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Abstract
The solar corona is host to a continuous flow of propagating disturbances (PD). These are
continuous and ubiquitous across broad regions of the corona, including the quiet Sun. The
aim of this article is to present an improved, efficient method to create velocity vector field
maps based on the direction and magnitude of the PD as observed in time series of extreme
ultraviolet (EUV) images. The method presented here is for use with the Atmospheric Imag-
ing Assembly (AIA)/Solar Dynamics Observatory (SDO) EUV channels and takes as input
≈ 2 hours of images at the highest 12 s cadence. Data from a region near disc centre is ex-
tracted, and a process called time normalisation is applied to the co-aligned data. Following
noise reduction using à trous decomposition, the PD are effectively revealed. A modified
Lucas–Kanade algorithm is then used to map the velocity field. The method described here
runs comfortably on a desktop computer in a few minutes and offers an order of magni-
tude improvement in efficiency compared to a previous implementation. As applied to a
region of the quiet Sun, we find that the velocity field describes a mosaic of cells of coherent
outwardly-diverging PD flows of typical size 50 to 100′′ (36 to 72 Mm). The flows originate
from points and narrow corridors in the cell centres and end in the narrow boundaries be-
tween cells. Visual comparison with ultraviolet AIA images shows that the flow sources are
correlated with the bright photospheric supergranular network boundaries. Assuming that
the PD follow the local magnetic field, the velocity flow field is a proxy for the plane-of-sky
distribution of the coronal magnetic field, and therefore the maps offer a unique insight into
the topology of the corona. These are particularly valuable for quiet Sun regions where the
appearance of structures in EUV images is hard to interpret.

Keywords Image processing · Corona

1. Introduction

Morgan and Hutton (2018) presented a method called Time Normalised Optical Flow
(TNOF), which revealed the presence of propagating disturbances (PD) across broad regions
of the corona, including part of a small active region and quiet Sun. Their method was based
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on two main steps – a processing step, where a time series of on-disk extreme ultraviolet
(EUV) images was filtered and modified (time normalisation), and a characterisation step,
where a vector velocity field was estimated based on the PD motions (optical flow). Whilst
effective, the method was complicated, cumbersome, and computationally inefficient, taking
several hours to run on a desktop computer.

The PDs described by Morgan and Hutton (2018) are faint – with typical amplitudes of at
most ≈ 4 DN s−1, or less than 2% of the background signal, and not visible in unprocessed
time series. They are ubiquitous in the quiet Sun and active regions and are continuous
in the sense that PDs appear quasi-periodically and propagate along a similar direction to
previous PDs in the same region. This characteristic is supported by previous studies: for
example, Stenborg et al. (2011) state that disturbances are a coronal phenomenon that ex-
ist permanently everywhere, and Wang, Ofman, and Davila (2009) found similar PDs in a
fan-like loop structure. The propagation velocities are of the order of tens of km s−1 and
have quasi-periodicities, or repetition times, of a few minutes. Most studies interpret the
PDs as slow magnetoacoustic waves, with several emphasising propagation along the open
magnetic field (Stenborg et al., 2011). Morgan and Hutton (2018) were able to reveal and
characterise fainter events compared to other studies and found PDs in closed field struc-
tures in an active region and the quiet Sun, with the strongest signatures in the active region
loops.

This article presents an improved, efficient method to mapping the velocity field of coro-
nal PDs and shows that the resulting velocity vector fields give a unique mapping of the
structure of the quiet corona. An overview of the method, with detail of the new, efficient,
optical flow technique is given in Section 2. Results are presented in Section 3, with a dis-
cussion of the velocity vector field in the context of the quiet Sun magnetic topology. A sum-
mary is given in Section 4.

2. Method

2.1. Observations and Preprocessing

The method is applied here to a time series of 193 Å EUV images taken by the Atmospheric
Imaging Assembly (AIA, Lemen et al., 2011) on board the Solar Dynamics Observatory
(SDO, Pesnell, Thompson, and Chamberlin, 2012) during 06 November 2019. The spatial
pixel size of the data is 0.6′′, and the cadence is regular at 12 s. The method requires around
2 hours of observation (600 images) to give clean results; thus, data spanning from 13:00
to 15:00 UT on 06 November 2019 are used here. The two-hour span is a compromise be-
tween maximising the number of time steps available for the method to calculate a velocity,
thus maximising the statistics, whilst maintaining a region near disc centre without any large
structural changes in the corona. Decreasing this two-hour span leads to less coherent ve-
locity fields – thus, there are less time steps over which to determine a dominant velocity,
and in the resulting velocity fields, we see an increasingly large variation on small spatial
scales and decreasing correlation with the underlying coronal structure. Figure 1a shows a
full image taken by the AIA 193 Å channel for the midpoint of this time period. We restrict
the application of the method to a region located on disc centre as indicated by the red box.
Figure 1b shows greater detail of this region. There are practical reasons to choose a region
of interest near disc centre: we can use the Solar Software cutout service to request and
download data of manageable size, and computer memory puts constraints on the size of the
region during the method process. Another reason is that the results are easier to interpret
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Figure 1 (a) Full AIA 193 Å image of 06 November 2019 14:00 UT, with the red box bounding the region
of study. (b) More detail of the region of study. Both these images have been processed using Multiscale
Gaussian Normalisation to enhance detail (Morgan and Druckmüller, 2014).

for disc centre regions since estimated plane-of-sky velocities are geometrically closer to
being parallel to the solar surface.

The data, cropped to the region of study, is opened as a datacube of dimensions [x, y, t],
with the intensity of each image divided by the exposure time to give units of DN s−1. The
first step is to align the images over time. A Fourier transform correlation-based procedure
calculates the global translational [x, y] shifts of each image from the previous image to
subpixel accuracy (Fisher and Welsch, 2008). The cumulative sum of these shifts over time
are fitted to a second degree polynomial. Each image is then shifted, using interpolation, by
the appropriate [x, y] shift so that all images are aligned to the image taken closest to the
central time (in this case, 06 November 2019 at 14:00 UT). The translational shifts lead to
missing data at the left and right margins of the data – margins that increase in width towards
the start and end of the time series. These margins are identified and discarded from the
whole datacube so that each pixel has a complete time series. An image from the resulting
aligned datacube is shown in Figure 2a, and the accompanying movie shows the whole time
series. Following alignment, the datacube is rebinned spatially so that the average value
over each 4 × 4 = 16 input pixels form a new pixel (typically, the size of the input image
region is 800 × 800 pixels, and the rebinned image becomes 200 × 200 pixels). Rebinning
the data in this way is necessary to reduce noise and is computationally efficient. Tests on
full-resolution data (made on a smaller spatial region due to computational limitations) lead
to noisier velocity fields with less coherence and large variations on smaller spatial scales.

2.2. Time Normalisation

The next steps apply time normalisation to the datacube through a series of convolutions.
Note that these convolutions are all applied to the time dimension, thus independently at
each spatial pixel. Firstly, the datacube is convolved along the time dimension with a narrow
Gaussian-shaped kernel of one-sigma width 24 s, or 2 time steps, giving datacube D. This
initial convolution helps reduce noise. Secondly, D is convolved along the time dimension
with a wide Gaussian kernel k, of one-sigma width 150 s, or 12.5 time steps. This results in
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Figure 2 (a) The region of interest with intensities scaled by a simple square root (Gamma transform).
(b) The corresponding time-normalised image. A movie accompanies this figure, showing the time series
for both unprocessed (panel a) and processed (panel b) images.

a time-smoothed datacube D′:

D′ = D ⊗ k, (1)

where the operation is applied to the time series of each spatial pixel independently, with
the convolution over time only. The choice of width for the narrow kernel is based on a
qualitative visual inspection of the final images, with the width of the kernel kept at a mini-
mum whilst maintaining coherent motions in the processed images. The choice of width for
the wide kernel k is investigated in detail in Section 5 of Morgan and Hutton (2018). They
showed that the choice of width for k has very little effect on the topology of the velocity
field, although the velocity magnitude was sensitive to such choice.

A sliding window standard deviation of the signal over time at a given pixel, σ , is calcu-
lated as

σ =
√

(D − D′)2 ⊗ k. (2)

Finally, the time-normalised series D′′ is given by

D′′ = D − D′

σ + c
, (3)

where c is a small constant to reduce the effect of dividing by small numbers in very low-
signal regions. In this work, c = 0.3 DN s−1. For regions of study on the solar disc, this small
value of c has negligible effect since σ � c. It was included specifically to satisfy test cases
where we applied the method to off-limb regions, where the signal becomes very low, and
σ is small. Following this process, we discard an appropriate number of images (13 images)
from the start and end of the series in order to avoid the edge effects of the convolutions.

Following time normalisation, each image in D′′ is decomposed using a standard à trous
algorithm applied in the two spatial dimensions and then recomposed after discarding the
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finest scale composition (Starck, Murtagh, and Bijaoui, 1998). This step serves to effectively
discard some of the pixel-to-pixel noise and leads to cleaner results. Figure 2b shows an
example image with the accompanying movie showing the whole time series. The time-
normalised movie shows a myriad of small-scale motions at all times and in all areas of
the region. Whilst difficult to decipher directly by eye, the impression is gained of coherent
regions of motion and of a repetitive pattern.

2.3. Modified Lucas–Kanade Algorithm

The final step in the process is to apply a modified Lucas–Kanade optical flow method (Lu-
cas et al., 1981) to characterise the motions in the time-normalised datacube. Morgan and
Hutton (2018) described a complicated approach where the velocity field was modelled us-
ing a truncated sine series for a local region in the image. The image was tiled into small
square areas, the velocity fitted at each tile, then the tiles were combined to give a veloc-
ity field over the whole region. This was applied incrementally to consecutive image pairs
throughout the time series, then the final velocity field was calculated through a weighted
average over time (over all consecutive image pairs). This was a computationally cumber-
some process, and the fitting of the velocity to a local function led to some interpretive
uncertainty. That is, there was some uncertainty in the degree of smoothing in the resulting
velocity fields. The following method replaces these steps with a simpler and far more effi-
cient approach and assumes that there is a dominant direction to the motion at a given pixel
over time. This assumption is discussed in the context of the fitting residuals in Section 2.4.

The Lucas–Kanade method estimates the motion of objects in image pairs by assuming
that the temporal change in image brightness is due solely to the motion. Thus, the x and y

derivatives of image brightness are related to the time derivative by:

�I

�x
vx + �I

�y
vy = −�I

�t
, (4)

where vx and vy are the x and y components of the velocity, and I is the image brightness.
This equation cannot be solved for a single pixel (two unknowns), so typically the spatial
and temporal derivatives of brightness are calculated for a local group of pixels, and the
velocities are estimated through the least-squares solution. In our method, we take advantage
of the long time series (600 time steps), which gives a spatially local set of derivatives for a
given pixel.

The space and time derivatives of Equation 4 are all calculated by convolution of the
datacube with a narrow kernel, independently across each dimension of the cube. The kernel,
kd , is the finite numerical derivative of a Gaussian of one-sigma width 1.5 (spatial pixel or
time step); thus,

kd = [0.01,0.03,0.10,0.18,0.16,0.00,−0.16,−0.18,−0.10,−0.03,−0.01]. (5)

The application of a Gaussian derivative kd , which has a width spanning more than two
pixels, provides a smoothing of the datacube along all dimensions. The issue of smoothing
and the locality of solutions is inherent to optical flow methods and is discussed in Section 5
of Morgan and Hutton (2018). kd provides only a moderate smoothing essentially over ±3
bins from the centre (since the outer 2 values of kd are very small); thus, the spatial velocity
solution is influenced by a local group of approximately 7 × 7 pixels, which helps to allevi-
ate the influence of noise, whilst giving sufficient resolution to the result. The convolution is
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applied over the x dimension in order to gain �I/�x, and similarly over the y and t dimen-
sions. Once the derivatives are found (resulting in three derivative cubes of the same size as
the input datacube), the procedure applies least squares to solve Equation 4 individually for
each pixel, giving solutions vx and vy at each pixel.

This procedure describes a simple and efficient method to estimate the optical velocities.
We apply the following iterative approach:

i) Initialise master velocity arrays Vx and Vy as zero at all pixels.
ii) Begin iteration at iteration counter i = 0.

iii) If i > 0, then use the current estimate of Vx and Vy to modify the datacube over time,
essentially removing our current estimate of velocity translational shifts locally. Thus,
if at a given pixel, we have a velocity estimate of 0.5 pixel per time step in the positive
x direction, interpolation is used to form a new time series for that pixel by extracting
values from the datacube over time corresponding to positions of 0.5 pixels per time
step. The modified datacube, Dc , is calculated from the initial datacube at each iteration
i > 0. For the first iteration, Dc is set equal to the initial datacube (no interpolation).

iv) Apply differencing kernel kd to Dc to calculate the x, y, and t derviatives.
v) Use least squares to solve for vx and vy in Equation 4.

vi) Use the current solution vx and vy to calculate the residual �I
�t

using Equation 4.
vii) Apply a weighted smoothing to vx and vy . The velocity arrays are convolved with

Gaussian kernels. This is done five times for kernels increasing in sigma width from
1 to 5 pixels, with the resulting smoothed velocity arrays recorded for each width,
resulting in five arrays of increasing smoothness. Pixels with the smallest (largest)
residuals will adopt a value from the least (most) smoothed array, with the magnitude
of the residuals dictating the degree of smoothness.

viii) Add the resulting velocities to the master velocity arrays Vx and Vy . These are the
current solutions.

ix) Evaluate the velocity magnitude V =
√

V 2
x + V 2

y

x) Evaluate the mean absolute relative difference m between the current estimate Vi and
that in the previous iteration Vi−1.

xi) If m is greater than 20%, and i < 6, then continue iteration by repeating from the third
step onwards, else the process is terminated.

Note that item vii) above smooths the solutions vx and vy spatially. This is a common
approach in iterative optimisation (e.g. Morgan and Pickering, 2019), and a general guide
is to apply as little smoothing as possible whilst avoiding the amplification of unphysical
large magnitudes and discontinuities with iteration. Trial and error leads us to the approach
of using the fitting residuals to determine the degree of smoothing and the kernel widths of
1 to 5 pixels. For regions that best satisfy Equation 4, the smoothing is minimal at 1 pixel
width.

2.4. Validity of the Solution and Uncertainties

Equation 4 is based on the assumption that the change in image brightness at a given pixel
is due solely to motion. This is an inherent problem of optical flow methods. Whilst a visual
inspection of the time-normalised movie associated with Figure 2b clearly suggests coher-
ent and repetitive motions, the changes in brightness can also be caused by other factors.
Brightness can change in response to plasma density and temperature not associated with
bulk plasma motions or waves, although the time normalisation step is a filter, which ef-
fectively damps changes over longer than 150 s. Brightness also changes randomly due to
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Figure 3 (a) The spatial distribution of the mean absolute residual (MAR) of Equation 4 when both vx and
vy are set to zero (mean over all time), with the values indicated by the colour bar above the image. (b) The
MAR after the first iteration. (c) The MAR after six iterations. (d) The residual over time for the pixel with the
smallest final MAR. The initial residual is shown as a solid line, and the final as a dashed line. The position
of this pixel is shown as a red cross in panel a. (e) The initial (solid line) and final (dashed line) residual over
time for the pixel with the largest final MAR. The position of this pixel is shown as a red triangle in panel a.

Poisson noise in the measurement, although the smoothing by a narrow kernel at the method
outset helps to damp this high frequency component. Large-scale motions of coronal re-
gions by differential rotation or sunspot rotation can also lead to brightness changes since
our image alignment approach is purely translational, with a constant x and y pixel shift
applied to the whole image. Such large-scale motions will be present in the velocity results:
Section 5, and Figure 15 of Morgan and Hutton (2018) shows a clear statistical bias in the
x velocities related to solar rotation. Note that this new method includes the alignment step,
which effectively removes a constant solar rotation from the time series. This was not the
case with the previous method.

Under these limitations, Equation 4 is solved using the method described above, giving
the Vx and Vy (smoothed) velocity field, which best satisfies the equation in a least-squares
sense. Figure 3 displays information on the residuals of Equation 4 at different steps of the
iteration. Figure 3a shows the spatial distribution of the initial mean absolute residual (MAR
or the mean over time of the absolute residuals). Figure 3a thus gives an indication of the
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Figure 4 (a) The MAR as a function of speed for a selection of 50 pixels. (b) An estimate of the uncertainties
in speed as a function of the speed for the same 50 pixels. This estimate is based on a bootstrapping approach
based on randomisation of residuals following an initial least-squares fitting to Equation 4 (see text).

magnitude of the residual for a velocity field, which is zero everywhere. Figures 3b and c
show the MAR after the initial and final (sixth) iteration, respectively. Note that the least-
squares smoothed velocity field greatly reduces the mean residuals after one iteration – thus,
a velocity field is rapidly found, which satisfies Equation 4 better than a zero velocity field,
and this is true across the whole image. Further iterations gradually reduce the residuals until
a final limit is reached, that is, further iterations do not reduce the MAR. We can assume
that the final residuals at a given pixel are therefore not caused by coherent motions in a
single dominant direction and might be caused by other temporal changes not associated
with motions and/or by occasional motions in different directions.

Figures 3d and e show the residual over time for the pixel with the smallest and largest
final MAR, respectively. The solid line shows the initial residual (zero velocity), and the
dashed one shows the residual at the final iteration. The velocity found for the pixel of
Figure 3d obviously satisfies the changes in brightness well over all time since the final
residual is close to zero. The solution is less satisfactory for the pixel of Figure 3e. There
is a clear linear relationship between the magnitude of the velocity at a given pixel and the
MAR, which is shown in Figure 4a. Figure 4a shows, for a subset of 50 pixels, the MAR as
a function of the speed at that pixel.

Inspection of the distribution of the MAR can show the effectiveness of the velocity field
in describing the changes in brightness. The distribution of MAR for the final velocity solu-
tion, shown in Figure 3c, varies greatly from pixel to pixel and is not smooth or coherent over
large regions. This means that there are no large regions where the method is performing
worse than for other regions. One exception to this is the application of the method to large
and complex active regions. In tests on active region data, we have noticed discrepancies in
the velocity field where a coronal loop system crosses an underlying loop system. This is to
be expected, since Equation 4 tries to find a single velocity that is smoothly consistent with
the local group of pixels, whereas a superimposed system of loops at different orientations
suggests two or more velocities are needed (at two or more heights in the corona).

An estimate of errors in the method is difficult. In particular, error propagation from the
original data, through the time normalisation process, and our implementation of the Lucas–
Kanade algorithm is not feasible. A bootstrapping approach to error estimation is required
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but is not feasible to apply to all pixels since the bootstrapping estimate requires repeat-
ing the least-squares fit hundreds of times to gain meaningful statistics. We instead select
a subset of pixels covering the full range of MAR and apply the randomised-residual boot-
strapping approach described by Byrne et al. (2013). For each pixel, we find a least-squares
solution to Equation 4 and calculate the residuals over time (as shown in Figures 3d and e).
These residuals are randomised in order and are added to the original �I

�t
of Equation 4.

A least-squares solution is found, and the current Vx and Vy solutions are recorded. This
process is repeated 300 times, giving a distribution of solutions with the spread based on
the magnitude of the residuals. The standard deviation of the velocity distribution gives an
error estimate on the resulting speed. Figure 4b shows the speed uncertainty as a function
of speed for a selection of 50 pixels. There is a clear linear relationship equating to a mean
uncertainty of 6.5% on our speed estimates. This is just an indication of the uncertainties as
dictated by the fitting residuals and does not include biases introduced by choices of various
method parameters, such as the choice of wide kernel width in the time normalisation.

2.5. Computational Efficiency

Using a standard desktop computer (3.7 GHz 6-Core Intel Core i5, with 32 Gb memory), the
whole process, including reading in the data files, preprocessing, time normalisation, and the
Lucas–Kanade algorithm, takes approximately 5 minutes. This is a factor of around 40 times
faster than the implementation of Morgan and Hutton (2018) and enables rapid processing of
multiple datasets for future studies. The Lucas–Kanade iterative process converges rapidly
during the first two or three iterations and terminates when the iteration counter reaches the
set maximum number of iterations (i = 6).

3. Results

Applying the method to the 06 November 2019, 193 Å channel dataset results in the velocity
field shown in Figure 5a. As shown by Morgan and Hutton (2018), the method can be applied
to all the higher signal channels of AIA (304, 171, 193, and 211 Å), with differing results.
For the sake of demonstrating the method, the 193 Å channel is chosen here since it has
a high signal and is dominated by emission from coronal plasma; thus, the results can be
interpreted firmly in terms of coronal velocity fields, with little ‘contamination’ from lower
atmospheric layers. The most common pattern of the field distribution for this quiet Sun
region is a network of distinct cells, approximately circular, and of typical diameter 50 to
100′′ (36 to 72 Mm). The largest coherent cell is centred near x, y = 200,140′′ and has a
diameter well over 100′′. Flows tend to begin at the centres of the cells (red colours) and
diverge towards the cell boundaries (blue). Another common pattern consists of long spines
of converging or diverging flows. One example of a divergent spine is located near x, y =
150,−150′′. Some cells show rotation of flow, such as the cell located at x, y = 30,0′′, or
another small cell at x, y = −140,−60′′.

Figure 5b shows the estimated speed given by the Lucas–Kanade algorithm. Maximum
speeds are 40 km s−1, with most areas with speeds at 20 km s−1 or lower. The regions of
brightest intensity in the 193 Å channel tend to correspond to the higher speeds and also to
regions of flow divergence (cell centres), although this relationship is not consistent across
the whole region. The boundaries between cells are narrow and distinct. That is, there are no
broad regions of close to zero speed, and cells bound each other closely. We do not have in-
formation on the line-of-sight motion, and the method gives only the plane of sky velocities.
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Figure 5 (a) The vector velocity
field for the 193 Å channel across
the region of interest. Each line is
formed by starting from a
random position, and tracing the
field both backward and forward
until a set number of steps is
reached, or the length of the step
becomes very close to zero (i.e.
in regions of close to zero speed).
The changing colour of a line
along its length indicates the
direction of the flow, starting
from red, advancing from yellow
to green, and ending on blue.
This field is superimposed on the
background intensity image.
(b) The magnitude of the velocity
field across the region of interest.
The speed units are km s−1 as
indicated by the colour bar.

Furthermore, the results must be dominated by the atmospheric layer or the height forma-
tion of the observed emission. The 193 Å channel has peak response near a temperature of
1.6 MK therefore is sensitive to the motions in the low corona.

3.1. Comparison to the Photosphere

Figure 6a shows an AIA 1700 Å image of the photospheric ultraviolet (UV) continuum. To
create this image, we use 13 images, taken every 10 minutes between 13:00 to 15:00 UT on
06 November 2019, apply image alignment so that every one of them is aligned to the 06
November 2019 14:00 UT image, then calculate an average image. Whilst the photosphere
experiences rapid changes on small scales over a two-hour period, the main bright network
features, on spatial scales of tens of arcsecs, remain fairly consistent and stable over this
period. Figure 6b shows the brightest features highlighted in green. The spatial scale of this
distribution is consistent with the boundaries of the supergranular network.
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Figure 6 (a) Observation of the region of study by the AIA 1700 Å channel, showing the photospheric
UV continuum. (b) The negative of the AIA 1700 Å channel intensity (white = low intensity), with the
brightest network features highlighted in green. (c) Velocity vector map (black lines) shown without colour
or background image. The red and blue lines show where there is a large change in direction of the local
velocity vector, with red corresponding to positive divergence (or source of flows) and blue corresponding
to negative divergence (sinks, or where flows converge). (d) A comparison of the brightest UV network
regions (green) with the AIA 193 Å velocity field characterisation of positive divergence (red) and negative
divergence (blue).

We wish to compare this photospheric network with the topology of the coronal velocity
field. In order to do this, we calculate a simplified representation of the complicated flow
fields. Figure 6c shows the vector velocity field in black, and the blue and red lines represent
certain regions where the direction of the flow field changes direction abruptly. The direction
of the flow field at each pixel is given by the angle � = arctan(vy/vx). The Sobel edge
enhancement operator is applied to this angular image to give a value at each pixel: very high
values are found at regions where the angle in velocity direction changes abruptly – both the
red and blue lines in Figure 6c correspond to high values. The red (blue) colours denote
where these regions of abrupt angular change have positive (negative) divergence. The blue
lines overlie regions where flows converge from surrounding areas (sinks), whilst the red
lines overlie the points and corridors where flows diverge to surrounding areas (sources).
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Figure 7 Comparison of the vector velocity fields for (a) the method in this article, and (b) the method of
Morgan and Hutton (2018). These results are for a disk centre region observed by the AIA 193 Å channel
during 18:00 to 20:00 UT on 21 March 2015, corresponding to the data used in Morgan and Hutton (2018).

Figure 6d plots the bright photospheric UV network in green, with the simplified repre-
sentation of the coronal velocity field in red and blue. From a visual comparison, it is obvious
that there is a correlation between the distribution of the photospheric network and the coro-
nal velocity field. In many places, the positions of photospheric and coronal features agree
closely, for example, at X,Y = −200,50′′. There is obviously much further depth that can
be applied to this analysis – for example, a rigorous correlation analysis and a comparison
with other AIA channels. Whilst this article is more concerned with presenting the method
and preliminary results, this qualitative comparison suggests that the coronal velocity field
is strongly linked to the magnetic field topology in the quiet Sun. In particular, it seems as
if the red lines, or the coronal sources, are most strongly correlated with the bright photo-
spheric network. These preliminary results are closely linked to the findings of Sheeley and
Warren (2012), who found regions of clear cellular structures in AIA 193 Å images, linked
to the underlying distribution of supergranular boundaries.

3.2. Comparison to the Previous Method

Figure 7a shows the result of applying the new method to a disc centre region observed by
the AIA 193 Å channel between 18:00 to 20:00 UT on 21 March 2015, corresponding to the
data used in Morgan and Hutton (2018). This region has a more varied structure compared
to the quiet coronal example shown in Figure 5, with a small active region in the south-east,
bounded to the west by a dark region, possibly a dark canopy region (Wang, Robbrecht, and
Muglach, 2011) or a small coronal hole. Figure 7b shows the result of applying the Morgan
and Hutton (2018) method to the same data. The two results are very similar across most
of the region, with only small local differences in vector alignments and position. The new
method shows a little more detail on smaller spatial scales, due to the approach of the old
method to model the velocities as smooth local geometrical functions.

The left panel of Figure 8 shows more detail of the small active region in the south-east
in the AIA 193 Å channel. This image has been processed using the multiscale Gaussian
normalisation process to enhance smaller-scale features, such as active region loops (Mor-
gan and Druckmüller, 2014). The right panel shows the vector velocity field using the new
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Figure 8 Left: An AIA 193 Å image of the small active region seen in the south-east of Figure 7, for an
observation made at 19:00 UT on 21 March 2015. This image has been processed with multiscale Gaussian
normalisation in order to enhance smaller-scale structures. Right: The vector velocity field calculated using
the new method.

method. Qualitatively, the agreement between the loops and structures extending outwards
from the active region in the left image agrees well with the distribution of the velocity
vectors in the right panel, which gives confidence that the method is indeed detecting and
characterising coherent motions along magnetic structures. This type of direct comparison
is difficult to make in the quiet Sun since the structure in the images is less clear, that is, it is
difficult to see clear systems of large and distinct loops in the quiet Sun compared to active
regions.

4. Summary

A time normalisation process applied to a series of AIA observations near disc centre reveals
continuous and ubiquitous faint motions. A new, efficient method for tracing these motions
is described. Application to quiet Sun observations of 06 November 2019 in the AIA 193 Å
channel, dominated by hot coronal emission, gives speeds of 0–40 km s−1 and a velocity
map, which reveals a network of coherent flow cells of typical diameters 50 to 100′′ (36 to
72 Mm). Results are similar to a previous, more complicated, method.

If we assume that the PD must follow the coronal magnetic field, then tracing their mo-
tions must give the direction of the magnetic field. We believe that the vector velocity field
of Figure 5a may give an indication of the coronal magnetic structure and supports previ-
ous studies showing that the magnetic field of the quiet corona has a similar cellular struc-
ture. This is supported also by the visual comparison between the coronal velocity field



102 Page 14 of 15 H. Morgan, M.B. Korsós

and the photospheric UV network of Figure 6d, which from a visual comparison seem to
be strongly correlated. A comparison of the characteristics of the velocity field from mul-
tiple AIA channels with the photospheric network, to related photospheric motions, and
photospheric vector magnetograms, is an approach, which we are adopting to develop the
results in future work. Another potential avenue is to combine the velocity vector fields with
Doppler information from spectrometers thus gaining a simultaneous map of plane-of-sky
and line-of-sight speeds. We also plan to compare velocity fields for several AIA channels
at different formation heights in order to gain further insight into the quiet Sun magnetic
topology.
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