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Abstract
Solar radio zebras are used in the determination of the plasma density and magnetic field in
solar flare plasmas. Analyzing observed zebra stripes and assuming their generation by the
double-plasma resonance (DPR) instability, high values of the gyro-harmonic number are
found. In some cases they exceed one hundred, in disagreement with the DPR growth rates
computed up to now, which decrease with increasing gyro-harmonic number. We address
the question of how zebras with high values of the gyro-harmonic numbers s are generated.
For this purpose, we compute the growth rates of the DPR instability in a very broad range
of s, considering a loss-cone κ-distribution of superthermal electrons and varying the loss-
cone angle, electron energies, and background plasma temperature. We have numerically
calculated the dispersion relations and the growth rates of the upper-hybrid waves and found
that the growth rates increase with increasing gyro-harmonic numbers if the loss-cone angles
are ∼ 80◦. The highest growth rates for these loss-cone angles are obtained for velocity
vκ = 0.15 c. The growth rates as a function of the gyro-harmonic number still show well
distinct peaks, which correspond to zebra-stripe frequencies. The contrast between peak
growth rates and surrounding growth rate levels increases as the κ index increases and the
background temperature decreases. Zebras with high values of s can be generated in regions
where loss-cone distributions of superthermal electrons with large loss-cone angles (∼ 80◦)
are present. Furthermore, owing to the high values of s, the magnetic field is relatively weak
and has a small spatial gradient in such regions.

Keywords Radio bursts, Type IV · Radio emission, Theory · Instabilities

1. Introduction

Solar radio bursts and their fine structures are used to diagnose solar flare plasmas. Among
them, zebra patterns (zebras) belong to the most frequently investigated bursts. An example
of the zebra observed in 14 February 1999 is shown in Figure 1. In the radio spectrum,
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Figure 1 An example of the zebra observed on 14 February 1999 by the Ondřejov radiospectrograph (Jiřička
and Karlický, 2008).

they appear in the form of regularly spaced emission stripes (zebra stripes). Many papers
and monographs were devoted to them, e.g., Slottje (Apr 1982), Chernov (2006, 2011), Tan
et al. (2012, 2014), Chernov, Formichev, and Fainshtein (2020).

For the interpretation of the zebra stripes, several models have been proposed (Rosen-
berg, 1972; Kuijpers, 1975; Zheleznyakov and Zlotnik, 1975; Chernov, 1976, 1990; LaBelle
et al., 2003; Kuznetsov and Tsap, 2007; Bárta and Karlický, 2006; Ledenev, Yan, and Fu,
2006; Laptukhov and Chernov, 2009; Tan, 2010; Karlický, 2013). In the published literature,
the most often used model of zebras is the one based on the double plasma resonance (DPR)
condition (Kuijpers, 1975; Zheleznyakov and Zlotnik, 1975; Kuijpers, 1980; Mollwo, 1983,
1988; Winglee and Dulk, 1986; Zlotnik, 2013)

ω − sωce

γ
− k‖u‖

γ
= 0, (1)

where ω and k = (k‖, k⊥) are the frequency and wave vector of the resonant wave, ωce is

the electron cyclotron frequency, s is the gyro-harmonic number, γ =
√

1 + (u2
‖ + u2

⊥)/c2

is the relativistic Lorentz factor, u‖ = p‖/me, u⊥ = p⊥/me, in the electron momentum p =
(p‖,p⊥), and me is the electron mass. This condition may be simplified by assuming that
the generated waves are upper-hybrid (UH) waves in a non-relativistic plasma and that the
DPR resonance is at integer gyro-harmonics of the electron–cyclotron frequency

fUH = (f 2
pe + f 2

ce)
1/2 ≈ sfce, (2)

where fUH and fpe are the UH and electron–plasma frequencies, fce is the electron–
cyclotron frequency. In the DPR model, superthermal electrons are considered as the driver
of the zebra emission. Those electrons are considered to be trapped in a flare loop and to have
a loss-cone distribution. At the flare loop locations where such a distribution is present and
the DPR condition is fulfilled, the DPR instability generates the UH waves. These UH waves
are then converted to the observed electromagnetic waves by merging with low-frequency
waves or by scattering on plasma particles. This model is supported by positional observa-
tions made by the Owens Valley Solar Array (Chen et al., 2011).
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When applying the DPR model to observed zebras and to estimate plasma parameters at
the zebra source, the most important is to determine the gyro-harmonic numbers of the zebra
stripes s. From the zebra stripe frequencies and their gyro-harmonic numbers, the electron
cyclotron frequency and magnetic fields are consequently estimated. Several methods for
their determination were developed, as shown, e.g. in Karlický and Yasnov (2015), Yasnov
and Karlický (2020), Yasnov (2021).

These methods are based on fitting a set of the observed zebra-stripe frequencies f (n)

by the set of theoretically derived zebra-stripe frequencies fth(n) in the form (Yasnov, 2021)

fth(n) = (s1 − (n − 1))f (s1)

s1

(
(s1 − (n − 1))2 − 1

s2
1 − 1

) 1
R−2

, (3)

where n is the ordinal number of the zebra stripes counted from the lowest to the higher
frequencies, f (s1) is the frequency of the stripe with the lowest frequency, s1 is the cor-
responding gyro-harmonic number, R = Lbh/Lnh is the ratio of the spatial scales, which
exponentially depend on the magnetic field and density, in the region where zebra-stripes
are generated, and R = R1 + R2(n − 1) is taken as a linear function of n, where R1 and R2

are constants.
The fitting procedure is mathematically expressed as a search for the minimum value in

the relation

1

N

N∑
n=1

(fth(n) − f (n))2, (4)

where N is the total number of the analyzed zebra stripes. The parameters s1,R1,R2, and
f (s1) are the result of this fitting procedure. For more details about this method, see Yasnov
and Karlický (2020) and Yasnov (2021).

Using this method, seven detected zebras were analyzed at selected times, and gyro-
harmonic numbers s1 were determined for the zebra-stripe with the lowest analyzed fre-
quency f (s1), see Table 1. As can be seen there, the gyro-harmonic number s1 is greater than
50 on all these zebras. It is surprising that the physical process that generates zebra stripes
operates on such high harmonics instead of the usually preferred low harmonics where the
resonance frequency might be achieved easily. These gyro-harmonic numbers are also sig-
nificantly higher than the s considered in previous theoretical studies of the DPR instability.
Moreover, the theoretical estimations made until now show that both the growth rates and
the saturation energies of the UH waves caused by the DPR instability decrease with in-
creasing gyro-harmonic number (Kuznetsov and Tsap, 2007; Benáček and Karlický, 2018).
However, the growth rates and saturation energies of the DPR instability have been so far
mainly computed for gyro-harmonic numbers s � 20 (Winglee and Dulk, 1986; Benáček,
Karlický, and Yasnov, 2017; Lee et al., 2018; Ni et al., 2020; Li et al., 2021). Only Kuznetsov
and Tsap (2007) calculated the growth rates for s � 50 for a power-law velocity distribu-
tion with a loss-cone angle 30◦, showing that the growth rate maxima are well distinct for
selected parameters.

In the present paper, we propose a solution to the problem of the generation of the zebra
stripes with high gyro-harmonic numbers by considering a loss-cone distribution with large
loss-cone angles. We compute the growth rates of the DPR instability in a broad interval of
UH to cyclotron frequency ratios corresponding to the observed gyro-harmonic numbers up
to s ∼100. We solve this problem numerically by integrating the analytical expressions for
these growth rates. We consider the loss-cone κ-distribution and vary the loss-cone angle,
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Table 1 Parameters of analyzed
zebras according to Karlický and
Yasnov (2021).

Date Time f (s1) Gyro-harmonic

(UT) (MHz) number s1

25 Oct 1994 10:08:23.1 144.8 78

17 Aug 1998 07:06:31.0 260.3 78

14 Feb 1999 12:08:57.0 1526 64

21 Apr 2002 01:45:49.5 2668 52

1 Aug 2010 08:21:16.0 1120 114

24 Feb 2011 07:41:08.8 2977 70

21 Jun 2011 03:22:27.4 160.7 152

the electron energies, the background plasma temperature, and the κ parameter. Besides the
general results covering a broad range of gyro-harmonic numbers, we also present some
results for the zebra observed on 14 February 1999.

The paper is organized as follows: In Section 2 we describe the method of the growth
rate calculation. Section 3 presents the results of these calculations for a broad range of
gyro-harmonic numbers. Finally, we summarize our results and discuss how zebra stripes
with high values of s can be generated in Section 4.

2. Method for the Growth Rate Calculation

We assume a collisionless plasma consisting of a cold background plasma and hot electron
species that are uniformly distributed in space and embedded in a uniform magnetic field.
The background plasma consists of cold electrons with number density nb and cold protons
with density ni. Hot electrons of density nh are also considered. The plasma satisfies the
charge neutrality condition, ni = nb + nh. Both cold particle species have Maxwell velocity
distributions with thermal velocities vb,i = √

kBTb,i/mb,i, where kB is the Boltzmann con-
stant, Tb,i are the thermodynamic temperatures, and mb,i are the masses of the cold electrons
and protons, respectively.

The hot electrons have a loss-cone κ-distribution that can be expressed in cylindrical
coordinates as

f (u, θc,�θc, κ) = fκ(u, κ)ϕ(θc,�θc), (5)

where ϕ characterizes the linear transition at loss cone angles

ϕ(θc,�θc) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, θc − �θc ≥ θ,
θ−(θc−�θc)

2�θc
, θc + �θc > θ > θc − �θc,

1, π − θc − �θc ≥ θ ≥ θc + �θc,
(π−θc+�θc)−θ

2�θc
, π − θc + �θc > θ > π − θc − �θc,

0, θ ≥ π − θc + �θc,

(6)

where θc is the loss-cone angle, �θc is the angular half-width of the linear loss-cone transi-
tion, θ = arctan(u⊥/u‖) is the particle pitch angle, fκ(u, κ) is the κ-distribution (Livadiotis
and McComas, 2013)

fκ(u, κ) = nh

ne

1

(πκv2
κ )

3
2 cos(θc)

	(κ + 1)

	(κ − 1
2 )

(
1 + u2

⊥ + u2
‖

κv2
κ

)−κ−1

, (7)
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characterized by the index κ = (
3
2 ,∞)

, vκ is the κ-distribution velocity, and 	 is the Gamma
function. The distribution function is normalized to the loss-cone angle as 1/ cos(θc), assum-
ing that �θc 	 1. Unless otherwise mentioned, we use κ = 2 and ne/nh = 32. The κ index
is in the interval of the observed values during solar flares, see e.g. Lörinčík et al. (2020).
The loss-cone angular half-width is taken as �θc = 2.5◦.

The growth rate of the DPR instability is computed as (Melrose, 1986)

γ (ω, k⊥) = − Im ε
(1)
‖[

∂Re ε
(0)
‖

∂ω

]

ε
(0)
‖ =0

, (8)

where Re ε
(0)
‖ and Im ε

(1)
‖ are the real and imaginary parts of the plasma dispersion tensor

component along the magnetic field, that are obtained by a perturbation approach from the
total dispersion tensor component

ε‖ = ε
(0)
‖ + ε

(1)
‖ +O(ε

(2)
‖ ). (9)

The imaginary part of the tensor component in Equation 8 for the growth rate was derived
by Kuznetsov (2005)

Im(ε
(1)
‖ ) = −2π2m3

e

ω2
pe

k2

∞∑
l=s+1

a3 ×

×
∫ π

0
Jl

(
γrelk⊥v⊥

ωce

)
γ 2

rel sinφ
∂ψ

∂ρ

1

v⊥
∂f

∂u⊥
dφ, (10)

∂ψ

∂ρ
= 1

c2

(
v2

‖ + v2
⊥
)
. (11)

v‖ = −a cos(φ), v⊥ = a sin(φ), a2 = c2(l2ω2
ce − ω2)

l2ω2
ce

(12)

ω2
pe = ω2

pb + ω2
ph = (nb + nh)e

2

meε0
, λ = k2

⊥v2
tb

ω2
ce

, (13)

where ωpe is the plasma frequency of both electron species, ωce = eB/me is the electron cy-
clotron frequency, k = (k⊥, k‖) is the wave vector of the electrostatic waves and we assume
k‖ = 0, ω is the wave frequency, Il(λ) is the modified Bessel function of the first kind of the
l-th order, λ is the dimensionless parameter of the Bessel function, e is the electron charge,
ε0 is the permittivity of the vacuum, and s is the gyro-harmonic number. The integration is
done via the resonance ellipse of Equation 1.

The denominator in Equation 8 can be expressed as

∂ε
(0)
‖

∂ω
= 4ωω2

pb

e−λ

λ

∞∑
l=1

l2Il(λ)

(ω2 − l2ω2
ce)

2
. (14)

Equation 8 can be mathematically evaluated in the ω − k⊥ domain; however, only the waves
that are solutions of the plasma dispersion relation are actually present in the plasma and
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can grow. To simplify the calculation of the growth rates, we choose the dispersion relation
of the UH waves as

ω2 = ω2
pb + ω2

ce + 3v2
tbk

2
⊥, (15)

where we assume that the dispersion relation is given only by the background plasma com-
ponent, ε

(0)
‖ .

The numerical procedure for the computation of a growth rate value for a given set of
plasma parameters (ωpe/ωce, vtb, vκ , κ , �θc, and θc) is the following. We equidistantly divide
the wavenumber space of the UH branch into N = 1500 grid points in the k⊥c/ωpe ∈ [1,40]
interval. According to our tests, this interval is wide enough for the whole range of studied
background temperatures. Approximately, the typical wavenumber k⊥ increases with de-
creasing background thermal velocity [vtb] as follows from Equation 13 when the parameter
λ is constant. The unstable waves are typically located in an interval k⊥c/ωpe ≈ [4,15]
for a temperature of 3 MK and in an interval k⊥c/ωpe ≈ [10,37] for a temperature of
0.5 MK. Moreover, these intervals slightly vary with other parameters. The grid cell size
is �k⊥c/ωpe = 0.026. For each grid cell k⊥i , where i = 1, . . . ,1500 is the grid cell index,
we compute the frequency of the UH wave ωi from Equation 15. For the frequency [ωi ], we
evaluate the growth rate γi in each grid cell [k⊥i ]. Then, we compute the mean value of the
growth rate over all positive γi as

	 = 1

	0

∑
i

γi(ωi, k⊥i )σi(ωi, k⊥i )�k⊥, (16)

where σi is the characteristic width of the dispersion branch for each i-th element (Benáček
and Karlický, 2019; Manthei et al., 2021). The characteristic width σi is estimated as

σi =
(

∂ε
(0)
‖

∂ω

)−1
∣∣∣∣∣∣
ωi ,k⊥i

, (17)

	0 is the normalization parameter

	0 =
∑

i

σi(ω, k⊥)�k⊥, (18)

We denote the mean growth rate value 	 as integrated growth rate.

3. Results

In the following, our results on the growth rate of the electrostatic waves are shown as a

function of the gyro-harmonic number s =
√

ω2
pe/ω

2
ce + 1, as follows from the radio emis-

sion process. Because the frequency ratio changes with height in the corona, zebra stripes
are produced only when the profile of the integrated growth rate forms peaks at specific fre-
quency ratios. The peaks are not always located at integers of s (harmonics of the cyclotron
frequency) because there are other effects that can shift them, such as the effect due to the
Lorentz factor in Equation 1, as shown by Benáček, Karlický, and Yasnov (2017).

Figure 2 shows the growth rates in the ω − k⊥ space for four selected loss-cone angles
θc = 30◦, 50◦, 65◦, and 80◦, the background temperature 3 MK (≈130 eV), and the velocity
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Figure 2 Growth rates as a function of the frequency and wavenumber for four loss-cone angles θc, the
gyro-harmonic number is s = 50, the temperature of the background plasma is 3 MK, and the velocity of
κ-distribution vκ = 0.3 c. Note that the color scale in (a) differs from those in (b–d). Green curves: the
dispersion branch of the UH waves. All these UH branches are the same in all panels because they are
independent of the loss-cone distribution.

of κ-distribution vκ = 0.3 c (≈23 keV). The gyro-harmonic number is fixed at s = 50. The
growth rates are smallest for the small loss-cone angle 30◦. By increasing the loss-cone
angle to 50◦ and 65◦, the growth rate values increase and the positive growth rate regions
shift to smaller wavenumbers. At the loss-cone angle 80◦, the growth rates values and areas
of positive growth rate regions decrease.

The growth rates are overlaid by the dispersion branch of the UH waves (Equation 15).
If the branch crosses a positive growth rate region, the waves located in the intersection can
grow. During the growth phase, the kinetic energy of resonant hot electrons, whose veloc-
ities fulfill Equation 1, is converted into electrostatic wave energy and the particle distri-
bution changes. Finally, the growing waves saturate when the electron velocity distribution
becomes stable.

Each region in the ω − k⊥ space with a positive growth rate is associated with a spe-
cific gyro-harmonic number s. These regions have a distance in the frequency dimension
approximately equal to the electron cyclotron frequency. When the frequency ratio varies,
the positive regions shift in frequency so that the crossings of the positive growth rate re-
gions with the UH branch change. This way, we expect the formation of growth rate peaks
(which may be responsible for the formation of the zebra stripes). However, the peaks are
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Figure 3 Integrated growth rates in four selected intervals of the gyro-harmonic numbers and for four loss-
cone angles. The temperature of the background plasma is 3 MK, and the velocity of the κ-distribution
vκ = 0.3 c.

not so significant if the UH branch crosses several positive regions simultaneously (e.g.
Figure 2(b)).

In Figure 3, the integrated growth rates are presented as a function of the gyro-harmonic
number for four loss-cone angles, background temperature 3 MK, and the velocity of the
κ-distribution vκ = 0.3 c. The integrated growth rates are computed following Equation 16.
We have selected four intervals of gyro-harmonic numbers, from small values s = 7, for
which the radio zebras are not observed, to the most extreme case of the gyro-harmonic
number exceeding 100. In all cases the growth rates are positive. For low gyro-harmonic
numbers s = 7−10, the growth rates form distinguishable peaks for all loss-cone angles.
With increasing s the growth rate profiles smooth out; however, the smoothing varies be-
tween the different loss-cone angles. For the angle 30◦, the growth rate profile smooths out
already for s � 20, and their values decrease for higher gyro-harmonic numbers. For the
angles 50◦ and 65◦, the growth rate profiles smooth out in the gyro-harmonic number in-
terval s = 50−53. Their average values slightly increase and decrease for θc = 50◦ and for
θc = 65◦, respectively. For the loss-cone angle 80◦, the growth rates monotonically increase
within the whole studied interval of gyro-harmonic numbers. For large gyro-harmonic num-
bers s = 100−103, the growth rate peaks are still formed.

Because the highest growth rates for the large gyro-harmonic numbers (derived from
zebra observations) occur for the angle 80◦, we studied the dependence of the integrated
growth rate profiles on two plasma temperatures (0.5 and 3 MK) and selected values for
the velocities of the κ-distribution in the interval vκ ∈ [0.15,0.3]c, see Figures 4 and 5.
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Figure 4 Integrated growth rates as a function of the κ-distribution velocity, for four selected intervals of the
gyro-harmonic number, the loss-cone angle 80◦ and the temperature of the background plasma 3 MK. Note
that the scaling of the growth rates varies between panels.

Though the temperature 0.5 MK may be smaller than those estimated during flares, the
accelerated electrons may reach and emit in the colder part of the corona. Moreover, we
selected this background temperature range to clearly identify the temperature impact, as the
background temperature is known to have a small impact on instability (Benáček, Karlický,
and Yasnov, 2017). The integrated growth rates are computed in the same gyro-harmonic
number intervals as in Figure 3.

For plasma temperature 3 MK (Figures 4), the average values (over few s) of the inte-
grated growth rates increase with the gyro-harmonic number independently of the velocity
of the κ-distribution. All growth rate profiles smooth out for s ∼ 50. The situation is re-
versed for large gyro-harmonic numbers where the most distinct peaks are formed for the
smallest velocity of the κ-distribution vκ = 0.15. In addition, the integrated growth rates for
this background velocity and gyro-harmonic numbers form a double peak profile.

The behavior of the integrated growth rates as a function of the gyro-harmonic number
is different for the background temperature 0.5 MK in a few aspects, see Figure 5. For
velocities of the κ-distribution vκ ≥ 0.2 c, the growth rate peaks are well distinct for the
whole range of the gyro-harmonic numbers. The distinction occurs because the distribution
functions of the hot and cold components are more separated in velocity space than for
the temperature 3 MK. Because of this separation, the velocity gradient of the loss-cone
distribution increases, and the growth rate reaches higher values. For all velocities of the
κ-distribution, the growth rate values increase from s = 7−10 to s = 20−23. Increasing
the gyro-harmonic numbers further, the growth rate increases most at the smallest velocities
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Figure 5 Same as Figure 4, but for the temperature of the background plasma 0.5 MK.

Figure 6 Comparison of the
integrated growth rates for
κ-indices 2 and 100, temperature
is 3 MK, and the velocity of the
κ-distribution is 0.3 c.

of the κ-distribution. For the case of vκ = 0.3 c, the growth rates remain almost the same as
for s � 20.

Figure 6 shows a change in the integrated growth rates with the κ index. We compare
the integrated growth rates for κ = 2 and κ = 100 (closer to the Maxwellian velocity distri-
bution). The integrated growth rate profiles for κ = 100 are higher and with more distinct
peaks than those for κ = 2.
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3.1. The 14 February 1999 Zebra Case

Besides the above presented general results covering a broad range of the gyro-harmonic
number, let us summarize the results for the specific zebra observed on the 14th February
1999, shown in Figure 1, as an example. In this case, the gyro-harmonic number was esti-
mated as s1 = 64 (Table 1). For this zebra, we calculated the integrated growth rates in the
range s = 64−67, the loss-cone angles 55−80 ◦, the temperatures 0.5 MK and 3 MK, and
vκ ∈ [0.1,0.5]c. From the analysis, it follows that the emission is most likely produced by a
loss-cone angle ∼ (70 ± 5)◦. The growth rate peaks are formed for a wider range of plasma
temperatures and velocities of the κ-distribution. For the plasma temperature of 3 MK, the
velocity of the κ-distribution must be ≥ 0.15 c. For the plasma temperature of 0.5 MK, the
velocity of the κ-distribution can be in the whole analyzed range of vκ ∈ [0.1,0.5]c. Our
conclusion for this zebra is that though the plasma temperature and the velocity of the κ-
distribution can be in a broad range of values to produce the emission, the loss-cone angle
should be restricted into a narrow range of about ∼ (70 ± 5)◦.

4. Discussion and Conclusions

The solar radio zebras are used for diagnostics of plasma parameters during solar flares.
One of the crucial parameters is the gyro-harmonic number in the emission region, which
allows to estimate the upper-hybrid to cyclotron frequency ratio. Though the gyro-harmonic
numbers determined from zebra observations are greater than about 50 and may exceed one
hundred, most studies so far have focused on significantly smaller gyro-harmonic numbers,
rarely higher than 20. We have addressed the question of how the solar radio zebras can
be produced with such high gyro-harmonic numbers by analyzing the DPR instability in a
broad range of gyro-harmonic numbers s = 7−103.

We have calculated linear growth rates and studied the effects of the loss-cone angle,
the velocity of the κ-distribution, the background plasma temperature, and the κ index on
the instability. We found that the zebras with high gyro-harmonic numbers are produced by
loss-cone distributions with large loss-cone angles. Moreover, the higher the gyro-harmonic
number, the larger the loss-cone angle must be to produce the instability. For the gyro-
harmonic number ∼ 100, a loss-cone angle ∼ 80◦ is sufficient. However, for even larger
gyro-harmonic numbers, we expect that the necessary high angles of the loss-cone are diffi-
cult to produce and therefore unlikely to be observed.

4.1. Growth Rate Properties

Our calculations show that for increasing gyro-harmonic number the integrated growth rates
of the DPR instability increase for large values of the loss-cone angle (∼ 80◦). Moreover, the
growth rate peaks are distinct for gyro-harmonic numbers s ∼ 100 and smooth for smaller
loss-cone angles < 80◦. The integrated growth rates are large enough for all loss-cone angles
� 50◦ to produce zebra type of radio emission.

In some cases, the growth rates show only small variations depending on s. However,
we note that these variations may produce a significant difference in the saturation energy
levels, as was shown using particle-in-cell simulations by Benáček and Karlický (2018).

The growth rate average values (over a broader range of gyro-harmonic numbers)
monotonously decrease only for a loss-cone angle of 30◦. In contrast, for the loss-cone
angle of 80◦, the average values monotonously increase.
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Moreover, how distinct the integrated growth rate maxima are for high gyro-harmonic
numbers s ∼ 50 − 100 and at large loss-cone angles depends on the temperature of the
background plasma and the velocity of the κ-distribution. Assuming that the instability oc-
curs in a heated plasma during a flare with a temperature of 3 MK, the growth rate profiles
are smoothed out around s ∼ 50 but form emission peaks for s ∼ 100. Moreover, for the
gyro-harmonic number s ∼ 100, they produce double-peaked profiles for small velocities of
the κ-distribution vκ = 0.15c. If the emission is formed in a region with a colder plasma of
temperature 0.5 MK, e.g. further from the flare region, the growth rates are distinct for the
whole range of gyro-harmonic numbers. Nonetheless, for both temperatures and large gyro-
harmonic numbers, higher growth rates are favored for smaller κ-distribution velocities in
the range vκ ∈ [0.15,0.20]c than for larger values in the range vκ ∈ [0.25,0.3]c.

4.2. Proposed Zebra Emission Regions

The fact that high gyro-harmonic numbers are detected in zebras means that the zebra-stripe
sources are in regions where the ratio of ωpe/ωce is high. In combination with the result that
higher growth rates are favored for large loss-cone angles, two possible explanations can be
proposed:

i) We may assume that the loop cross-section is only slightly wider at their midpoints than
at their footpoints, in agreement with Klimchuk (2000). In such a loop, the change of the
magnetic field along the loop is small, and only superthermal electrons with high pitch
angles can be trapped (Krucker, Masuda, and White, 2020). This way, a loss-cone dis-
tribution with a high loss-cone angle is formed. Thus the instability can generate the UH
waves and the corresponding zebra stripes with high gyro-harmonic numbers. Moreover,
for the zebra stripes with high s, the magnetic field in this loop must be relatively small
(ωpe/ωce � 1). We also note that the small change of the magnetic-field strength along
the loop agrees with the small difference in magnetic-field strength derived from the
neighboring zebra-stripe frequencies for high values of the gyro-harmonic numbers. The
typical intensity of the magnetic field in these regions can be derived as B = fs /(2.8·s),
where B is the magnetic field strength in a unit of gauss, and fs is the zebra-stripe fre-
quency in a unit of MHz with the gyro-harmonic number s (Karlický and Yasnov, 2018).
For low values of s, these differences are much higher. Therefore, in a loop with a small
magnetic field gradient, spatial distances of zebra-stripe sources with low values of s

will be much longer than those for high values of s.
ii) Considering the standard flare model (Aschwanden, 2004), a region with high values of

ωpe/ωce can be found below the X-point of the flare. The plasma density here is rela-
tively high (comparable to the current sheet density), and the magnetic field in the re-
connection outflow is relatively low. The electrons from reconnection move downwards
and penetrate into newly formed magnetic loops where they may be trapped (Švestka
et al., 1987). If the electrons initially have a perpendicular velocities to the magnetic
field larger than their parallel ones, they can form loss-cone distributions with large
loss-cone angles. The electrons are accelerated not only at the X-point of the magnetic
reconnection, but also during the shrinking of magnetic loops in the reconnection out-
flow Karlický and Kosugi (2004).

4.3. Double-Peaked Pattern of Growth Rates

We searched for the double-peaked pattern from Figure 4(d), whether it also occurs for
smaller gyro-harmonic numbers, various temperatures, and κ-distribution velocities. How-
ever, it did not appear anywhere in our calculations. We also performed tests to discard the
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Figure 7 Comparison of the growth rate calculations: (a) using the maximal method of Kuznetsov and Tsap
(2007) with (b) the maximal and (c) the averaged method, which is used in this paper and based on an
integration over the whole resonance ellipse (Kuznetsov, 2005). The background temperature is 0.5 MK, and
the κ-distribution velocity is vκ = 0.3 c. Compare the growth rates in panel (c) with the integrated growth
rates for higher background temperature in Figure 3c.

numerical uncertainty at the origin of the double-peaked profiles. We varied the ranges of
the calculations and the precision of the numerical integrals and tested individual parts of the
calculations for these parameters, but we found no discrepancies or errors. Nonetheless, due
to the complexity of the calculations, we could not say whether there were hidden numerical
artifacts produced by an approximation in the analytical growth rate derivation.

The double-peaked growth rate profile is generally formed when the growth rate region in
the ω − k⊥ space is not as the one shown in Figure 2, i.e. when it forms not only one tadpole
region for each gyro-harmonic number, but two (or more) separate regions. Therefore, the
UH branch could cross two regions and create two growth rate maxima. However, this would
require a specific kind of velocity distribution function, probably with two distinct regions
in the ω − k space of positive velocity gradients.

The question arises how we can observationally recognize that the adjacent zebra stripes
are formed by double-peaked growth rates. Assuming that there are two distinct regions in
the ω − k space, they probably do not have the same shape. Therefore, both generated zebra
stripes could be created at different emission intensities, with different frequency ratios be-
tween odd and even stripes, and odd and even stripes might have different emission profiles
(e.g. odd stripes are narrower and even stripes are broader). Nonetheless, if the regions are
similar and regularly distributed in the ω−k space, also the emission profiles can be similar.
Moreover, we may speculate that a change or evolution of the velocity distribution during
the emission might allow the transition from a double-peaked to a single-peaked profile, or
vice versa, as in the observed zebras with merging zebra stripes (Chernov et al., 2005).

4.4. Comparison with other Procedures of the Growth Rates Calculation

Kuznetsov and Tsap (2007) (KT07) found that growth rates decrease with increasing gyro-
harmonic number. They performed calculations for a power-law distribution (power-law
index δ = 10) for the loss-cone angle 30◦. Their approach was to estimate the growth rates
only for a specific part of the resonance ellipse (Equation 1). In contrast, in our approach
we integrate over the whole ellipse in Equation 10 for each specific point in the ω − k⊥
space (Kuznetsov, 2005) (K05). To obtain the integrated growth rate, we integrate over the
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UH dispersion branch, which produces more reliable results according to the tests by elec-
tromagnetic, relativistic particle-in-cell simulations (Benáček and Karlický, 2019; Manthei
et al., 2021) (BK19). Though KT07 used a different kind of loss-cone distribution, the de-
crease of the growth rates with increasing gyro-harmonic number for the loss-cone angle
30◦ is in agreement with our results. Nonetheless, the exact growth rate values differ.

We compare these three approaches to growth rate calculations in Figure 7 for the gyro-
harmonic number s ∼ 50 as a function of the loss-cone angle. In all three cases, the growth
rates are selected on the UH dispersion branch for 0.5 MK and vκ = 0.3 c. The maximal
growth rates of the K05 method are smaller than those of the KS07 method for loss-cone
angles ≤65◦. However, the growth rates for the angle 80◦, which are smaller for the KT07
method, are largest for the K05 method. Moreover, all growth rate profiles are relatively
smoother for the KT07 method than for the K05 method. The integrated growth rates of the
BK19 method are systematically lower than the maximal growth rates (from the definition of
the average along the dispersion branch in Equation 16). In agreement with BK19, who stud-
ied the integrated growth rates only for small gyro-harmonic numbers ωpe/ωce ≈ 4−5.2, the
peaks of the integrated growth rate are more distinct than (normal) growth rates also for high
gyro-harmonic numbers.

Yasnov, Benáček, and Karlický (2019) among others computed growth rates for the loss-
cone angle 80◦ using the same method as KS07. They found negative growth rates for large
loss-cone angles. However, they applied a loss-cone κ-distribution with an additional cut-
off at vm = 0.3 c, where vm is the cut-off velocity. For distributions without the cut-off,
they found that the growth rates are very broad for θc ∼ 50◦. As we show in Figure 7, the
integrated growth rate peaks may still be distinct.

Increasing the κ index of the κ-distribution from two to one hundred, the integrated
growth rates increase, and their maxima become more distinct. Increasing κ index, there are
more particles with smaller κ-distribution velocities. Therefore, these particles increase the
distribution gradients and contribute more to the integral of Equation 10 over the resonance
ellipse.

We conclude that the DPR instability model may produce solar radio zebras with high
gyro-harmonic numbers at large loss-cone angles ∼ 80◦. The growth rate maxima are dis-
tinct, and they are high enough to generate zebra patterns.
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