
Solar Physics (2023) 298:48
https://doi.org/10.1007/s11207-023-02140-7

R E S E A R C H

A Critical Comment on “Can Solar Cycle 25 Be a New Dalton
Minimum?”

J.C. Peguero1 · V.M.S. Carrasco2,3

Received: 7 December 2022 / Accepted: 7 March 2023 / Published online: 28 March 2023
© The Author(s) 2023

Abstract
The sunspot number is the most used solar-activity index to study the behavior of solar
activity. In this work, we reproduce the methodology of Coban, Raheem, and Cavus (So-
lar Phys. 296, 156, 2021) using a long short-term memory model with daily data from the
American Association of Variable Star Observers (AAVSO) to predict the maximum ampli-
tude of Solar Cycle 25. We have also used that same methodology with daily values from
the official sunspot number (Version 2) of the Sunspot Index and Long-term Solar Observa-
tions (SILSO). The objective of this work is to analyze if the predictions obtained from that
methodology agree with the observed values available for the current Solar Cycle 25. Thus,
we conclude that the predictions are not reproducing well the behavior of the Solar Cycle 25
in its rising phase. Moreover, contrary to the previous prediction, no minor peak occurred
in February 2022, and we also conclude that it seems unlikely that the combination of the
solar-activity level of Solar Cycle 24 and 25 constitutes a new Dalton-type Minimum, such
as Coban, Raheem, and Cavus (2021) proposed.

Keywords Sunspots · Sunspot number · Solar Cycle · Solar Cycle 25 · Solar activity
forecast · Neural network · Deep learning

1. Introduction

The sunspot records represent the longest dataset of direct solar observations available (Va-
quero et al., 2016; Usoskin, 2017; Arlt and Vaquero, 2020). The number of sunspots on
the photosphere increases and decreases in cycles of around 11 years (Clette et al., 2014;
Muñoz-Jaramillo and Vaquero, 2019). The prediction of the amplitudes of these solar cycles
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has undergone an increased interest because of the impact of solar activity on our techno-
logical society (McNish and Lincoln, 1949; Pulkkinen, 2007; Arregui, 2022; Carrasco and
Vaquero, 2022).

Different techniques are used to predict solar activity (Pesnell, 2008; Petrovay, 2020).
For instance, some of them, predicting the amplitude of the past Solar Cycle 24 and the
current Solar Cycle 25, are based on space climatology (Kane, 2008; Wang et al., 2009;
Carrasco and Vaquero, 2021), physical models (Upton and Hathaway, 2018; Bhowmik and
Nandy, 2018), precursors (Hathaway and Wilson, 2004; McIntosh et al., 2020), and spectral
analysis (Kilcik et al., 2009; Rigozo et al., 2011) (see more details in Nandy, 2021). Other
types of predictions are those made from artificial intelligence using neural networks. In
some works, this kind of prediction method has been used to predict the amplitudes of Solar
Cycle 24 and 25 (Gholipour et al., 2005; Quassim, Attia, and Elminir, 2007; Okoh et al.,
2018; Pala and Atici, 2019; Prasad et al., 2022) and also for giving a forecast of the butterfly
diagram in space and time (Covas, Peixinho, and Fernandes, 2019).

Within the predictions using a neural network, Coban, Raheem, and Cavus (2021) pre-
dicted the evolution of Solar Cycle 25 using the technique known as the Long Short-Term
Memory (LSTM) network. They used daily sunspot observations for the period 1945 – 2020
provided by the American Association of Variable Star Observers (AAVSO) as training data
for the LSTM model. These authors claim that a model based on daily sunspot-number ob-
servations should be taken into account because it will be closer to reality than monthly
smoothed data. Their conclusions were: i) the maximum amplitude of Solar Cycle 25 will
be lower than that of Solar Cycle 24, and examining both cycles together, the Sun would
enter in a new Dalton Minimum, and ii) the maximum amplitude of Solar Cycle 25 will be
in July 2024, with two minor peaks in February 2022 and August 2026.

The objective of this work is to assess the methodology for prediction by Coban, Raheem,
and Cavus (2021) and clarify whether Solar Cycle 25, together with Solar Cycle 24, will be
a new Dalton Minimum. In Section 2, we describe the daily dataset used in this work. We
provide information on the LSTM model in Section 3 and the predictions obtained using
this deep-learning technique in Section 4. Section 5 is devoted to analysis and discussion of
the results obtained and the main conclusions of this work are presented in Section 6.

2. Dataset

Coban, Raheem, and Cavus (2021) used the daily sunspot observations of the AAVSO
(www.aavso.org/solar) to carry out their prediction. In our case, in addition to the use of the
AAVSO data in order to reproduce the work by Coban, Raheem, and Cavus (2021), we also
use the official daily sunspot-number values provided by the Sunspot Index and Long-term
Solar Observations (SILSO: www.sidc.be/silso). Figure 1 (top panel) shows a comparison
between the daily values of the sunspot number provided by SILSO (1818 – 2022) and that
by AAVSO (1945 – 2022).

We have also computed the ratio between values from AAVSO and SILSO in order to
study the stability of the AAVSO series with respect to that from SILSO (Figure 1, bottom
panel). One can see that there were significant variations in the ratio from 1945 to 1970.
Then, the ratio was around 0.7 (with an increase around solar minima) until 2000, when it
changed and is slightly larger than 0.6.

http://www.aavso.org/solar
http://www.sidc.be/silso
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Figure 1 (Top panel) Daily sunspot-number values of the AAVSO (red) for the period 1945 – 2022 and the
sunspot number (Version 2) provided by SILSO (black) for the period 1818 – 2022. (Bottom panel) Ratio
between annual (monthly) values from AAVSO and SILSO is represented by a blue thick (thin) line.

3. Neural Network: LSTM Model

A LSTM network is a type of recurrent neural network (Muzaffar and Afshari, 2019; Ab-
basimehr and Paki, 2022). It is an algorithm used in machine deep learning developed to
work with time series. This algorithm is capable of learning order dependence in sequential
prediction problems if it is properly trained. The LSTM networks, as artificial neural net-
works, generally consist of multiple-layer units. Each layer can have several units, called
neurons. As a minimum, each unit includes a forget, input, and output gate. The forget gate
decides whether to keep the data, the input gate decides whether to update the information
about the data, and the output gate decides which of the data transferred from previous in-
put gates will be selected. The batch size (epochs) represents the amount of data used for
training in each iteration.

LSTMs are useful in time-series prediction when there is a relationship between the time
series and delayed versions of itself. To make a prediction with the stateful LSTM model,
the training data and the delayed values of the data are fed as input data. This enables the
stateful LSTM model to learn the relationship between the data and its preceding values.
The autocorrelation values allow us to know the accuracy of the model. A positive autocor-
relation function (ACF) close to one indicates that the model fits the time series well.
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Table 1 Structure of the stateful
LSTM model defined in this
work following the methodology
of Coban, Raheem, and Cavus
(2021).

Layer (type) Output shape Parameter
number

Lstm_0 (LSTM) (730, 1, 50) 10400

Lstm_1 (LSTM) (730, 50) 20200

Dense (Dense) (730, 1) 51

Total parameters: 30651

Trainable parameters: 30651

Non-trainable parameters: 0

Large data sets will only yield successful predictions when the data are divided into
subsets. This technique is called “backtesting” and consists of dividing the time series into
different segments or slices of past observations. These slices will be overlapping although
delayed in time by an amount called the skip-span. It means that the second slice starts a set
number of years after the beginning of the first slice.

We have developed a stateful LSTM model, following the methodology of Coban, Ra-
heem, and Cavus (2021). In order to make a 10-year (3650 days) prediction, we divide the
data into two slices, each consisting of 36 years of data for training, 10 years of data for test-
ing (not used for training but used finally for testing), and 15 years of data for skip-span. Our
LSTM model, as that of Coban, Raheem, and Cavus (2021), has two layers with 50 units
per layer (Table 1). Some parameters must be specified in the model, such as the “Return
sequences”, which are given as “True” values for the first layer (Lstm_0) and set to ‘False’
for the second layer (Lstm_1), and also the “stateful” parameter that, in both layers, will be
considered as “True”. The number of units of the output layer (Dense) is 1 and provides the
predicted daily sunspot number. The stateful LSTM model was fed using a batch size set of
730 (an integral number must equal the length of the data set). Finally, we set as the iteration
parameter 300 epochs.

We have applied the ACF over a lag less than or equal to 365 times 50 years, obtaining
an optimal lag setting of 0.48 in agreement with Coban, Raheem, and Cavus (2021). This
is enough to consider the stateful LSTM model able to learn the relationship between data
and its preceding values. Note that solar activity is hardly predictable beyond one solar
cycle ahead (Petrovay, 2020; Nandy, 2021). The predictions by neural networks are made
by mathematical models based on the assumption of the series’ stationarity. Thus, we remark
this limitation of the LSTM model, since the sunspot number is not a stationary series.

The R library rsample and the keras package, which connects to the R “TensorFlow
backend”, using R Version 3.6.0 under RStudio Version 1.3.1093 were used to develop the
stateful LSTM model.

4. Predictions Using Daily AAVSO and SILSO Observations

We have reproduced the methodology followed by Coban, Raheem, and Cavus (2021) to
predict the maximum amplitude of Solar Cycle 25. Thus, we have applied a LSTM model
using daily observations, on the one hand provided by AAVSO and on the other hand by
SILSO for the period January 1945 – September 2020.

The daily sunspot-number series from AAVSO and SILSO are divided in two different
slices (one for the period January 1945 – December 1990 and other for the period December
1959 – December 2005), including 36 years for training, 10 years for testing, and 15 years
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Figure 2 Division of the daily sunspot observations form AAVSO into slices for the period January
1945 – December 1990 (top panel) and December 1959 – December 2005 (bottom panel). Training data are
presented by black lines and testing data by red lines.

Figure 3 Division of the daily sunspot observations form SILSO into slices for the period January
1945 – December 1990 (top panel) and December 1959 – December 2005 (bottom panel). Training data are
presented by black lines and testing data by red lines.
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Figure 4 Daily sunspot observations from AAVSO are represented by black dots. Predictions of daily
sunspot-number values from LSTM model are depicted by the red dots. RMSE values are shown for Slice 1
(top panel) and Slice 2 (bottom panel).

for the skip-span. Thus, we can check the accuracy of the model throughout the observed
data. Figure 2 and 3 includes the AAVSO and SILSO daily sunspot observations divided
into those two slices.

After training the LSTM model in Slices 1 and 2, included in Figure 2 for AAVSO and
Figure 3 for SILSO, we obtained predictions of daily values for the test years: i) one around
the solar minimum of Solar Cycle 23 (December 1980 – December 1990) and ii) the other
around the solar maximum of that solar cycle (December 1995 – December 2005). These
daily values predicted for the model around the minimum and maximum of Solar Cycle
23 are represented in Figure 4 for AAVSO and in Figure 5 for SILSO. The analysis of
the behavior of these predicted values for the model with respect to the observed values is
analyzed in Section 5.

We use the root mean square error (RMSE) to check the accuracy of the LSTM model
in the two slices. We obtained a RMSE value equal to 52.5 for the first slice and 40.1 for
the second slice regarding AAVSO observations. We note that Coban, Raheem, and Cavus
(2021) obtained a RMSE value of 52.5 for the first slice and 39.0 for the second one. One
can see that the RMSE value obtained in the Slice 2 is not the same as Coban, Raheem, and
Cavus (2021), but it is close. We highlight that this difference can be due to the RMSE value
slightly changing in each running of the code from the original values, but it does not have
influence in the prediction response of the neural network. In the case of the SILSO data,
we obtained RMSE values larger than those from AAVSO data: 74.1 for the first slice and
54.2 for the second slice.

The daily sunspot-number values predicted by the LSTM model for the period October
2020 – September 2030 are represented in Figure 6 (top panel) in the case of using AAVSO
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Figure 5 Daily sunspot observations from SILSO are represented by black dots. Predictions of daily sunspot-
number values from LSTM model are depicted by the red dots. RMSE values are shown for Slice 1 (top panel)
and Slice 2 (bottom panel).

data and in Figure 6 (bottom panel) for the SILSO data. The 13-month smoothed monthly
average is also included to be compared with the observed values of the official sunspot
number during the current Solar Cycle 25.

We also note that we have applied the LSTM model using data from SILSO since 1872
(that is first year since which the daily observational coverage is 100%) with the same config-
uration of the neural network as explained above. However, we did not obtain a behavior of
the model better than that obtained previously, that is the RMSE values obtained are higher
than those shown above. Therefore, we did not carry out an analysis of other predictions
using that dataset.

5. Results and Discussion

First, we analyze the comparison between the predicted values by the LSTM model and
the observed sunspot-number values for the data considered for test in the slices defined
in the previous section. In this case, as our objective is to analyze the prediction for solar
maxima, we decided only to consider the analysis of Slice 2, which contains the predicted
values for test (Solar Cycle 23), in addition to the lowest RMSE values. Figure 7 shows the
comparison between the predicted 13-month smoothed monthly sunspot number obtained
from the LSTM model using AAVSO (top panel) and SILSO (bottom panel) data and the
observed values from AAVSO and SILSO, respectively, during the period for test: June
1996 – June 2005 (corresponding to Slice 2).
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Figure 6 Prediction of AAVSO (top panel) and SILSO (bottom panel) sunspot-number values for the period
October 2020 – September 2030 applying an LSTM model using daily sunspot observations from AAVSO and
SILSO for the period 1945 – 2020. Dots represent daily values and the line depicts the 13-month smoothed
monthly average.

Coban, Raheem, and Cavus (2021) claim that the 13-month smoothed monthly average
of the sunspot-number values calculated from predicted daily values by the model fits the
observed data well in the case of data for test (both in Slices 1 and 2), because all of the pre-
dicted values are within the interval of the observed 13-month smoothed monthly sunspot
number values ± one standard deviation. However, Coban, Raheem, and Cavus (2021) ac-
tually used for monthly values of standard deviation the RMSE value obtained in each slice.
Regarding data for test in the Slice 2 (Solar Cycle 23), we also obtained that all the predicted
values, calculating the 13-month smoothed monthly average from the predicted daily values,
are within the interval of the observed 13-month smoothed monthly average values ± the
RMSE value (that is, 40.1 in the case of AAVSO and 54.2 in the case of SILSO). Instead,
the monthly standard deviation is defined as:

σ =
√
√
√
√

1

N

N
∑

i=1

(SNi − SNm)2

where in this case N is the number of observations in a month, SNi represents the daily
sunspot-number values, and SNm depicts monthly averages of sunspot numbers for a given
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Figure 7 Comparison between the 13-month smoothed monthly sunspot-number values estimated from the
LSTM model (orange) and the observed 13-month smoothed monthly sunspot number considering the data
for test in the Slice 2 using AAVSO (top panel) and SILSO (bottom panel) data. The ratio between the ob-
served and predicted values is depicted by the dashed black line. The blue shaded area represents the interval
defined by the observed 13-month smoothed monthly sunspot-number value ± one standard deviation.

month. Thus, we obtained that around 15% of the monthly data in the case of AAVSO
and 30% from SILSO are out of the interval defined by the observed 13-month smoothed
monthly average data ± the standard deviations (see Figure 7).

We have also calculated the ratio between the observed and predicted 13-month smoothed
monthly average values both from AAVSO and SILSO data (dashed black lines in Figure 7),
considering the test period (Solar Cycle 23). One can see that the evolution of predicted and
observed values is significantly different during roughly the two first years of the prediction.
Then, from the end of 1998 in the case of AAVSO and the beginning of 1999 for SILSO, the
behavior between the observed and predicted values is closer and the ratio ranges between
values of 1.2 and 0.8.

Analyzing the predicted values for the maximum of Solar Cycle 23 (187.6 and 115.3
according to SILSO and AAVSO, respectively), it is only 4% larger with respect to the ob-
served value in the case of SILSO (180.3) and around 8% lower in the case of AAVSO
(125.9). Furthermore, the maximum of Solar Cycle 23 (November 2001) occurred 11
months later than the predicted date for the maximum using the SILSO data (December
2000) and 15 months later considering the AAVSO data (September 2000).

Coban, Raheem, and Cavus (2021) claimed that “a model based on daily sunspot-number
observations should be taken into account because it will be closer to reality than monthly
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Figure 8 Comparison between the observed 13-month smoothed monthly sunspot-number values provided
by SILSO (black line) and the predictions made applying the methodology by Coban, Raheem, and Cavus
(2021) using data from SILSO (green) and AAVSO (yellow). Note that the yellow line represents the predic-
tion using AAVSO data applying the calibration factor with respect to the official sunspot number by SILSO.
Gray shading depicts the interval defined by the observed 13-month smoothed monthly sunspot-number value
± one standard deviation. The red dot represents the smoothed sunspot-number value for February 2022.

smoothed data”. We have compared the predictions obtained in this work for Solar Cycle 25
following the methodology by Coban, Raheem, and Cavus (2021) with the sunspot-number
values available for this cycle so far (December 2022). Figure 8 shows the observed values of
the official sunspot number by SILSO so far (black) and the predictions made using AAVSO
(red) and SILSO (green) data (explained in Section 4), respectively. Furthermore, to scale
the sunspot observations made by the AAVSO to the official sunspot number (Version 2) by
SILSO, we must apply a calibration factor to the AAVSO data. We have obtained this factor
following the calculations by Clette (2018):

k =
(

∑ RS

RA

)

/nm

where RS and RA are the monthly sunspot-number values from SILSO and AAVSO, respec-
tively, and nm is the number of months with observations in common in both datasets. Thus,
the calibration factor for AAVSO with respect to SILSO is 1.55 ± 0.53. Applying this fac-
tor to the original prediction from AAVSO data, we obtained the calibrated AAVSO series
depicted in Figure 8 in yellow.

One can see in Figure 8 that the predictions applying the methodology of Coban, Ra-
heem, and Cavus (2021) using daily data significantly differ from the behavior of the ob-
served values available for Solar Cycle 25. While the predicted values overestimate the ob-
served values considering the first months of the cycle, the observed values are larger than
the predictions from February 2022. This behavior is similar to that in Figure 7, which uses
data of Solar Cycle 23 for testing how well the predictions of the model fit the observed
values. The first predicted values of Solar Cycle 23 are significantly higher than the ob-
served values and, in addition, they are out of the interval defined by the observed 13-month
smoothed monthly averaged sunspot number ± the standard deviation. Then the observed
values are larger than the predicted values until the first maximum of Solar Cycle 23, and
from then until the next minimum the predicted values are larger than the observed ones.
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The average of the monthly differences between observed and predicted values from
April 2021 to May 2022 is around 30% and 35%, in the cases of using SILSO and cali-
brated AAVSO data, respectively. We do not know if the predicted values for the maximum
amplitude of Solar Cycle 25 obtained in this work using the methodology of Coban, Ra-
heem, and Cavus (2021) will be close to the final value of the maximum amplitude of this
cycle (such as seen in data of Solar Cycle 23 for testing), but we can affirm that the predic-
tions based on an LSTM model using daily data are not reproducing well the behavior of
Solar Cycle 25 in its rising phase.

One of the conclusions made by Coban, Raheem, and Cavus (2021) from their predic-
tion is that the maximum amplitude of Solar Cycle 25 will be in July 2024 with two minor
peaks in February 2022 and August 2026. Figure 8 depicts the 13-month smoothed monthly
sunspot-number values provided by SILSO for Solar Cycle 25 from its beginning in De-
cember 2019 to those available so far (December 2022) by the black line. One can see that
the minor peak of solar activity predicted by Coban, Raheem, and Cavus (2021) in February
2022 is not present in the observed values because the 13-month smoothed monthly sunspot-
number values for March (68.8), April (73.1), and May (77.3) are larger than the observed
value in February (64.7), represented by the red dot in Figure 8. Moreover, in the case of us-
ing data from SILSO to make the prediction, there is also one minor peak in February 2022.
Therefore, in this case, the predictions using both AAVSO and SILSO data fail following
the methodology of Coban, Raheem, and Cavus (2021).

The most striking conclusion in the work by Coban, Raheem, and Cavus (2021) is that
the authors state “if the Solar Cycles 24 and 25 are examined together, the Sun may enter a
new Dalton Minimum”. To stress this conclusion, first we note that the maximum amplitudes
of Solar Cycle 5 and 6 (in the Dalton Minimum) in terms of 13-month smoothed monthly
sunspot number were 82.0 and 81.2, respectively. Also, the maximum amplitude for the
most recent Solar Cycle 24 was 116.4. Regarding the prediction obtained following the
methodology by Coban, Raheem, and Cavus (2021) using calibrated data from AAVSO
(120.7) and sunspot-number values from SILSO (94.1), the average of the amplitudes of
Solar Cycle 24 and 25 is 118.6 ± 3.0 and 105.2 ± 15.8, whereas it is 81.6 ± 0.6 for the two
cycles in the Dalton Minimum. Then, taking as reference the predictions obtained following
the methodology by Coban, Raheem, and Cavus (2021), the solar-activity level examining
together Solar Cycle 24 and 25 is between roughly 30% and 45% larger than that in the
Dalton Minimum in the case of regarding the predictions made using SILSO and AAVSO
data, respectively.

We have also analyzed this fact using other reference predictions. One of them is that
made by the Solar Cycle 25 Prediction Panel, which predicts a maximum in July 2025 of
114.6 ± 10.0 (Biesecker and Upton, 2019) and the sunspot-number average of the predic-
tions analyzed by Nandy (2021) made by different research groups around the world, that
is, 136.2 ± 41.6. In these cases, the solar-activity level of Solar Cycle 24 and 25 would be
between 40% and 67% larger, respectively, than that occurred in the Dalton Minimum.

Regarding all of these predictions, solar activity in Solar Cycle 24 and 25 will be more
similar, for example, to the average of Solar Cycle 12, 13, and 14, that is, 126.0 ± 19.7.
Also, we note that the solar-activity level of Solar Cycle 25 (77.3) at this point of the cycle
(December 2022) is closer to that of Solar Cycle 9 (81.7), 12 (86.4), 14 (69.3), and 24 (69.3),
and significantly larger than that of Solar Cycle 5 (30.8) and 6 (19.1). Therefore, considering
all these facts, it is unlikely that Solar Cycle 24 and 25 are a new Dalton Minimum, but rather
a new secular minimum of Gleissberg cycle.
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6. Conclusions

We have reproduced the methodology of Coban, Raheem, and Cavus (2021) to evaluate their
prediction on Solar Cycle 25. Thus, we have used a LSTM model with daily sunspot-number
data from AAVSO (such as Coban, Raheem, and Cavus, 2021) and also from SILSO that
provides the official values for the sunspot-number index, to carry out the forecasts. The
daily sunspot-number series were divided into two slices including 36 years for training,
10 years for testing, and 15 years for the skip-span. We found correlation between the time
series and lagged versions of itself applying the ACF over a maximum lag lower than 365
times 50 years, and obtaining an optimal lag of 0.48. The LSTM model includes two layers
with 50 units per layer and the batch size set to 730 and iteration (epochs) to 300 as training
parameters for the LSTM model.

To check the accuracy of the model, we have predicted the sunspot-number values for
the period December 1995 – December 2005 (Solar Cycle 23) and compared them with the
observed sunspot values, as by Coban, Raheem, and Cavus (2021). One can see that the
predicted values are significantly different from the observed values at the beginning of the
cycle, and then their ratio ranges between 1.2 and 0.8. We also found that the predicted
value for the maximum of Solar Cycle 23 using SILSO data is 4% larger than the observed
value, which occurred 11 months later than the predicted one. In the case of using AAVSO
data, the predicted value is 8% lower than the observed one, with a difference of 15 months
between the predicted and observed dates for the maximum.

Regarding the analysis of the prediction for the current Solar Cycle 25, one can see that
the LSTM model, based on daily sunspot-number observations, does not reproduce well
the behavior of the observed values available for Solar Cycle 25. Also, there was no minor
peak of solar activity in February 2022 such as predicted by Coban, Raheem, and Cavus
(2021). Finally, the average between the maximum amplitude of Solar Cycle 24 and that
predicted applying the methodology by Coban, Raheem, and Cavus (2021) for Solar Cycle
25 is 118.6 ± 3.0 using AAVSO calibrated data and 105.2 ± 15.8 using SILSO data. We
note that the maximum amplitude average of Solar Cycle 5 and 6 (Dalton Minimum) is
81.6 ± 0.6. This means that the solar activity in the modern Solar Cycles 24 and 25 would
be around 30 – 45% larger than that occurred during the Dalton Minimum. We also note
that the observed 13-month smoothed monthly sunspot number at this point of Solar Cycle
25 (December 2022) is 77.3, whereas it was 30.8 and 19.1 in the case of Solar Cycles 5
and 6, respectively. Therefore, we conclude that a new Dalton-type minimum is unlikely
to be composed by Solar Cycles 24 and 25. We think that it is more plausible, analyzing
many other predictions indicated above, that the set of the two Cycles 24 – 25 forms another
secular minimum of the Gleissberg cycle, similar, for example, to that around the beginning
of the 20th century.
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