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Abstract
In this paper, an optimized long short-term memory (LSTM) model is proposed to deal
with the smoothed monthly F10.7 data, aiming to predict the peak amplitude of F10.7 and
the occurring time for Solar Cycle 25 (SC-25) to obtain the maximum amplitude of sunspot
number (SSN) and the reaching time. The “re-prediction” process in the model uses the latest
prediction results obtained from the previous prediction as the input for the next prediction
calculation. The prediction errors between the predicted and observed peak amplitude of
F10.7 for SC-23 and SC-24 are 2.87% and 1.09%, respectively. The predicted peak amplitude
of F10.7 for SC-25 is 156.3, and the maximum value of SSN is calculated as 147.9, which
implies that SC-25 will be stronger than SC-24. SC-25 will reach its peak in July 2025.

Keywords Solar Cycle 25 · LSTM · F10.7 · SSN

1. Introduction

The variable activity of the Sun changes the space environment in the solar system, which is
manifested in changing the flux of solar radiation, solar magnetic fields, and solar energetic
particles. The phenomena that embrace as space weather are due to the energetic events,
such as flares and coronal mass ejections (CMEs), that introduce extreme perturbations in
our space, which could affect the conditions of satellites and the health of astronauts, destroy
communications and navigation networks based on satellite, high-frequency radio commu-
nications, and air-traffic (Nandy, 2021). Therefore, it is critical to assess and predict space
weather for the protection of modern-day technologies.

The solar radio flux at 10.7 cm (2800 MHz) is an excellent and one of the most widely
used indicators of solar activity, which is often called the F10.7 index and is one of the
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longest-running records of solar activity (Tapping, 2013). The F10.7 has been measured con-
sistently in Canada since 1947, first in Ottawa (Covington, 1948, 1952); it can be measured
accurately and reliably from the ground in all weather conditions with few spacing or cal-
ibration problems. The F10.7 is highly correlated with the sunspot number (SSN), a num-
ber of Ultra Violet (UV) and visible solar irradiance records. The production processes of
the F10.7 and SSN are completely independent and different, but they had parallel chang-
ing trends over the last 73 years, which retraced the same evolution of the last seven solar
activity cycles. A 13-month Zurich smoothed F10.7 and geomagnetic (Ap) index intermedi-
ate (months) and long-range (years) statistical estimation technique was developed by the
NASA Marshall Space Flight Center (MSFC) (Niehuss, Euler, and Vaughan, 1996; Vaughan
et al., 1999). Pesnell and Schatten used an Ap/F10.7 geomagnetic precursor pair for forecast-
ing the amplitude of SC-25, indicating that it would be much weaker than average (Schatten
and Pesnell, 1993). Later they combined F10.7 with the solar dynamo (SODA) index and val-
ues of the solar polar magnetic field as the precursor of SC-25, and the predicted maximum
amplitude of SSN was 135 ± 25 occurring in 2025.2 ± 1.5 (Pesnell and Schatten, 2018).
Clette (2021) reviewed the proxy relations between SSN and F10.7, due to their strong cor-
relation, allowing conversions between them.

Besides the above studies, Nandy (2021) categorized and summarized the predictions for
SC-25 in 7 types of utilized methods, and the mean predicted peak amplitude of all SC-25
predictions was found as 136.2 ± 41.6. The precursor method is the classic method for the
prediction of the peak amplitude of the next solar activity and is based on the observed val-
ues of solar activity or magnetic field in a chosen period (Helal and Galal, 2013; Hawkes
and Berger, 2018; Hazra and Choudhuri, 2019). Few studies utilized machine learning and
neural networks for the prediction of solar cycle amplitude. Only six were done for SC-24
(Prasad et al., 2022). Long Short-Term Memory (LSTM) neural network was used in com-
bination with other models for the prediction of SC-25 (Pala and Atici, 2019; Benson et al.,
2020; Lee, 2020; Prasad et al., 2022). Several machine learning methods were used by Dani
and Sulistiani (2019) to compare the predicted peak amplitude of SSN for SC-25, and the
obtained results were different among these methods, namely: 159.4 ± 22.3, 95.5 ± 21.9,
110.2 ± 12.8, and 93.7 ± 23.2 respectively for Linear Regression (LR), Radial Basis Func-
tion (RBF), Random Forest (RF) and Support Vector Machine (SVM), and peak occurring
times of SC-25 would be September 2023, December 2024, December 2024 and July 2024.
Other methods based on a non-linear model (Kitiashvili, 2020; Sarp et al., 2018), statisti-
cal methods used feature parameters of the solar cycle to predict the behavior of SC-25 (Li,
Feng, and Li, 2015; Singh and Bhargawa, 2017; Kakad, Kumar, and Kakad, 2020), and spec-
tral methods (Rigozo et al., 2011) also obtained different prediction results of the maximum
SSN or the peak amplitude of SC-25 with the occurring time.

An optimized LSTM model (defined as LSTM+ model) is proposed in this paper to
predict the peak amplitude and occurring time of F10.7 in the coming cycle and then to
calculate a forecast for the SSN of SC-25 based on the relation between F10.7 and SSN.
The results indicate that the proposed LSTM+ model fits the long-term prediction of F10.7

perfectly, and the precision is much better than that obtained by the general neural network
method, such as Back Propagation (BP).

2. Datasets and Methods

2.1. Datasets and Preprocessing

The F10.7 data used in this work are obtained from the “Natural Resources Canada” under the
Government of Canada and correspond to the period from April 1954 to December 2019 (the
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Figure 1 The smoothed monthly mean values of SSN and F10.7 for Solar Cycle 19 to 24.

789 months). They are publicly available on the website (www.spaceweather.gc.ca/forecast-
prevision/solar-solaire/solarflux/sx-5-en.php). The data for the SSN are the monthly aver-
ages from the Sunspot Index and Long-term Solar Observations (SILSO) database of the
Royal Observatory of Belgium in Brussels and correspond to the same period as the F10.7

dataset. Then the monthly averaged data for F10.7 were calculated under the following equa-
tions based on the number of daily observations, in which data before January 1996 were
used the equation ①, and data after March 1996 were based on the equation ②, particularly,
the value of February 1996 was calculated with the combination of ① and ②. Here, Xt is
the average monthly value, n is the days of the current month, Xd is the daily value of the
current month. X1d , X2d , X3d presents the value of three observation periods of each day,
respectively.

Xt =
{

1
n

∑n

1 Xd ①

1
n

∑n

1
1
3 (X1d + X2d + X3d) ②

(1)

After that, the smoothed monthly mean values of F10.7 were calculated according to
the following equation (Conway, 1998; Peng, 2020). Supposing R(i) is the ith smoothed
monthly mean F10.7. Figure 1 shows the smoothed data of SSN and F10.7 during the consid-
ered period, showing that both quantities have the same fluctuating trend, corresponding to
the 11-year periodic changes associated with solar activity.

R(i) = 1

12

[
1

2
(R(i−6) + R(i+6)) +

j=i+5∑
j=i−5

R(j)

]
(2)

2.2. LSTM+ Methods

LSTM neural networks were designed to solve the problem of long-term dependence in a
neural network so that the neural network can remember long-term information by default

http://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
http://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php
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(Xu et al., 2020). This solves the problem of vanishing and exploding gradients during the
longtime sequence training. There are three gates in LSTM, which are: the Forget gate, the
Input gate and the Output gate, and one memory state unit (Ma et al., 2021). LSTM has
been widely used in training neural networks, but few studies have employed it with the fine
adjustment of the parameters (Absar et al., 2022).

The number of neurons (N) is the number of nodes in the hidden layer of the LSTM
model, which could directly affect the performance of the network. A too-small value of
N could cause the failure of the training and poor performance, but a too-large value of N
would prolong the training time and cause falling into local minima. The batch size (B) is
the data volume that feeds into the model each time, which could cause the hindrance of
reaching convergence for the model with a small value of B. However, the improvement of
the memory utilization and parallelization efficiency with an increasing value of B, the same
accuracy, would require a higher number of training rounds (Wang, Li, and Guo, 2021). An
Epoch (E) is the number of times the model is trained. Because of the significant influence of
these parameters on the training quality and the prediction precision of the LSTM model, it
is of great interest to find their most suitable values to enhance the precision. The proposed
optimized LSTM model (LSTM+) is based on the traditional model with two improved
aspects, one is the multiple fine adjustments of all important model parameters (N, B, E)
and the replacement of different optimizers in the training and prediction process, and the
other is the re-prediction process which uses the latest prediction results obtained from the
previous prediction as the input data.

• The re-prediction procedure

The procedure that uses the outputs from the previous prediction as the input for the
next prediction is defined as re-prediction. The purpose of this procedure is to get the “true”
prediction of the changing trend rather than the “fake” form using the actual values as the
input in the model, which just proves the verification of the model with the existing data but
without the real ability to predict the future trend. This means that the whole final predicted
result is the deduction instead of the modification of the actual data. When the validation of
the model is performed in this way, the prediction using this model could be able to really
predict the future.

The approach used for the re-prediction procedure takes the whole value of the predicted
outputs from the latest prediction as the input for the next prediction. The workflow of the
re-prediction procedure is shown in Table 1, where i indicates the number of predictions, n

is the length of the input, m the length of the output, xt+i is the input value, ht+i the output
values, and the relationship is followed by xt+i = ht+i .

• The fine adjustment parameters in LSTM+

The batch size (B) was fixed to 100, according to earlier experience with LSTM+. The
values of N and E were adjusted in pairs under 4 situations with different lengths of input
and output. Adam and Nadam optimizers were used in each adjustment and compared to
obtain the more suitable one. The Nadam optimizer is the Nesterov version of the Adam
optimizer with a default learning rate of 0.002. The data of F10.7 from SC-19 to SC-22 were
used in the training and prediction in LSTM+ for SC-23, and data from SC-19 to SC-23
were used for SC-24. Additionally, the hidden layer in the LSTM+ model was set to 1. The
detailed adjustments of these parameters are shown in Table 2. Figure 2 shows the absolute
percentage error of the peak value (Er ) results in the adjustments for SC-23, and Figure 3
is the result for corresponding SC-24. The fluctuation of the results of Er indicates that the
adjustment of parameters was sensitive and important to the prediction precision of LSTM+.
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Table 1 Workflow of the re-prediction procedure.

Times Input Output

1 xt−n, . . . , xt−2, xt−1, xt ht+1, ht+2, . . . , ht+m

2 xt−n+m, . . . , xt−1, xt , xt+1, . . . , xt+m ht+m+1, ht+m+2, . . . , ht+2m

3 xt−n+2m, . . . , xt+m−1, xt+m,xt+m+1, . . . , xt+2m ht+2m+1, ht+2m+2, . . . , ht+3m

4 xt−n+3m, . . . , xt+2m−1, xt+2m,xt+2m+1, . . . , xt+3m ht+3m+1, ht+3m+2, . . . , ht+4m

... ...... ......

i − 1 xt−n+(i−2)m, . . . , xt+(i−3)m−1, xt+(i−3)m,

xt+(i−3)m+1, . . . , xt+(i−2)m

ht+(i−2)m+1, ht+(i−2)m+2, . . . , ht+(i−1)m

i xt−n+(i−1)m, . . . , xt+(i−2)m−1, xt+(i−2)m,

xt+(i−2)m+1, . . . , xt+(i−1)m

ht+(i−1)m+1, ht+(i−1)m+2, . . . , ht+im

... ...... ......

Table 2 The adjustment of parameters in LSTM+.

Optimizer Batch size (B) Neurons (N) Epochs (E) Input length (n) Output length (m)

Adam 100 20, 40, 60, 80, 100 100, 200, 300 60, 120 6,12

Nadam 120, 140, 160, 180, 200 400, 500

Then the chosen combination of parameters was the one with the lowest value of Er for both
training and test calculations.

2.3. Evaluation Indicators

Because the main indexes of the prediction of activity for the following solar cycle are
the peak amplitude and the occurring time, the absolute percentage error of the peak value
(Er ) and the error of the occurring month value (Em) are used in this paper as indicators
to evaluate the error between the predicted values (PV) and the actual values (AV). The
formulas for the evaluation indicators are as follows:

Er = |(VA − VP )|
VA

× 100%, (3)

Em = MA − MP , (4)

where, VA represents the true peak value, VP is the predicted peak value, MA represents the
occurring month of the real peak value, and MP is the occurring month of the predicted peak
amplitude.

3. Analysis and Results

3.1. The Validation of LSTM+

The validation of LSTM+ for the prediction of F10.7 was performed with the training and
test for SC-23 and SC-24. The data of SC-19 to SC-22 were used as the training set for the
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Figure 2 Results of the absolute percentage error value (Er ) obtained from the adjustment for SC-23.
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Figure 3 Results of the absolute percentage error value (Er ) obtained from the adjustment for SC-24.
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Table 3 A comparison between the results of Er and Em for the PV obtained using LSTM+ and BP.

Model SC-23 SC-24

Maximum amplitude Er Em Maximum amplitude Er Em

AV 198.28 145.81

PV_LSTM+ 203.97 2.87% -1 month 144.21 1.09% -2 months

PV_BP 211.56 6.70% -9 months 176.82 21.27% -5 months

Figure 4 The predicted results for training and test of F10.7 (SC-23) using LSTM+ and BP models (train and
test: black, and test predict with LSTM+: red, and test predict with BP: blue).

prediction test of SC-23, and the forecasting process was performed with the re-prediction.
Then the predicted values of SC-23 were compared with the actual values. A similar re-
prediction process was made for the prediction test of SC-24, with the data of SC-19 to
SC-23 used as the training set. The comparison between the results for AV and PA obtained
from LSTM+ and BP (with the same parameter values) is shown in Figures 4 and 5. Clearly,
the prediction results obtained using LSTM+ are better than those obtained with BP. The
values of Er and Em were calculated for SC-23 and SC-24, and the results proved the better
predictive ability of LSTM+ (Table 3). The value of Er obtained with LSTM+ is below
3% for both solar cycles, and the predicted occurring time for the maximum amplitude was
within 2 months.

3.2. Prediction of the SC-25

The prediction results of F10.7 for SC-23 and SC-24 indicate that the LSTM+ model could
predict the trend of F10.7 accurately in the strength and the occurring time of the peak am-
plitude. Then the curve of F10.7 for SC-25 was predicted using LSTM+ model, Figure 6.
The peak amplitude of F10.7 for SC-25 was predicted as 156.3 and will occur in July 2025.
Additionally, using observed data of F10.7 from January 2020 to December 2021 from the
same data source, we calculated the errors between these actual data and the predicted val-
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Figure 5 The predicted results for training and test of F10.7 (SC-24) using LSTM+ and BP models (train and
test: black, and test predict with LSTM+: red, and test predict with BP: blue).

Figure 6 The prediction of F10.7 for SC-25 using LSTM+ and the comparison with AV (2020/01 – 2021/12)
(AV of SC-19 to SC-24: black, AV of SC-25: blue, prediction: red).

ues using LSTM+ and found that the average Er was 6.6%, which proves the validity of the
proposed LSTM+ model.

The main purpose of this paper was to predict the maximum amplitude and occurring
time of the peak amplitude of SSN of SC-25; therefore, the relation between F10.7 and SSN
was calculated with the same datasets. Figure 7 is the linear fitting result between F10.7

and SSN. The fitting formula is SSN = b + a × F10.7, with b = −93.37987 ± 0.85525,
and a = 1.51582 ± 0.00648. The Person’s R coefficient is 0.993, the goodness of fit of the
linear model R-square is 0.986, and the p-value is lower than 0.01. This linear relationship
between the smoothed monthly F10.7 and SSN agrees with the results based on daily data
(Clette, 2021). Then the predicted peak amplitude of SSN for SC-25 was obtained as 143.6
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Figure 7 The relation between F10.7 and SSN.

Table 4 A Selection of results for the prediction of SC-25.

Reference Time of reaching the peak amplitude SSN-Peak amplitude

This paper July 2025 ± 2 months 143.6 ± 8.7

Pesnell and Schatten (2018) February 2025 ± 1.5 year 135 ± 25

Bhowmik and Nandy (2018) 2024 (±1 year) 125 ± 32

Okoh et al. (2018) January 2025 ± 6 months 122.1 ± 18.2

Kakad, Kumar, and Kakad (2020) No data 143.8 ± 25

Chowdhury et al. (2021) April 2025 ± 6.5 months 100.21 ± 15.06

Lu et al. (2022) October 2024 145.3

Velasco Herrera, Soon, and Legates (2021) 2023 to 2025 80 – 115

Du (2020a) October 2024 ± 13 months 130.0 ± 31.9

Du (2022a) October 2024 ± 7 months 124 ± 30

Du (2022b) December 2024 ± 11 months 135.5 ± 33.2

according to this linear relationship. And the occurring time of the peak amplitude was the
same as that of F10.7 based on the relation shown in Figure 1.

3.3. Comparing with Earlier Methods

The upcoming SC-25 has been predicted with several types of methods and data. Table 4
lists some forecast results of SC-25, which show similar results as this paper. Pesnell and
Schatten (2018) reported a forecasted peak amplitude of SC-25 as 110 – 160 in February
2025 (±1.5 year) with Solar Dynamo Index. Bhowmik and Nandy (2018) studied the Sun’s
surface and interior with magnetic field evolution models, and the predicted peak ampli-
tude was found to be similar to Pesnell and Schatten (2018), but the peak occurring time is



Solar Cycle 25 Prediction Using an Optimized Long Short-Term Memory. . . Page 11 of 13 157

slightly earlier. Velasco Herrera, Soon, and Legates (2021) proposed a Machine Learning
Bayesian model to forecast the peak value of SSN of SC-25 occurring in the same year as
Bhowmik with a probable range of 80 – 115. A similar maximum amplitude was predicted
by Okoh et al. (2018) using a hybrid Regression-Neural Network. In addition, these authors
find a relatively narrow occurring time window. A very close predicted peak occurring time
range, as shown in this paper, was given by Chowdhury et al. (2021), but their peak value of
SSN was lower than ours. Kakad, Kumar, and Kakad (2020) used two models to forecast the
peak smoothed SSN of SC-25, finding a range of 112.9 – 160.9, with a histogram-derived
probability distribution function (PDF), and a slightly higher range of 125.7 – 175.7 with a
kernel density estimator-derived PDF. Lu et al. (2022) predicted almost the same SSN-peak
amplitude as our study, but they forecasted it is happening nearly one year earlier. In a se-
ries of articles (Du, 2020a, 2022a,b), this author used three different methods to forecast
SC-25, such as using the rate of decrease in the smoothed monthly mean SSN over the fi-
nal several months before SC-24 minimum as the precursor for the maximum amplitude of
SC-25, obtaining the peak SSN as 98.1 – 161.9 in October 2024 (±13 months). A similar
forecasting peak amplitude was obtained with the rising rate of a solar cycle as the indicator
but narrowed the occurring time range to December 2024 ± 11 months. This result was later
revised with a modified Gaussian function.

4. Conclusions and Discussion

An LSTM+ model was proposed as the optimal version of an LSTM model to predict the
activity for SC-25 with data of F10.7 during the period of April 1954 to December 2019
and the monthly data of SSN from “Natural Resources Canada” under the Government of
Canada and SILSO data of the Royal Observatory of Belgium in Brussels. The fine adjust-
ments process of model parameters (the number of neurons, batch size, epochs, optimizer,
the length of input and output) for LSTM+ were described with the data of F10.7, which
proved the sensitivity and importance of these parameters to the prediction precision. The
definition of the process of re-prediction was given, which emphasized the means to obtain
the “true” forecast using the last previous prediction results rather than the actual values as
the input of the model.

The validation of the LSTM+ model was proved with the training and test process of
F10.7 for SC-23 and SC-24. The error between the actual peak amplitude and the predicted
value for SC-23 and SC-24 was 2.87% and 1.09%, respectively. The prediction error of
the occurring time of peak amplitude for both solar cycles was 1 month and 2 months,
respectively. These results were found to be better than those obtained using BP model.
Particularly, the prediction results of F10.7 of the first two years of SC-25 were compared
with the published actual observed data, and the average error value (6.6%) proved the
predicting ability and validity of the LSTM+ model. Then the peak amplitude and occurring
time of F10.7 for SC-25 were predicted using the LSTM+ model. The prediction results of
the SSN of SC-25 were obtained based on the linear relation between F10.7 and SSN, which
was 143.6 for the maximum amplitude and the occurring time as of July 2025. Most of
the predictions of F10.7 were focused on the short and medium-term, seldom directly for
the forecast of the 11-year variation (Du, 2020b; Luo et al., 2021; Si-qing et al., 2010); for
example, the relative errors of the prediction of F10.7 for 7 days and 27 days were around
12% (Wang et al., 2018). Therefore, the long-term prediction of F10.7 for a whole solar cycle
in this paper was of great significance for the study of F10.7. The NOAA/NASA Scientific
panel released a preliminary forecast for SC-25 on 5 April 2019 that it would start slowly and
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reach the peak around July 2025 with the value for SSN from 95 to 130, which is supported
by the prediction results obtained in this paper.
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