
Solar Physics (2023) 298:90
https://doi.org/10.1007/s11207-023-02173-y

R E S E A R C H

A Synchronized Two-Dimensional α–� Model of the
Solar Dynamo

M. Klevs1,2 · F. Stefani1 · L. Jouve3

Received: 20 January 2023 / Accepted: 29 May 2023 / Published online: 17 July 2023
© The Author(s) 2023

Abstract
We consider a conventional α–�-dynamo model with meridional circulation that exhibits
typical features of the solar dynamo, including a Hale-cycle period of around 20 years and a
reasonable shape of the butterfly diagram. With regard to recent ideas of a tidal synchroniza-
tion of the solar cycle, we complement this model by an additional time-periodic α-term that
is localized in the tachocline region. It is shown that amplitudes of some decimeters per sec-
ond are sufficient for this α-term to become capable of entraining the underlying dynamo.
We argue that such amplitudes of α may indeed be realistic, since velocities in the range of
m s−1 are reachable, e.g., for tidally excited magneto–Rossby waves.

Keywords Solar cycle · Models · Helicity · Theory

1. Introduction

The general idea that solar-activity variations might be linked to the orbital motion of the
planets traces back to Wolf (1859), and it was kept alive, throughout one and a half centuries,
by a number of authors (de la Rue, Stewart, and Loewy, 1872; Bollinger, 1952; Jose, 1965;
Takahashi, 1968; Wood, 1972; Öpik, 1972; Condon and Schmidt, 1975; Charvatova, 1997;
Zaqarashvili, 1997; Landscheidt, 1999; Palus et al., 2000; De Jager and Versteegh, 2005;
Wolff and Patrone, 2010; Abreu et al., 2012; Callebaut, de Jager, and Duhau, 2012). The
more specific coincidence, though, of the 11.07-year alignment cycle of the tidally domi-
nant planets Venus, Earth, and Jupiter with the Schwabe cycle was brought to the fore only
recently by Hung (2007), Scafetta (2012), Wilson (2013), and Okhlopkov (2016).

Since even such a remarkable agreement between the average values of two periods
might still be a pure coincidence, the question of whether there is a phase coherence be-
tween the two time series becomes of the utmost importance. The possible phase stability
of the Schwabe cycle was first discussed in the article “Is there a chronometer hidden deep
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in the Sun?” by Dicke (1978). Analyzing the ratio between the mean square of the residu-
als (i.e. the distances between the instants of the actual cycle maxima and the hypothetical
maxima according to a linear trend) to the mean square of the differences between two
consecutive residuals, Dicke’s conclusions favored a clocked process over a random walk
process. However, apart from the poor statistics connected with the mere 25 maxima taken
into account, one should also take seriously Hoyng’s later warning (Hoyng, 1996) that any
α-quenching mechanism could easily lead to a sort of self-stabilization of the solar dynamo,
making a genuine random walk process “disguise” itself as a clocked process – at least for
some centuries. A complementary type of cycle stability appears as a typical feature of con-
ventional Babcock–Leighton dynamos, whose period is largely determined by the turnover
time of the meridional circulation (Dikpati and Charbonneau, 1999; Charbonneau and Dik-
pati, 2000; Charbonneau, 2020), which is indeed assumed to be much less fluctuating than
the α-effect in the convection zone.

With those caveats in mind, we recently re-considered (Stefani et al., 2020b) the longer
time series of cycle minima/maxima as bequeathed to us by Schove (1983), and matched
them with two series of the cosmogenic isotopes 10Be and 14C. Apart from the possible ex-
istence, or not, of two “lost cycles” (or phase jumps) around 1563 (Link, 1978) and 1795
(Usoskin, Mursula, and Kovaltsov, 2002), our analysis confirmed, by and large, Dicke’s con-
clusion in favor of a clocked cycle, now throughout the last millennium. More recently, still,
this conclusion was contested both by Nataf (2022), who recalled the customary objection
against Schove’s data as being “finagled” by his “nine-per-century” rule (Usoskin, 2017), as
well as by Weisshaar, Cameron, and Schüssler (2023), who derived – from the new 14C data
of Brehm et al. (2021) and Usoskin et al. (2021) – a Dicke ratio apparently pointing to a
random walk rather than to a clocked process. Yet, the latter result was in turn criticized by
Stefani, Beer, and Weier (2023) who identified in the minima/maxima data of Usoskin et al.
(2021), as adapted by Weisshaar, Cameron, and Schüssler (2023), a false additional cycle
around 1845, and one further additional cycle amidst the Maunder minimum with a similarly
low plausibility. The cancellation of both “superfluous” cycles was shown to re-establish the
one-to-one correspondence with Schove’s series and thereby the phase stability of the solar
dynamo back to 1140 (at least). Keeping the additional cycle around 1650 in place would
just imply the existence of one single phase jump within the Maunder minimum, which is
by no means in contradiction to the general synchronization concept.

While this entire controversy about solar-dynamo synchronization in the last millennium
is still ongoing, it should also be put into the context of the most remarkable, although
widely overlooked, work of Vos et al. (2004), whose analysis of two series of algae-related
data from 10,000 – 9000 cal. BP (calibrated years before the present) had demonstrated a
phase-stable Schwabe cycle with a period of 11.04 years.

In view of those two independent thousand-year long segments, showing nearly identical
Schwabe cycles with periods between 11.04 and 11.07 years (which are, within the error
margins of the respective data, barely distinguishable), and the strong evidence for phase
stability in either case, we consider it at least worthwhile to seek a possible physical mech-
anism that could be capable of linking the weak tidal forces, as exerted by planets, with
the solar dynamo. Setting out from the numerical observation (Weber et al., 2013, 2015;
Stefani et al., 2016) that a tide-like influence (with its typical m = 2 azimuthal dependence)
can entrain the helicity oscillation1 of an underlying m = 1 instability (the Tayler instability

1While this intrinsic helicity oscillation of the Tayler instability was originally found in the simple setting of a
non-rotating, full cylinder, a similar effect was recently observed also in a much more realistic 3D simulation
of a stably stratified and rotating tachocline, see Figure 16 of Monteiro et al. (2023).
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(Tayler, 1973; Seilmayer et al., 2012), for that matter), with barely changing its energy con-
tent, we have pursued some rudimentary synchronization studies in the framework of simple
0D and 1D α–�-dynamo models (Stefani et al., 2016, 2017, 2018; Stefani, Giesecke, and
Weier, 2019). Within the same framework, we recently tried (Stefani et al., 2020a; Stefani,
Stepanov, and Weier, 2021) to explain also the longer term Suess–de Vries cycle in terms of
a beat period (Wilson, 2013; Solheim, 2013) between the fundamental 22.14-year Hale cy-
cle and the 19.86-year period of the Sun’s barycentric motion (forced, in turn, by the orbits
of Jupiter and Saturn (Cionco and Pavlov, 2018)). With the intervening spin–orbit coupling
remaining poorly understood, we resorted to the same buoyancy-instability mechanism as
had been employed by Abreu et al. (2012) to explain typical modulation periods on the
centennial time-scale. Yet, this similarity between the final results notwithstanding, the fun-
damental time-scales of our model (22.14 and 19.86 years) that generate the much longer
beat period of 193 years, are still close to the period of the undisturbed dynamo. Our mecha-
nism for explaining long-term modulations might, therefore, be less vulnerable to stochastic
noise than what was discussed by Charbonneau (2022) in relation to the original model of
Abreu et al. (2012).

Admittedly, being restricted to the latitudinal coordinate, our simple 1D dynamo model
did not have the requisite level of detail to give a quantitative answer to Charbonneau’s recent
question of “what, then, can be considered a physically reasonable amplitude for external
forcing” (Charbonneau, 2022). It was all the more encouraging that, utilizing a 2D Babcock–
Leighton model with a periodic perturbation of the lower operating-field threshold of the
source term, Charbonneau (2022) found a similarly robust synchronization mechanism as
Stefani, Giesecke, and Weier (2019). Such a variation of the lower operating-field threshold
would correspond to variations of the field-loss parameter κ as employed by Stefani et al.
(2020a) and Stefani, Stepanov, and Weier (2021) to parameterize the spin–orbit coupling
with its 19.86-year periodicity. While we do not exclude a viable physical translation of the
(11.07-year periodic) tidal forcing into such a type of variation of the field-storage capacity,
in this article we will stick to our original idea that it is essentially the α-effect that is af-
fected by the tides. Specifically, we seek to know then how much of this periodic α-variation
would be needed to accomplish synchronization of an otherwise conventional α–�-dynamo.
Guided by a rough estimation based on the equipartition assumption Upot ≈ Ekin, we con-
sider approximately 1 m s−1 as an upper limit for the tide-induced velocity variation. Given
that the value of α, which reflects only the helical part of the turbulence, is typically one
order of magnitude lower than the underlying velocity, the focus of our modelling will be
on whether α-values on the order of dm s−1 are sufficient to entrain the entire solar dynamo.

To answer this specific question, we step back from the more sophisticated double-
synchronization model of Stefani et al. (2020a) and Stefani, Stepanov, and Weier (2021)
and restrict ourselves to the very basic tidal synchronization of the Schwabe/Hale cycle.
In the next section, we present a rather conventional two-dimensional α–�-dynamo with
meridional circulation up, utilizing observation-constrained values for � and up, and em-
ploying more or less realistic values of α and the magnetic diffusivity η. To keep the model
simple, no specific Babcock–Leighton source term is added to the α-effect “living” in the
convection zone. In the next section, we first adjust the value of η to provide a reasonable
natural period of the undisturbed dynamo. While the most simple form of the α–� model
leads, as usual, to a badly shaped butterfly diagram (with dominating poleward migration),
the correct butterfly shape is recovered by switching on the meridional circulation. Based on
the reference model thus defined, we will then assess in detail how much α-variation in the
tachocline region is actually needed for synchronization.

The article will conclude with a short discussion of the results and some prospects for
future work.
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2. The Model

In this section, we motivate and describe our mean-field solar dynamo model and discuss
its numerical implementation. Considering only axi-symmetric solutions, we work with a
system of partial differential equations whose spatial variables are the co-latitude and the
radius. Intentionally, the model has been kept similarly simple as the benchmark model of
Jouve et al. (2008).

As usual, the magnetic field is split into a poloidal component BP(r,�, t) = ∇ ×
(A(r,�, t)eφ) and a toroidal component BT(r,�, t) = B(r,�, t)eφ . The main sources of
dynamo action are the gradient of the angular velocity � and the α-effect resulting from the
helical part of the turbulence in the convection zone. While our model is not a Babcock–
Leighton model (which would require a particular source term at the surface) it is a flux-
transport model, since it comprises a meridional circulation up, mainly to ensure a realistic
shape of the butterfly diagram.

Choosing the solar radius R� = 695,700 km as the length and the diffusive time R2�/ηt

as the time scale, we employ here – as in Jouve et al. (2008) – the dimensionless form of
the coupled induction equations for the azimuthal components B ≡ Bφ of the magnetic field
and A ≡ Aφ of the vector potential,

∂B

∂t
= η̃D2B + 1

s

∂(sB)

∂r

∂η̃

∂r
− Rmsup · ∇

(
B

s

)
+ C�s(∇ × (Aeφ)) · ∇� , (1)

∂A

∂t
= η̃D2A − Rm

s
up · ∇(sA) + Cc

αα
cB + Cp

αα
pB , (2)

wherein we use the notations D2 ≡ (∇2 − s−2), s ≡ r sin θ , and η̃ = η/ηt, with ηt being the
turbulent magnetic diffusivity in the convection zone.

This system is governed by four magnetic Reynolds numbers characterizing, respectively,
the effects of shear, meridional circulation, and two different α-terms:

C� = �eqR2
�/ηt , (3)

Rm = u0R�/ηt , (4)

Cc
α = αc

maxR�/ηt , (5)

Cp
α = αp

maxR�/ηt . (6)

Herein, �eq = 2π × 456 nHz is the angular velocity at the Equator, and u0 and αc
max and

α
p
max are the typical intensities of the meridional circulation and the two separate α-effects

in the convection zone and in the tachocline region. In contrast to Guerrero and de Gouveia
Dal Pino (2007), Jouve et al. (2008), and Sanchez et al. (2014), we do not incorporate any
specific Babcock–Leighton source term.

We suppose the turbulent magnetic diffusivity [ηt] in the convection zone to be dom-
inated by a strong β-effect, whereas it is much smaller in the relatively quiet tachocline
region. Refraining from more complicated structures of η as employed, e.g., by Guerrero
and de Gouveia Dal Pino (2007) or Sanchez et al. (2014), we use here the simple form of
Jouve et al. (2008)

η̃(r) = ηc

ηt
+ 1

2

(
1 − ηc

ηt

)[
1 + erf

(
r − rc

d

)]
(7)



A Synchronized Two-Dimensional α–� Model of the Solar Dynamo Page 5 of 14 90

Figure 1 Spatial structures of the main ingredients of the dynamo model in the meridional plane. (a) Iso-
lines of �(r,�)/�max. (b) Streamlines of up(r,�). (c) Constant part of α, taken in the unquenched state:

αc(r,�)/αc
max. (d) Periodic part of α, with the resonance term set to 1: αp(r,�)/α

p
max.

with ηc = 0.01ηt, rc = 0.7, and d = 0.02, which shows a smoothed-out jump (by a factor of
100) between the radiation zone and the convection zone.

For the angular velocity, we apply the same spatial structure as Jouve et al. (2008):

�(r,�) = C�

{
�c + 1

2

[
1 + erf

(
r − rc

d

)]
(1 − �c − c2 cos2 �)

}
(8)

with rc = 0.7, d = 0.02, �c = 0.92, and c2 = 0.2 (see Figure 1a).
For the meridional circulation we chose, again as in Jouve et al. (2008), one single cell

defined by up = ∇ × (ψ(r,�)eφ) with the stream function

ψ(r,�) = Rm

{
− 2

π

(r − rb)
2

(1 − rb)
sin

(
π

r − rb

1 − rb

)
cos� sin�

}
(9)

with rb = 0.65 (see Figure 1b). We are well aware of the fact that the specific structure
of up is much less settled than that of �(r,�), and that more complicated two-cell flows
(Kosovichev et al., 2022) might also be considered in future improvements of our model.

Finally, α = αc + αp is thought to consist of a conventional part αc in the convection
zone, whose time-dependence stems only from the quenching by the magnetic field,

αc(r,�, t) = Cc
α

3
√

3

4
sin2 � cos�

[
1 + erf

(
r − rc

d

)][
1 + |B(r,�, t)|2

B2
0

]−1

(10)

with B0 = 1, and an explicitly time-dependent (with forcing period Tf) part αp that is con-
centrated in the tachocline region,

αp(r,�, t) = Cp
α

1√
2

sin2 � cos�

[
1 + erf

(
r − rc

d

)][
1 − erf

(
r − rd

d

)]
×

2|B(r,�, t)|2
1 + |B(r,�, t)|4 sin(2πt/Tf) , (11)

where rd = 0.75. Note that the factor on the second line of Equation 11 represents a reso-
nance term as introduced by Stefani et al. (2016) in order to account for a field-dependent
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optimal reaction of the underlying instability (e.g. Tayler instability) on the tidal forcing.
A similar field dependence has been used, e.g., by Charbonneau (2022), although with the
slightly different interpretation as a nonlinearity of the non-local source term that incorpo-
rates both a lower and upper operating threshold for the strength of the toroidal magnetic
field at the base of the convection zone. The spatial structures of these two α-terms are
presented in Figure 1c, d, in either case disregarding any magnetic-field dependence.

For the numerical solution, an explicit finite-difference scheme in two dimensions in
spherical coordinates is used, partly with the standard resolution of 64 × 64 grid points
in radial and latitudinal direction (as originally used by Rüdiger, Elstner, and Ossendrijver
(2003)), partly with an enhanced resolution of 128 × 128. The equations are solved with
perfect-conductor boundary conditions A = ∂(rB)/∂r = 0 at r = 0.65R� and vertical field
conditions Bφ = B� = 0 at r = R�.

3. Results

In this section, we present and assess the results of three dynamo models with increasing
complexity.

3.1. Non-synchronized Model, Without Meridional Circulation

First, we consider the simplest case of Parker’s migratory dynamo (Parker, 1955), without
any synchronization term (αp = 0), and without meridional circulation (up = 0). For the sake
of concreteness, we set ηt = 2.13 × 1011 cm2 s−1, and αc

max = 1.30 m s−1, both of which are
close to the respective geometric mean of the lower and upper values, as typically found in
the literature (1010 – 1013 cm2 s−1 for η and 10 – 103 cm s−1 for α, see Charbonneau (2020)).
The resulting magnetic Reynolds numbers according to Equations 3 and 5 are C� = 65,100
and Cc

α = 42.46. The radial dependencies of η(r) and αc (in its unquenched form) are illus-
trated, for � = 45◦, in Figure 2a. Note that for this particular angle, αc(r) does not reach the
maximum value of 1.30 m s−1.

Figure 3 illustrates the resulting field dependence on time and latitude, taken partly at
r = 0.95, partly at r = 0.7, showing a reasonable dynamo-cycle period of Td = 14.27 years
(i.e. 0.0198 diffusion times), but a badly shaped butterfly diagram.

3.2. Non-synchronized Model, with Meridional Circulation

In order to recover the correct shape of the butterfly diagram, we switch on a meridional
circulation, setting its value to u0 = 5.2 m s−1, which corresponds to Rm = 170. For this
value, as well as for Rm = 200 and 240, the radial dependence of u� is shown, again for
� = 45◦, in Figure 2b. While the values u� at r = 1 are by a factor of approximately two
too low compared with observations, the typical values of 1 – 2 m s−1 at the base of the
convection zone are quite compatible with values from helioseismology. Actually, the latter
velocities are the crucial ones to set the cycle period.

As seen in Figure 4, we obtain now a butterfly diagram of rather decent shape and a
slightly changed cycle period of Td = 22.798 years. This will serve in the following as the
reference dynamo model, whose synchronization is to be evaluated thereupon. While further
improvements of the spatio-temporal features of the magnetic field are certainly possible (for
example, when including an appropriate Babcock–Leighton source term), we refrain from
any further sophistication of the model.
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Figure 2 Radial dependence of various dynamo ingredients in physical units, all taken at � = 45◦ . (a) Dif-
fusivity η(r) (black), αc(r) in the unquenched form (violet), and αp(r) for α

p
max = αc

max and with the field-
dependent resonance factor artificially set to 1 (red). (b) u�(r) resulting from the stream function of Equa-
tion 9 for three different Rm.

Figure 3 Contour-plots of B�(r = 0.95, θ, t), Bφ(r = 0.7, θ, t), and Br(r = 0.95, θ, t) and of
|B(r = 0.95, θ, t)| for the non-synchronized model without meridional circulation. The simulations were
carried out with the enhanced resolution of 128 × 128. Note that the ordinate axis represents not the colati-
tude θ , but the normal solar latitude 90◦ − θ .

3.3. Synchronized Model

Finally, we switch on the periodic α-term with an assumed forcing period of Tf = 11.00
years (we do not insist here on the precise value of 11.07 years). The radial dependence
of αp is illustrated by the red curve in Figure 2a. Note, however, that here α

p
max has the

same value of 1.30 m s−1 as the corresponding αc
max, and that the field-dependent resonance

term in Equation 11 is set to its maximum value of 1, which is reduced outside the optimal
magnetic-field value.

As shown in Figure 5, for the specific value α
p
max = 0.52 m s−1 we obtain now the dynamo

period Td = 22.00 years, which corresponds to twice the period Tf of the forcing. Apart from
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Figure 4 Contour-plots of B�(r = 0.95, θ, t), Bφ(r = 0.7, θ, t), and Br(r = 0.95, θ, t) and of
|B(r = 0.95, θ, t)| for the non-synchronized model including meridional circulation with Rm = 170. The
simulations were carried out with the enhanced resolution of 128 × 128. Note that the ordinate axis repre-
sents not the colatitude θ , but the normal solar latitude 90◦ − θ .

Figure 5 Contour-plots of B�(r = 0.95, θ, t), Bφ(r = 0.7, θ, t), and Br(r = 0.95, θ, t) and of
|B(r = 0.95, θ, t)| for the synchronized model including meridional circulation with Rm = 170 and a pe-
riodic α-term with amplitude α

p
max = 0.52 m s−1 and period Tf = 11.00 years. The simulations were carried

out with the enhanced resolution of 128 × 128. Note that the ordinate axis represents not the colatitude θ , but
the normal solar latitude 90◦ − θ .

that, there is barely any significant change in the field structures compared with the non-
synchronized case in Figure 4. A video illustrating the field dynamics in the synchronized
case can be found in the Electronic Supplementary Material.
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Figure 6 Ratio of the period Td of the signal to the period Tf of the forcing dependence on the relative
strength of the forcing α

p
max/αc

max. The color-coded curves refer to different ratios of the “natural” period Tn
of the non-synchronized dynamo to Tf, which has been varied by changing the magnetic Reynolds number
Rm of the meridional circulation. Tn can be read from the value on the ordinate axis multiplied by 11 years;
it amounts, for example, to 23.3 years for Rm = 150, to 21.6 years for Rm = 200, and to 19.5 years for
Rm = 250. These numerically expensive simulations were carried out with the standard resolution of 64×64.

In Figure 6, we present the dependence of the dynamo period Td on α
p
max. Here we have

used a couple of ratios of the “natural” period Tn (of the non-synchronized dynamo with
α

p
max = 0) to the forcing periods Tf by simply changing the amplitude of meridional circu-

lation, which governs Tn. Very similar to Figure 10 in Stefani, Giesecke, and Weier (2019),
and to Figure 10 in Charbonneau (2022), we obtain a clear parametric resonance for some
critical value of α

p
max that depends on the initial distance between twice the forcing period Tf

and the natural period Tn of the unperturbed dynamo. As we had chosen αc
max = 1.30 m s−1,

synchronization occurs for an amplitude of α
p
max in the range of some decimeters per second.

The relative smallness of this number is, of course, a consequence of the 100 times smaller
value of η in the tachocline region, which amplifies correspondingly the induction effect of
αp, even if the latter is concentrated in a significantly smaller zone than αc. That said, we
must also admit that synchronization requires a certain proximity of 2Tf and Tn; for the Rm,
values indicated by the dashed lines in Figure 6, no clear synchronization was observed even
for the highest considered value of α

p
max/α

c
max = 1. This narrowness of the synchronizability

region, which somewhat contrasts with the broader region obtained in the framework of the
1D model (Figure 10 of Stefani, Giesecke, and Weier (2019)), might have to do with the
tight scaling of Tn with the period of the meridional circulation.

4. Conclusions

As a sequel to the 0D and 1D modelling of solar-cycle synchronization (Stefani et al.,
2016, 2018; Stefani, Giesecke, and Weier, 2019; Stefani et al., 2020a; Stefani, Stepanov, and
Weier, 2021), we have investigated a more realistic 2D α–�-dynamo model. Starting from
a conventional set-up without meridional circulation, exhibiting a poorly shaped butterfly
diagram, via an enhanced model with meridional circulation showing the correct butterfly
shape, we have assessed the synchronization capabilities of a time-periodic α-term concen-
trated in the tachocline region. For rather standard values of all other parameters, it was
shown that synchronization starts already at a magnitude of this additional α-term as low as
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some decimeters per second. The smallness of this value relies on the fact that η in the quiet-
tachocline region is significantly lower than in the convection zone, where it is dominated by
the turbulent β-effect. The utilized tachoclinic diffusivity η ≈ 2.13 × 109 cm2 s−1 should be
considered a conservative choice; in view of much lower values such as 2.2 × 108 cm2 s−1

as used by Guerrero and de Gouveia Dal Pino (2007), the real value of α, required for syn-
chronization, might still be lower than the one derived here.

This brings us back to Charbonneau’s “elephant in the room: what, then, can be con-
sidered a physically reasonable amplitude for external forcing?” (Charbonneau, 2022).
Let us recall the very rough estimation (Öpik, 1972) that the typical tidal height of
htidal = GmR2

tacho/(gtachod
3) ≈ 1 mm corresponds energetically to a velocity scale of v0 ≈

(2gtachohtidal)
1/2 ≈ 1 m s−1 when employing the huge gravity at the tachocline of gtacho ≈

500 m s−2. Invoking the equally rough estimate α ≈ v0 from renormalization theory (Moffatt
and Dormy, 2019) (and even when realistically assuming α to be one or two orders of mag-
nitude smaller than v0), a tidally generated α-value of a few decimeters per second seems not
out of reach. Indeed, it was recently shown (Horstmann et al., 2023) that (magneto–)Rossby
waves (Marquez-Artavia, Jones, and Tobias, 2017; Zaqarashvili, 2018; Dikpati et al., 2020)
under the influence of a realistic tidal forcing are capable of acquiring velocity scales of up
to 1 m s−1. Therefore, it appears that the “astrological homeopathy” (Charbonneau, 2022)
of tidal forcing may well be suited to generate an α-effect in the tachocline region that is
strong enough to entrain the entire solar dynamo.

We have further confirmed the prior results of Stefani, Giesecke, and Weier (2019) (Fig-
ure 10) and Charbonneau (2022) (Figure 10) that this type of synchronization requires a
certain proximity of the tidal forcing’s period to half the “natural” period of the undisturbed
dynamo. The Sun, therefore, may just be in the lucky situation of being orbited by a Jupiter
with a period that fits nicely to half the “natural” period of the undisturbed dynamo, in con-
trast to a number of exoplanets for which no sign of synchronization was found by Obridko,
Katsova, and Sokoloff (2022). It remains to be seen whether some peculiar features of the
solar dynamo, e.g. its somewhat unusual cycle period (Böhm-Vitense, 2007) and, in partic-
ular, “its comparatively smooth, regular activity cycle” (Radick et al., 2018), could find an
explanation in such a rare case of parametric resonance. At any rate, it should be noted that
in our case the relation of the planet’s orbital period to the rotation period of the star is com-
pletely different from that of some “hot Jupiters”, exerting a much stronger tidal forcing, for
which other types of resonances in the form of spin–orbit commensurabilities were recently
discussed by Lanza (2022).

What are the next steps to be taken? First and foremost, the specific action of m = 2 tidal
forces on various m = 1 instabilities (e.g. Tayler) or waves (e.g. magneto–Rossby), and on
the α-effect connected with them, has to be quantified in a reliable manner. Complemen-
tary work on tidal influences on Rayleigh–Bénard convection, and its large-scale circulation
(Stepanov and Stefani, 2019; Jüstel et al., 2020, 2022), might be helpful to elucidate helicity
entrainment in a more generic sense.

Second, the possible role of further axisymmetric induction effects, beyond the α-effect,
has to be clarified. The basic idea of a torque-influenced magnetic-buoyancy instability
within the tachocline (Ferriz Mas, Schmitt, and Schüssler, 1994; Zhang et al., 2003; Abreu
et al., 2012) might play a central role here. It was indeed employed as the basic synchroniza-
tion mechanism by Charbonneau (2022), while Stefani et al. (2020a) and Stefani, Stepanov,
and Weier (2021) had used it only to bring into play the second fundamental period 19.86
years via spin–orbit coupling (yet poorly understood, but see Javaraiah (2003), Shirley
(2006), Sharp (2013) for first estimates). It certainly needs much more work to disentangle
these two effects. Further to this, we should not overlook alternative axisymmetric (m = 0)



A Synchronized Two-Dimensional α–� Model of the Solar Dynamo Page 11 of 14 90

instabilities, the possible relevance of which had been discussed by several authors (Dikpati
et al., 2009; Rogers, 2011). The recently discovered helical magnetorotational instability
for flows with positive radial shear (Mamatsashvili et al., 2019) might be an particularly
interesting candidate in this respect.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11207-023-02173-y.
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