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Abstract Charged particle acceleration takes place ubiquitously in the Universe including
the near-Earth heliospheric environment. Typical in situ spacecraft measurements made in
the solar wind show that the charged particle velocity distribution contains energetic com-
ponents with quasi scale-free power-law velocity dependence, f ∼ v−α , for high velocity
range. In this Review a theory of quiet-time solar-wind electrons that contain a suprather-
mal component is discussed, in which these electrons are taken to be in dynamical equilib-
rium with Langmuir turbulence. This Review includes an overview of the Langmuir turbu-
lence theory, as well as a discussion on asymptotic equilibrium solution of Langmuir tur-
bulence/suprathermal electron system. Theoretical predictions of high-energy electron ve-
locity power-law distribution index is then compared against the recent observations of the
superhalo electron velocity distribution made by instruments onboard WIND and STEREO
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spacecraft. It is shown that the theoretical prediction of velocity power-law index is inter-
mediate to the observed range.

Keywords Suprathermal electrons · Langmuir · Turbulent equilibrium · Charged-particle
acceleration

1 Introduction

Turbulent and/or nonlinear processes as well as the charged particle acceleration are funda-
mental and mutually related processes that take place in many laboratory and astrophys-
ical environments. The present Review is concerned with the Langmuir turbulence and
suprathermal electron acceleration in the solar wind. In situ spacecraft measurements of
the space environment became available in the 1960s. Observations of charged particles in
the solar wind showed that they featured suprathermal components (Feldman et al. 1975;
Gosling et al. 1981; Armstrong et al. 1983), characterized by velocity distribution function
(VDF), f ∝ v−α , for high-velocity regime. Vasyliunas was one of the first to employ the
kappa distribution in order to phenomenologically describe the spacecraft observation of
electron VDF (Vasyliunas 1968),

fe(v) ∼ 1

(1 + v2/κv2
T e)

κ+1
, (1)

where vT e = (2Te/me)
1/2 is the Maxwellian electron thermal speed, and where the tempera-

ture Te is defined without the Boltzmann constant, since it is customary in plasma physics to
define Te in the unit of eV. The quantity me is the electron mass. Of course, the limit κ → ∞
corresponds to the classic Maxwell-Boltzmann distribution, fe(v) ∼ exp(−v2/v2

T e).
The kappa model facilitates the data analysis, but as far as their physical origin is con-

cerned, there is no clear understanding. Of course, if one is judicious, then one may re-
produce the kappa distribution by non self-consistent methods. That is, if the turbulence
spectrum of a given wave mode is simply assumed, then the particle kinetic equation can
be solved to obtain the power-law or kappa-like solutions. For instance, adopting such an
approach (Hasegawa et al. 1985) obtained an analytical kappa distribution in the presence
of a high-intensity radiation field. Ma and Summers (1998) employed stationary whistler
turbulence to obtain the power-law electron distribution function. Similarly, Roberts and
Miller (1998) and Leubner (2004a) solved particle diffusion equation to obtain power-
law type of distributions when the diffusion coefficients are given by non self-consistent
means.

By phenomenologically coupling the strong-turbulence theory (which does not have the
wave-particle interaction in its original form) and the particle diffusion equation (Galeev
et al. 1975; Papadopoulos 1975; Gorev et al. 1976; Kingsep 1978, and Pelletier 1982) ad-
dressed the problem of the formation of high-energy electrons when these electrons interact
with long wavelength (small k) Langmuir condensate mode, whose dynamical evolution is
described by strong turbulence theory.

There are alternative approaches to explain the origin of suprathermal electron ac-
celeration. For example Collier (1993) applied the Lévy flights probability concept to
show that the kappa distribution can form under such a condition. One of the most in-
teresting recent alternative approaches rely on the “non-extensive” thermo-statistical con-
cept to show that kappa-like distribution corresponds to the most probable state in the
non-extensive statistical system (Tsallis 1988, 2009; Treumann 1999a, 1999b; Treumann
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and Jaroschek 2008; Leubner 2000, 2002, 2004a, 2004b, 2005; Livadiotis and McComas
2009).

Yoon et al. (2005, 2006), Rhee et al. (2006), Gaelzer et al. (2008) on the other hand, were
the first to show that the kappa-like electron VDF can form as a result of self-consistent
wave-particle interaction between the Langmuir turbulence and the energetic electrons. They
concretely demonstrated this by numerically solving the complete equations of the weak
turbulence theory. In order to confirm the numerical solution of the weak turbulence equation
(Ryu et al. 2007) performed one-dimensional particle-in-cell simulation with a large number
of particles to show that the long time simulation of the electron beam-plasma interaction
process and the ensuing Langmuir turbulence generation leads to the formation of kappa-like
electron velocity distribution function.

The above works are, however, based either on numerical initial value solution of the
weak turbulence equation or by direct particle-in-cell simulation method in one-dimension.
It is not evident that the formation of kappa-like state, which was demonstrated during the
long-time evolution of the system, does indeed correspond to the rigorous asymptotically
steady-state solution or not in a mathematical sense. Moreover, it is not clear whether the
kappa fit of the final stage of the accelerated electrons obtained by these means is the true
asymptotic value of the kappa parameter or not. Furthermore, the numerical demonstrations
of the formation of kappa-like state was obtained only in the simplifying one-dimensional
approximation.

Two- or higher-dimensional numerical solutions to the complete equations of weak turbu-
lence theory applicable for electron-Langmuir/ion-sound turbulence problems have recently
become available (Ziebell et al. 2008a, 2008b; Pavan et al. 2009a, 2009b, 2010a, 2010b;
Ziebell et al. 2011a, 2011b, 2011c). The solutions indicate that indeed, the wave-particle
interaction involving Langmuir turbulence and electrons does lead to quasi-isotropic accel-
eration, accompanied by two- or three-dimensional Langmuir turbulence spectrum. How-
ever, as the higher-dimensional numerical solutions demand high computational resources
these solutions could not be numerically integrated long enough to demonstrate quasi
asymptotic state. Numerical simulations in two- or higher-dimensions (Rhee et al. 2009;
Yi et al. 2010) face the same problem of limited computational resources such that these
runs cannot reach the true quasi asymptotic state.

For these reasons, the issue of whether the basic set of coupled electron-Langmuir tur-
bulence equations do indeed lend themselves to an asymptotically steady-state solution or
not, especially in higher-dimensions, deserves separate discussions based upon analytical
approach. Yoon (2011, 2012a, 2012b) addressed this issue. Yoon (2011) discusses one-
dimensional steady-state self-consistent asymptotic solution of the electron-Langmuir tur-
bulence system, and show that the non-Maxwellian kappa-like VDF does indeed corre-
spond to a rigorous solution. In subsequent papers Yoon (2012a, 2012b) extend the analysis
to three-dimensional situation. Physically, the one-dimensional approach may be justified
when there exists a sufficiently strong ambient magnetic field so that implicitly, field-aligned
beam-plasma interaction can be described by the one-dimensional approximation. Three-
dimensional solution is applicable to the situation where the ambient magnetic field is weak
(Yoon 2012a) or absent (Yoon 2012b).

As noted already, the electron VDFs detected in the solar wind deviate considerably from
the Maxwellian model at high-energy tail (Lin et al. 1981, 1986; Ergun et al. 1998). The
solar wind VDF is typically described as thermal core plus suprathermal halo populations.
Recently, a third component, the superhalo distribution, was identified by WIND spacecraft
(Lin 1998). In the solar wind, there exist quasi-stationary electrostatic (Langmuir wave)
fluctuations called the quasi-thermal noise (Couturier et al. 1981; Meyer-Vernet et al. 1986;
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Maksimovic et al. 1995). In the literature, most theories of suprathermal electrons rely on
the consideration of the altitude-dependent collisional dynamics (Scudder and Olbert 1979;
Pierrard et al. 1999). The present Review shall not be concerned with such an approach,
although this does not mean that the altitude-dependent collisional dynamics is unimportant.
The present Review shall be concerned with local wave-particle (i.e., collective) dynamical
processes of energetic electron acceleration. We envision that the dynamical steady-state
will be that of kappa-like electron VDF and enhanced quasi-thermal noise-like Langmuir
turbulence spectrum.

We claim that such a system corresponds to the theoretical asymptotic quasi-steady state
equilibrium solution for the weak turbulence theory. In order to verify this claim, we shall
compare the theoretical predictions of high-energy electron velocity power-law distribution
index against the observed value. For the observation, we make use of the velocity power-
law index derived from the superhalo electron velocity distribution made by instruments
onboard WIND and STEREO spacecraft. As it will be discussed subsequently, we find that
the comparison is rather good. Specifically, it will be shown that the theoretical prediction
of velocity power-law index is intermediate to the observed range. From this, we conclude
that the Langmuir turbulence may indeed be responsible for the suprathermal electron ac-
celeration near 1 AU.

The organization of the present Review is as follows: In Sect. 2, we present a brief
overview of the history of Langmuir turbulence. The purpose is to provide a rationale
for employing the weak turbulence approach to discuss the Langmuir turbulence prob-
lem. In Sect. 3, we present a self-contained discussion of the weak turbulence theory.
On the basis of the equations of the weak turbulence theory derived in Sect. 3, we dis-
cuss numerical solution in 1D and 2D (or 3D with cylindrical symmetry) in Sect. 4. In
order to facilitate the discussion, we consider the problem of bump-in-tail instability, al-
though in the quiet-time solar wind, no electron beam with positive gradient in veloc-
ity space is observed at 1 AU. However, the solar wind contains energetic, highly field-
aligned component called the strahl. In any case, we are concerned with time-asymptotic
state associated with the Langmuir turbulence so that how Langmuir turbulence is gen-
erated is not too important. We shall thus demonstrate that over the long time scale the
electrons are accelerated to suprathermal energies by Langmuir turbulence. In Sect. 5, we
present the rigorous analysis of steady-state Langmuir turbulence and electron accelera-
tion problem by solving the set of coupled electron-Langmuir turbulence equations. On
the basis of such an analysis, it shall be shown that the steady-state suprathermal electron
should behave as Fe ∼ v−6.5. In order to verify this, we shall compare the quiet-time solar
wind electron distribution and show that the observation indicates ∼ v−5.0 to v−8.7 depen-
dence associated with the suprathermal electrons, while the theory predicts v−6.5. In the
remainder of this Review, we shall systematically expound on the various issues discussed
above.

2 A Brief History of Langmuir Turbulence

Serious investigations of (high-frequency) plasma turbulence began with the works of the
scientists largely from the former Soviet Union in the early 1960s. Standard monographs
on the subject are: Kadomtsev (1965), Sitenko (1967, 1982), Vedenov (1968), Sagdeev
and Galeev (1969), Tsytovich (1970, 1977a, 1977b), Davidson (1972), Kaplan and Tsy-
tovich (1973), Hasegawa (1975), Akhiezer et al. (1975), Melrose (1980). Efforts by these
pioneers, which came to be known as the plasma weak turbulence theory, continued on
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through the 1970s and 1980s. It should be noted that although the weak turbulence for-
malism is quite general, and in principle it can be applied to a wide variety of problems,
in practice however, it is almost exclusively applied to the bump-in-tail (or weak beam-
plasma) instability problem, which is one of the simplest plasma instabilities. Hence, the
Langmuir turbulence problem became the test bed for various plasma turbulence theo-
ries.

During the trail-blazing days, scientists in the West were largely following the So-
viet scientists’ lead, but a few made important contributions of their own. For instance,
Dupree (1966, 1972), Weinstock (1969), and others, suggested the renormalized turbu-
lence theories, which is an effort to go beyond the weak turbulence perturbation scheme
and take the higher-order terms into account. In the early days, the renormalized kinetic
theories were called “strong turbulence” theories, but we use the term “renormalized” to
distinguish them from the later theory of the same name by Zakharov (1972). In con-
trast to the mostly theoretical works spearheaded by the Soviet scientists, the Ameri-
can scientists such as Dawson and Buneman pioneered the powerful particle-in-cell nu-
merical simulation method (Dawson 1983). By employing such a scheme, coherent non-
linear effects such as particle trapping by large-amplitude waves were discovered and
were shown to play an important, if not the dominant, role (Dawson and Shanny 1968;
Morse and Nielson 1969).

However, Dum (1990a, 1990b, 1990c) carried out detailed particle-in-cell simulations
to show that the dominant particle trapping behavior observed in early simulations were
partly owing to the insufficient mode resolution and small system size. He proceeded to
demonstrate with his refined simulations that quasilinear/weak turbulence theories are ac-
tually quite good for certain parameter regime. Specifically, for a weak and warm beam,
the weak turbulence theory provided an acceptable first-order description of the nonlinear
behavior of the system. For a more recent discussions on the preponderance of incoherent
versus coherent nonlinear effects in beam-plasma interactions, see the discussion by Omura
et al. (1996).

In 1972, Zakharov proposed a semi-phenomenological theory of plasma turbulence,
which came to be known as the strong turbulence theory. In his theory, the collapse of intense
Langmuir wave packet plays the prominent role. The strong turbulence theory ignores the
wave-particle effect, and is a macroscopic theory. Even though Zakharov’s strong turbulence
theory continues to be investigated by many researchers (see the reviews by Goldman 1984
and Robinson 1997), the theory remains controversial to this date, and various numerical
simulations and experiments to confirm the theory are inconclusive (Robinson and Newman
1990; Vyacheslavov et al. 2002; Erofeev 2002).

Here, it should be noted that Zakharov-type of highly nonlinear and coherent the-
ory of Langmuir waves plays a prominent role in high power radio wave experiment
in the ionosphere, and such a theory enjoys many successes there (Dubois et al. 2001;
Cheung et al. 2001). However, the present discussion is concerned with incoherent turbu-
lence problem where the nonlinearity is relatively weak. For such a weakly turbulent situ-
ation, the Zakharov theory remains controversial, and renormalized theory is unnecessary.
For reasons discussed above, we do not consider particle trapping effects in our discussion
either. Consequently, the present Review is focused on weak turbulence theory of Langmuir
turbulence.
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3 An Overview of Weak Turbulence Theory

The starting point of the present analysis is the self-consistent Klimontovich equation in the
absence of external fields, under electrostatic approximation,(

∂

∂t
+ v · ∇ + ea

ma

E(r, t) · ∂

∂v

)
Na(r,v, t) = 0,

∇ · E(r, t) = 4π
∑

a

ea

∫
dv Na(r,v, t),

(2)

where Na = ∑
i=1 δ[r − ra

i (t)] δ[v − va
i (t)] stands for the exact one-particle phase-space

distribution function for species a (= e, i denotes the electrons and the ions, respectively)
and E stands for the self-consistent electrostatic field. If we denote the ensemble average of
the Klimontovich function by n̂fa = 〈Na〉, where n̂ = n̂e = n̂i stands for the ambient plasma
density, and the deviation of the Klimontovich function from its average by δNa = Na − n̂fa ,
then the hierarchy of equations can be obtained in the standard manner. We are concerned
with spatially uniform plasmas with no average fields. Consequently we may represent the
total electric field by the fluctuating part only, E = δE. The ensemble average 〈· · ·〉 can
also be viewed as the random-phase average. As such the averages of all fluctuations, i.e.,
quantities preceded by δ, are zero. The random-phase approximation precludes coherent
nonlinear effects at the outset.

Let us employ the shortcut two-time scale approximation in which physical quantities
are decomposed in the customary sense of Fourier-Laplace transformation with respect to
the fast time scale of the fluctuations, while the spectral coefficients and the average particle
distribution evolve in the slow time. This reduces (2) to a set of hierarchical equations,

∂ n̂fa

∂t
= − ea

ma

∂

∂v
·
∫

dkdω
〈
δE−k,−ω δNa

k,ω

〉
,

(
ω − k · v + i

∂

∂t

)(
δNa

k,ω − δNa0
k,ω

) = −i
ean̂

ma

δEk,ω · ∂fa

∂v
(3)

− i
ean̂

ma

∂

∂v
·
∫

dk′ dω′ [ δEk′,ω′ δNa
k−k′,ω−ω′ − 〈

δEk′,ω′ δNa
k−k′,ω−ω′

〉 ]
,

k · δEk,ω = −4π i
∑

a

ea

∫
dv δNa

k,ω,

where 〈· · ·〉 denotes ensemble averages over the phases of the perturbation, and we have
made use of the spectral property associated with the stationary and homogeneous turbu-
lence, 〈δak,ω δak′,ω′ 〉 = δ(k + k′) δ(ω + ω′) 〈δa2〉k,ω . The first equation in the above repre-
sents the formal particle kinetic equation, the second describes the evolution of perturbed
particle distribution function, and the third equation represents Poisson equation for the field
perturbation.

Obviously the above set of equations is not closed, since the solution for δNa
k,ω requires

the knowledge of the two-body correlation 〈δNa
k,ωδNa

k′,ω′ 〉, which depends on the tertiary
correlation, 〈δNa

k,ωδNa
k′,ω′ δNa

k′′,ω′′ 〉, and so on. In order to break the hierarchy and obtain
a closure we shall represent the fourth-order correlation in terms of products of two-body
correlations by ignoring the irreducible four-body correlations,

〈δak1,ω1 δak2,ω2 δak3,ω3 δak4,ω4〉 = δ(k1 + k2 + k3 + k4)

× δ(ω1 + ω2 + ω3 + ω4)
[ 〈

δa2
〉
k1,ω1

〈
δa2

〉
k3,ω3

δ(k1 + k2) δ(ω1 + ω2)
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+ 〈
δa2

〉
k1,ω1

〈
δa2

〉
k2,ω2

δ(k1 + k3) δ(ω1 + ω3)

+ 〈
δa2

〉
k1,ω1

〈
δa2

〉
k2,ω2

δ(k2 + k3) δ(ω2 + ω3)
]
. (4)

This is known as the quasi-normal closure in fluid turbulence theory, and it corresponds to
the simplest closure scheme.

The quantity δNa0
k,ω in (3) represents the perturbed phase space distribution owing to pure

particle effects. The ensemble average of the correlation of this quantity is of interest to us,〈
δNa0

k,ω(v) δNb0
−k,−ω

(
v′)〉 = (2π)−3 n̂ δab δ

(
v − v′) δ(ω − k · v) fa(v). (5)

In the purely collisionless Vlasov theory, the above quantity is set equal to zero. However,
such an approximation is strictly speaking, invalid, since the above quantity leads to the
various spontaneous thermal effects, and in the subsequent equations of weak turbulence
theory that shall be derived, the presence of the above “source fluctuation” gives rise to the
proper balance of various spontaneous and induced processes.

Note that the arguments, (k′,ω′) and (k − k′,ω − ω′), in (3) are not symmetrized yet,
since these can be interchanged. Eventually these dummy arguments should be fully sym-
metrized by considering all possible permutations. Also in (3), note that we have retained the
slow adiabatic time derivative i (∂/∂t) on the left-hand side of the equation for the perturbed
distribution. In solving for δNa

k,ω , this slow time derivative is tentatively ignored, but is rein-
troduced later. Such a treatment is the essence of the two-time step approximation. Another
way to look at the present two-time step approach is to imagine the factor i (∂/∂t) as being
absorbed in the “new” definition of the angular frequency, ω → ω + i ∂/∂t . Then the equa-
tion for perturbed distribution δNk,ω can be solved iteratively up to third order in electric
field strength, δEk,ω. After the desired iterative solution has been obtained, then the solution
is inserted into the perturbed Poisson equation, and appropriate ensemble averages are taken
under the assumption of random phases associated with the fluctuations. This results in the
nonlinear spectral balance equation, as has been discussed in the standard literature. At this
stage, the slow time derivative i (∂/∂t) is reintroduced. This is the essence of the two-time
step approximation, which bypasses the mathematical rigor in the full multiple-time scale
analysis (Davidson 1972).

After manipulating the set of equations (3) under the closure scheme (4) and making use
of the source fluctuation (5), one may derive an equation, known as the nonlinear spectral
balance equation, as given below (Yoon 2005):

0 = i

2

∂ε(k,ω)

∂ω

∂ 〈δE2〉k,ω

∂t
+

(
ε(k,ω) + 2

∫
dk′dω′ T

(
k,ω|k′,ω′)) 〈

δE2
〉
k,ω

− 2
∫

dk′dω′ |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈
δE2

〉
k′,ω′

〈
δE2

〉
k−k′,ω−ω′

+
∑

a

2e2
an̂

π

∫
dv

[
δ(ω − k · v)

k2 ε∗(k,ω)
− 2

∫
dk′ dω′

(
δ(ω′ − k′ · v)

k′2 |ε(k′,ω′)|2 M
(
k,ω|k′,ω′)

+ δ[ω − ω′ − (k − k′) · v]
|k − k′|2 |ε(k − k,ω − ω′)|2 M

(
k,ω|k − k′,ω − ω′))]

fa(v), (6)

where

T
(
k,ω|k′,ω′) = {

χ(2)
(
k′,ω′|k − k′,ω − ω′)}2

( 〈δE2〉k−k′,ω−ω′

ε(k′,ω′)

+ 〈δE2〉k′,ω′

ε(k − k′,ω − ω′)

)
− χ̄ (3)

(
k′,ω′| − k′,−ω′|k,ω

) 〈
δE2

〉
k′,ω′ ,
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(7)
M

(
k,ω|k′,ω′) = {χ(2)(k′,ω′|k − k′,ω − ω′)}2

ε(k − k′,ω − ω′)
〈
δE2

〉
k,ω

− |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈
δE2

〉
k−k′,ω−ω′ .

In the above, ε(k,ω) = 1 +χ(k,ω), is the linear dielectric response function, χ(k,ω) =∑
a χa(k,ω) being the linear dielectric susceptibility, χ(2)(k1,ω1|k2,ω2) = ∑

a χ(2)
a (k1,

ω1|k2,ω2) is the second-order nonlinear susceptibility, and χ̄ (3) (k1,ω1|k2,ω2|k3,ω3) =∑
a χ̄ (3)

a (k1,ω1|k2,ω2|k3,ω3) is the partial third-order nonlinear susceptibility. The fully
symmetric nonlinear third-order susceptibility is defined by χ(3)(k1,ω1|k2,ω2|k3,ω3) =
(1/3) [ χ̄ (3)(k1,ω1|k2,ω2|k3,ω3)+ χ̄ (3)(k2,ω2|k1,ω1|k3,ω3)+ χ̄ (3)(k3,ω3|k2,ω2|k1,ω1) ],
which one encounters in theories of coherent nonlinear processes, but is not used in the cur-
rent turbulent nonlinear kinetic theory. The specific definitions for various susceptibility
functions for particle species a are given by

χa(k,ω) = −4πean̂a

k2

∫
dv k · gk,ω fa,

χ(2)
a (k1,ω1|k2,ω2) = −1

2

4πiean̂a

k1 k2 |k1 + k2|
∫

dv gk1+k2,ω1+ω2

× [
k1 (k2 · gk2,ω2) + k2 (k1 · gk1,ω1)

]
fa,

(8)
χ̄ (3)

a (k1,ω1|k2,ω2|k3,ω3) = 1

2

4πean̂a

k1 k2 k3 |k1 + k2 + k3|
×

∫
dv (gk1+k2+k3,ω1+ω2+ω3 · k1)gk2+k3,ω2+ω3

× [
k2 (k3 · gk3,ω3) + k3 (k2 · gk2,ω2)

]
fa,

where

gk,ω = − ea

ma

1

ω − k · v + i0

∂

∂v
. (9)

The formal result (6), which was known in one form or another in the literature, but recently
systematically rederived in Yoon (2005), forms the basis for plasma weak turbulence theory.

The common procedure in plasma kinetic theory is to assume that |Im ε(k,ω)| �
|Re ε(k,ω)|. In general, this assumption limits the applicability of the customary weak tur-
bulence theory to weakly unstable modes where the real part of linear response in (6) leads to
the dispersion relation, while the imaginary terms determine how the wave intensity evolves
in time, i.e., the wave kinetic equation.

In the standard weak turbulence theory, simple quasilinear diffusion equation is adopted
for the particle kinetic equation, although it is possible to obtain a more general formal
particle kinetic equation in which various nonlinear wave coupling terms are incorporated
to the same degree of perturbation expansion as in the wave kinetic equation. However,
doing so is not only unnecessary but under certain circumstances, it leads to divergences.
For this reason it is better to limit oneself to the simple first-order iterative solution for δNa

k,ω

when it comes to the particle kinetic equation. Then, we arrive at the familiar formal particle
kinetic equation:

∂fa

∂t
= Im

e2
a

2π2ma

∂

∂vi

∫
dkdω

ki

k2 ε∗(k,ω)
δ(ω − k · v) fa

+ πe2
a

m2
a

∂

∂vi

∫
dkdω

ki kj

k2

〈
δE2

〉
k,ω

δ(ω − k · v)
∂fa

∂vj

, (10)
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where the repeated indices imply summation (i.e., Einstein convention).

3.1 Wave Kinetic Equation

The nonlinear spectral balance equation (6) provides the platform upon which the wave
kinetic equation that describes nonlinear interaction among plasma eigenmodes, i.e., Lang-
muir (denoted with L) and ion-sound (S) waves, as well as particle may be formulated. For
plasma eigenmodes, if one retains only the linear response in the real part of the spectral
balance equation, then we have

Re ε(k,ω)

(〈
δE2

〉
k,ω

−
∑

a

2e2
an̂

πk2|ε(k,ω)|2
∫

dv δ(ω − k · v) fa

)
= 0. (11)

If one is interested in the region of (k,ω) space for which Re ε(k,ω) �= 0, then one ob-
tains the familiar expression for the spontaneous fluctuation formula found in the literature
(Sitenko 1967),

〈
δE2

〉0
k,ω

=
∑

a

2e2
an̂

π k2 |ε(k,ω)|2
∫

dv δ(ω − k · v) fa. (12)

The right-hand side of the above expression diverges near the mode transparency domain,
Re ε(k,ω) → 0 and Im ε(k,ω) → 0, where one must exclude such regions.

For the present purpose, we are interested in the region of (k,ω) space for which
Re ε(k,ω) = 0, i.e., the plasma eigenmodes. In this case, the roots of the equation
Re ε(k,ω) = 0 can be represented by ω = ωα

k , α = L, S, where L and S denote Langmuir
and ion-sound modes. In this case, the quantity


k,ω ≡ 〈
δE2

〉
k,ω

− 〈
δE2

〉0
k,ω

, (13)

is nonzero, and in general, it is an eigenfunction which may be represented as


k,ω =
∑
σ=±1

∑
α=L,S

I σα
k δ

(
ω − σωα

k

)
. (14)

If we ignore the thermal fluctuation owing to single-particle effects, i.e., 〈δE2〉0
k,ω , which

provides finite level of electric field in the spectral range outside the eigenmode solution,
(k,ω �= ±ωα

k ), then 
k,ω ≈ 〈δE2〉k,ω , and the wave intensity can simply be approximated
by 〈

δE2
〉
k,ω

=
∑
σ=±1

∑
α=K,S

I σα
k δ

(
ω − σωα

k

)
. (15)

In the above σ = ±1 represents the direction of the wave phase velocity.
Inserting this to the imaginary part of (6), we obtain, after some algebraic manipulations,

the following:

∂Iσα
k

∂t
= γ α

k I σα
k + Sα

k −
∑

σ ′=±1

∑
β=L,S

∫
dk′ Aαβ

k,k′ I
σ ′β
k′ I σα

k

−
∑

σ ′=±1

∑
β=L,S

∫
dk′ Bαβ

k,k′

(
I σα

k

ε(k′, σ ′ωβ

k′)
− I

σ ′β
k′

ε ′(k, σωα
k )

)

−
∑

σ ′,σ ′′=±1

∑
β,γ=L,S

∫
dk′ Mαβγ

k,k′

(
I

σ ′′γ
k−k′ I σα

k

ε ′(k′, σ ′ωβ

k′)
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+ I
σ ′β
k′ I σα

k

ε ′(k − k′, σ ′′ωγ

k−k′)
− I

σ ′β
k′ I

σ ′′γ
k−k′

ε ′(k, σωα
k )

)
δ
(
σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′
)
, (16)

where

ε ′(k, σωσ
k

) = ∂ε
(
k, σωσ

k

)
/∂

(
σωσ

k

)
,

γ α
k = −2 Im ε

(
k, σωα

k

)
/ε ′(k, σωα

k

)
,

Sα
k =

∑
a

4e2
an̂

k2 [ε ′(k, σωα
k )]2

∫
dv δ

(
σωα

k − k · v
)
fa(v),

A
αβ

k,k′ = 4

ε ′(k, σωα
k )

Im

(
P

2 {χ(2)(k′, σ ′ωβ

k′ |k − k′, σωα
k − σ ′ωβ

k′) }2

ε(k − k′, σωα
k − σ ′ωβ

k′)

− χ̄ (3)
(
k′, σ ′ωβ

k′ | − k′,−σ ′ωβ

k′ |k, σωα
k

))
, (17)

B
αβ

k,k′ =
∑

a

16e2
an̂

ε ′(k, σωα
k )

|χ(2)(k′, σ ′ωβ

k′ |k − k′, σωα
k − σ ′ωβ

k′) |2
|k − k′|2 |ε(k − k′, σωα

k − σ ′ωβ

k′)|2

×
∫

dv δ
[
σωα

k − σ ′ωβ

k′ −
(
k − k′) · v

]
fa(v),

M
αβγ

k,k′ = 4π

ε ′(k, σωα
k )

∫
dk′ |χ(2)

(
k′, σ ′ωβ

k′ |k − k′, σ ′′ωγ

k−k′
) |2.

This is the formal wave kinetic equation. Many early treatises on nonlinear plasma kinetic
theory would often develop the formulation only up to the stage equivalent to the above
formal equation. However, as one can see, unless the various nonlinear susceptibilities are
explicitly worked out, the above equation is not very informative. In the literature, the first
and second terms on the right-hand side are designated as the induced and spontaneous
emission terms, respectively, while the third and fourth terms are called the induced and
spontaneous scattering, respectively. The final term is said to depict the decay processes, but
the first two terms within large parenthesis are said to be responsible for the induced decay
process, while the final term corresponds to the spontaneous decay. The reason for these
terminologies becomes eminently self-evident if one starts from the principle of detailed
balance, which is based upon concepts of quantum field theory (Tsytovich 1970, 1977a,
1977b; Melrose 1980). However, within the context of the present statistical mechanical
approach, there is no a priori reason why we should call these terms as such. Note that
spontaneous emission and scattering terms would be absent had we resorted to the purely
Vlasov approximation in which the source fluctuation (5) is set equal to zero.

It turns out that the induced and spontaneous emission processes are dictated by linear
wave-particle resonant interaction governed by the condition, σωα

k − k · v = 0, the induced
and spontaneous scattering processes are dictated by nonlinear wave-particle resonant in-
teraction, σωα

k − σ ′ωβ

k′ − (k − k′) · v = 0, and the induced and spontaneous decay processes
are dictated by nonlinear wave-wave resonance, σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′ = 0. Examining
the various terms in (16) and (17), one may realize that these resonance conditions are not
apparent in all the terms. The reason is that some of the resonance conditions are hidden
within the definitions of the various susceptibilities and only reveal themselves after the
response functions are explicitly computed.
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3.2 Induced and Spontaneous Emissions

Induced emission terms for L and S modes are well-known in the literature and also dis-
cussed in Yoon (2000),

∂IσL
k

∂t

∣∣∣∣
ind.emiss.

= πσωL
k

ω2
pe

k2

∫
dv δ

(
σωL

k − k · v
)

k · ∂fe

∂v
I σL

k ,

∂I σS
k

∂t

∣∣∣∣
ind.emiss.

= πμkσωL
k

ω2
pe

k2

∫
dv δ

(
σωS

k − k · v
)

k · ∂

∂v

(
fe + me

mi

fi

)
I σS

k ,

(18)

where ωpe = (4πn̂e2/me)
1/2 is the electron plasma frequency; me and mi are the electron

and ion masses, respectively; and we have made use the familiar dispersion relations,

ωL
k = ωpe

(
1 + 3k2λ2

De/2
)
,

ωS
k = ωpe kλDe(me/mi)

1/2(1 + 3Ti/Te)
1/2

(
1 + k2λ2

De

)−1/2
,

(19)

and the properties of the linear dielectric, 1/ε′(k, σωL
k ) = σωL

k /2, 1/ε ′(k, σωS
k) =

μk σωL
k /2, where

μk = k3λ3
De

√
me/mi (1 + 3Ti/Te)

1/2. (20)

Here, vte = (2Te/me)
1/2 is the thermal speed of the background electrons. Induced emission

process is variously called the (quasi) linear or Landau growth/damping process.
Spontaneous emission terms for these modes can also be computed in a straightforward

manner on the basis of the dielectric constant;

∂IσL
k

∂t

∣∣∣∣
spont.emiss.

= n̂e2ω2
pe

k2

∫
dv δ

(
σωL

k − k · v
)
fe,

∂I σS
k

∂t

∣∣∣∣
ind.emiss.

= μ2
kn̂e2ω2

pe

k2

∫
dv δ

(
σωS

k − k · v
)
(fe + fi).

(21)

3.3 Induced and Spontaneous Decay Processes

The expression for decay processes is discussed by Yoon (2000), and can also be found in
standard literature,

∂IσL
k

∂t

∣∣∣∣
decay

= 2
∑

σ ′,σ ′′=±1

σωL
k

∫
dk′ V L

k,k′ δ
(
σωL

k − σ ′ωL
k′ − σ ′′ωS

k−k′
)

× (
σωL

k I σ ′L
k′ I σ ′′S

k−k′ − σ ′ωL
k′ I σ ′′S

k−k′ I σL
k − σ ′′μk−k′ ωL

k−k′ I σ ′L
k′ I σL

k

)
,

(22)
∂IσS

k

∂t

∣∣∣∣
decay

=
∑

σ ′,σ ′′=±1

σμk ωL
k

∫
dk′ V S

k,k′ δ
(
σωS

k − σ ′ωL
k′ − σ ′′ωL

k−k′
)

× (
σμk ωL

k I σ ′L
k′ I σ ′′L

k−k′ − σ ′ωL
k′ I σ ′′L

k−k′ I σS
k − σ ′′ωL

k−k′ I σ ′L
k′ I σS

k

)
,

where

V L
k,k′ = π

4

e2

T 2
e

(k · k′)2

k2 k′2 |k − k′|2 , V S
k,k′ = π

4

e2

T 2
e

[k′ · (k − k′)]2

k2 k′2 |k − k′|2 . (23)

The first terms within the parentheses on the right-hand sides of (22) are called the sponta-
neous decay while the remaining terms depict the induced decay processes.
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It is interesting to observe that the following conservation relation for the “plasmon num-
ber densities” exists within the context of the above three-wave coupling equations:

∑
σ=±1

∂

∂t
|decay

∫
dk

(
I σL

k

ωL
k

+ 2I σS
k

μk ωL
k

)
= 0. (24)

Note that NσL
k = I σL

k /�ωL
k and NσS

k = I σS
k /�μkω

L
k , where � is the Planck constant, can be

conceived of as the “quantum mechanical” plasmon number densities, although the present
formalism is strictly classical. In the literature, sometimes the quantities NσL

k and NσS
k are

used as the fundamental quantities instead of intensities, I σL
k and I σS

k . Since the three-wave
decay/coalescence process involves two Langmuir waves and an ion-sound wave, the total
plasmon number density of conserved Langmuir mode equals twice that of the ion-sound
mode.

3.4 Induced and Spontaneous Scattering Processes

For nonlinear scattering processes, we keep only the most important term, namely the scat-
tering of L mode off another L mode mediated by the ions (sometimes called the scattering
off thermal ions), as discussed in standard literature. Consequently, the induced scattering
process is dictated by

∂IσL
k

∂t

∣∣∣∣
ind.scatt.

= π

ω2
pe

e2

memi

(
σωL

k

) ∑
σ ′=±1

∫
dk′

∫
dv

(k · k′)2

k2 k′2

× δ
[
σωL

k − σ ′ωL
k′ − (

k − k′) · v
] (

k − k′) · ∂fi

∂v
I σ ′L

k′ I σL
k , (25)

In Yoon (2000) the induced scattering of an ion-sound wave off another ion-sound wave was
discussed. Moreover, the same L − L scattering as depicted by the above but mediated by
the electrons (also known as the electron nonlinear Landau damping in the literature) was
also considered. However, the former process is an extremely slow process, and the latter
process becomes almost totally irrelevant owing to the electron’s low mass, when compared
with the scattering off thermal ions. Spontaneous scattering terms were derived in Yoon
(2005),

∂IσL
k

∂t

∣∣∣∣
spont.scatt.

= −(
σωL

k

) n̂e4

T 2
e

λ4
De

∑
σ ′=±1

∫
dk′

∫
dv

(k · k′)2

k2 k′2

× (
σ ′ωL

k′ I σL
k − σωL

k I σ ′L
k′

)
δ
[
σωL

k − σ ′ωL
k′ − (

k − k′) · v
]
fi. (26)

3.5 Electron Kinetic Equation

The electron kinetic equation (10) reduces to the following upon making use of (15):

∂fe

∂t
= ∂

∂vi

(
Aife + Dij

∂fe

∂vj

)
,

Ai = e2

4πme

∫
dk

ki

k2

∑
σ=±1

σωL
k δ

(
σωL

k − k · v
)
, (27)

Dij = πe2

m2
e

∫
dk

kikj

k2

∑
σ=±1

δ
(
σωL

k − k · v
)
I σL

k .
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In the present discussion the ions shall be treated as quasi-stationary, so that we do not need
to consider the kinetic equation for the ion distribution function.

Before we move on to the main discussion of electron acceleration by weak Lang-
muir turbulence, it is instructive to discuss the difference between the above kinetic equa-
tion for the particles and the Balescu-Lénard collisional kinetic equation (Balescu 1960;
Lénard 1960). Note that the general form of particle kinetic equation is given by (10). The
kinetic equation (27) is the result of ignoring the thermal fluctuation 〈δE2〉0

k,ω in (13). In
contrast, Balescu-Lénard equation results from the opposite limit where the total electric
field eigenfunction �k,ω is approximated by 〈δE2〉0

k,ω . Thus, if we approximate the electric
field fluctuation by〈

δE2
〉
k,ω

= 〈
δE2

〉0
k,ω

,

〈
δE2

〉0
k,ω

= 2

π

1

k2 ε∗(k,ω)

∑
a

e2
an̂

∫
dv δ(ω − k · v) fa(v),

(28)

and insert this result to (10), then we have

∂fa(v)

∂t
=

∑
b

2n̂ e2
ae

2
b

m2
a

∂

∂vi

∫
dk

∫
dv′ ki kj

k2

× δ(k · v − k · v′)
|ε(k,k · v)|2

(
∂

∂vj

− ma

mb

∂

∂v′
j

)
fa(v) fb

(
v′), (29)

which is the desired Balescu-Lénard collisional kinetic equation. Clearly, the approxima-
tion (28) breaks down near (k,ω) space where ε(k,ω) = 0. As a result, when applying (28)
one must exclude those portions of (k,ω) space for which ε(k,ω) = 0. If we determine the
electric field by the above form, then by definition, we are assuming that the contributions
from the zeros of ε(k,ω), i.e., the collective modes, are insignificant. That is, in this regime
collective oscillations (such as arising from instabilities) are not assumed to play any dom-
inant role, but the electric field is predominantly determined by spontaneous emission from
bulk particles. Physically, such an assumption is valid when the plasma is close to thermal
equilibrium state.

In short, Balescu-Lénard kinetic equation is appropriate for long-term particle evolu-
tion when the system deviates slightly from thermal equilibrium. When the plasma system
contains highly non-thermal features such as energetic electron beam, then the collective os-
cillation arising from the zeros of linear dielectric, ε(k,ω) will become far more important
than thermal emission from the bulk particles, such that the electric field can no longer be
simply given by (28), but rather, in this case, the approximation (13) is more appropriate.
Then, the appropriate particle kinetic equation is (27).

4 Electron Acceleration by Langmuir Turbulence

We now apply the weak turbulence formalism derived in the previous section to the problem
of electron acceleration to suprathermal energies by Langmuir turbulence. In the numerical
analysis, it is more convenient to absorb the factor μk in the definition for the ion-sound
turbulence intensity,

I σS
k → I σS

k /μk. (30)

This is largely for mathematical convenience as doing so removes certain superficial singu-
larity. Physically, the quantity I σS

k /μk is related to the so-called semi-classical “plasmon”
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density, NσS
k ∝ I σS

k /(μkω
L
k ). For Langmuir waves, we simply have NσL

k ∝ I σL
k /ωL

k —see
the discussion immediately following (24). Consequently, the redefined ion-sound turbu-
lence intensity (30) has a specific physical basis. In plotting the numerical results, however,
we shall resort to the original definition of ion-sound turbulence intensity, by multiplying
the factor μk to the redefined quantity I σS

k computed from the wave equation for the ion
sound mode.

Let us rewrite the entire set of weak turbulence equations in dimensionless form on the
basis of the following normalization scheme:

T = ωpet, xα
q = ωα

k/ωpe,

q = kvT e/ωpe, u = v/vT e,
(31)

fa(u) = v3
T e fa(v), I σα

q = (2π)2g Iσα
k /

(
me v2

T e

)
,

M = mi/me, τ = Ti/Te.

The quantity g is an effective plasma parameter

g = 1

n̂λ3
De

1

23/2 (4π)2
. (32)

For typical laboratory beam-plasma experiment, the density is n̂ ≈ 109 per c.c., and the
electron temperature can be a few tens of eV’s. In this case, the plasma parameter can be of
the order of 10−4–10−3. For interplanetary space, the plasma density is typically n̂ ≈ 1 per
c.c., and Te ≈ O(10) eV. For such an environment, we find that 1/(n̂λ3

De) ≈ 10−5 ∼ 10−4.
Further examples are that for glow discharge experiment 1/(n̂λ3

De) ≈ 3.33 × 10−3, and for
chromosphere 1/(n̂λ3

De) ≈ 5 × 10−4. The above shows that 1/(n̂λ3
De) in the range of ∼ 10−4

to ∼ 10−3 is typical for many plasma environments in which the Langmuir turbulence pro-
cess may be operative. For thermonuclear fusion experimental devices, on the other hand,
1/(n̂λ3

De) can be as low as 2 × 10−8. For such a high-temperature plasma, the purely colli-
sionless theory is indeed justifiable, but as we have briefly overviewed, for other situations
the effects of spontaneous thermal fluctuations may not be completely ignorable.

In terms of the above normalization, the electron particle kinetic equation is given in the
following dimensionless form:

∂fe(u)

∂T
= ∂

∂ui

(
Ai(u) fe(u) + Dij (u)

∂fe(u)

∂uj

)
,

Ai(u) = g

∫
dq

qi

q2

∑
σ=±1

σxL
q δ

(
σxL

q − q · u
)
, (33)

Dij (u) =
∫

dq
qi qj

q2

∑
σ=±1

δ
(
σxL

q − q · u
)
I σL

q .

Note that the collisional drag term Ai has an overall factor g on the right-hand side, showing
clearly that the drag effect is related to spontaneous thermal fluctuations and that for purely
collisionless plasmas this term is absent.

The dimensionless Langmuir wave equation is given by

∂IσL
q

∂T
= π

q2

∫
du δ

(
σxL

q − q · u
)(

g fe(u) + σxL
q I σL

q q · ∂fe(u)

∂u

)

+ 2
∑
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σxL
q

∫
dq′ μq−q′ (q · q′)2

q2 q ′2 |q − q′|2 δ
(
σxL

q − σ ′xL
q′ − σ ′′xS

q−q′
)
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× (
σxL

q I σ ′L
q′ I σ ′′S

q−q′ − σ ′xL
q′ I σ ′′S

q−q′ I σL
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q2 q ′2 δ
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M
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q

(
q − q′) · ∂fi(u)

∂u

]
. (34)

In the above, terms that possess the factor g owe their existence to the spontaneous effects.
They are spontaneous emission and scattering terms. The normalized ion-sound wave equa-
tion, given in terms of redefined intensity (30), is given by

∂IσS
q

∂T
= πμq

q2

∫
du δ

(
σxS

q − q · u
)[

g
[
fe(u) + fi(u)

]

+ σxL
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(
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+
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∫
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q2 q ′2 |q − q′|2 δ
(
σxS
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)

× (
σxL
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q
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. (35)

The dimensionless expressions for wave dispersion relation and the auxiliary quantity μq

are given by

xL
q = 1 + 3q2

4
, xS

q = q

√
1 + 3τ

M(2 + q2)
,

μq = q3
√

(1 + 3τ)/(8M).

(36)

4.1 One-Dimensional Case

In what follows, we consider a simple one-dimensional (1D) situation. The 1D approxima-
tion may be justifiable if the implicit ambient magnetic field is sufficiently strong such as
that both the electron and Langmuir wave dynamics is restricted along the direction of the
ambient magnetic field. As noted, the ions are assumed to be quasi-stationary in time. The
initial electron and stationary ion distributions are given by the following:

fe(u,0) = (1 − δ) e−u2

π1/2
+ δ exp[−(u − U0)

2/ρ]
(πρ)1/2

,

(37)

fi(u) = M1/2

(πτ)1/2
exp

(
−Mu2

τ

)
.

In (37), we have introduced additional dimensionless quantities,

U0 = V0/vT b, ρ = Tb/Te, δ = n̂b/n̂e, (38)

namely, the ratio of average beam speed to thermal speed, and the ratios of beam-to-
background temperatures and densities. Here vT b = (2Tb/me)

1/2 is the beam thermal speed.
We assume that we consider 1% beam-to-background density ratio, δ = 0.01, equal thermal
spreads for the beam and background electrons, ρ = 1, electron-to-ion temperature ratio of
τ = 1/7, average beam drift speed equal to four time higher than thermal speed, U0 = 4,
and of course, the real ion-to-electron mass ratio, M = 1836. We also consider the value for
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Fig. 1 Langmuir and ion-sound
wave intensities, IL(q) and
μq IS(q), versus q and T

the plasma parameter equal to g = 1/n̂λ3
De = 5 × 10−3. Of course the above choice of pa-

rameters represents only a sample case and that variations of input parameters are possible.
However, the purpose of the numerical examples to be displayed below is to demonstrate
that a quasi-power law tail population can result in the long-time nonlinear evolution of
the electron beam-Langmuir turbulence system. To serve such a purpose, it is sufficient to
consider one representative example.

Shown in Fig. 1 are Langmuir and ion-sound wave intensities, IL(q) and μq IS(q), plot-
ted versus normalized wave number q , and normalized time T . The portion of the wave
intensity corresponding to positive q space belongs to σ = +1, while q < 0 space corre-
sponds to σ = −1. We have combined both σ ’s using the entire q space by making use
of the symmetry property, IσL(−q) = IσL(q) and IσS(−q) = IσS(q), and omitted σ after
we have plotted the results. The forward-propagating Langmuir waves, I+L(q), with the
range of q centered around ∼ 0.3 are designated as primary Langmuir waves, while the
backscattered L modes possess opposite q values, I−L(|q|). The excitation of long wave-
length Langmuir modes (i.e., small q) is the so-called Langmuir condensation phenomenon,
which is noticeable for long time range. The time shown in Fig. 1 correspond to the nor-
malized time T = 1 × 104. Note that the ion-sound waves are first excited as a result of
decay instability, but as time goes by, the decay process eventually diminishes such that the
ion-sound turbulence level diminishes also. The fact that Langmuir spectrum remains robust
indicates that the scattering off quasi-stationary ions persists.

The time evolution of the electron distribution fe(u) versus u starting from initial time
T = 0 and the final computational time T = 2 × 104, is shown in Fig. 2. For relatively early
time, the familiar quasilinear plateau formation associated with the initial beam distribution
can be seen. However, over long time scale a significant heating of the electrons in the
suprathermal range can be seen. The primary reason for the acceleration of electrons is the
formation of Langmuir condensate mode, q � 1, by nonlinear mode coupling processes.
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Fig. 2 Normalized electron
distribution fe(u) versus u from
initial time T = 0 (blue line) until
the final computational time
T = 2 × 104 (black line) with
intermediate times (red lines).
Superposed is the kappa model
with κ = 3.5 (magenta dots)

Small q allows electrons with increasingly higher speeds to participate in the wave-particle
resonance, and thus, get energized.

From space observation the energetic electron distributions are often modeled by the
kappa distribution (1), as discussed already. The kappa model in 1D with proper normaliza-
tion constant is given by

fκ(u) = �(κ + 1)

(π κ)1/2 �(κ + 1/2)

1

(1 + u2/κ)κ+1
. (39)

Superposed in Fig. 2 is the kappa distribution (41) with index κ = 3.5. Observe the rather
good fit of the numerical solution at T = 2 × 104 with the model kappa distribution. How-
ever, whether such a kappa value is indeed the asymptotic value or not cannot be determined
on the basis of the numerical solution. As it will be shown in later discussion, the true asymp-
totic kappa value (for T → ∞) is much lower than 3.5. To sum up the present 1D Langmuir
turbulence and electron acceleration problem, we find that it is the nonlinear mode cou-
pling which leads to the inverse cascade of Langmuir turbulence, which in turn, leads to the
acceleration of electrons to suprathermal energies.

4.2 Higher-Dimensional Situation

The preceding discussion with the simplifying assumption of 1D may be applicable when
the implicit ambient magnetic field is strong. However, for weak magnetic field the dynamics
may be quasi-isotropic. To discuss such an effect, we have developed a numerical code to
solve the set of (33)–(35) in two-dimensional (2D) wave number and velocity space. With
cylindrical symmetry, our result can also be viewed as essentially a three-dimensional (3D)
calculation as well.

In Fig. 3 we show the time evolution of the electron distribution function by plot-
ting fe vs u⊥ = v⊥/vT e and u‖ = v‖/vT e at t = 0, t = 2000ω−1

p , and t = 5000ω−1
p . The

well-known quasilinear plateau formation along parallel direction can be seen, but the
result also displays perpendicular broadening of the beam distribution accompanied by
the production of the backward tail, which becomes prominent at t = 5000ω−1

p . We thus
conclude that the energetic tail formation takes place in higher dimensions as well, al-
though we have not solved the set of equations long enough to demonstrate the asymptotic
stage.
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Fig. 3 Electron distribution
function, fe(v⊥, v‖,0), vs
v⊥/vT e and v‖/vT e , in vertical
logarithmic scale, at three
different time intervals, t = 0,
ωpt = 2000; and ωpt = 5000

Figure 4 shows the Langmuir spectrum vs q⊥ = k⊥ve/ωp and q‖ = k‖ve/ωp , at ωpt =
500, 2000, and 5000. Figure 2 shows that the higher-dimensional Langmuir turbulence spec-
trum forms a circular ring-like structure in 2D wave number space. Of course, we have also
solved the S wave spectrum but the result is not shown.

To recap the discussion in the present section, we have shown, by numerically solving
the entire set of equations of weak turbulence theory, either in 1D or higher dimensions, that
the Langmuir turbulence generated by the beam-plasma instability leads to the acceleration
of electrons to suprathermal energies. However, these discussions are based upon numer-
ical initial value solution. It is not evident that the formation of kappa-like state, which
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Fig. 4 L wave intensity, at
ωpt = 500, ωpt = 2000, and
ωpt = 5000, vs k⊥ve/ωp and
k‖ve/ωp , in vertical logarithmic
scale

was clearly demonstrated in 1D and implied in 2D, does indeed correspond to the rigor-
ous asymptotically steady-state solution or not in a mathematical sense. Also, it is not clear
whether the kappa index κ = 3.5, which provided a reasonable fit in 1D case, is indeed the
asymptotic value or not.

To address the issue of whether the basic set of coupled electron-Langmuir turbulence
equations do indeed lend themselves to an asymptotically steady-state solution or not,
we next turn to the problem of self-consistent, steady-state, asymptotic solution of the
electrons-Langmuir turbulence system, i.e., the problem of finding a dynamic equilibrium
for suprathermal electron-Langmuir turbulence system.
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5 Turbulent Quasi-Equilibrium for Suprathermal Electrons

5.1 One-Dimensional Situation

Let us consider the electron kinetic equation (27) in steady-state (∂/∂t = 0). In one-
dimensional limit (27) reduces to

0 =
∑
+,−

∫ ∞

0
dk δ

(
ωL

k ± kv
)(mev

4π2
fe + IL

k

∂fe

∂v

)
. (40)

From this it is straightforward to see that the formal solution is given by Hasegawa et al.
(1985)

fe = C exp

(
−

∫
dv

mev

4π2IL
k

)
, (41)

where C is the normalization constant. It should be noted, however, that the diffusion co-
efficient D contains the wave intensity, the asymptotic form of which must be determined
by solving the wave kinetic equation. Consequently, despite its apparent simplicity, (41) is
a rather convoluted mathematical object.

Suppose that the asymptotically steady-state solution is a kappa-like distribution,

fe = C

(1 + mev2/2κ ′ Te)κ
,

(42)

C = m
1/2
e

(2π Te)1/2

�(κ)

κ ′1/2 �(κ − 1/2)
,

where (42) is different from the customary kappa distribution (see, for example, Vasyliunas
1968) in that we adopt two different kappa parameters, namely, κ and κ ′. Note that the
kappa velocity distribution functions found in the literature are either given by fe ∼ (1 +
mev

2/2κTe)
−κ or fe ∼ (1 + mev

2/2κTe)
−κ−1. In contrast, the present model (42) allows

two independent kappa indices. It is well known that the effective temperature for the kappa
model differs from Maxwellian temperature. The relation between the effective temperature
and the Maxwellian temperature in the case of (42) is Teff = Te κ ′/(κ −3/2). The question is
what kind of wave spectrum IL(k) will be consistent with (42)? To answer this question, we
proceed as follows: Upon taking the logarithm of (40), making use of the integral identity,

κ ln

(
1 + mev

2

2κ ′ Te

)
= κ

κ ′

∫
dv

mev/Te

1 + mev2/(2κ ′ Te)
, (43)

and upon approximating ωL
k ≈ ωpe , we obtain

1

1 + mev2/(2κ ′ Te)
= κ ′

κ

Te

4π2

1

[IL(k)]k=ωpe/|v|
. (44)

From this, by virtue of the resonance condition, |v| = ωpe/k, we readily obtain the turbu-
lence intensity that leads to the kappa-like steady-state particle distribution (42),

IL(k) = κ ′

κ

Te

4π2

(
1 + ω2

pe

κ ′ k2v2
T e

)
, (45)

where v2
T e = 2Te/me is the Maxwellian thermal speed. It is important to note that the above

Langmuir turbulence intensity is the result of simply requiring that the steady-state electron
distribution be given by (42). There is, however, no a priori reason why (45) should also
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correspond to the asymptotically steady-state solution of the nonlinear wave kinetic equa-
tion. The remaining task is, therefore, to see whether the turbulence spectrum (45) is indeed
the asymptotic self-consistent solution of the wave kinetic equation as well. So, we now turn
to the discussion of the waves.

Before we consider the turbulent wave kinetic equation, we must modify the dispersion
relations so that the bulk electron velocity distribution is given by (42) rather than the cus-
tomary Maxwellian model. Yoon (2011) obtained the modified Langmuir mode dispersion
relation when the electron distribution is given by the kappa-like model (42). The result is
the following:

(
ωL

k

)2 = ω2
pe

(
1 + κ ′

κ − 3/2

3

2

k2v2
T e

ω2
pe

)
. (46)

With the generalized dispersion relation we now move on to the discussion of the wave
kinetic equation.

The wave kinetic equations must also be slightly modified since the derivation of specific
forms of nonlinear susceptibilities depends on the assumption that the electron distribution
is given by the Maxwellian form. Yoon (2011) also provides the modified wave kinetic equa-
tion suitable for the present discussion of asymptotic steady-state equilibrium. Yoon (2011)
shows that of the nonlinear terms, namely, three-wave decay and nonlinear wave-particle
scattering processes, the decay terms can be ignored when compared with the scattering
terms. As a result, the steady-state weak turbulence equation for Langmuir waves is given
by

0 = ω2
pe

k2

∫
dv δ

(
ωL

k − k · v
)(ne2

π
fe + ωk IL

k k · ∂fe

∂v

)

−
(

κ − 1/2

κ ′

)2
ωk

4πnTi

∑
+,−

∫
dk′

∫
dv

× (k · k′)2

k2 k′2 δ
[
ωL

k ∓ ωL
k′ − (

k − k′) · v
]

×
(

Ti

4π2

(±ωL
k′ IL

k − ωL
k IL

k′
) + IL

k′ IL
k

(
ωL

k ∓ ωL
k′
))

fi. (47)

Taking the 1D limit, upon explicitly writing out various terms associated with different signs
of σ ′, σ ′′ = ±1 and discarding those terms that do not satisfy the resonance conditions we
find that (47) reduces to

0 ≈ ω2
pe

|k|3
(

ne2

π
fe(v) + IL(k)ωpe k

∂fe(v)

∂v

)
v=ωpe/k

− ω2
pe

4πnTi

1

π1/2 vT i

∫ ∞

0

dk′

|k + k′|
[

Ti

4π2

[
IL(k) − IL

(
k′)]

+ κ ′

κ − 3/2

Ti

4π2

3

2

[
k′2λ2

De IL(k) − k2λ2
De IL

(
k′)]

+ κ ′

κ − 3/2

3

2

(
k2 − k′2)λ2

De IL

(
k′) IL(k)

]

× exp

[
−

(
κe

κe − 1/2

)2 9

8

θe

Ti

mi

me

(
k − k′)2

λ2
De

]
. (48)

In (48) we have made use of linear dispersion relation (46).
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Let us consider the first term on the right-hand side of (48), namely, the terms depicting
the balance of spontaneous and induced emission processes. Upon making use of (42) we
have (

ne2

π
fe(v) + IL(k)ωpe k

∂fe(v)

∂v

)
v=ωpe/k

= ne2

π

[
1 − IL(k)

κ

κ ′
4π2

Te

(
1 + ω2

pe

κ ′k2v2
T e

)−1][
fe(v)

]
v=ωpe/k

. (49)

From this, we readily obtain the Langmuir turbulence spectrum,

IL(k) = κ ′

κ

Te

4π2

(
1 + ω2

pe

κ ′ k2v2
T e

)
, (50)

which is none other than (45). We remind the readers that (45) was deduced purely from
the requirement that the asymptotic distribution be given by (42) without considering the
wave dynamics. The balance of spontaneous and induced emission terms proves that (45)
is indeed correct. From this, it is clear that, at least (42) and (45) are consistent with the
balance of spontaneous and induced emission processes. However, the remaining question
is whether electron kappa-like distribution, (42), and the corresponding Langmuir turbulence
spectrum, (45) or equivalently (50), are also consistent with the balance of nonlinear terms
in the steady-state wave kinetic equation (48).

Making use of

ω2k−ε IL(k − ε) IL(k) − ω2k+ε IL(k + ε) IL(k) ≈ −12ωpe

κ ′

κ − 3/2
ε kλ2

De

[
IL(k)

]2

− 2ε ωpe IL(k)
dIL(k)

dk
, (51)

we may rewrite the nonlinear terms in (48) as follows:

n.l. = −
(

mi

me

Te

Ti

)3/2 ∫ ∞

0

dk′

|k + k′|
[

Ti

4π2

[
IL(k) − IL

(
k′)]

+ κ ′

κ − 3/2

Ti

4π2

3

2

[
k′2λ2

De IL(k) − k2λ2
De IL

(
k′)]

+ κ ′

κ − 3/2

3

2

(
k2 − k′2)λ2

De IL

(
k′) IL(k)

]

× exp

[
−

(
κ ′

κ − 3/2

)2 9

8

Te

Ti

mi

me

(
k − k′)2

λ2
De

]
. (52)

The k′ integral may be evaluated by writing k′ = k + δk′ and expanding the integrand for
small δk′. This is justified by the fact that the integrand contains the exponential factor
with the argument proportional to −(mi/me)(k − k′)2, which shows that unless k ∼ k′ the
integrand becomes exceedingly small. Thus proceeding, we have

n.l. = −2

3

(
mi

me

Te

Ti

)1/2
κ − 3/2

κ ′

[
Ti

4π2

(
1 + κ ′

κ − 3/2

3k2v2
T e

4ω2
pe

)
dIL(k)

d(3k2v2
T e/4ω2

pe)

+ κ ′

κ − 3/2

[
IL(k)

]2 − κ ′

κ − 3/2

Ti

4π2
IL(k)

]
. (53)

Setting the quantities within the large parenthesis equal to zero leads to an alternative ex-
pression for the asymptotically steady-state Langmuir turbulence intensity,
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0 =
(

1 + κ ′

κ − 3/2

3k2v2
T e

4ω2
pe

)
dIL(k)

d(3k2v2
T e/4ω2

pe)

+ 4π2

Ti

κ ′

κ − 3/2

[
IL(k)

]2 − κ ′

κ − 3/2
IL(k). (54)

The above equation enjoys an exact solution,

IL(k) = Ti

4π2

(
1 + 4 (κ − 3/2)

3

ω2
pe

κ ′ k2v2
T e

)
. (55)

On the other hand, we know the stationary kappa-like distribution (42) has a self-consistent
turbulence spectrum given by (45), or equivalently, (50). Consequently, upon equating (45)
and (55), we obtain

κ = 9

4
= 2.25, κ ′ = Ti

Te

κ = 9Ti

4Te

. (56)

That is, if κ and κ ′ are given by (56), then the time-asymptotic solution of the wave ki-
netic equation produces a consistent solution whether we balance spontaneous and induced
emissions, or whether we balance spontaneous and induced scattering processes, and the
resulting time-asymptotic turbulence spectrum is also consistent with the kappa-like elec-
tron velocity distribution function. Note that under the present result (56), the suprathermal
electrons behave as

fe ∝ v−4.5, (57)

whereas the empirical fit shown in Fig. 2 implies fe ∝ v−9.0. This shows that the numerical
solution shown in Fig. 2 has not approached the true asymptotic state, and this also justifies
the present analytical approach for determining the true asymptotic steady-state equilibrium.

5.2 Three-Dimensional Case

The previous discussion pertaining to the simple one-dimension may be justified when the
implicit ambient magnetic field is strong. Such a situation may be envisioned, for exam-
ple, near the Solar corona. However, for situations near 1 AU where the ambient magnetic
field is weak, one must relax the assumption of one-dimensionality and consider fully three-
dimensional case. From numerical solutions shown in Sect. 4.2, we also know that Langmuir
turbulence in 2D or 3D (with cylindrical symmetry) involves quasi-three dimensional veloc-
ity distribution function for the electrons and a quasi-three dimensional Langmuir turbulence
spectrum. For this reason, we now discuss the problem of three-dimensional isotropic elec-
tron distribution and three-dimensional (but not necessarily isotropic, as it will turn out)
Langmuir turbulence spectrum.

Let us consider the electron kinetic equation (27) again. We may decompose the wave
vector and the velocity into components perpendicular and parallel with respect to a refer-
ence axis (say, the weak ambient magnetic field), k = k⊥ê⊥ + k‖ê‖ and v = v⊥ê⊥ + v‖ê‖.
Then, if we allow an approximate wave-particle resonance condition, ω−k ·v ≈ ω−k‖v‖ =
0, then one may show that the perpendicular component of Ai and the off-diagonal elements
of Dij vanish,

A = e2ω2
pev‖

4πmev
2
‖

∑
σ=±1

∫
dk
k2

δ(σωpe − k‖v‖),
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D = D⊥
(

I − v‖v‖
v2

‖

)
+ D‖

v‖v‖
v2

‖
,

(58)

D⊥ = πe2

m2
e

∫
dk

k2
⊥

k2

∑
σ=±1

δ(σωpe − k‖v‖) IL(k),

D‖ = πe2ω2
pe

m2
ev

2
‖

∫
dk
k2

∑
σ=±1

δ(σωpe − k‖v‖) IL(k).

Let us define the reduced distribution,

F̄e(v‖) = 2π

∫ ∞

0
dv⊥ v⊥ fe. (59)

Then, by integrating the particle kinetic equation (27) over perpendicular velocity,
2π

∫ ∞
0 dv⊥ v⊥, we obtain a reduced particle kinetic equation in the steady-state,

0 =
∑
σ=±1

∫ ∞

−∞
dk‖ H

(
k2

‖
)
δ(σωpe − k‖v‖)

(
mev‖
4π2

F̄e + I
(
k2

‖
) ∂F̄e

∂v‖

)
, (60)

where

H
(
k2

‖
) = 2π

∫ ∞

0

k⊥ dk⊥
k2

⊥ + k2
‖
,

(61)

H
(
k2

‖
)

I
(
k2

‖
) = 2π

∫ ∞

0

k⊥ IL(k2
⊥, k2

‖) dk⊥
k2

⊥ + k2
‖

.

Note that technically the quantity H(k2
‖) diverges. However, if we introduce a suitable upper

limit in the k⊥ integral, say limit the integral range to 0 < k⊥ < k0, then we may formally
perform the integration and obtain the result, H(k2

‖) = π ln(1 + k2
0/k2

‖). On the basis of the
above consideration, the time-asymptotic state for the reduced distribution is given by

F̄e = C exp

(
−

∫
dv‖

mev‖
4π2

1

[I(k2
‖)]k2‖=ω2

pe/v
2‖

)
, (62)

where C is the normalization constant.
If we suppose that 3D isotropic asymptotically steady-state solution is given by a kappa-

like distribution,

fe = C ′

(1 + v2/κ ′ v2
T e)

κ
,

(63)
C ′ = 1

π3/2 v3
T e

�(κ)

κ ′3/2 �(κ − 3/2)
,

then the reduced distribution is given by a similar 1D kappa-like distribution except that the
power-law (or kappa) index is reduced by 1,

F̄e = C

(1 + v2
‖/κ ′ v2

T e)
κ−1

,

(64)
C = 1

π1/2 vT e

�(κ − 1)

κ ′1/2 �(κ − 3/2)
.

Note that the effective temperature for the present kappa-like model (63) is given in terms
of the Maxwellian temperature by Teff = Te κ ′/(κ − 5/2).
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Following the procedure outlined in the previous subsection, the reduced wave spectrum
I(k2

‖) that is consistent with (64) can be obtained as follows:

I
(
k2

‖
) = κ ′

κ − 1

Te

4π2

(
1 + ω2

pe

κ ′ k2
‖v

2
T e

)
. (65)

Note that (65) implies, by virtue of the definition (61), that

2π

∫ ∞

0

k⊥ IL(k2
⊥, k2

‖) dk⊥
k2

⊥ + k2
‖

= H
(
k2

‖
) κ ′

κ − 1

Te

4π2

(
1 + ω2

pe

κ ′ k2
‖v

2
T e

)
. (66)

Solving the above integral equation for IL we obtain the asymptotic three-dimensional Lang-
muir turbulence intensity, which is consistent with the 3D isotropic electron distribution
(63),

IL(k) = κ ′

κ − 1

Te

4π2

k2
‖

k2

H(k2
‖)

π

(
1 + 2ω2

pe

κ ′ k2v2
T e

)
, (67)

where H(k2
‖) = π ln(1 + k2

0/k2
‖), provided a suitable upper limit k0 can be defined. For

instance, k0 can be defined by k0λDe ∼ O(1), where λDe = Te/(4πne2)1/2 is the electron
Debye length. It is important to note, however, the detailed definition for k0 is immaterial to
the present discussion since we are dealing with the reduced electron distribution, F̄e , and
reduced Langmuir turbulence spectrum, I .

In the subsequent analysis, following the previous discussion for 1D case, we now discuss
whether the (reduced) turbulence spectrum (65) does indeed correspond to the asymptotic
self-consistent solution of the wave kinetic equation. Following the previous discussion, we
may ignore the three-wave decay processes at the outset. The resulting steady-state Lang-
muir turbulence wave equation is given by Yoon (2012a)

0 = πω2
pe

k2

∫
dv δ

(
ωL

k − k · v
)(ne2

π
fe + ωL

k IL
k k · ∂fe

∂v

)

−
(

κ − 3/2

κ ′

)2
ωL

k

4πnTi

∑
+,−

∫
dk′

∫
dv

(k · k′)2

k2k′2

× δ
[
ωL

k ∓ ωL
k′ − (

k − k′) · v
][

Ti

4π2

(±ωL
k′ IL

k

− ωL
k IL

k′
) + IL

k′ IL
k

(
ωL

k ∓ ωL
k′
)]

fi. (68)

Let us consider the first term on the right-hand side of (68), namely, the terms depicting
the balance of spontaneous and induced emission processes, which may be written in terms
of the reduced distribution as

0 ≈ ne2ω2
pe

k2

∫
dv‖ δ(ωpe − k‖v‖)

×
(

1 − κ − 1

κ ′
4π2

Te

IL(k2
⊥, k2

‖)
1 + v2

‖/κ ′ v2
T e

)
F̄e(v‖). (69)

Upon integrating the above equation by 2π
∫ ∞

0 dk⊥ k⊥/k2, we readily obtain,
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0 = ne2

k2

∫
dv‖ δ(ωpe − k‖v‖)

×
(

H
(
k2

‖
)κ − 1

κ ′
4π2

Te

H(k2
‖) I(k2

‖)
1 + v2

‖/κ ′ v2
T e

)
F̄e(v‖). (70)

The necessary condition for the equality to be satisfied is when I(k2
‖) is given exactly by

(65). This shows again that, even for 3D case, the balance of spontaneous and induced
emission processes leads to the self-consistent reduced turbulence intensity.

Let us consider the nonlinear terms in (68). Upon ignoring those terms that do not satisfy
the resonance condition, namely those that involve the sum of two frequencies, ωL

k + ωL
k′ ,

we are left with non-vanishing nonlinear terms in (68), which are set equal to zero,

0 =
∫

dk′
∫

dv
(k · k′)2

k2k′2 δ
[
ωL

k − ωL
k′ − (

k − k′) · v
]

×
(

Ti

4π2

(
ωL

k′ IL
k − ωL

k IL
k′
) + IL

k IL
k′

(
ωL

k − ωL
k′
))

fi. (71)

Following the discussion for 1D, we may write k′ = k + δk and expand the integrand for
small δk. Then we have

0 =
∫

d(δk)

∫
dv

(k · k′)2

k2k′2 δ
[
ωL

k − ωL
k′ − (

k − k′) · v
]

× δk ·
(

ωL
k

dIL
k

dk
+ 4π2

Ti

dωL
k

dk

[
IL

k

]2 − dωL
k

dk
IL

k

)
fi. (72)

One may obtain the necessary equality upon setting the quantities within the large parenthe-
sis to zero,

ωL
k

dIL
k

dk
+ 4π2

Ti

dωL
k

dk

[
IL

k

]2 − dωL
k

dk
IL

k = 0. (73)

We are, however, interested only in the reduced turbulence intensity. We thus consider only
the parallel component and integrate the result by 2π

∫ ∞
0 dk⊥ k⊥/k2,

0 =
(

1 + κ ′

κ − 5/2

3k2
‖v

2
T e

4ω2
pe

)
dI(k2

‖)
d(3k2

‖v
2
T e/4ω2

pe)

+ 4π2

Ti

κ ′

κ − 5/2

[
I
(
k2

‖
)]2 − κ ′

κ − 5/2
I
(
k2

‖
)
, (74)

which can be solved as

I
(
k2

‖
) = Ti

4π2

(
1 + 4 (κ − 5/2)

3

ω2
pe

κ ′ k2
‖v

2
T e

)
. (75)

Of course, upon comparison with (65), we immediately obtain the necessary values of κ

and κ ′,

κ = 13

4
= 3.25, κ ′ = Ti

Te

(κ − 1). (76)

To recap the present result, we have now generalized the 1D solution to 3D case, and the
result is the following:
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fe(v) = 1

π3/2 v3
T e

�(κ ′)
κ ′3/2 �(κ − 3/2)

1

(1 + v2/κ ′ v2
T e)

κ
,

IL(k) = Ti

4π2

k2
‖

k2

H(k2
‖)

π

(
1 + 2ω2

pe

κ ′ k2v2
T e

)
, (77)

κ = 13

4
= 3.25, κ ′ = Ti

Te

(κ − 1).

Here H(k2
‖) is the form factor associated with the spontaneous effects, which can be esti-

mated as H(k2
‖) = π ln(1 + k2

0/k2
‖), with k0λDe ∼ O(1). According to the present result, the

suprathermal electrons behave as

fe ∝ v−6.5, (78)

for v � vT e .
Note that in a recently submitted paper (Yoon 2012b), the issue of three-dimensional

turbulent equilibrium was revisited in order to formulate the problem for genuinely field-
free situation. This is because, while the one-dimensional solution discussed in Sect. 5.1 and
Yoon (2011) is rigorously correct, the three-dimensional solution discussed here and in Yoon
(2012a), which is obtained using the cylindrical coordinate representation, is based upon the
assumption that the resonance condition can be approximated by ω − k · v ≈ ω − k‖v‖,
which is not the most general condition. Also, while the electron distribution is isotropic in
velocity, the Langmuir turbulence intensity depends on k‖ [see (77)]. While these features
may describe the situation in which an implicit ambient magnetic field is assumed to be
present, they are not applicable if the plasma is genuinely unmagnetized since the field-
free medium has no preferential direction. To address this issue, Yoon (2012b) reformulated
the problem using a spherical coordinate system in a truly free-field plasma, and obtained
isotropic electron distribution and Langmuir turbulence intensity. Although the derivation
is somewhat different (which we shall not repeat here) the final solution for truly field-free
plasmas is given by Yoon (2012b)

fe(v) = 1

π3/2 v3
T e

�(κ ′)
κ ′3/2 �(κ − 3/2)

1

(1 + v2/κ ′ v2
T e)

κ
,

I (k) = Ti

4π2

(
1 + ω2

pe

κ ′ k2v2
T e

)
, (79)

κ = 13

4
= 3.25, κ ′ = Ti

Te

κ.

It is important to note that the asymptotic behavior fe ∝ v−2κ ∼ v−6.5 remains unchanged.
On the basis of this we believe that the turbulent equilibrium between suprathermal electrons
and Langmuir waves is characterized by the power-law velocity tail with the index close to
−6.5. To test this prediction, we now turn to the solar wind data.

6 Solar Wind Electrons

Wang et al. (2012) did a statistical survey of ∼ 2–20 keV superhalo electron observations
during quiet times in the interplanetary medium in 2007-2008, from the SupraThermal Elec-
tron (STE) instrument (Lin et al. 2008) onboard the STEREO A & B spacecraft. The ob-
served quiet-time VDFs of superhalo electrons fit well to a power-law, f ∝ v−b , from 2 to 20
keV, with b ranging from 5 to 8.7 with average of 6.69±0.90 (1-sigma) and about half of the
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Fig. 5 Omnidirectional electron velocity distribution function (VDF) measured from ∼ 106 m/s (∼ 5eV) to
∼ 108 m/s (∼60 keV) during a quiet period in the interplanetary medium on 9 January 2007, The black line
gives the Maxwellian fit to the solar wind (SW) core and Kappa fit to the SW halo, measured by the Wind
spacecraft. The pink and blue lines are power-law fit to the solar wind superhalo measured by the STEREO
A & B spacecraft. The three spacecraft are located within ∼140 RE (0.06 AU) of each other, near L1, ∼200
RE upstream of the Earth. The inset shows the superhalo electron spectra measured on 30 November 2007
by STEREO A & B, separated by ∼0.7 AU (20.6◦ ahead of, and 21.1◦ ecliptic longitude behind, the Earth,
respectively)

points in a peak at 6.5 < b < 7.5. Figure 5 shows that on 9 January 2007 when WIND and
two STEREO spacecrafts were close together (< 140RE or ∼ 0.06 AU), the observed super-
halo VDFs show similar power-laws, f ∼ v−7.3. About 10 month later when the STEREO
spacecrafts were ∼ 42◦ ecliptic longitude (∼ 0.7 AU) apart, the superhalo electrons (Fig. 5,
insert) show significantly different power-laws (exponents of −5.3 and −6.3) at the two
spacecraft, indicating variations on that spatial scale, and possibly temporal variation on a
scale of months.

Such a variation is not unexpected since the real solar wind is not in exact dynamical
equilibrium. Nevertheless, judging from the fact that theoretical prediction of fe ∼ v−6.5 is
intermediate between observed range of power-law indices (∼ v−5.0 to v−8.7 with average
v−6.69), we find that the agreement is quite remarkable.

7 Conclusions and Discussion

The purpose of the present Review had been to put forth a self-contained treatise on the
problem of (local) acceleration of suprathermal electrons by Langmuir turbulence. In order
to achieve that purpose, we have first presented a brief overview of the history of Langmuir
turbulence. The rationale was to provide the justification for the use of weak turbulence ap-
proach in view of the historical development associated with various approaches in dealing
with the Langmuir turbulence problem.
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For the sake of completeness, we have also presented a self-contained discussion of the
weak turbulence theory. On the basis of the equations of the weak turbulence theory, we
discussed numerical solution in 1D and 2D (or 3D with cylindrical symmetry). In order
to facilitate the discussion, we chose the problem of bump-in-tail instability so that the
free energy associated with the electron beam leads to the rapid excitation of Langmuir
turbulence and subsequent saturation.

Of course in the quiet-time solar wind, no electron beam with positive gradient in ve-
locity space is observed at 1 AU. However, the solar wind contains the energetic, highly
field-aligned component called the strahl. The enhanced Langmuir fluctuation excited by
these strahl’s may drive the system to time-asymptotic steady-state turbulence for the Lang-
muir wave spectrum. However, we have considered the beam-driven Langmuir turbulence
problem in order to facilitate the discussion. It should be noted, however, that we are con-
cerned largely with the time-asymptotic state associated with the Langmuir turbulence. We
have thus demonstrated that over the long time range the electrons are seen to be acceler-
ated to suprathermal energies as a result of wave-particle interaction with long-wavelength
portion of the Langmuir turbulence spectrum.

It should be noted on the basis of numerical solutions that for quasi-asymptotic, long-
time stage, both the Langmuir turbulence intensity and electron distribution function evolve
into quasi-symmetric forms in wave number and velocity, respectively, owing to nonlinear
mode coupling processes, such that the directionality associated with the original beam is
lost. We expect a similar situation with the enhanced Langmuir fluctuation excited by strahl
electrons.

In any situation, the numerical demonstrations are insufficient in that they are based upon
numerical initial value solution. It is not evident that the formation of kappa-like state does
indeed correspond to the rigorous asymptotically steady-state solution or not in a mathe-
matical sense. Also, it is not clear whether the empirical kappa fit reasonably represents the
true asymptotic value or not. To address the issue, we have presented the rigorous analysis
of steady-state Langmuir turbulence and electron acceleration problem by solving the set of
coupled electron-Langmuir turbulence equations. On the basis of such an analysis, we found
that the steady-state suprathermal electron should behave as fe ∼ v−6.5.

In order to verify this theoretical prediction against observation, we have taken the quiet-
time solar wind electrons as a representative example of quasi-steady state particle popula-
tion, and have compared the velocity power-law spectral indices predicted by both theory
and observation. We found a reasonable agreement between the theory (v−6.5) and obser-
vation (∼ v−5.0 to v−8.7 with average v−6.69). On the basis of this finding we believe that
the local acceleration of energetic electrons by Langmuir turbulence may indeed take place
in the solar wind, and that similar turbulent acceleration processes involving other types of
wave modes and charged particles of different species may take place in other space envi-
ronments.
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