of about 10 RE
(Angelopoulos et al. 2013). This is larger than is typically observed. Large-scale size in the
azimuthal direction is also expected from the size of the substorm current wedge. Further-
more, a typical time-scale for the substorm expansion phase is about 30 minutes, which is
again longer than that of typical DFBs. How then do BBF/DF/DFB/flow bursts, that are
shown to be transient in time and localized in size in a number of statistical studies, con-
tribute to the larger scale evolution of the magnetosphere during substorms? One explanation
is that large-scale substorm effects are the integrated effects of multiple BBFs that take place
in space and time. Multiple flow bursts and associated auroral precipitation (so called auro-
ral streamers, e.g., Kauristie et al. 2003) have been considered as supporting evidence for
this. (Temporal and spatial relationships between these BBF-associated field-aligned cur-
rents and the substorm current wedge are further discussed by Kepko et al. 2015.) Although
only for a limited number of cases, multipoint studies have shown evidence for a dipolar-
ization front extended to 10 RE-scale during an intense substorm in the flow braking region
and during storm time intense substorm in the inner magnetosphere (Nakamura et al. 2013;
Dai et al. 2015). The longer time-scale of the substorm current wedge or auroral electroject
as compared to BBFs/DFBs, on the other hand, could also be due to the accumulated ef-
fects of the flow bursts that modify the pressure distribution in the inner magnetosphere and
thereby sustain the substorm current wedge (Kepko et al. 2015). In such cases the substorm
time-scale would correspond to the time-scale of the pressure redistribution process that is
expected to be longer than the BBF time scale.

4.2.3 The Effects of Preconditioning on Magnetotail Dynamics

Magnetotail disturbances are modified by both the preconditioning of the magnetotail and
the solar wind driver. In this section we briefly overview the characteristics of the magneto-
tail for different density/temperature conditions and two different magnetospheric states:
steady magnetospheric convection (SMC), and geomagnetic storms. Not only the back-
ground magnetic field configuration, such as the location of the thin current sheet, but
also the plasma properties, such as plasma density and temperatures, are important fac-
tors for determining the magnetotail disturbance as well as the magnetosphere-ionosphere
coupling. Sergeev et al. (2014) showed that the solar wind electric field is associated with
a larger auroral electrojet when the plasma sheet is hotter and has lower density than
for the colder and denser plasma sheet. This difference could be due to stronger field-
aligned acceleration of precipitating electrons for higher temperature and lower density
as expected from Knight’s relationship (Knight 1973). The hot, low density plasma sheet
is expected to be produced by the lobe plasma entering and heating by reconnection. On
the other hand, the source of the cold and dense plasma sheet is thought to be the solar
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wind/magnetosheath plasma entering from the flank, as discussed in Sect. 4.1.4. The pro-
cesses responsible for the entry are diffusion at the low latitude boundary layer, mixing of
plasma due to Kelvin-Helmholtz instabilities and associated reconnection, and poleward-of-
cusp reconnection during northward IMF Bz (Song and Russell 1992; Terasawa et al. 1997;
Hasegawa et al. 2004). It is important to note that although the response time of the recon-
nection process is less than 1 hour, the mixing process of cold-dense plasma sheet from the
flank can take longer (> 3 hours).

Although minor in the number density, the effect of ionospheric heavy ion outflow can
further contribute to changes in the time scale (slowing) and changes in the spatial scale
of the current sheet due to larger inertial scales (see Kronberg et al. 2014 for more detail
regarding the effects of heavy ions on magnetospheric processes). Hence, for understanding
the solar wind-magnetosphere-ionosphere coupling, the background plasma conditions of
the magnetosphere, produced by the different mechanisms of solar wind-magnetosphere
interaction, as well as the ionosphere need to be taken into account. In particular, since the
response time scales of these different processes to the solar wind drivers are different, that
places significant constraints in predicting the magnetospheric response based on modeling.

The general effect of larger dawn-to-dusk solar wind electric field, created by southward
IMF, is to move the near-Earth reconnection region closer to the Earth (Nagai et al. 2005).
However, the response of the magnetotail to southward IMF conditions also depends on the
nature of the preconditioning and the mode of magnetosphere-ionosphere coupling can dif-
fer from the simple substorm cycle discussed before, such as during steady magnetospheric
convection (SMC). During SMC the enhanced, stable convection, persists longer than a
typical recovery phase, with no substorm expansions (Pytte et al. 1978). The average total
pressure in the inner magnetosphere is higher during SMC events than for other types of ac-
tivity (Kissinger et al. 2012). This higher pressure region extends to larger radial distances,
and causes fast Earthward flows to divert toward the dawn or dusk flanks and continue to
the dayside leaving the inner magnetosphere relatively quiet.

This pattern of flux transport is in contrast to substorms, during which flows are directed
toward the inner magnetosphere. The most extreme case of southward IMF Bz is the storm-
time substorm, when significant loading of the magnetotail leads to: the reconnection site
moving closer to Earth; enhanced ionospheric outflows causing a significant population of
oxygen in the tail current sheet configuration; and MeV injection fronts observed inside
5 Re (Baumjohann et al. 1996; Miyashita et al. 2005; Kistler et al. 2006; Dai et al. 2015;
Baker et al. 2016). The mode of the magnetotail disturbance, therefore, can be significantly
different depending on the different level of IMF southward and resultant preconditioning
of the magnetotail.

5 Modelling and Predicting Magnetospheric Space Weather

As discussed in the previous sections, the processes that cause adverse magnetospheric space
weather effects are largely a consequence of solar wind–magnetosphere coupling. Although
the processes at work encompass a wide range of spatial and temporal scales, significant
success in understanding magnetospheric physics has been received through the use of com-
puter simulations that employ magnetohydrodynamic-based codes. These simulations solve
the equations of MHD on a 3-dimensional grid that encompasses the whole magnetosphere.
This has the advantage of efficiently describing the large scale structure of the magneto-
sphere, the transport of plasma, and the coupling between different regions. Large scale
communication is accomplished via MHD waves—i.e. magnetosonic and Alfven waves.
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Fig. 6 Lyon-Fedder-Mobarry global magnetosphere model showing flux transfer events (FTEs) at the day-
side magnetopause, dipolarization fronts (DFs) and bursty bulk flows (BBFs) in the magnetotail, and Kelv-
in-Helmholtz instability (KHI) at the flank of the magnetosphere. Color contours show the dawn-to-dusk
current (Jy) in the noon-midnight (X–Z) plane and northward magnetic field (Bz) in the equatorial (X–Y)
plane (from Sitnov et al. 2016)

They also capture large scale current systems, however, we note that codes typically use
the ‘v B’ approach (as opposed to ‘E J’) (Vasyliunas 2005), and the current is derived from
the curl of the magnetic field. The size of the simulation domain is typically sufficient to
include the inflowing solar wind and the magnetotail, and the magnetosphere is modelled
as a whole, from the solar wind input at the sunward edge to an inner boundary (usually at
2 RE to 5 RE), and then to the magnetotail. So-called global MHD simulations (GMHD)
have been available for a number of years, and have become increasingly popular given the
recent increase in affordable computing power. An example of such a simulation is shown
in Fig. 6.

5.1 Global Modeling

GMHD codes used to simulate the Earth’s magnetosphere include: the Open Geospace Gen-
eral Circulation Model (OpenGGCM), the Block-Adaptive-Tree-Solarwind-Roe-Upwind-
Scheme (BATS-R-US), the Grand Unified Magnetosphere–Ionosphere Coupling Simula-
tion (GUMICS) and the Lyon-Fedder-Mobarry (LFM) model (Powell et al. 1999; Lyon
et al. 2004; Raeder et al. 2008; Janhunen et al. 2012). It is important to note that given
the complexity of the magnetosphere, these simulations in fact form one component of a
more complex modelling architecture. In all cases, the core GMHD code must be cou-
pled to a module capable of capturing the ionospheric (and thermospheric) dynamics via
field aligned currents. For example the Coupled-Magnetosphere Ionosphere Thermosphere
(CTIM) model, the Thermosphere-Ionosphere-Electrodynamic Global Circulation Model
(TIEGCM) and the Magnetosphere Ionosphere Coupler Solver (MIX) are used in con-
junction with LFM (Roble and Ridley 1994; Wang et al. 2004; Wiltberger et al. 2004;
Merkin and Lyon 2010). OpenGGCM is also used with CTIM. BATS-R-US is used with
the Rice Convection Model and the Ridley Ionosphere Model as part of the Space Weather



1238 J.P. Eastwood et al.

Modeling Framework (SWMF), which brings together simulation models ultimately capa-
ble of capturing the whole chain of space weather physical processes between the Sun and
the Earth (Wolf et al. 1982; Toffoletto et al. 2003; Ridley et al. 2004; Toth et al. 2005, 2012).
Despite the growing complexity of these codes, it is of course acknowledged that they do not
contain all the relevant physics. In addition, capturing the onset of magnetotail reconnection
leading to a substorm may well depend on numerical resistivity, which arises from small
inconsistencies in the calculation due to rounding errors. Furthermore, instabilities will not
be correctly described at the most fundamental level. Although code-coupling attempts to
adequately describe the inner magnetosphere, radiation belts and ionospheric outflow, this
is not without its own difficulty or complexity, and this remains a current challenge (East-
wood et al. 2015b). Nevertheless, GMHD simulations are widely used since they can run in
real time with current computational resources, and they provide a route to a first-principle
physics-based model of substorms. It is also possible to derive magnetospheric diagnostics
relevant for space weather, such as: the size of the auroral oval and polar cap boundary;
the location and shape of the magnetopause; and upper atmospheric heating (by calculating
Joule heating) (Gordeev et al. 2015). Furthermore, they can in principle be used to pre-
dict the ground dB/dt which is crucial for space weather forecasting in the magnetosphere
(discussed in more detail below) (Pulkkinen et al. 2013).

The utility of these simulations is therefore multi-faceted. Firstly, they enable explo-
ration of the basic physics that controls magnetospheric dynamics; here we mention a few
illustrative examples: the analysis of Palmroth et al. (2006) using the GUMICS code eluci-
dated the fact that mass transport across the magnetopause may be enhanced for northward
IMF; investigating the magnetospheric drivers and energy input under different IMF condi-
tions (Raeder et al. 2001; Palmroth et al. 2003; Pulkkinen et al. 2007; Sergeev et al. 2008;
Yu and Ridley 2009); exploring the temperature asymmetry in the magnetosheath under dif-
ferent solar wind conditions (Dimmock et al. 2015); modelling the effects of shocks on the
magnetosphere (Andréeová et al. 2008; Oliveira and Raeder 2014); and performing large
scale statistical studies (Juusola et al. 2014; Facskó et al. 2016).

Secondly, they can be used to provide large scale context and interpretation of sparse
in situ spacecraft measurements (e.g., Raeder et al. 2008). This is a research approach that
has proved particularly fruitful, to the extent that the Community Coordinated Modeling
Center (CCMC) at NASA’s Goddard Space Flight Center now provides simulation runs on
demand to the general space physics community (MacNeice et al. 2012). The growth of
the CCMC in particular has stimulated the use of these codes as a general tool that can be
employed by scientists outside the core development team, rather like how spacecraft data
is now easily used by scientists who are not part of the instrument team. Specific examples
of this approach are numerous and we refer the reader to the CCMC website.1

5.2 Benchmarking and Forecast Accuracy

GMHD models are being transitioned into the operational domain for the purposes of space
weather modelling and forecasting (Pulkkinen et al. 2010). In doing this, it is necessary to
have confidence that the models and simulations are sufficiently accurate and this can be
achieved through the use of appropriate metrics (e.g., Lopez et al. 2007). A recent example
of this is the benchmarking performed by Gordeev et al. (2015). In this paper, several key
global variables were identified which as well as characterising the global magnetosphere,
are potentially relevant for space weather forecasting. The first set of metrics concern the

1https://ccmc.gsfc.nasa.gov/.

https://ccmc.gsfc.nasa.gov/
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Table 1 Summary of skill scores for four different GMHD models, adapted from Table 3 of Gordeev et al.
(2015; Copyright 2015 by the American Geophysical Union, reproduced with permission). The slope and CC
(correlation coefficient) refer to the gradient and uncertainty of the best fit line when a regression is performed
against the relevant empirical model. The PE (prediction efficiency) is a measure of the forecast skill. In all
cases, values equal to unity indicate accurate performance. Grey boxes highlight the best performing model
for each metric, according to the correlation coefficient

Parameter BATS-R-US GUMICS Open GGCM LFM

Slope CC PE Slope CC PE Slope CC PE Slope CC PE

Subsolar m’pause 1.01 0.95 +0.88 0.96 0.85 +0.31 0.90 0.77 −1.47 0.92 0.91 −0.43

Terminator m’pause 1.03 0.64 −0.02 0.97 0.93 +0.62 1.11 0.47 −3.20 1.00 0.44 −0.95

Tail Mpause 1.03 0.77 +0.22 0.93 0.80 −0.55 1.13 0.73 −3.19 0.99 0.73 −0.04

Tail B field 0.83 0.95 +0.49 0.75 0.94 +0.01 0.93 0.97 +0.86 0.78 0.86 +0.02

Field aligned currents 0.37 0.86 −0.44 0.05 0.48 −2.15 2.01 0.68 −5.15 0.98 0.93 +0.87

size of the magnetosphere, as defined by the distance to the subsolar magnetopause, and
the radius of the magnetosphere at the terminator and 15 RE downtail. The second set of
metrics is focussed on the magnetotail, its pressure balance and its magnetic flux content.
These are defined by the plasma sheet thermal pressure and the lobe magnetic field. The
remaining metrics are related to magnetospheric dynamics and substorms, and include the
polar cap potential drop (to capture the rate of global convection), the total field aligned
current, and more recently in Gordeev et al. (2017), the extent to which substorm loading
occurs. Each of these can be validated against an empirical model, such as the Shue et al.
(1998) magnetopause model in the case of the distance to the sub-solar magnetopause.

Gordeev et al. (2015) then defined a series of standard solar wind inputs, with densities,
temperatures and velocities consistent with the statistical properties of the solar wind. In this
study, 19 different synthetic solar wind profiles were identified, of 4 hour duration. The ini-
tial two hours contained northward IMF, which may then vary according to the specific run.
These input conditions were applied to four models running at the CCMC—OpenGGCM,
GUMICS, BATS-R-US and LFM. The output was analysed at 5 minute resolution, and var-
ious metrics such as the prediction efficiency were computed (Pulkkinen et al. 2011).

This analysis reveals that different models have different strengths and weaknesses. For
example, the BATS-R-US model is found to best agree with empirical models of the subsolar
magnetopause location, as shown in Fig. 7. On the other hand, the high-latitude tail mag-
netopause is best captured by GUMICS. The strength of the lobe field is most accurately
predicted by the OpenGGCM simulation, and the LFM model is best performing against the
field-aligned current metric. Table 1 below reproduces a summary of the results.

Gordeev et al. (2015, 2017) note that in fact all four models perform reasonably well
and capture at least in a qualitative sense the correct behaviour that is expected to be ob-
served for a given change in solar wind conditions. However, this analysis highlights the
fact that although simulations are, thanks to CCMC, now available ‘on demand’, their use
and interpretation requires care and expert insight into the nature of the code itself. Further-
more, it raises the potentially important point that the choice of model to be used for space
weather forecasting may depend on the purpose for which the forecast is required. For ex-
ample, the real-time modelling of the magnetopause location is important to predict whether
it moves within geostationary orbit. Spacecraft charging will be altered in the higher density
plasma of the magnetosheath and furthermore the magnetic field orientation will change,
which could affect older spacecraft that use the magnetic field as part of their Attitude and
Orientation Control System (AOCS).
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Fig. 7 (a–b) The performance of different GMHD models in identifying the location of the subsolar mag-
netopause, as benchmarked against the Shue et al. (1998) empirical magnetopause model. It is found that in
this test, the BATS-R-US code is best performing. (c–d) Comparable plots for the combined location of the
high-latitude terminator and tail magnetopause. Separate analysis of these two regions is shown in Table 1.
(Figure adapted from Gordeev et al. 2015; Copyright 2015 by the American Geophysical Union, reproduced
with permission.)

As explained above, the most important parameter for space weather modelling is dB/dt ,
the rate of change of the magnetic field on the ground. The ability of different magneto-
spheric models to predict this parameter has been specifically analysed by Pulkkinen et al.
(2013). They identified 6 baseline geomagnetic storm events including the 2003 Halloween
storms. For these events, the driving solar wind data from L1 was available, as were measure-
ments of dB/dt on the ground at 12 geomagnetic observatories. Three different global MHD
models were evaluated: LFM-MIX, OpenGGCM, and the SWMF and were also compared
with two empirical models. In each case, the L1 data were used to drive the simulations,
and the ground magnetic field perturbation was predicted at 6 of the magnetometer stations.
The simulations were all performed at CCMC. The simulation/modelling outputs were then
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Fig. 8 The probability of detection and probability of false detection of dB/dt is shown for different dB/dt

thresholds, at high- and mid-latitudes (adapted from Fig. 5 of Pulkkinen et al. 2013; Copyright 2013 by the
American Geophysical Union, reproduced with permission)

compared to the observed data using a series of different metrics. These were the proba-
bility of detection (POD), the probability of false detection (POFD) and the Heidke Skill
Score (HSS; 1 ≥ HSS > −∞). If HSS = 0 then the prediction is as good as random, and if
HSS = 1 then the prediction is perfect (Lopez et al. 2007). A score of 0.5 therefore indicates
a 50% chance of event detection. Example results are shown in Fig. 8 which shows the POD
and POFD of dB/dt by different models and simulations. The data is split according to the
location of the measurement on the ground (high- and mid-latitude) and the strength of the
dB/dt signal (0.3, 0.7, 1.1 and 1.5 nT/s). It can be seen that in general the SWMF is on av-
erage the best performing according to this metric. However, it was found that the POD and
HSS was less than 0.5 for a dB/dt threshold of 1.5 nT/s. Nevertheless, it was concluded
by Pulkkinen et al. (2013) that “users satisfied with more rough characterisation of dB/dt

activation over the storm periods may be able to use the models for generating actionable
information.”

6 Future Developments

6.1 Future Developments: Spacecraft Measurement

Spacecraft measurements for magnetospheric space weather forecasting can be divided into
two types. On the one hand, data is required to advance understanding of the underlying
physics. In this regard, at the time of writing MMS is primed to make considerable progress.
The combination of multiple operating missions (Cluster, Geotail, MMS, THEMIS, etc.)
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allows the magnetosphere to be studied more comprehensively. Outstanding problems rele-
vant for space weather prediction include: how to accurately translate L1 data to the subsolar
magnetopause; how to accurately model the location, onset, duration and variability of mag-
netopause reconnection; how to adequately capture magnetospheric preconditioning; how to
include multiscale processes, both temporal and spatial, in magnetotail models; and to un-
derstand where, when and how magnetotail reconnection starts and evolves, to establish
whether localized plasma jets are due to localized reconnection or locally evolved structure,
and whether multiple activations are spatial or temporal in nature. Nevertheless, the mea-
surements are sparse, and this represents a major obstacle to progress in magnetospheric
physics as a whole. So-called constellation missions represent an obvious next step forward
and an intriguing possibility is to use CubeSat platforms (Spence et al. 2001, 2004; Schwartz
et al. 2009; Eastwood 2015). This would be complemented by missions that exploit remote
sense. One potentially transformative idea is to remote sensing the outer magnetospheric
boundaries through soft X-ray charge exchange (Branduardi-Raymont et al. 2012), which is
the goal of the ESA/CAS SMILE mission.

The other activity pertains to operational monitoring, by platforms which provide mea-
surements to be used in operational space weather forecasting. This is likely to make use
of dedicated platforms—for example DSCOVR at L1, and GOES in GEO. Improving lead
times for magnetospheric space weather monitoring requires measurements to be made in
the solar wind further upstream than L1. This could be achieved with a solar sail mission
or inner heliosphere measurements (Eastwood et al. 2015c; Kubicka et al. 2016). Within
the magnetosphere, improving the density of measurements can also be achieved by using
hosted payloads. An example of this within the ESA space situational awareness programme
is SOSMAG which will be hosted on GEO-KOMPSAT-2A (Auster et al. 2016).

6.2 Future Developments: Modelling and Forecasting

At the time of writing, NOAA’s Space Weather Prediction Center is using the SWMF model
operationally.2 In the future, the availability of multiple magnetospheric models at the oper-
ational level is desirable to provide diversity of forecast methodology. Linked to this is the
use of ensemble forecasting (Knipp 2016); this requires the ability to run predictions faster
than real time. Finally, another option for improving forecasts would be to perform data
assimilation, but this is challenging because of sparse measurements in the magnetosphere.

Looking to the future, modelling of strong storms requires a change in grid step, and
changes in the treatment of the inner boundary because of the movement of the dayside
magnetopause towards the Earth. Another challenge is the development of appropriate met-
rics to test models in a relevant way. For example, this may mean the use of operational
metrics designed specifically for certain forecast types or user communities, and not simply
science-based assessments. In the context of the work discussed here, such a metric may
correspond to GIC threshold, rather than polar cap potential for example.

A key question in the medium term future is the issue of developing models that deliver
forecasts of improved accuracy. In some sense this is already in progress, with the standard
approach of coupling different codes that describe different regions (notably the ring current,
the plasmasphere and the ionosphere/thermosphere system). One route is to include recon-
nection physics by modifying the treatment of resistivity, or to embed PIC simulation capa-
bility within the larger fluid simulation (Kuznetsova et al. 2007; Tóth et al. 2016). A global
Vlasov code has been developed—Vlasiator (Sandroos et al. 2013; von Alfthan et al. 2014;

2http://www.swpc.noaa.gov/products/geospace-global-geomagnetic-activity-plot.

http://www.swpc.noaa.gov/products/geospace-global-geomagnetic-activity-plot
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Kempf et al. 2015) and this may ultimately be the simulation tool of choice, as computing
power becomes sufficiently powerful and accessible. This may enable a more detailed ex-
ploration of the Axford conjecture, which argues that large-scale magnetospheric dynamics
are governed by global processes and boundary conditions rather than the precise nature of
the local resistivity, etc. associated with reconnection (Gonzalez et al. 2016).

7 Conclusions

In this review paper we have attempted to summarise the scientific foundations of mag-
netospheric space weather forecasting. The basic nature of the solar wind magnetosphere
interaction is, we argue, well understood. It is driven by magnetic reconnection, and there-
fore depends on the orientation of the solar wind magnetic field. Whilst the original Dungey
picture correctly shows the pattern of magnetospheric circulation, it is important to appre-
ciate that dayside and nightside reconnection do not typically occur in lockstep as simple
cartoons such as the one shown in Fig. 1 imply. In fact there is a process of loading and un-
loading which can be monitored by the size of the polar cap. The unloading process drives
strong, structured electrical currents in the ionosphere, and these represent the significant
threat to power grids, which is the primary socio-economic impact. Therefore a key goal
is to improve the forecasting of substorms. This requires knowledge of both the loading
and unloading of energy in the magnetosphere at the magnetopause and in the magnetotail
respectively. Recent research has examined the evolution of the solar wind from L1 to the
magnetopause, the location, timing, and extent of reconnection on the magnetopause, the
physics and temporal variability of reconnection, the nature of bursty bulk flows and their
coupling to the inner magnetosphere, and the effects of magnetospheric preconditioning.
Observational studies go hand-in-hand with modelling, and improved metrics and bench-
marking are aiding the transition to operations. In the future, improved forecasts are likely
to derive from three areas: ongoing scientific investigation using existing and future space
missions; availability of multipoint operational real time data from hosted payloads and
dedicated platforms; and improved modelling schemes. In each of these areas, prospects
are bright and we anticipate that there should be a significant improvement in our ability to
forecast magnetospheric space weather over the coming years.
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K. Andréeová, T.I. Pulkkinen, T.V. Laitinen, L. Přech, Shock propagation in the magnetosphere: observations
and MHD simulations compared. J. Geophys. Res. Space Phys. 113(A9), A09224 (2008). doi:10.1029/
2008JA013350

V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Lühr,
G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97(A4), 4027–4039
(1992)

V. Angelopoulos et al., Magnetotail flow bursts: association to global magnetospheric circulation, relationship
to ionospheric activity and direct evidence for localization. Geophys. Res. Lett. 24(18), 2271–2274
(1997). doi:10.1029/97GL02355

V. Angelopoulos, F.S. Mozer, R.P. Lin, T. Mukai, K. Tsuruda, R. Lepping, W. Baumjohann, Comment on
“Geotail survey of ion flow in the plasma sheet: observations between 10 and 50 RE” by W.R. Paterson
et al.. J. Geophys. Res. Space Phys. 104(A8), 17521–17525 (1999). doi:10.1029/1999JA900198

V. Angelopoulos et al., Tail reconnection triggering substorm onset. Science 321, 931–935 (2008)
V. Angelopoulos, A. Runov, X.Z. Zhou, D.L. Turner, S.A. Kiehas, S.S. Li, I. Shinohara, Electromagnetic

energy conversion at reconnection fronts. Science 341(6153), 1478–1482 (2013). doi:10.1126/science.
1236992

M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard, R. Walker, M.G. Kivel-
son, K.-J. Hwang, Observations and simulations of non-local acceleration of electrons in magnetotail
magnetic reconnection events. Nat. Phys. 7(4), 360–365 (2011). http://www.nature.com/nphys/journal/
v7/n4/abs/nphys1903.html#supplementary-information

U. Auster et al., Space weather magnetometer set with automated AC spacecraft field correction for Geo-
Kompsat-2A, in Proc. ‘2016 ESA Workshop on Aerospace EMC’. ESA SP, vol. 738 (2016). doi:10.1109/
AeroEMC.2016.7504585

D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of sub-
storms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996)

D.N. Baker et al., Timing of magnetic reconnection initiation during a global magnetospheric substorm onset.
Geophys. Res. Lett. 29(24), 43 (2002). doi:10.1029/2002GL015539

D.N. Baker et al., A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic
storm: magnetospheric multiscale and Van Allen probes study of substorm particle injection. Geophys.
Res. Lett. 43(12), 6051–6059 (2016). doi:10.1002/2016GL069643

M.A. Balikhin, A. Runov, S.N. Walker, M. Gedalin, I. Dandouras, Y. Hobara, A. Fazakerley, On the fine
structure of dipolarization fronts. J. Geophys. Res. Space Phys. 119(8), 6367–6385 (2014). doi:10.1002/
2014JA019908

W. Baumjohann, R.A. Treumann, J. LaBelle, R.R. Anderson, Average electric wave spectra across the plasma
sheet and their relation to ion bulk speed. J. Geophys. Res. Space Phys. 94(A11), 15221–15230 (1989).
doi:10.1029/JA094iA11p15221

W. Baumjohann, Y. Kamide, R. Nakamura, Substorms, storms, and the near-Earth tail. J. Geomagn. Geoelectr.
48, 177 (1996)

J. Birn, R. Nakamura, E.V. Panov, M. Hesse, Bursty bulk flows and dipolarization in MHD simulations
of magnetotail reconnection. J. Geophys. Res. Space Phys. 116(12), A01210 (2011). doi:10.1029/
2010ja016083

J. Birn, M. Hesse, R. Nakamura, S. Zaharia, Particle acceleration in dipolarization events. J. Geophys. Res.
118(5), 1960–1971 (2013). doi:10.1002/jgra.50132

M. Bodeau, Review of better space weather proxies for spacecraft surface charging. IEEE Trans. Plasma Sci.
43(9), 3075–3084 (2015). doi:10.1109/TPS.2015.2441038

L. Bolduc, GIC observations and studies in the Hydro-Quebec power system. J. Atmos. Sol.-Terr. Phys. 64,
1793–1802 (2002)

J.E. Borovsky, M. Hesse, J. Birn, M.M. Kuznetsova, What determines the reconnection rate at the dayside
magnetosphere? J. Geophys. Res. Space Phys. 113(A7), A07210 (2008). doi:10.1029/2007JA012645

J.E. Borovsky et al., Estimating the effects of ionospheric plasma on solar wind/ magnetosphere coupling via
mass loading of dayside reconnection: ion-plasma-sheet oxygen, plasmaspheric drainage plumes, and
the plasma cloak. J. Geophys. Res. 118, 5695–5719 (2013)

G. Branduardi-Raymont et al., AXIOM: advanced X-ray imaging of the magnetosphere. Exp. Astron. 33(2–
3), 403–443 (2012). doi:10.1007/s10686-011-9239-0

J.L. Burch, T.D. Phan, Magnetic reconnection at the dayside magnetopause: advances with MMS. Geophys.
Res. Lett. 43(16), 8327–8338 (2016). doi:10.1002/2016GL069787

J.L. Burch, T.E. Moore, R.B. Torbert, B.L. Giles, Magnetospheric multiscale overview and science objectives.
Space Sci. Rev. 199(1), 5–21 (2016a). doi:10.1007/s11214-015-0164-9

http://dx.doi.org/10.1029/2001JA000080
http://dx.doi.org/10.1029/2008JA013350
http://dx.doi.org/10.1029/2008JA013350
http://dx.doi.org/10.1029/97GL02355
http://dx.doi.org/10.1029/1999JA900198
http://dx.doi.org/10.1126/science.1236992
http://dx.doi.org/10.1126/science.1236992
http://www.nature.com/nphys/journal/v7/n4/abs/nphys1903.html#supplementary-information
http://www.nature.com/nphys/journal/v7/n4/abs/nphys1903.html#supplementary-information
http://dx.doi.org/10.1109/AeroEMC.2016.7504585
http://dx.doi.org/10.1109/AeroEMC.2016.7504585
http://dx.doi.org/10.1029/2002GL015539
http://dx.doi.org/10.1002/2016GL069643
http://dx.doi.org/10.1002/2014JA019908
http://dx.doi.org/10.1002/2014JA019908
http://dx.doi.org/10.1029/JA094iA11p15221
http://dx.doi.org/10.1029/2010ja016083
http://dx.doi.org/10.1029/2010ja016083
http://dx.doi.org/10.1002/jgra.50132
http://dx.doi.org/10.1109/TPS.2015.2441038
http://dx.doi.org/10.1029/2007JA012645
http://dx.doi.org/10.1007/s10686-011-9239-0
http://dx.doi.org/10.1002/2016GL069787
http://dx.doi.org/10.1007/s11214-015-0164-9


The Scientific Foundations of Forecasting Magnetospheric Space. . . 1245

J.L. Burch et al., Electron-scale measurements of magnetic reconnection in space. Science 352(6290),
aaf2939 (2016b). doi:10.1126/science.aaf2939

P. Cannon et al., Extreme Space Weather: Impacts on Engineered Systems and Infrastructure (Royal Academy
of Engineering, London, 2013)

N.A. Case, J.A. Wild, A statistical comparison of solar wind propagation delays derived from multispacecraft
techniques. J. Geophys. Res. 117, A02101 (2012). doi:10.1029/2011JA016946

M.D. Cash, S. Witters Hicks, D.A. Biesecker, A.A. Reinard, C.A. de Koning, D.R. Weimer, Validation of
an operational product to determine L1 to Earth propagation time delays. Space Weather 14(2), 93–112
(2016). doi:10.1002/2015SW001321

P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: general theory and collisional simu-
lations. Phys. Plasmas 14(10), 102114 (2007). doi:10.1063/1.2795630

L.B.N. Clausen, S.E. Milan, J.B.H. Baker, J.M. Ruohoniemi, K.H. Glassmeier, J.C. Coxon, B.J. Anderson,
On the influence of open magnetic flux on substorm intensity: ground- and space-based observations.
J. Geophys. Res. Space Phys. 118(6), 2958–2969 (2013). doi:10.1002/jgra.50308

E.W. Cliver, W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity. J. Space
Weather Space Clim. 3(15), A31 (2013). doi:10.1051/swsc/2013053

I.J. Coleman, A multi-spacecraft survey of magnetic field line draping in the dayside magnetosheath. Ann.
Geophys. 23(3), 885–900 (2005). doi:10.5194/angeo-23-885-2005

M.R. Collier, J.A. Slavin, R.P. Lepping, A. Szabo, K. Ogilvie, Timing accuracy for the simple planar propa-
gation of magnetic field structures in the solar wind. Geophys. Res. Lett. 25(14), 2509–2512 (1998)

S.W.H. Cowley, M. Lockwood, Excitation and decay of solar wind-driven flows in the magnetosphere-
ionosphere system. Ann. Geophys. 10, 103–115 (1992)

S.W.H. Cowley, C.J. Owen, A simple illustrative model of open flux tube motion over the dayside magne-
topause. Planet. Space Sci. 37, 1461–1475 (1989)

L. Dai et al., Near-Earth injection of MeV electrons associated with intense dipolarization electric
fields: Van Allen Probes observations. Geophys. Res. Lett. 42(15), 6170–6179 (2015). doi:10.1002/
2015GL064955

A.P. Dimmock, K. Nykyri, The statistical mapping of magnetosheath plasma properties based on THEMIS
measurements in the magnetosheath interplanetary medium reference frame. J. Geophys. Res. Space
Phys. 118(8), 4963–4976 (2013). doi:10.1002/jgra.50465

A.P. Dimmock, K. Nykyri, H. Karimabadi, A. Osmane, T.I. Pulkkinen, A statistical study into the spatial
distribution and dawn-dusk asymmetry of dayside magnetosheath ion temperatures as a function of
upstream solar wind conditions. J. Geophys. Res. Space Phys. 120(4), 2767–2782 (2015). doi:10.1002/
2014JA020734

A.P. Dimmock, T.I. Pulkkinen, A. Osmane, K. Nykyri, The dawn–dusk asymmetry of ion density in the
dayside magnetosheath and its annual variability measured by THEMIS. Ann. Geophys. 34(5), 511–
528 (2016). doi:10.5194/angeo-34-511-2016

S. Dubyagin, V. Sergeev, S. Apatenkov, V. Angelopoulos, A. Runov, R. Nakamura, W. Baumjohann, J. Mc-
Fadden, D. Larson, Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 38(8),
L08102 (2011). doi:10.1029/2011GL047016

J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47–48 (1961)
M.W. Dunlop et al., Extended magnetic reconnection across the dayside magnetopause. Phys. Rev. Lett. 107,

025004 (2011a)
M.W. Dunlop et al., Magnetopause reconnection across wide local time. Ann. Geophys. 29, 1683–1697

(2011b)
J.P. Eastwood, Observing magnetic reconnection: the influence of Jim Dungey, in Magnetospheric Plasma

Physics: The Impact of Jim Dungey’s Research, ed. by S.W.H. Cowley Frs, D. Southwood, S. Mitton
(Springer, Cham, 2015), pp. 181–197. doi:10.1007/978-3-319-18359-6_9

J.P. Eastwood, S.A. Kiehas, Origin and evolution of plasmoids and flux ropes in the magnetotails of Earth
and Mars, in Magnetotails in the Solar System (Wiley, New York, 2015), pp. 269–287. doi:10.1002/
9781118842324.ch16

J.P. Eastwood, T.D. Phan, R.C. Fear, D.G. Sibeck, V. Angelopoulos, M. Oieroset, M.A. Shay, Survival of flux
transfer event (FTE) flux ropes far along the tail magnetopause. J. Geophys. Res. Space Phys. 117(9),
A08222 (2012). doi:10.1029/2012ja017722

J.P. Eastwood, T.D. Phan, M. Oieroset, M.A. Shay, K. Malakit, M. Swisdak, J.F. Drake, A. Masters, Influence
of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space
plasmas. Plasma Phys. Control. Fusion 55, 124001 (2013)

J.P. Eastwood, M.V. Goldman, H. Hietala, D.L. Newman, R. Mistry, G. Lapenta, Ion reflection and accel-
eration near magnetotail dipolarization fronts associated with magnetic reconnection. J. Geophys. Res.
120(1), 511–525 (2015a). doi:10.1002/2014JA020516

http://dx.doi.org/10.1126/science.aaf2939
http://dx.doi.org/10.1029/2011JA016946
http://dx.doi.org/10.1002/2015SW001321
http://dx.doi.org/10.1063/1.2795630
http://dx.doi.org/10.1002/jgra.50308
http://dx.doi.org/10.1051/swsc/2013053
http://dx.doi.org/10.5194/angeo-23-885-2005
http://dx.doi.org/10.1002/2015GL064955
http://dx.doi.org/10.1002/2015GL064955
http://dx.doi.org/10.1002/jgra.50465
http://dx.doi.org/10.1002/2014JA020734
http://dx.doi.org/10.1002/2014JA020734
http://dx.doi.org/10.5194/angeo-34-511-2016
http://dx.doi.org/10.1029/2011GL047016
http://dx.doi.org/10.1007/978-3-319-18359-6_9
http://dx.doi.org/10.1002/9781118842324.ch16
http://dx.doi.org/10.1002/9781118842324.ch16
http://dx.doi.org/10.1029/2012ja017722
http://dx.doi.org/10.1002/2014JA020516


1246 J.P. Eastwood et al.

J.P. Eastwood, H. Hietala, G. Toth, T.D. Phan, M. Fujimoto, What controls the structure and dynamics of
Earth’s magnetosphere? Space Sci. Rev. 188(1), 251–286 (2015b). doi:10.1007/s11214-014-0050-x

J.P. Eastwood, D.O. Kataria, C.R. McInnes, N.C. Barnes, P. Mulligan, Sunjammer. Weather 70(1), 27–30
(2015c). doi:10.1002/wea.2438

J.P. Eastwood, E. Biffis, M.A. Hapgood, L. Green, M.M. Bisi, R.D. Bentley, R. Wicks, L.A. McKinnell,
M. Gibbs, C. Burnett, The economic impact of space weather: where do we stand? Risk Anal. 37(2),
206–218 (2017). doi:10.1111/risa.12765

S. Eriksson et al., Magnetospheric multiscale observations of magnetic reconnection associated with Kelvin-
Helmholtz waves. Geophys. Res. Lett. 43(11), 5606–5615 (2016). doi:10.1002/2016GL068783

I.A. Erinmez, J.G. Kappenman, W.A. Radasky, Management of the geomagnetically induced current risks
on the national grid company’s electric power transmission system. J. Atmos. Sol.-Terr. Phys. 64(5–6),
743–756 (2002). doi:10.1016/s1364-6826(02)00036-6
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