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Abstract
Coronal Holes (CHs) are regions of open magnetic-field lines, resulting in high-speed solar
wind. Accurate detection of CHs is vital for space-weather prediction. This paper presents
an intramethod ensemble for coronal-hole detection based on the Active Contours Without
Edges (ACWE) segmentation algorithm. The purpose of this ensemble is to develop a con-
fidence map that defines, for all ondisk regions of a solar extreme ultraviolet (EUV) image,
the likelihood that each region belongs to a CH based on that region’s proximity to, and
homogeneity with, the core of identified CH regions. By relying on region homogeneity,
and not intensity (which can vary due to various factors, including line-of-sight changes and
stray light from nearby bright regions), to define the final confidence of any given region,
this ensemble is able to provide robust, consistent delineations of the CH regions. Using the
metrics of global consistency error (GCE), local consistency error (LCE), intersection over
union (IOU), and the structural similarity index measure (SSIM), the method is shown to
be robust to different spatial resolutions maintaining a median IOU > 0.75 and minimum
SSIM > 0.93 even when the segmentation process was performed on an EUV image dec-
imated from 4096 × 4096 pixels down to 512 × 512 pixels. Furthermore, using the same
metrics, the method is shown to be robust across short timescales, producing segmenta-
tion with a mean IOU of 0.826 from EUV images taken at a 1-h cadence, and showing a
smooth decay in similarity across all metrics as a function of time, indicating self-consistent
segmentations even when corrections for exposure time have not been applied to the data.
Finally, the accuracy of the segmentations and confidence maps are validated by considering
the skewness (i.e., unipolarity) of the underlying magnetic field.

Keywords Coronal holes, automated detection · Coronal holes, magnetic fields · Coronal
holes, detection confidence

1. Introduction

Within the Sun’s corona, there are regions of lower temperature, lower plasma density called
coronal holes (CHs). These regions have open magnetic-field lines, emerging from the pho-
tosphere (Altschuler, Trotter, and Orrall, 1972; Munro and Withbroe, 1972; Wang et al.,
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1996), which results in high-speed solar winds (Wang and Sheeley, 1990; Wang et al., 1996;
Antonucci et al., 2004; McComas et al., 2007). This relationship has been leveraged to im-
prove our understanding of solar-wind behavior. In particular, Wang and Sheeley (1990)
demonstrated that CH area provides key information for understanding solar-wind speeds
at 1 AU. In addition, further studies into the relationship between CHs and solar wind have
revealed additional constraints that have improved space-weather prediction (Arge et al.,
2003, 2004). For this reason, understanding CH behavior is important for space-weather
prediction, creating a need for accurate and robust segmentation methods.

Current methods of CH detection often rely on extreme-ultraviolet (EUV) and X-ray im-
agery, such as the data produced by the Atmospheric Imaging Assembly (AIA) aboard the
Solar Dynamics Observatory (SDO) (Lemen et al., 2012). At these wavelengths CHs ap-
pear as dark regions (Munro and Withbroe, 1972). For this reason, segmentation methods
often rely on an intensity threshold to find CH regions. A strict intensity threshold, how-
ever, may not adequately segment CHs as the intensity of CH regions within solar EUV
observations can vary as a result of both intrinsic and extrinsic properties including limb
brightening, stray light from nearby regions, and instrument noise (Verbeeck et al., 2014;
Caplan, Downs, and Linker, 2016). To mitigate this issue, various solutions have been im-
plemented. Krista and Gallagher (2009), for example, subdivide the 193 Å observations and
determine a threshold for each subimage. Lowder et al. (2014) also rely on a region-based
threshold. Hamada et al. (2018) define a coronal hole based on the majority agreement of
segmentations of synoptic maps generated from a region-based threshold applied to 304 Å,
171 Å, and 195 Å observations, followed by morphological processes to refine the segmen-
tations. Alternatively, Caplan, Downs, and Linker (2016) use two thresholds, representing
the initial seed and maximum possible CH area, then rely on a region-growing algorithm to
refine the initial seed.

In addition to intensity-based thresholds, alternate methods of CH segmentation have
also been developed. Verbeeck et al. (2014), for example, rely on fuzzy c-means clustering
to identify CHs, active regions, and quiet Sun. Jarolim et al. (2021) rely on a supervised
machine-learning method that uses all AIA EUV observations and Helioseismic and Mag-
netic Imager (HMI) magnetograms (Scherrer et al., 2012). This method was trained using
a hand-curated dataset derived from a modified version of the algorithm of Verbeeck et al.
(2014) and generates segmentations or probabilistic maps at a resolution of 512 × 512 pix-
els. To our knowledge, the network developed by Jarolim et al. (2021) is the only other
automated segmentation method that generates a probabilistic (or confidence) map of CH
locations and boundaries, which may indicate that our version of ACWE is the first classical
approach to CH confidence-map generation.

In a study of nine automated CH segmentation methods, Reiss et al. (2021) note that
segmentations generated by automated methods can vary significantly, with the difference
in area for one CH varying by a factor of 4.5 between methods. These differences may be
due, in part, to how each algorithm accounts for the fact that the intensity of CH regions
within solar EUV observations can vary.

Boucheron, Valluri, and McAteer (2016) introduced the use of Active Contours With-
out Edges (ACWE) as a method for CH detection. Like the aforementioned threshold-based
methods, Boucheron, Valluri, and McAteer (2016) identify candidate CHs using an inten-
sity threshold. These initial candidates, however, are then refined in order to maximize the
homogeneity of the CH regions. By using region homogeneity as the criterion for defining
CH boundaries, the ACWE method was able to overcome the effects of limb brightening
and stray light from nearby regions and include portions of the identified CHs that were ex-
cluded by the initial threshold, generating more robust CH segmentations. The work in this
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paper expands on Boucheron, Valluri, and McAteer (2016) with two investigations applied
to a larger dataset. The first characterizes the consistency of the ACWE algorithm across
spatial resolutions, intensity resolutions, and short timescales. The second investigation fur-
ther accounts for uncertainty in detection of CH regions by developing a “confidence map”
via an intramethod ensemble that correlates region homogeneity (compared to the core of a
CH region) with the likelihood that any particular region is part of a CH.

The remainder of the paper is organized as follows. Section 2 provides an overview of
the ACWE algorithm and the adaptation of the ACWE method to CH detection. Section 3
describes the dataset and provides an overview of the metrics used for evaluation of the
segmentations produced by ACWE. Section 4 characterizes the invariability of CH segmen-
tations generated by ACWE as a function of spatial resolution, comparing the effects of
performing ACWE on images decimated by 8× in each dimension, which is the default
from Boucheron, Valluri, and McAteer (2016), to the effects of performing ACWE at higher
resolutions. Section 4 also characterizes the invariability of CH segmentations generated by
ACWE across short timescales, where CH evolution is expected to be minimal, to determine
the consistency in identifying and segmenting CH regions. The development of a confidence
map via an intramethod ensemble is outlined in Section 5. This method is then evaluated in
Section 6 by comparing the ensemble to the underlying magnetic field as expressed in HMI
magnetograms. Section 7 provides a conclusion and discusses future work. The Appendix
contains an additional study of the performance of ACWE as a function of different intensity
resolutions and dynamic ranges, comparing the resulting segmentations to the corresponding
default segmentation generated from the EUV at the original dynamic range. These results
are included as they indicate that preserving the dynamic range between ondisk features is
crucial for accurate CH detection.

2. Active Contours Without Edges

2.1. General Implementation

Developed by Chan and Vese (2001), Active Contours Without Edges (ACWE) uses one or
more enclosed shapes to separate an image into the foreground (or region enclosed within
the shapes) and background (the remainder of the image). Collectively, these shapes are
defined by the contour C, which separates the foreground and background, where Ci denotes
the foreground and Co denotes the background. In order to ensure that the segmentation
represents a meaningful separation of the input image into foreground and background, the
contour is manipulated in an iterative fashion according to a series of “forces” derived from
the characteristics of the image. In the case of ACWE, the goal of these forces is to ensure
that both the foreground and background have a relatively narrow collection of intensities
within them, creating visually homogeneous regions. With each iteration every pixel along
the boundary of C is evaluated to determine if it is more similar to the pixels within the
foreground or background, and the contour is redrawn accordingly. This process is achieved
through the definition of an energy functional that summarizes the image forces and any
additional constraints applied to C.

The ACWE energy functional is defined as

F(mi,mo,C) = μ�(C) + λi

∫
Ci

|I (x, y) − mi|2dxdy

+ λo

∫
Co

|I (x, y) − mo|2dxdy

(1)
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and can be separated into three primary elements representing the “forces” acting on C

in order to create visually homogeneous regions. The first term, μ�(C) seeks to minimize
the length of the contour boundary �(C); it is weighted by the user-defined weight μ. The
term λi

∫
Ci

|I (x, y) − mi|2dxdy seeks to maximize the homogeneity of the foreground by
comparing the region of the input image I inside of C to the mean intensity of that region,
mi; it is weighted by the user-defined weight λi. The final term, λo

∫
Co

|I (x, y) − mo|2dxdy,
seeks to maximize the homogeneity of the background by comparing the region of I outside
of C to the mean intensity of the background, mo; it is weighted by the user-defined weight
λo. By manipulating weights μ, λi, and λo, the user can prioritize a shorter (e.g., less fractal)
contour boundary, a foreground with a narrow or homogeneous distribution of intensities,
or a background with a narrow or homogeneous distribution of intensities.

2.2. Segmenting Coronal Holes via ACWE

In adapting ACWE for CH segmentation, Boucheron, Valluri, and McAteer (2016) devel-
oped a seeding algorithm for defining the initial contour, developed methods for constraining
ACWE to ondisk areas, defined a set of stopping criteria to account for finite precision due to
input-image resolution, and identified an optimal range of parameters for CH segmentation.
The segmentation method outlined by Boucheron, Valluri, and McAteer (2016) is preceded
by the decimation of the spatial resolution of the EUV images by 8×, creating a copy of
the EUV image that is 512 × 512 pixels, and the correction for limb brightening outlined
in Verbeeck et al. (2014). To create the initial contour, Boucheron, Valluri, and McAteer
(2016) utilize a circular mask on the decimated image to identify and extract a 100-bin in-
tensity histogram of the ondisk region of the image. The mean intensity of the quiet-Sun
(QS) (low-activity) region, mQS, is estimated from the histogram by calculating the mean
intensity of the bin with the most pixels. Since CHs are expected to be darker than QS, the
initial seed is defined as all pixels with an intensity ≤ α × mQS, where α is a user-defined
parameter < 1.

When performing ACWE, Boucheron, Valluri, and McAteer (2016) constrain evolution
to ondisk areas by performing ACWE on a copy of the decimated EUV image where all
offdisk areas are set to the mean intensity of the non-CH region. ACWE is then performed
with μ = 0, which causes ACWE to ignore the length constraint, and the remaining pa-
rameters, λi and λo, are codefined through a ratio λi/λo, which describes how much more
homogeneous CHs are expected to be compared to the aggregate of all remaining ondisk
features. To account for cases where the boundary between foreground and background lies
within a pixel instead of at a pixel boundary, which will result in pixels alternating between
foreground and background without converging, evolution of the contour is halted when
the only evolution that occurs between iterations consists of pixels along the boundary that
alternate between foreground and background. Boucheron, Valluri, and McAteer (2016) uti-
lize the ratio λi/λo = 50, with a length constraint μ = 0, and an initial seeding parameter
α = 0.3, for method validation.

The work presented in this paper uses the ACWE CH segmentation algorithm as de-
scribed in Boucheron, Valluri, and McAteer (2016) and expands on that work in two ways.
First, the robustness of the ACWE CH algorithm to changes in spatial resolution is character-
ized in Section 4.1 and to small temporal changes is characterized in Section 4.2. Secondly,
a confidence map is generated via an intraensemble method to correlate region homogeneity
to the likelihood a region belongs to a CH. The confidence maps are validated by considering
the unipolarity (skewness) of the underlying magnetic field. An Appendix is also provided
that explores the robustness of ACWE CH algorithm to intensity resolution. The GitHub
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repository at github.com/DuckDuckPig/CH-ACWE contains code to download the dataset
used in this paper, the base ACWE segmentation code, and code to replicate all experiments
described herein.

It should be noted that the code in this repository will, by default, save three elements for
each segmentation: the header of the original EUV observation, an “ACWE header”, which
contains both a summary of the preprocessing steps performed and the ACWE parameters
themselves, and the final segmentation or group of segmentations (in the case of a confi-
dence map). The code in the GitHub repository also includes functions for resizing both
single segmentations and confidence maps to match the resolution of the EUV observation.
The format in which the original EUV header is saved and the resized segmentations can be
directly ingested by the tools provided by the Python package SunPy (The SunPy Commu-
nity et al., 2020), which ensures that crucial position, orientation, and coordinate data can be
taken directly from the segmentation using the tools already developed by the broader com-
munity; additionally, this ensures that existing reprojection tools, which take into account
the rotation of the Sun and motion of the observer, can be applied to segmentations. These
features are used in Section 4.2 to align segmentations taken at different times to each other,
in order to gauge the consistency of the ACWE segmentation process, and in Section 6 to
facilitate the alignment of the HMI magnetograms.

3. Data and Metrics

3.1. Dataset

The dataset used in this work consists of 2381 observations taken from Carrington rotations
(CRs) 2099, 2100, 2101, and 2133. To produce this dataset, image groups consisting of AIA
Level-1 EUV images at 94, 131, 171, 193, 211, 304, and 335 Å as well as the corresponding
720-s HMI magnetograms were collected at a one-hour cadence from the aforementioned
CRs using the drms library (Glogowski et al., 2019). This dataset was then reduced by elim-
inating image groups where at least one image did not have a QUALITY key of 0, resulting in
the 2381 observations. It should be noted that one gap of 2 days and 2 h exists in CR 2099,
and gaps of ≤ 7 h exist in the remaining CRs. Prior to performing ACWE, the Level-1 EUV
images are converted into Level-1.5 data products using aiapy.calibrate.update_pointing, as
described in Barnes et al. (2020) to ensure the header is correct and aiapy.calibrate.register to
align the image to solar north and center the image so that the solar center lines up with im-
age center. ACWE is performed on the 193 Å observation only. The remaining observations
were collected to facilitate future work with this dataset.

Each experiment is initially performed on CRs 2099-2101, which contain data from 13
July – 3 October 2010, and have a total of 1763 observations. The process is then repeated
on CR 2133, which contains 618 observations from 25 January – 22 February 2013, in order
to verify that the behavior of the algorithm is consistent across different time frames and
points within the solar cycle.

3.2. Metrics

Across all experiments the consistency of ACWE is determined by comparing segmentations
to each other using the following four metrics: intersection over union (IOU), structural
similarity index measure (SSIM), global consistency error (GCE), and local consistency
error (LCE).

https://github.com/DuckDuckPig/CH-ACWE
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3.2.1. Intersection Over Union

The Jacard Index or Intersection Over Union (IOU) is defined as the area of agreement
normalized by the total area. This metric was first introduced in Jaccard (1912). For binary
segmentations (Section 4) the IOU for two segmentations S1 and S2 will be defined as

IOU(S1, S2) = |S1 ∩ S2|
|S1 ∪ S2| , (2)

where S1 ∩ S2 is the intersection of the two segmentations, S1 ∪ S2 is the union of the two
segmentations, and | · | is the cardinality of the resulting region. When comparing maps that
report probability or likelihood, such as the confidence maps (Section 5), the weighted IOU
(wIOU) for the maps P1 and P2 will be determined by comparing the value (confidence) of
each pixel i in P1 to the corresponding pixel in P2. It is defined as

wIOU(P1,P2) =
∑

i min(P1(i),P2(i))∑
i max(P1(i),P2(i))

, (3)

where the summations over i denote a summation over all pixels contained in P1 ∪P2. When
two segmentations are compared using IOU or wIOU, the resulting score will be bound to a
range of [0,1], where 1 indicates that the two segmentations are identical. IOU and wIOU
are sensitive to changes in orientation, placement, shape, and scale.

3.2.2. Structural Similarity Index

Wang et al. (2004) define the Structural SIMilarity index measure (SSIM) for two images x

and y as

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
, (4)

where μx is the mean intensity of x, μy is the mean intensity of y, σx is the standard
deviation of x, σy is the standard deviation of y, σxy is the covariance between x and y, and
C1 and C2 are small constants that prevent instability when (μ2

x +μ2
y) or (σ 2

x +σ 2
y ) are close

to zero. SSIM provides an evaluation of the quality of the structure within a pair of images
or segmentations in a manner that is considered more consistent with the human visual
system (Wang et al., 2004). In order to match the implementation of Wang et al. (2004),
C1 = (K1L)2 and C1 = (K2L)2, where K1 = 0.01, K2 = 0.03, and L is the dynamic range
of the segmentations. SSIM is bound to the range (−1,1] (Nilsson and Akenine-Möller,
2020), where 1 indicates that the two segmentations are identical, 0 indicates no similarity,
and −1 indicates an anticorrelation. SSIM is most sensitive to the structure present within
the images or segmentations (Wang et al., 2004).

3.2.3. Global and Local Constancy Errors

Global Consistency Error (GCE) and Local Consistency Error (LCE) are introduced in Mar-
tin et al. (2001) as methods for evaluating segmentation accuracy while accounting for the
variability that exists within human-segmented data. In particular, Martin et al. (2001) note
that, in human-generated segmentations, it is possible that one segmentation may be a re-
finement of another, either by further subdividing a region of interest or by providing finer
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granularity at image boundaries. To account for this, both GCE and LCE rely on an interme-
diate metric called local error E, which is evaluated on a per-pixel basis. For pixel i present
in segmentations S1 and S2, local error is defined as

E(S1, S2, i) = |R(S1, i) − R(S2, i)|
|R(S1, i)| , (5)

where − denotes the set difference, R(S1, i) is the region in S1 that contains pixel i, R(S2, i)

is the region in S2 that contains pixel i, and | · | is the cardinality of the region. This metric
returns a value of zero any time R(S1, i) is fully contained in R(S2, i) to account for subdi-
vision of regions, and a small value when only a few pixels of R(S1, i) are not contained in
R(S2, i), such as when the region R(S1, i) is a refinement of R(S2, i).

For a segmentation of an image with n pixels, GCE is defined as

GCE(S1, S2) = 1

n
min

{∑
i

E(S1, S2, i),
∑

i

E(S2, S1, i)
}
, (6)

which forces GCE to be most sensitive to cases where one segmentation is a refinement of
another. LCE is defined as

LCE(S1, S2) = 1

n

∑
i

min{E(S1, S2, i),E(S2, S1, i)}, (7)

which allows LCE to be sensitive to cases where some portions of each segmentation are
refinements of the other. For this reason, LCE is a less-strict error measure than GCE. Both
GCE and LCE are bound to a range of [0,1] with 0 indicating no error.

4. Sensitivity of the ACWE Algorithm

Prior to developing an intramethod ensemble for CH detection, the consistency of ACWE
when applied to CH segmentation is first evaluated. These experiments characterize the
expected degradation in the accuracy of CH segmentations when reducing the spatial res-
olution of the input image to optimize the process of generating the segmentation and the
consistency of segmentations across short timescales where CH evolution is expected to be
minimal.

4.1. Spatial-Resolution Effects

ACWE is an iterative process, requiring successive manipulations of the contour that defines
a region of interest to minimize the energy functional (Equation 1). To help reduce the com-
putation time needed to calculate the energy functional in each iteration, and, by extension,
reduce the computation time needed to generate a contour map, ACWE can be performed
on a copy of the target image that has a reduced spatial resolution. Boucheron, Valluri, and
McAteer (2016) demonstrate that this process may be viable for improving computational
efficiency. In particular, Boucheron, Valluri, and McAteer (2016) note that segmentations
remain qualitatively similar across spatial resolutions, and that the primary difference be-
tween the reduced resolution segmentations, generated from images with a resolution of
512 × 512 pixels, and the full-scale (4096 × 4096 pixels) segmentations is the absence of
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smaller regions that, due to pixel removal and lowpass filtering, are no longer dark enough
to be included in the initial seed.

Here, a study of the effects of downsampling the original AIA 193 Å image on final
segmentation was performed by generating ACWE segmentations for each image within the
dataset at original resolution (4096×4096 pixels), one-half scale (decimation by 2× in each
dimension or 2048 × 2048 pixels), one-quarter scale (1024 × 1024 pixels), and one-eighth
scale (512 × 512 pixels). In each instance correction for limb brightening, as implemented
by Verbeeck et al. (2014), was applied to the image after decimation. For the initial seeding
of the algorithm, the seeding process was performed through analysis of the downsampled
image, with threshold α of 0.3. Across all spatial resolutions, evolution of the segmentation
was performed using a homogeneity ratio λi/λo of 50 and a length constraint μ of 0. The
segmentations generated from the decimated images were then upscaled to 4096 × 4096
pixels to match the resolution of the segmentation generated from the original image and
directly compared.

The effects that reducing spatial resolution had on the final segmentation for CRs 2099
through 2101 are presented in Figure 1. Figure 2 presents the effects for CR 2133. Both fig-
ures show the resulting similarity after applying bilinear interpolation to upscale the image
and converting the result back to a binary mask by setting all values > 0.5 to 1 and setting
all values ≤ 0.5 to 0. The results in Figure 1 and Figure 2 suggest that general structures in
the segmentations are preserved, even when decimated by 8×, resulting in a high IOU and
SSIM, and low GCE and LCE in both time frames. It should be noted that this process was
repeated with upscaling performed using nearest-neighbor, biquadratic, bicubic, biquartic,
and biquintic interpolation. Figure 3 shows the IOU between the one-eighth scale segmen-
tations, upscaled using each of the described interpolation methods, and the corresponding
full-scale segmentation. These results indicate that the interpolation method has minimal
effect on the similarity of final segmentation.

Visual examination of ACWE segmentations revealed three primary sources of discrep-
ancy between segmentations performed at the original resolution and segmentations per-
formed on decimated images. First, segmentations generated from decimated images some-
times excluded smaller CH regions. This is consistent with the observations of Boucheron,
Valluri, and McAteer (2016). Secondly, spurious bright regions within larger CHs may be
excluded or included at different spatial resolutions. Finally, larger CH regions show a grad-
ual reduction in the granularity of the segmentation boundary as spatial resolution decreases.
All three effects can be seen in Figure 4.

To demonstrate the computational efficiency provided by segmenting at a reduced res-
olution, the segmentation process for CR 2099 was performed on an Intel Core i7-8700K
running at base clock speed (3.70 GHz), and the time needed to generate each individual
segmentation was recorded. Table 1 outlines the minimum, maximum, and mean time in
seconds to generate a segmentation at each spatial resolution, aggregated for all images in
CR 2099. A direct comparison of computation time as a function of spatial resolution (also
performed over CR 2099) revealed that, for the same EUV observation, performing ACWE
on an image decimated to 2048 × 2048 pixels will result in a segmentation an average of
7.025 ±1.561 times faster than operating on the original 4096×4096 pixel image. Reducing
the resolution to 1024×1024 pixels results in a segmentation an average of 49.050 ±13.004
times faster than operating on the original image. At 512 × 512 pixels, the segmentation is
generated an average of 298.126 ± 87.214 times faster than at full resolution.
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Figure 1 Effects of decimation in spatial resolution for CRs 2099, 2100, and 2101 using bilinear interpola-
tion. In this figure the orange line is the median value, the box represents the range between the first (Q1)
and third (Q3) quartile, the whiskers represent 1.5 times the interquartile range above Q3 or below Q1, and
circles represent outliers.

4.2. Effects Across Small Temporal Changes

In order to gauge the consistency of ACWE segmentations, a study of the similarity of
segmentations across small time spans was performed on all four CRs. This process was
performed using the one-eighth scale (512 × 512 pixel) segmentations as described in Sec-
tion 4.1 in order to characterize the behavior of the default implementation of ACWE. These
images were upscaled to the original 4096 × 4096 pixel resolution using bilinear interpola-
tion to allow for the reprojection process. For each segmentation in the dataset, the preceding
twelve hours of segmentations and the succeeding twelve hours of segmentations were re-
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Figure 2 Effects of decimation in spatial resolution for CR 2133 using bilinear interpolation. In this figure
the orange line is the median value, the box represents the range between the first (Q1) and third (Q3) quartile,
the whiskers represent 1.5 times the interquartile range above Q3 or below Q1, and circles represent outliers.

projected to account for the rotation of the Sun and then compared. The reprojection was
achieved using the sunpy.coordinates tools Helioprojective, RotatedSunFrame, and trans-
form_with_sun_center described in The SunPy Community et al. (2020) to define the repro-
jection and reproject.reproject_interp described in Robitaille, Deil, and Ginsburg (2020) to
perform the reprojection.

Segmentation similarity as a function of the difference in time for CRs 2099, 2100, and
2101 is presented in Figure 5. Segmentation similarity for CR 2133 is presented in Figure 6.
In both time frames, segmentation similarity as measured by all metrics decays smoothly
as a function of time, with the most dramatic change in similarity occurring within the first
hour. In addition to this, a high SSIM and low GCE and LCE are maintained, even with
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Figure 3 Effects of interpolation method on similarity between segmentation generated at one-eighths scale
and full resolution (512 × 512 and 4096 × 4096 pixels, respectively). In this figure the orange line is the me-
dian value, the box represents the range between the first (Q1) and third (Q3) quartile, the whiskers represent
1.5 times the interquartile range above Q3 or below Q1, and circles represent outliers.

a 12-h difference between segmentations. These results demonstrate the robustness of the
ACWE algorithm across time, indicating that the differences in segmentation are minimal
across timescales shorter than those expected for CH evolution.

5. Confidence-Map Generation from an ACWE Ensemble

By using region homogeneity to define CHs within a Solar EUV image, ACWE provides
the ability to account for intensity variations within a coronal-hole region, allowing for a
more robust definition of the CHs. This method, however, is affected by all ondisk features,
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Figure 4 Comparison of segmentations of the same observation performed at different spatial resolutions.

Table 1 Minimum, mean, and maximum computation time in seconds for ACWE over CR 2099 as a function
of spatial resolution.

Full Half Quarter Eighth

(4096 × 4096) (2048 × 2048) (1024 × 1024) (512 × 512)

Min 343.855 54.851 7.936 1.491

Mean 600.698 86.174 12.260 2.011

Max 2021.239 270.058 24.975 4.285

which control the relative homogeneity of the collective “background” or non-CH region.
Boucheron, Valluri, and McAteer (2016) suggest that homogeneity ratios λi/λo ≥ 10 result
in “a reasonable segmentation of the CHs and that the segmentation varies very slowly with
respect to λi/λo,” such as the results seen in Figure 7. While this holds true for the majority
of images within the dataset, two other behaviors were noted in a minority of cases. The
first behavior, seen in Figure 8, consists of examples where segmentation area decreases
drastically as the homogeneity ratio increases for lower homogeneity ratios. The second be-
havior, seen in Figure 9 at λi/λo = 25, consists of cases where some segmentations with
small homogeneity ratios, typically λi/λo < 50, exclude the darkest portions of the initial
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Figure 5 Similarity of segmentation as a function of time across CRs 2099, 2100, and 2101. The blue line
represents the mean similarity or error between a segmentation and its successor or predecessor as a function
of the time difference between the two EUV images, while the gray-shaded region is μ ± σ , where μ is the
mean and σ is the standard deviation.

Figure 6 Similarity of segmentation as a function of time across CR 2133. The blue line represents the
mean similarity or error between a segmentation and its successor or predecessor as a function of the time
difference between the two EUV images, while the gray-shaded region is μ ± σ , where μ is the mean and σ

is the standard deviation.
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Figure 7 Example of slowly varying segmentation versus homogeneity ratio.

Figure 8 Example of quickly varying segmentation versus homogeneity ratio for low homogeneity ratios.

seed. These segmentations contain large portions of QS, suggesting that the algorithm cap-
tured enough QS to change the target of ACWE from CH to QS. Both the case where lower
homogeneity ratios result in large area and where a change of target occurs appear in groups
throughout the dataset with small time windows between cases. This further highlights the
effect that the makeup of the non-CH region has on the final segmentation.
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Figure 9 Example of change of target at low homogeneity ratios.

5.1. Development of Confidence Maps

The effects of homogeneity on final segmentation were studied by generating multiple
ACWE segmentations at one-eighth spatial resolution (512 × 512 pixels) for each EUV
image. Following the procedure outlined in Section 4.1, corrections for limb brightening
and seeding with α = 0.3 were performed after resizing the EUV image. Each segmentation
was generated independently, starting at the initial seed, and evolving to one λi/λo ratio in
the range [10,100] (with μ = 0 in all cases). This study found that for any collection of
segmentations generated from the same EUV image (hereafter referred to as a segmentation
group), including those that show a change of target at lower homogeneity ratios, the major-
ity of segmentations converge to a region of high homogeneity surrounding the initial seed.
This can be seen in Figure 10, which shows a normalized summation of all segmentations at
homogeneity ratios λi/λo in the range [10,100] for the observations in Figure 7, Figure 8,
and Figure 9. In addition to this, for change of target cases, aggregating only those seg-
mentations with a homogeneity ratio above the change of target point, results in a behavior
that matches the rest of the dataset. This can been seen in Figure 11, which was generated
from the same segmentation group as Figure 10(c), by eliminating all segmentations with a
λi/λo ≤ 46, the point where the darkest pixel in the initial seed was no longer present in the
final segmentation.

Prior to change of target (if it occurs), regions of higher homogeneity are contained within
the regions of lower homogeneity. For this reason, the aggregated maps generated from
an ensemble of homogeneity ratios above the change of target point (i.e., Figure 10(a),
Figure 10(b), and Figure 11) can be interpreted as confidence maps wherein the confidence
that a region belongs to a CH is directly correlated with the similarity of that region to the
core region of that CH.

The confidence maps herein developed are generated in a two-step process. First, the
segmentation group, which contains segmentations for all λi/λo ratios in the range [10,100],
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Figure 10 Normalized summation of segmentations at homogeneity ratios λi/λo ∈ [10,100]. The color bar
to the right of each map shows the proportion of the segmentations in which a region in the original image was
identified by the segmentation group as belonging to a CH. A value of 1 (yellow) indicates that all segmen-
tations identified that region as a CH region. A value of 0 (purple) indicates that none of the segmentations
identified the region as a CH region.

is created from the one-eighth scale observations. Secondly, the confidence map is generated
from the ensemble by summing the individual maps within the segmentation group and
normalizing the result by the total number of maps within that group.
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Figure 11 Normalized summation of segmentations at homogeneity ratios λi/λo ∈ [36,100] for the segmen-
tation group in Figure 10(c). The color bar to the right of each map shows the proportion of the segmentations
in which a region in the original image was identified by the segmentation group as belonging to a CH. A
value of 1 (yellow) indicates that all segmentations identified that region as a CH region. A value of 0 (purple)
indicates that none of the segmentations identified the region as a CH region.

5.2. Optimization of Ensemble Generation

The generation of segmentation groups can be made more computationally efficient by rely-
ing on the deterministic nature of ACWE evolution. In particular, for a given initial seed and
input image, the evolution of ACWE will follow a set progression. The stopping criteria,
represented by the λi/λo ratios, identify points along this evolution where the user wishes to
record the results of this process. To generate the segmentation group using this optimized
approach, the 193 Å image is resized to one-eighth resolution, correction for limb brighten-
ing is applied and the initial seed (using α = 0.3) is generated. ACWE is then used to evolve
the initial seed to the largest λi/λo ratio and the resulting segmentation is saved. Evolution
then continues, from the current segmentation, targeting the next largest λi/λo ratio. This is
repeated, recording the result when each λi/λo ratio is reached, until a segmentation exists
for each λi/λo ratio in the range [10,100].

Figure 12 shows confidence maps generated from independently produced segmentations
(center) and confidence maps generated from successive evolutions of ACWE (right) for
the examples in Figure 10. These results show that maps generated via both methods are
nearly identical in behavior, including in the case of change of target (see Figure 12(c)). It
should be noted that, for all images within the dataset, the SSIM between confidence maps
generated from independently produced segmentations and confidence maps generated from
a successive evolutions of ACWE was 1. In addition, a comparison of maps generated via the
two methods yielded high wIOU, low GCE, and low LCE. The mean and standard deviation
for each metric, organized by Carrington Rotation, are presented in Table 2.

The differences between the independent and successive evolution confidence map as
measured by wIOU, GCE, and LCE (see Table 2) can be explained by the fact that ACWE
cannot define a boundary with subpixel accuracy. When the true boundary between fore-
ground and background for a given λi/λo ratio lies within a pixel instead of on a pixel bound-
ary, this pixel will continually alternate between foreground and background as ACWE con-
verges to the final solution. To account for this, a stopping criterion from Boucheron, Valluri,
and McAteer (2016) was used. This criterion dictates that ACWE will halt evolution and re-
turn a segmentation map whenever the only pixels that evolve between iterations are pixels
along the boundary that alternate between foreground and background.

By evolving from the previous segmentation instead of evolving from the initial seed,
the optimized implementation changes (reduces) the number of iterations needed to con-
verge to a solution, thus changing the point at which the stopping criteria is encountered.
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Figure 12 Comparison of normalized summation of segmentations at homogeneity ratios λi/λo ∈ [10,100]
generated independently (center) and through the evolution of a single segmentation (right). The color bar to
the right of each map shows the proportion of the segmentations in which a region in the original image was
identified by the segmentation group as belonging to a CH. A value of 1 (yellow) indicates that all segmen-
tations identified that region as a CH region. A value of 0 (purple) indicates that none of the segmentations
identified the region as a CH region.

Over CR 2099 the successive evolutions method generated segmentation groups an aver-
age of 2.9209 ± 0.2622 times faster than the independent method. On the aforementioned
Intel Core i7-8700K, this reduced computation time from anywhere between 136.431 and
369.381 s (with a mean of 194.597 s) to between 45.266 and 100.913 s (with a mean of
66.527 s) depending on the segmentation group.
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Table 2 Comparison of confidence map methods, organized by Carrington Rotation.

CR wIOU SSIM GCE LCE

2099 0.9826 ± 0.0207 1.0000 0.0096 ± 0.0088 0.0079 ± 0.0065

2100 0.9890 ± 0.0055 1.0000 0.0073 ± 0.0037 0.0064 ± 0.0033

2101 0.9867 ± 0.0089 1.0000 0.0065 ± 0.0049 0.0055 ± 0.0042

2133 0.9879 ± 0.0088 1.0000 0.0083 ± 0.0056 0.0071 ± 0.0048

5.3. A Further Study of Change of Target

Automated identification of change of target cases remains an area of open research. The
current method of identifying change of target consists of calculating the change in the per-
cent of the initial seed present in final segmentation as a function of λi/λo ratio. If the drop
in the percent of the seed present is ≥ 5% from one λi/λo ratio to the next smallest λi/λo

ratio, then it is assumed that the segmentation with the smaller λi/λo ratio exhibits signs
of change of target. When this occurs, that segmentation as well as all other segmentations
with a smaller λi/λo ratio, are omitted from the segmentation group during summation and
normalization.

The percent of the initial seed present in the segmentation with the largest λi/λo ratio is
used as a starting value for this process. This ensures that in the case of overfitting (high
λi/λo ratios causing ACWE to open a hole in the darkest part of the initial seed, even when
still detecting CHs), the absence of a portion of the initial seed does not result in an erroneous
report of change of target. Similarly, when the seeding process includes a portion of the
QS that is subsequently removed in the evolution of the contour, the absence of a portion
of the initial seed does not result in an erroneous report of change of target. Without this
concession, the absence of a portion of the initial seed at the largest homogeneity ratio would
result in the entire ensemble being dismissed, preventing the generation of a confidence
map. Figure 13 illustrates an example of this scenario containing overfitting but no change
of target. On the other hand, Figure 14 illustrates an example of both overfitting for high
homogeneity ratios and also a change of target at lower homogeneity ratios.

Manual exploration of the full dataset revealed 125 cases of change of target, of which
96 cases were identified via this method. An additional 14 cases of change of target not
identified by the human observer were also found via this method. The total number of
cases of change of target identified via either method (139 cases) constitute < 5.63% of
the total dataset. The change of target cases identified by human observer and not identified
by the automated method (29 cases) constitute < 1.22% of the total dataset. While a robust
automatic identification of change of target is still under investigation, the proposed criterion
appears to perform well for the datasets studied here.

6. Validation of ACWE Boundaries

Validation of the confidence maps is performed by calculating the skew of the flux of the
underlying magnetic field as a function of confidence value. For this process, evaluation
is limited to CHs that appear near the disk center to minimize the influence of projection
effects (Leka, Barnes, and Wagner, 2017).
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Figure 13 Example of overfitting at high λi/λo. The two graphs show that absence of the darkest part of the
initial seed is limited to higher homogeneity ratios, likely due to the λi/λo ratio being too stringent for the
image. Note that the proposed method for identifying change of target was able to identify that the absence
of a portion of the initial seed was solely due to overfit and therefore did not exclude any segmentations when
generating the confidence map.
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Figure 14 Example of overfitting and change of target within the same segmentation group. Note that the
proposed method for identifying change of target can identify and retain the overfit region while removing
the effects of change of target.
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6.1. Calculating Skew

In order to calculate the skew of the flux of the underling magnetic field, the HMI magne-
togram image that corresponds to an AIA observation must be scaled and aligned to match
the scale and orientation of the Level-1.5 193 Å image used to generate the segmentation
group. In addition to this, the confidence map, which was generated at one-eighth spatial res-
olution, must be resized to match the resolution of the EUV image. The process of aligning
the magnetogram is achieved by providing reproject.reproject_interp (Robitaille, Deil, and
Ginsburg, 2020) with the HMI magnetogram and the Astropy (Astropy Collaboration et al.,
2013, 2018) world coordinate system (WCS) of the Level-1.5 193 Å EUV image (which is
preserved in the metadata of the confidence map). To resize the confidence map, each seg-
mentation within the group is upscaled from 512 × 512 pixels to the original 4096 × 4096
pixel resolution using bilinear interpolation. Once upscaled the segmentations are combined
and normalized.

To calculate the skew of the underlying CH region, CHs are partitioned into CH groups.
A CH group is defined as all eight-connected regions with a confidence value V > 0 that
are within 40 pixels (equivalent to 5 pixels at the original one-eighths resolution) of each
other. The partitioning process was achieved by generating a binary mask of the upscaled
confidence mask wherein all pixels with a confidence value V > 0 are set to 1. Dilation is
applied to this map using the scikit-image (van der Walt et al., 2014) function skimage.mor-
phology.dilation, with a 40 × 40 pixel square. Once dilated, this map is then labeled using
skimage.measure.label, and one binary mask is generated for each labeled region. These
masks are converted into confidence maps of their respective CH groups by replacing the
region of the binary mask with a value of 1 with the confidence values of the corresponding
pixels in the original confidence map.

Once the CH groups are generated, they are then utilized as masks to identify the corre-
sponding region within the matching HMI magnetogram. Skew is calculated as a function
of confidence such that for a confidence value V only regions of the magnetogram that cor-
respond to a region within the CH group with a confidence ≥ V are included. The skew of
the magnetic flux of the region is defined as

γ = 1

N

N−1∑
i=0

(
�i − �̄

σ

)3

, (8)

where N is the number of pixels within the region, �i is the magnetic flux of pixel i, �̄ is
the mean flux of the region, and σ is the standard deviation of the flux of the region.

Instead of attempting to mitigate the projection effects in HMI magnetograms by esti-
mating the skew of each region, the skew of the underlying region is calculated twice for
each confidence value, once directly on the magnetogram (called the “unweighted skew”),
and a second time on a weighted magnetogram (“weighted skew”). For the weighted skew
the weight for each pixel of the magnetogram is defined as

Wi =
(

zi

max(z)

)3

, (9)

where zi is the z-coordinate (Cartesian) of pixel i within the heliocentric frame and max(z)

is the z-coordinate of the pixel directly in line with the Sun center and the observer. This
weighting favors regions near the disk center (The SunPy Community, n.d.), where flux
observations are least affected by projection effects (Leka, Barnes, and Wagner, 2017).
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Figure 15 Skew of the flux of the magnetic field of a centrally located CH in CR2100 for three consecutive
hours. From left to right for (a) – (c): AIA 193 Å observation, confidence map (ondisk area encircled in red),
graph of skew as a function of confidence level. Note the relative consistency of skew values over the three
observations.

6.2. Behavior of Confidence Maps

The exact behavior of the skew of the flux of the underlying magnetic field as a function
of confidence varied hour by hour as CH groups traversed the center of the disk. Figure 15
provides an example of this variation, providing three observations of the same CH region
at one-hour intervals. As can be noted in Figure 15, the range of the skew, both weighted
and unweighted, is relatively consistent from one hour to the next. This further validates the
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consistency of the ACWE CH segmentation algorithm and the accuracy of the confidence
maps in delineating CHs.

Three primary trends were noted within the data. The first trend, seen in Figure 16, con-
sists of examples where the magnitude of the skew increased as a function of confidence.
This trend was the most prevalent within the data, with nearly all cases where increasing
confidence resulted in significantly decreased area showing this trend. This result suggests
that higher confidence levels, as expressed by the ACWE confidence map, generally repre-
sent better delineations of CH regions in that the underlying magnetic field is more strongly
unipolar.

The second trend consisted of cases where confidence did not significantly affect skew
magnitude for the majority of confidence levels. Figure 15 provides an example of this, with
two additional cases presented in Figure 17. This indicates that a highly unipolar region is
maintained throughout the suite of confidence levels, suggesting that these regions nonethe-
less represent accurate delineations of CH regions.

The decrease in skew magnitude present in the early, low-confidence regions in both
cases in Figure 17 is the third notable trend. This result is not isolated to lower confidence
levels. Figure 18 presents two examples of drops in skew magnitude at larger confidence
levels. The cause of these drops in skew may vary from CH to CH, with the presence of
nearby spurious bright regions providing potential explanations in the case of Figure 17(b)
and the two examples in Figure 18. Drops in confidence may also be the result of overfitting,
potentially explaining the second drop in skew magnitude seen in Figure 18(b). Despite this,
skew magnitude remains high across all confidence levels, suggesting that these segmenta-
tions nonetheless represent accurate segmentations of the CH region.

Based on the skew data provided by HMI, it appears that in addition to the CHs identified
by ACWE, at least two additional regions, both from CR2133, were also identified. The first
region, seen in Figure 19, appears to be a filament based on the low absolute skewness
values and the change from negative to positive skew as the confidence level is increased.
This indicates that ACWE will misidentify sufficiently dark regions as CHs. This result may
highlight the need to integrate data related to the magnetic field into ACWE to provide better
segmentations. The second group, shown in Figure 20, consists of what appears to be a CH
region with very low skew at high confidence. This may be the result of the nearby active
region, similar to the effects in Figure 17(b).

6.3. Formation of a CH

As a final interesting result stemming from the validation of the ACWE confidence maps,
ACWE was able to identify the formation of a CH in CR 2099. This region initially appeared
as a low-confidence region with large changes in segmentation area from one confidence
level to the next and minimal skew on 2010-07-16 at 10:00:00 before forming into a CH
as it entered the disk center. As the region formed, the area of confidence increased, and
difference in area from one confidence level to the next at higher confidence levels decreased
until this observation matched other CHs within the dataset. Figure 21 shows the formation
of this CH at six-hour intervals. This is the same CH as seen in Figure 16(a). The frequency
with which ACWE can identify and catalog the formation of CH regions remains an open
area of research.

7. Conclusion and Future Work

This work demonstrates the robustness and consistency of coronal-hole segmentation via the
Active Contours Without Edges (ACWE) algorithm and furthers this by introducing an en-
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Figure 16 Example CH groups where skew magnitude increased as a function of confidence, indicating
that regions with high confidence are also more strongly unipolar. From left to right for (a)-(d): AIA 193 Å
observation, confidence map (ondisk area encircled in red), graph of skew as a function of confidence level.
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Figure 17 Example CH groups where the skew magnitude remained consistent for a majority of confidence
levels. From left to right for (a) and (b): AIA 193 Å observation, confidence map (ondisk area encircled in
red), graph of skew as a function of confidence level.

semble method that leverages the ability of ACWE to define region boundaries on the basis
of homogeneity. The ACWE algorithm was found to preserve general structures in the CH
segmentations, even when operating on images decimated by 8×. Additionally, the ACWE
algorithm was found to be relatively insensitive to aggressive intensity scaling (e.g., from
float64 to unit8) provided that the relative difference between CH and quiet-Sun intensity is
maintained. These results have implications for crossinstrument application of the ACWE
algorithm (or any other algorithm that depends on intensities, homogeneity of intensities, or
dynamic range) as they indicate a strong effect of changing the dynamic range and distri-
bution of intensities within that dynamic range. It would thus be expected that instruments
with a reduced dynamic range of intensities may cause issues in obtaining accurate segmen-
tations of CHs. On the other hand, these results suggest that an accurate delineation of CH
boundaries can be determined with significantly reduced spatial resolution, including the
512 × 512 pixel resolution employed by Jarolim et al. (2021).

The ACWE algorithm was found to provide consistent segmentations across short
timescales (i.e., shorter than the expected timsecales for CH evolution). This highlights the
importance of relying on image-derived features rather than hard thresholds to segment CHs.
The ACWE segmentation method relies on image features not only in initial seeding (us-
ing an estimate of the quiet-Sun intensity), but also in defining the final CH regions as the
initial seed is evolved to maximize the homogeneity of the CH regions with respect to the
remaining ondisk area.
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Figure 18 Example CH groups where the skew magnitude dropped at higher confidence levels. Skew mag-
nitude remains high across all confidence levels, suggesting that these segmentations nonetheless represent
good segmentations of the CH region. From left to right for (a) and (b): AIA 193 Å observation, confidence
map (ondisk area encircled in red), graph of skew as a function of confidence level.

Figure 19 Filament captured by ACWE, based on the low absolute skewness values and the change from
negative to positive skew as the confidence level is increased. From left to right: AIA 193 Å observation,
confidence map (ondisk area encircled in red), graph of skew as a function of confidence level. In the graph,
any trend away from 0 would indicate increasing unipolarity.

In order to better leverage the region refinement capabilities of ACWE, an intraensem-
ble method was developed that correlates likelihood that a region is part of a CH with the
similarity of that region to the core region of that CH. It was found that the magnitude of
magnetic skew increased with increase in confidence of the ensemble, suggesting that the
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Figure 20 Example of CH with minimal skew at high confidence, possibly due to the nearby active region.
From left to right: AIA 193 Å observation, confidence map (ondisk area encircled in red), graph of skew as a
function of confidence level. In the graph, a downward trend (↓) would indicate increasing unpopularity.

higher-confidence regions represent delineations of CH regions with a more strongly unipo-
lar magnetic field.

These confidence maps introduce two additional contributions to the field. First, by devel-
oping this intraensemble method, ACWE is able to directly catalog and report on ambiguity
that exists along CH boundaries, which are often difficult to define not only due to effects of
limb brightening and stray light from nearby bright regions, but also due to surrounding QS
structures that may obscure this boundary (Caplan, Downs, and Linker, 2016). Secondly,
these results demonstrate that classical segmentation methods can be leveraged to gener-
ate confidence maps that provide strong correlations between the reported likelihood that a
region belongs to a CH and the actual probability that this is the case as measured by the
underlying unipolarity of the region.

These results, however, also introduce additional considerations, constituting avenues for
future work. First, it was found that some segmentations began targeting quiet-Sun rather
than CH regions, likely a result of relative homogeneity of the non-CH regions ondisk. More
robust methods to identify these change of target cases are needed, along with methods to
identify overfit, wherein inner portions of CH regions are excluded for stringent homogene-
ity ratios. Secondly, ACWE is vulnerable, as are many CH detection algorithms, to false
detections caused by other dark regions such as filaments. To mitigate this, ACWE will re-
quire additional data, such as from the magnetic field of the underlying regions. In both of
these avenues of future work, it is important that any developed methods are able to preserve
any regions where ACWE identifies CH formation.

Additional improvements to this method may also come in the form of introducing data
from other wavelengths captured by AIA or other instruments with an overlapping field of
view. These data could be used to both aid in the seeding of the algorithm, and also to better
define the CH region. Introduction of other data could be performed either independently,
generating additional segmentations to be considered within the ensemble, or jointly through
a vector-valued implementation of the ACWE algorithm (Chan, Sandberg, and Vese, 2000).
Finally, adaptation of ACWE to operate on additional observations, such as those produced
by the Solar Terrestrial Relations Observatory (STEREO) (Kaiser et al., 2008) can help to
develop a more complete picture of CH activity by allowing for the development of syn-
chronic maps to aid in space-weather applications.
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Figure 21 Example of formation of a CH identified by ACWE. From left to right for (a)-(e): AIA 193 Å
observation, confidence map (ondisk area encircled in red), graph of skew as a function of confidence level.
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Figure 21 (Continued)

Appendix: Intensity and Dynamic-Range Effects

In addition to evaluating the effects of spatial resolution on segmentation, the effects of in-
tensity on segmentation were also evaluated. These evaluations were designed to study the
sensitivity of ACWE segmentation of CHs with the hypothesis that intensity rescaling, e.g.,
a log scaling commonly used to visualize AIA images, may provide an advantage. It was
found, however, that direct representation of EUV intensities using a log scale hindered the
segmentation process. Since the intensity-rescaled image is not used for subsequent pro-
cessing (e.g., to compute a confidence map) these results are not included in the main text.
Since these results could be of interest in application of ACWE for segmentation of CHs on
other data with other intensity distributions (e.g., crossinstrument applications), the results
are included here as an appendix.

For the process of evaluating the effects of intensity scaling on segmentation, the Level-
1.5 EUV images were remapped to a reduced intensity range of 256 intensity levels (the
dynamic range of popular image formats such as PNG and JPEG). The data from CRs 2099
through 2101 originally contained intensities in the range [−128,16,383], while the data
from CR 2133 contained intensities in the range [−16,16,383]. Eight remapping schemes
were tested:

• Linear Full: The EUV image is linearly rescaled so that the maximum intensity is 255
and the minimum intensity is 0. Each intensity is then rounded to the nearest integer value
producing an image with 256 discrete intensity levels. The minimum and maximum inten-
sities present within the original EUV image are separately recorded for use in restoring
the native intensity range.

• Linear 0 to Max: The image is clipped so that all negative intensity values are replaced
with a value of 0. This clipped image is then rescaled. As before, the intensity of each
pixel is rounded to the nearest integer, and the minimum (0) and maximum intensity
(image dependent) are separately recorded.

• Linear Solar Limits: The image is clipped to the range of ondisk intensities prior to
remapping the image.

• Linear 20 to 2500: The image is clipped to the range of 20 to 2500 prior to remapping
the image.

• Log10 Full: An offset is applied to the intensities of all pixels to ensure that the minimum
intensity is remapped to 1 and the range of intensities is preserved. The resulting image is
remapped by taking the log10 of each pixel, consistent with common practice in visualiz-
ing AIA images. This remapped image is then rescaled. The original minimum, original
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maximum, and the offset are separately recorded for use in restoring the native intensity
range.

• Log10 Compress 0 to Max: The image is clipped so that all negative intensity values are
replaced with a value of 0. An offset of 1 is then applied to all pixels within the image.
The resulting image is remapped by taking the log10 of each pixel. This reduced and
remapped image is then rescaled. The minimum (0), offset (1), and the original maximum
are separately recorded for use in restoring the native intensity range.

• Log10 Solar Limits: The image is clipped to the range of ondisk intensities and, if
needed, offset to ensure the minimum intensity is > 0. The resulting image is remapped
by taking the log10 of each pixel. This reduced and remapped image is then rescaled.

• Log10 20 to 2500: The image is clipped to the range of 20 to 2500, the resulting image
is remapped by taking the log10 of each pixel. This reduced and remapped image is then
rescaled.

For each of the intensity compression schemes, ACWE is performed both on the com-
pressed image and on a “restored image.” For linear remapping schemes, the restoration
process is achieved by assigning to all pixels of intensity b the intensity value

v = b

255
× (max(I ) − min(I )) + min(I ), (10)

where max(I ) is the maximum intensity of the original EUV image and min(I ) is the mini-
mum intensity of the original image. For log10 remapping schemes, the restoration process is
completed in two steps. First, the intensity range of the compressed image in the log domain
is restored by assigning each pixel the intensity value

vl10 = b

255
× (log10(max(I ) + O) − log10(min(I ) + O)),

+ log10(min(I ) + O),

(11)

where the offset O is defined as

O =
{

0, for min(I ) > 0

1 − min(I ), else.
(12)

Next, the original intensity value of each pixel is approximated using

v = 10vl10 − O. (13)

In all cases (both restored and unrestored), decimation to 512 × 512 pixels (one-eighth spa-
tial resolution), correction for limb brightening, and seeding are performed, following the
method outlined in Boucheron, Valluri, and McAteer (2016), using the altered EUV image
as if it was the original. ACWE is then performed, also using the altered EUV image. These
results are compared against the one-eighth scale segmentations generated in Section 4.1.

Table 3 summarizes the number of times where ACWE returned a segmentation wherein
no regions were identified as belonging to CHs. These results indicate that ACWE, when ap-
plied to CH detection using the method outlined in Boucheron, Valluri, and McAteer (2016),
has difficulty with data that has been remapped via the log10 operator unless attempts are
made to restore the original dynamic range of the data. This result may be, in part, due to
the fact that remapping the intensities via a log transform minimizes the dynamic range of
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Table 3 Number of cases where an empty segmentation was returned. The remapping scheme is noted along
with whether the image was segmented using the [0,255] range (255) or the restored range (Rst.).

Remapping Scheme CR 2099 CR 2100 CR 2101 CR 2133

Linear Full
255 0 1 (0.2%) 0 2 (0.3%)

Rst. 1 (0.2%) 0 0 1 (0.2%)

Linear 0 to Max
255 0 0 0 0

Rst. 0 0 0 0

Linear Solar Limits
255 0 1 (0.2%) 0 0

Rst. 0 0 0 0

Linear 20 to 2500
255 0 0 0 0

Rst. 0 0 0 1 (0.16%)

Log10
255 562 (100%) 619 (100%) 582 (100%) 618 (100%)

Rst. 0 0 0 0

Log10 0 to Max
255 562 (100%) 619 (100%) 582 (100%) 618 (100%)

Rst. 0 0 0 0

Log10 Solar Limits
255 4 (0.7%) 4 (0.6%) 3 (0.5%) 6 (1.0%)

Rst. 0 0 0 0

Log10 20 to 2500
255 202 (35.9%) 309 (49.9%) 419 (72.0%) 247 (40.0%)

Rst. 0 0 0 1 (0.2%)

higher intensities in order to maximize the dynamic range of lower intensities. By maximiz-
ing the dynamic range of lower intensities, this remapping scheme is artificially decreasing
the homogeneity of the CH region, while simultaneously increasing the homogeneity of the
non-CH region.

Figure 22 shows the IOU, SSIM, GCE, and LCE between the segmentations generated
from the intensity remapped images and segmentations generated from the original EUV
image in CRs 2099, 2100, and 2101. Figure 23 shows the results for CR 2133. It should
be noted that the restoration process had little effect on the linear remapping schemes,
which preserved the majority of the dynamic range (such as the full and 0 to max mapping
schemes), and minimal effect on the remaining linear schemes. By contrast, restoring the
log10 images significantly improved segmentation similarity across all four metrics. Based
on these metrics, the restoration processed resulted in nearly identical segmentations for the
restored log10 schemes that used the full ondisk range, 0 to max intensity range, and solar
intensity range. This result is consistent with observations of the resulting segmentation, a
sample of which is provided in Figure 24. As noted above, the process of remapping the
intensities via a log transform minimizes the dynamic range of higher intensities in order
to maximize the dynamic range of lower intensities. This means that a larger portion of the
intensities in the compressed image (variable b in Equations 10 and 11) were used to rep-
resent the lower-intensity levels, allowing for a finer representation of the structure in CH
regions. The low GCE and LCE for the unrestored log10 images (i.e., those images in the
range [0,255]) represent a known problem with these metrics. Martin et al. (2001) note that
both GCE and LCE fail to characterize the quality of a segmentation when one segmentation
is empty as both metrics treat any segmentation as a refinement of an empty segmentation.



Confidence of Coronal Holes Detected by ACWE Page 33 of 38 133

Figure 22 Similarity of segmentation on intensity-rescaled image to segmentation on original, unscaled data
for CRs 2099, 2100, and 2101. The compression schemes presented are 1 & 2: Linear Full (using the [0,255]
range and restored range, respectively), 3 & 4: Linear 0 to Max, 5 & 6: Linear Solar Limits, 7 & 8: Linear 20
to 2500, 9: Log10 Linear Restored (the [0,255] range is omitted as no valid maps were returned), 10: Log10
0 to Max Restored, 11 & 12: Log10 Solar Limits (using the [0,255] range and restored range, respectively),
and 13 & 14: Log10 20 to 2500. The orange line within each plot is the median value, the box represents the
range between the first (Q1) and third (Q3) quartile, the whiskers represent 1.5 times the interquartile range
above Q3 or below Q1, and circles represent outliers.



133 Page 34 of 38 J.A. Grajeda et al.

Figure 23 Similarity of
segmentation on
intensity-rescaled image to
segmentation on original,
unscaled data for CR 2133. The
compression schemes presented
are 1 & 2: Linear Full (using the
[0,255] range and restored range,
respectively), 3 & 4: Linear 0 to
Max, 5 & 6: Linear Solar Limits,
7 & 8: Linear 20 to 2500, 9:
Log10 Linear Restored (the
[0,255] range is omitted as no
valid maps were returned), 10:
Log10 0 to Max Restored, 11 &
12: Log10 Solar Limits (using
the [0,255] range and restored
range, respectively), and 13 &
14: Log10 20 to 2500. The
orange line within each plot is the
median value, the box represents
the range between the first (Q1)
and third (Q3) quartile, the
whiskers represent 1.5 times the
interquartile range above Q3 or
below Q1, and circles represent
outliers.

For that reason, the presence of a large number of empty segmentations in the unrestored
log10 examples reduced the reported error of the ensemble. These results have implications
for crossinstrument application of the ACWE algorithm (or any other algorithm that depends
on intensities, homogeneity of intensities, or dynamic range) as they indicate a strong effect
of changing the dynamic range and distribution of intensities within that dynamic range. It
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Figure 24 Comparison of segmentations of the same observation performed using the various intensity-
remapping schemes overlaid onto the remapped image. It should be noted that the topmost image is the
original EUV image, presented here without any remapping of intensities, and the segmentation is the same
segmentation seen in Figure 4 at one-eighth scale resolution. Each image is accompanied by a color bar
showing the range of intensities in the final image.

would thus be expected that instruments with a reduced dynamic range of intensities may
cause issues in obtaining accurate segmentations of CHs.
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