Skip to main content
Log in

Automated Recognition of Post-Flare Loops in High-Resolution H\(\upalpha \) Red-Wing Images

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The post-flare loop is a typical dynamic process of solar flares. In the past, a manual method was used to recognize the strand structure of loops. With higher spatial resolving power, the post-flare loop consists of more bundles of strands. For fast and reliable post-flare-loop recognition, an automated post-flare-loop detection method applied to high-resolution H\(\upalpha \) red-wing images is proposed in this article. In this method, straight lines are detected from the edge-detection result, and then a curve-growing procedure is carried out on the basis of the detected straight lines. Finally, the grown curves are screened to eliminate isolated and intersected curves. To our knowledge, our research is the first trial to detect post-flare loops on the solar disk. Experimental results with the high-resolution H\(\upalpha \) red-wing images from the Goode Solar Telescope (GST) have verified that the proposed method could detect post-flare loops effectively in all their developing phases. Based on the recognition results, the automatically computed loop widths (118±35 km) are consistent with the manually derived results (124±19 km). With the development of observing instrumentation, the proposed method may recognize each strand of the loops and the measured loop widths could be used to verify flare models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Code Availability

The code of the proposed method has been published on github: github.com/PostFlareLoop/postflareloop.

References

  • Adams, R., Bischof, L.: 1994, Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641. DOI.

    Article  Google Scholar 

  • Antolin, P., Rouppe van der Voort, L.: 2012, Observing the fine structure of loops through high resolution spectroscopic observations of coronal rain with the CRISP instrument at the Swedish Solar Telescope. Astrophys. J. 745, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2010, A code for automated tracing of coronal loops approaching visual perception. Solar Phys. 262, 399. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bruzek, A.: 1964, On the association between loop prominences and flares. Astrophys. J. 140, 746. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron. Nachr. 331, 636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 1994, Some implications of the nanoflare concept. Astrophys. J. 422, 381. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cargill, P.J., Klimchuk, J.A.: 2004, Nanoflare heating of the corona revisited. Astrophys. J. 605, 911. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Guo, Y., Zhang, J., Jing, J., Wiegelmann, T.: 2010, Re-flaring of a post-flare loop system driven by flux rope emergence and twisting. Astrophys. J. Lett. 716, L68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Denker, C., Johannesson, A., Marquette, W., Goode, P.R., Wang, H., Zirin, H.: 1999, Synoptic H\(\upalpha \) full-disk observations of the Sun from Big Bear Solar Observatory – I. Instrumentation, image processing, data products, and first results. Solar Phys. 184, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duda, R.O., Hart, P.E.: 1972, Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11. DOI.

    Article  MATH  Google Scholar 

  • Durak, N., Nasraoui, O., Schmelz, J.: 2009, Coronal loop detection from solar images. Pattern Recognit. 42, 2481. DOI.

    Article  ADS  MATH  Google Scholar 

  • Forbes, T.G., Malherbe, J.M., Priest, E.R.: 1989, The formation of flare loops by magnetic reconnection and chromospheric ablation. Solar Phys. 120, 285. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grigorescu, C., Petkov, N., Westenberg, M.A.: 2003, Contour detection based on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12, 729.

    Article  ADS  Google Scholar 

  • Heinzel, P., Karlický, M.: 1987, H\(\upalpha \) diagnostics of (post)-flare loops based on narrow-band filtergram observations. Solar Phys. 110, 343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inhester, B., Feng, L., Wiegelmann, T.: 2008, Segmentation of loops from coronal EUV images. Solar Phys. 248, 379. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jing, J., Xu, Y., Cao, W., Liu, C., Gary, D., Wang, H.: 2016, Unprecedented fine structure of a solar flare revealed by the 1.6 m New Solar Telescope. Sci. Rep. 6, 24319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kamio, S., Kurokawa, H., Ishii, T.T.: 2003, Precise determination of cooling times of post-flare loops from the detailed comparison between H\(\upalpha \) and soft X-ray images. Solar Phys. 215, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2006, On solving the coronal heating problem. Solar Phys. 234, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, J., Zhang, Z., Wang, Z., Smartt, R.N.: 1992, The morphological characteristics and cooling mechanisms of the post-flare loop system of April 28, 1980. Astron. Astrophys. 253, 557. ADS.

    ADS  Google Scholar 

  • McAteer, R.T.J., Kestener, P., Arneodo, A., Khalil, A.: 2010, Segmentation of loops from coronal EUV images. Solar Phys. 262, 387. DOI. ADS.

    Article  ADS  Google Scholar 

  • Podgorny, A.I., Podgorny, I.M.: 2002, Numerical MHD simulations of post-flare loop formation on the Sun allowing for thermal-conductivity anisotropy. Astron. Rep. 46, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Warren, H.P.: 2002, Modeling the cooling of postflare loops. Astrophys. J. 578, 590. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rimmele, T.R., Warner, M., Keil, S.L., Goode, P.R., Knölker, M., Kuhn, J.R., Rosner, R.R., McMullin, J.P., Casini, R., Lin, H., Wöger, F., von der Lühe, O., Tritschler, A., Davey, A., de Wijn, A., Elmore, D.F., Fehlmann, A., Harrington, D.M., Jaeggli, S.A., Rast, M.P., Schad, T.A., Schmidt, W., Mathioudakis, M., Mickey, D.L., Anan, T., Beck, C., Marshall, H.K., Jeffers, P.F., Oschmann, J.M., Beard, A., Berst, D.C., Cowan, B.A., Craig, S.C., Cross, E., Cummings, B.K., Donnelly, C., de Vanssay, J.-B., Eigenbrot, A.D., Ferayorni, A., Foster, C., Galapon, C.A., Gedrites, C., Gonzales, K., Goodrich, B.D., Gregory, B.S., Guzman, S.S., Guzzo, S., Hegwer, S., Hubbard, R.P., Hubbard, J.R., Johansson, E.M., Johnson, L.C., Liang, C., Liang, M., McQuillen, I., Mayer, C., Newman, K., Onodera, B., Phelps, L., Puentes, M.M., Richards, C., Rimmele, L.M., Sekulic, P., Shimko, S.R., Simison, B.E., Smith, B., Starman, E., Sueoka, S.R., Summers, R.T., Szabo, A., Szabo, L., Wampler, S.B., Williams, T.R., White, C.: 2020, The Daniel K. Inouye Solar Telescope – observatory overview. Solar Phys. 295, 172. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakamoto, Y., Tsuneta, S., Vekstein, G.: 2008, Observational appearance of nanoflares with SXT and TRACE. Astrophys. J. 689, 1421. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samet, H., Tamminen, M.: 1988, Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell. 10, 579. DOI.

    Article  Google Scholar 

  • Scharmer, G.B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M.G., Kiselman, D., Sütterlin, P., van Noort, M., Lagg, A.: 2008, CRISP spectropolarimetric imaging of penumbral fine structure. Astrophys. J. Lett. 689, L69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scullion, E., Rouppe van der Voort, L., Wedemeyer, S., Antolin, P.: 2014, Unresolved fine-scale structure in solar coronal loop-tops. Astrophys. J. 797, 36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sellah, S., Nasraoui, O.: 2008, An incremental Hough transform for detecting ellipse in image data streams. In: 20th IEEE International Conference on Tools with Artificial Intelligence 2, 45. DOI.

    Chapter  Google Scholar 

  • Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Zaqarashvili, T.V., Uddin, W., Dwivedi, B.N., Kumar, P.: 2008, Observation of multiple sausage oscillations in cool post-flare loop. Mon. Not. Roy. Astron. Soc. 388, 1899. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vekstein, G.: 2009, Probing nanoflares with observed fluctuations of the coronal EUV emission. Astron. Astrophys. 499, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, R.S., Verwichte, E., Foullon, C.: 2012, First observation of a transverse vertical oscillation during the formation of a hot post-flare loop. Astron. Astrophys. 545, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, M., Tian, Y., Liu, Y., Rao, C.: 2018, Automated solar flare detection and feature extraction in high-resolution and full-disk H\(\upalpha \) images. Solar Phys. 293, 81. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the use of data from the Goode Solar Telescope (GST) of the Big Bear Solar Observatory (BBSO). BBSO operation is supported by NJIT and US NSF AGS-1821294 grant. GST operation is partly supported by the Korea Astronomy and Space Science Institute and the Seoul National University.

Funding

This work was supported by Natural National Science Foundation of China (NO.11727805 and NO.11703029) and the Laboratory Innovation Foundation of the Chinese Academy of Sciences (Grant NO. YJ16K006).

Author information

Authors and Affiliations

Authors

Contributions

Meng Yang and Xiaoying Gong contributed equally to this work. They completed the writing, experimentation, and revision of the article. Yangyi Liu and Yu Tian collected data and made suggestions on the method of the article. Changhui Rao supervised this work.

Corresponding author

Correspondence to Changhui Rao.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Gong, X., Liu, Y. et al. Automated Recognition of Post-Flare Loops in High-Resolution H\(\upalpha \) Red-Wing Images. Sol Phys 297, 62 (2022). https://doi.org/10.1007/s11207-022-01993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01993-8

Keywords

Navigation