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Abstract
In this article we study the plasma motion in the transitional layer of a coronal loop randomly
driven at one of its footpoints in the thin-tube and thin-boundary-layer (TTTB) approxima-
tion. We introduce the average of the square of a random function with respect to time. This
average can be considered as the square of the oscillation amplitude of this quantity. Then
we calculate the oscillation amplitudes of the radial and azimuthal plasma displacement as
well as the perturbation of the magnetic pressure. We find that the amplitudes of the plasma
radial displacement and the magnetic-pressure perturbation do not change across the tran-
sitional layer. The amplitude of the plasma radial displacement is of the same order as the
driver amplitude. The amplitude of the magnetic-pressure perturbation is of the order of
the driver amplitude times the ratio of the loop radius to the loop length squared. The am-
plitude of the plasma azimuthal displacement is of the order of the driver amplitude times
Re1/6, where Re is the Reynolds number. It has a peak at the position in the transitional layer
where the local Alfvén frequency coincides with the fundamental frequency of the loop kink
oscillation. The ratio of the amplitude near this position and far from it is of the order of �,
where � is the ratio of thickness of the transitional layer to the loop radius. We calculate the
dependence of the plasma azimuthal displacement on the radial distance in the transitional
layer in a particular case where the density profile in this layer is linear.
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1. Introduction

Kink oscillations of coronal magnetic loops were first observed by the Transition Region
and Coronal Explorer (TRACE) mission in 1998 and reported by Aschwanden et al. (1999)
and Nakariakov et al. (1999). After that, these oscillations were routinely observed by space
missions (e.g. Erdélyi and Taroyan, 2008, Duckenfield et al., 2018; Su et al., 2018; Abe-
dini, 2018, and the references therein). Kink oscillations were also observed in prominence
threads (e.g. Arregui, Oliver, and Ballester, 2018). These oscillations have large amplitudes
and damp quickly.
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Later-low-amplitude undamped or decayless kink oscillations of coronal loops were ob-
served (Wang et al., 2012; Tian et al., 2012; Nisticò, Nakariakov, and Verwichte, 2013; Nis-
ticò, Anfinogentov, and Nakariakov, 2014; Anfinogentov, Nakariakov, and Nisticò, 2015).
Recently Duckenfield et al. (2018) reported the observation of multiple harmonics in decay-
less observations.

At present there are two models of excitation of decayless kink oscillations. Nisticò,
Nakariakov, and Verwichte (2013) and Nisticò, Anfinogentov, and Nakariakov (2014) sug-
gested that these oscillations are excited by driving of the loop footpoints by subphoto-
spheric convective motion. Nakariakov et al. (2016) developed the model of decayless kink
oscillations where these oscillations are considered as a nonlinear self-oscillatory process.

In this article we consider the first model. The excitation of decayless kink oscillations
by driving the loop footpoints was studied in a few articles. Afanasyev, Karampelas, and
Van Doorsselaere (2019) and Karampelas et al. (2019) used three-dimensional numerical
modelling to study the excitation of kink oscillations in a stratified coronal loop by a con-
tinuous monochromatic driving. They considered a few driving frequencies and found that
for the same driving amplitude the excitation of kink waves is much more efficient when the
driving frequency is equal or close to one of eigenfrequencies of coronal-loop oscillations,
which is an expected result. They also observed the development of the Kelvin–Helmholtz
(KH) instability that causes the development of turbulence in the transitional layer between
the tube core region and surrounding plasma. Thus they confirmed the result previously
obtained by other authors (e.g. Terradas et al., 2008; Antolin, Yokoyama, and Van Doorsse-
laere, 2014; Antolin et al., 2016; Terradas, Magyar, and Van Doorsselaere, 2018). However,
it looks doubtful that the decayless kink oscillations are excited by a harmonic driver. It
seems much more probable that they are excited by the random driving.

De Groof, Tirry, and Goossens (1998) and De Groof and Goossens (2000, 2002) studied
random driving in relation to coronal-loop heating. They modelled a coronal magnetic loop
as a magnetic slab. The properties of kink oscillations of magnetic slabs and cylinders are
quite different. Hence, their analysis cannot be directly applied to the problem of excitation
of decayless kink oscillations of coronal loops.

Recently Afanasyev, Van Doorsselaere, and Nakariakov (2020) studied the excitation of
decayless kink oscillations of coronal loops by motions of coronal footpoints using an inho-
mogeneous wave equation with damping and random driving. They managed to reproduce
many observed properties of decayless kink oscillations such as peaks in the Fourier spec-
trum of oscillations corresponding to eigenmodes of the loop kink oscillation. Motivated
by this article, Ruderman and Petrukhin (2021) (Article I below) studied the same problem
using the model of a coronal loop in the form of a magnetic-flux tube with a transitional
layer at its boundary.

It was assumed in Article I that the footpoint driving is described by a stationary random
function. In this case the loop displacement is also a stationary random function of time.
The relation between the spectra of the two random functions was obtained. In particular, it
was shown that the spectrum of the random function describing the loop displacement has
peaks at the loop eigenfrequencies. These peaks are very pronounced at the fundamental
frequency and the first overtone, while the peak at the second overtone is much less visible.

In Article I the solution in the transitional layer between the tube core region and the
external plasma was obtained. The plasma motion in the transitional layer was thoroughly
studied both in the case of harmonic driving as well as in the case of damped oscillations
cased by initial perturbations (see Goossens, Erdélyi, and Ruderman, 2011, and the refer-
ences therein). It was shown that the oscillation amplitude and the gradients of perturbations
are very large in a thin dissipative layer embracing the resonant surface. In the case of de-
caying oscillations excited by an initial perturbation, the resonant surface is defined by the
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condition that the local Alfvén frequency matches either the fundamental frequency or the
frequency of one of overtones. The motion in the dissipative layer is described by the so-
called F�- and G�-functions. The function F� describes the behaviour of the azimuthal
plasma displacement in the dissipative layer, and the function G� describes the behaviour
of the radial plasma displacement. The parameter � measures the relative strength of dis-
sipation and damping in the dissipative layer: � is small when dissipation dominates, and
large when damping dominates. We recall that the damping rate is independent of dissi-
pative coefficients in a weakly dissipative plasma. In the case of driven oscillations, the
position of the resonant surface is defined by the condition that the local Alfvén frequency
matches the driving frequency. The motion in the dissipative layer is described by the F -
and G-functions that are the limits of F�- and G�-functions for � → 0.

In the case of random driving, the solution obtained in Article I was used to calculate the
variation of the radial plasma displacement and the magnetic-pressure perturbation across
the transitional layer. However, the details of plasma motion in the transitional layer were
not investigated. These details are important, for example, for the stability of plasma mo-
tion. The motion in the transitional layer is characterised by strong shear. This can result in
the development of the KH instability. If this is the case then the linear description of mo-
tion in the transitional layer is not valid. Instead we should assume that there is developed
turbulence there.

In this article we study the motion in the transitional layer in the case when a magnetic
tube is randomly driven at its footpoint. The article is organised as follows: In the next
section we formulate the problem. In Section 3 we present the previously obtained solution
to the dissipative MHD equations describing the plasma motion in the transitional layer. In
Section 4 we calculate the spectra of radial and azimuthal plasma displacements as well as
the magnetic-pressure perturbation and use them to calculate the average squares of these
quantities, which can be considered as the squares of their amplitudes. In Section 5 we
study the properties of plasma motion in the transitional layer. In Section 6 we consider a
particular case where the density profile in the transitional layer is linear. Section 7 contains
the summary of results and our conclusions.

2. Problem Formulation

We consider the plasma motion using the zero-β approximation. The background magnetic
field is straight. In cylindrical coordinates r,φ, z it is defined by B = B êz, where êz is the
unit vector in the z-direction and B is a constant. The equilibrium density is given by

ρ(r) =

⎧
⎪⎨

⎪⎩

ρi, r ≤ R(1 − �/2),

ρt(r), R(1 − �/2) ≤ r ≤ R(1 + �/2),

ρe, r ≥ R(1 + �/2),

(1)

where R is the tube radius, ρi and ρe are constants, ρe < ρi, ρt(r) is a monotonically de-
creasing function, ρ(r) is continuous at r = R(1 ± �/2), and R� is the thickness of the
transitional layer. The domain defined by r ≤ R(1 − �/2) is the core part of the magnetic
tube, while R(1 − �/2) ≤ r ≤ R(1 + �/2) is the transitional region.

The tube length is L. We assume that the tube is thin: R � L. In addition, we assume
that the transitional (also called boundary) layer is also thin: � � 1. Hence, we use the
thin-tube and thin-boundary-layer (TTTB) approximation. In this approximation the plasma
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displacement [η] in the core region is independent of r (e.g. Goossens et al., 2009; Ruder-
man, Shukhobodskiy, and Erdélyi, 2017). For simplicity we assume that the tube is driven
only at one end, while the second end is frozen in a dense immovable plasma. In accordance
with this, we impose the boundary conditions

ξr = f (t) at z = 0, ξr = 0 at z = L, (2)

where f (t) is a stationary random function and ξr is the plasma displacement in the radial
direction. It is shown in Article I that adding random driving at the second footpoint does
not add any new physics to the problem.

3. Solution in the Transitional Layer

Each magnetic surface in the transitional layer can oscillate in the azimuthal direction with
the fundamental frequency ωA = πVA/L, and also with the frequency of any overtone equal
to nωA, n = 2,3 . . . , where VA = B(μ0ρ)−1/2 is the local Alfvén speed. The union of all
intervals [nωAi, nωAe], and also symmetric intervals constitute the Alfvén continuum. Here
the subscripts “i” and “e” indicate that a quantity is calculated at r ≤ R(1 − �/2) and at
r ≥ R(1 + �/2), respectively. Hence, the Alfvén continuum is defined by

∞⋃

n=1

([−nωAe,−nωAi] ∪ [nωAi, nωAe]
)
. (3)

When a magnetic tube is harmonically driven and the driving frequency is in the Alfvén con-
tinuum, there is only one, or a few, resonant surfaces where the driving frequency matches
either the local fundamental frequency or the frequency of one of the overtones. There are
large gradients in the quantities describing the plasma motion only in the vicinities of res-
onant surfaces. As a result, dissipation must be taken into account only in these vicinities,
while the plasma motion can be described by the ideal magnetohydrodynamic (MHD) equa-
tions far from the resonant surfaces.

In the case of random driving, the situation is different. If the driver spectrum contains
at least one of the intervals [nωAi, nωAe], then all surfaces in the transitional layer are res-
onant. Each surface is in resonance with at least one frequency from the driver spectrum.
This implies that dissipation is important everywhere in the transition layer, and the plasma
motion must be described by the dissipative MHD equations.

In Article I, the solution to the linear dissipative MHD equations describing the plasma
motion in the transitional layer was obtained under a viable assumption that dissipation is
weak, that is Re � 1, where Re = RVAi/ν is the Reynolds number and ν is the kinematic
viscosity. This solution was also obtained in the leading-order approximation with respect
to �. Below we briefly describe this solution. In Article I the scaled variables Q = ε−2P ,
T = εt , and Z = εz were used, where P is the perturbation of the magnetic pressure and
ε = R/L � 1. We rewrite the equations obtained in Article I in terms of the original vari-
ables P , t , and z. Since we consider kink oscillations, we take perturbations of all variables
proportional to eiφ . This implies that we take m = 1, where m is the azimuthal wave number.
We do not need to consider m = −1 because the tube is not twisted. In this case there is no
difference between modes with m = 1 and m = −1 (see, e.g., Roberts, 2019).

The solution in Article I is given in the form of Fourier expansions,

ξr = f (t)
L − z

L
+

∞∑

n=1

un(r, t) sin
πnz

L
, (4)
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ξφ = if (t)
L − z

L
+

∞∑

n=1

vn(r, t) sin
πnz

L
, (5)

P =
∞∑

n=1

Pn(r, t) sin
πnz

L
, (6)

η = f (t)
L − z

L
+

∞∑

n=1

ηn(t) sin
πnz

L
, (7)

where ξφ is the azimuthal component of the plasma displacement and η = ξri. The coefficient
functions vn(r, t) are defined by

vn = −i
∫ t

−∞
Gn(t − θ)gn(θ)dθ. (8)

The functions gn(θ) and Gn(t) are given by

gn(t) = 2(ρ − ρi)

πnρ

d2f

dt2
− ρi

ρ

(
d2ηn

dt2
+ n2ω2

Aiηn

)

, (9)

Gn(t) = exp(−�n2t3/Re)
sin(nωAt)

nωA

, (10)

where

� = RVAi

6

(
dωA

dr

)2

. (11)

The Fourier coefficients in Equation 4 are defined by the equation and the boundary condi-
tion

∂(run)

∂r
+ ivn = 0, un = ηn at r = R(1 − �/2). (12)

Finally, the Fourier coefficients in Equation 6 are defined by the equation

1

ρ

∂Pn

∂r
= − 2

πn

d2f

dt2
− d2ηn

dt2
− n2ω2

Aηn, (13)

and the boundary condition

Pn = −ρiR

(
2

πn

d2f

dt2
+ d2ηn

dt2
+ n2ω2

Aiηn

)

at r = R(1 − �/2). (14)

Now, following Article I, we introduce the Fourier transform defined by

ĥ(ω) =
∫ ∞

−∞
h(t)e−iωtdt, h(t) = 1

2π

∫ ∞

−∞
ĥ(ω)eiωtdω. (15)

We recall that the driving function [f (t)] is assumed to be a stationary random function,
that is a function whose unconditional joint probability distribution does not change when
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shifted in time. In particular, parameters such as mean and variance do not change over time.
Consequently f (t) does not possess a Fourier transform. However, we can define its power
spectrum [�f (ω)] as (Champeney, 1973)

�f (ω) = lim
T →∞

1

T
|f̂T (ω)|2, (16)

where f̂T (ω) is the Fourier transform of the truncated function

fT (t) =
{

f (t), T1 < t < T + T1,

0, otherwise.
(17)

For a stationary random function the limit in Equation 16 is independent of T1. It is shown
in Article I that the Fourier transforms of fT and ηT n are related by

η̂T n

[
n2ω2

k − ω2 + K(ω)
] = 2ω2

πn
f̂T , (18)

where for ω > 0 the function K(ω) is defined by

K(ω) = n6ω2
k(ρi − ρe)

2

2R(ρi + ρe)2

(
π iω

4n2�n

+P
∫ R(1+�/2)

R(1−�/2)

ω2
A dr

ω2 − n2ω2
A

)

(19)

for ω ∈ [nωAi, nωAe], and

K(ω) = n6ω2
k(ρi − ρe)

2

2R(ρi + ρe)2

∫ R(1+�/2)

R(1−�/2)

ω2
A dr

ω2 − n2ω2
A

(20)

for ω /∈ [nωAi, nωAe], where P indicates the Cauchy principal part of the integral, and

ωk = πCk

L
, C2

k = 2B2

μ0(ρi + ρe)
. (21)

�n = −n
dωA

dr

∣
∣
∣
∣
r=rn(ω)

, nωA(rn) = ω. (22)

To define K(ω) for ω < 0 we use K(ω) = K∗(−ω), where the asterisk indicates the complex
conjugate. We recall that n = 1 corresponds to the fundamental mode and n > 1 to the
overtones. It is shown in Article I that Equations 19 and 20 are only valid when ω is not
very close to nωAi or nωAe, that is when |ω − nωAi| � ωk(ε�

2Re)−1/3 and |ω − nωAe| �
ωk(ε�

2Re)−1/3. The power spectra of ηn and f are related by

�ηn(ω) = lim
T →∞

1

T
|η̂T n(ω)|2 = |ϒn(ω)|2�f (ω), (23)

where

ϒn(ω) = 2ω2

πn[n2ω2
k − ω2 + K(ω)] . (24)

Using Equations 8, 12, 14, and 23 we will calculate in the next section the power spectra
of un, vn, and Pn. Then we will calculate the power spectra of ξr , ξφ , and P .
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4. Calculation of Power Spectra

The truncated functions vT n and gT n are related by the same Equation 8, where gT n(t) is
given by Equation 9 with fT (t) and ηT n(t) substituted for f (t) and ηn(t), respectively.
Applying the Fourier transform to this equation and recalling that Gn(t) = 0 for t < 0 we
obtain

v̂T n(ω) = −iĜn(ω)ĝT n(ω), (25)

where

−iĜn(ω) = 1

2nωA

(
Re

3n2�

)1/3 [

F

(

−
(

Re

3n2�

)1/3

(ω + nωA)

)

− F

(

−
(

Re

3n2�

)1/3

(ω − nωA)

)]

. (26)

Here F is the F -function first introduced by Goossens, Ruderman, and Hollweg (1995). It
is defined by

F(x) =
∫ ∞

0
exp(ixθ − θ3/3)dθ. (27)

Using integration by parts we obtain

F(x) = i

x
+O

(
x−4

)
for |x| � 1. (28)

In Appendix A the expression for ĝT n(ω) in terms of fT (ω) and ηT n(ω) is obtained. Using
Equations 18 and 72 we obtain

ĝT n(ω) = 2ω2

πnρ

(

ρ − ρi + ρi(ω
2 − n2ω2

Ai)

n2ω2
k − ω2 + K(ω)

)

f̂T (ω). (29)

Substituting this expression in Equation 25 yields

v̂T n(r,ω) = Un(r,ω)f̂T (ω), (30)

where

Un(r,ω) = −2iω2Ĝn(ω)

πnρ

(

ρ − ρi + ρi(ω
2 − n2ω2

Ai)

n2ω2
k − ω2 + K(ω)

)

. (31)

Now the power spectrum of vn(t) is

�vn(r,ω) = lim
T →∞

1

T
|v̂n(r,ω)|2 = |Un(r,ω)|2�f (ω). (32)

It follows from Equation 12 with uT n, vT n, and ηT n substituted for un, vn, and ηn, respec-
tively, that

uT n = ηT n − i

R

∫ r

R(1−�/2)

vT n(x)dx, (33)
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where we took r ≈ R in the transitional layer. Applying the Fourier transform to this equa-
tion and using Equation 12, we obtain

ûT n(r,ω) = Wn(r,ω)f̂T (ω), (34)

where

Wn(r,ω) = 2ω2

πn[n2ω2
k − ω2 + K(ω)] − i

R

∫ r

R(1−�/2)

Un(x,ω)dx. (35)

Then the power spectrum of un(t) is given by

�un(r,ω) = lim
T →∞

1

T
|ûn(r,ω)|2 = |Wn(r,ω)|2�f (ω). (36)

Applying the Fourier transform to Equations 13 and 14 with fT and ηT n substituted for
f and ηn, respectively, and using Equation 18 yields

∂P̂T n

∂r
= 2ρω2[n2(ω2

k − ω2
A) + K(ω)]

πn[n2ω2
k − ω2 + K(ω)] f̂T (ω), (37)

P̂T n = 2ρiω
2R[n2(ω2

k − ω2
Ai) + K(ω)]

πn[n2ω2
k − ω2 + K(ω)] f̂T (ω) at r = R(1 − �/2). (38)

It follows from these equations that

�Pn(ω) = lim
T →∞

1

T
|P̂T n(ω)|2 = |Sn(ω)|2�f (ω), (39)

where

Sn(ω) = 2ρiRω2[n2(ω2
k − ω2

Ai) + K(ω)]
πn[n2ω2

k − ω2 + K(ω)] . (40)

When deriving the expression for Sn(ω) we neglected the terms of the order of � in the
numerator. We note that Sn(ω) is independent of r , which implies that �Pn(ω) is also inde-
pendent of r .

Below we also consider the average values of |ξr |2, |ξφ |2, and |P |2 defined by

|ξr |2 = 1

L

∫ L

0
|ξr |2 dz = 1

2

∞∑

n=1

|un(t)|2 + 1

3
|f (t)|2 +

∞∑

n=1

2

πn
�[f ∗(t)un(t)], (41)

|ξφ |2 = 1

L

∫ L

0
|ξφ |2 dz = 1

2

∞∑

n=1

|vn(t)|2 + 1

3
|f (t)|2 +

∞∑

n=1

2

πn
[f ∗(t)vn(t)], (42)

|P |2 = 1

L

∫ L

0
|P |2 dz = 1

2

∞∑

n=1

|Pn(t)|2, (43)
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where � and  indicate the real and imaginary parts of a quantity, respectively. Now we
introduce the mean value of product of two stationary random functions f (t) and g(t) as

〈f (t)g(t)〉 = lim
T →∞

1

T

∫ ∞

−∞
fT (t)gT (t)dt. (44)

Then we use the relation (Champeney, 1973)

〈f ∗(t)g(t)〉 = 1

2π
lim

T →∞
1

T

∫ ∞

−∞
f̂ ∗

T (ω)ĝT (ω)dω. (45)

It follows from this relation and Equation 16 that

〈|f (t)|2〉 = 1

2π

∫ ∞

−∞
�f (ω)dω. (46)

It follows from Equations 16, 32, 36, and 39, that

〈|ξr |2〉 = 1

2π

∫ ∞

−∞

(
1

2

∞∑

n=1

�un(ω) + 1

3
�f (ω) +

∞∑

n=1

2

πn
�[�f ∗un(ω)]

)

dω, (47)

〈|ξφ |2〉 = 1

2π

∫ ∞

−∞

(
1

2

∞∑

n=1

�vn(ω) + 1

3
�f (ω) +

∞∑

n=1

2

πn
�[�f ∗vn (ω)]

)

dω, (48)

〈|P |2〉 = 1

4π

∫ ∞

−∞

∞∑

n=1

�Pn(ω)dω, (49)

where

�f ∗g = lim
T →∞

1

T

[
f̂ ∗

T (ω)ĝT (ω)
]
. (50)

The quantity
√〈|f (t)|2〉 can be considered as a measure of amplitude of the random function

f (t).

5. Properties of Plasma Motion in Transitional Layer

In this section we use the results obtained in the previous section to investigate the prop-
erties of plasma motion in the transitional layer. In accordance with the results obtained in
Appendix B (see Equation 100)

∫ ∞
−∞ �vn(ω)dω is of the order of Re1/3. On the other hand,

�f (ω) is independent of Re, which implies that
∫ ∞

−∞ �f (ω)dω is of the order of unity.
Since

|f ∗vn| =
√

|f |2|vn|2, (51)

it follows from Equation 50 that

|�f v∗
n
(ω)| = √

�f (ω)�vn(ω), (52)
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where we assumed that �f (ω) is an even function. It follows from this equation that
�f v∗

n
(ω) is of the order of Re1/6. Then we conclude that the contributions of the second

and third terms in the integrand in Equation 48 are negligible in comparison with the contri-
bution of the first term. Then we have the approximate expression

〈|ξφ |2〉 = 1

4π

∞∑

n=1

∫ ∞

−∞
�vn(ω)dω. (53)

It follows from Equations 19 and 20 that K(−ω) = K∗(ω). Then, assuming that �f (ω)

is an even function, we obtain from Equation 78 that Mn(r,−ω) = M∗
n (r,ω). Using this

result and Equations 76, 78, and 100 from Appendix B, we obtain from Equation 53 in the
leading-order approximation with respect to Re

〈|ξφ |2〉 = 3.21
ω2

A

π3ρ2

(
Re

3�

)1/3 ∞∑

n=1

�f (nωA)

n2/3

∣
∣
∣
∣ρ − ρi + ρin

2(ω2
A − ω2

Ai)

n2(ω2
k − ω2

A) + K(nωA)

∣
∣
∣
∣

2

. (54)

When the density gradient remains of the same order in the whole transitional region, the
same is true for � (see Equation 11). This is the case when, for example, the density profile
in the transitional layer is linear. However, when the density gradient is zero at the bound-
aries of the transitional layer as, for example, in the case of sinusoidal density profile, then
� → 0 as r → R(1 ± l/2) and Equation 54 is not valid. The easiest way to alleviate this
problem is just to slightly reduce the thickness of the transitional layer and include a small
part of this layer near its inner boundary in the core region, and that near its outer boundary
in the external region. It is possible because in the case when the density gradient is zero
near the boundaries of the transitional layer, the density near this boundary is practically
constant.

It seems that Equation 54 implies that 〈|ξφ |2〉 = 0 at r = R(1 − �/2). However, this is
not the case. Since Equation 54 only gives the expression for 〈|ξφ |2〉 in the leading-order
approximation with respect to Re, the correct statement is that 〈|ξφ |2〉Re−1/3 → 0 as Re →
∞.

It is shown in Appendix C that
∫ r

R(1−�/2)
Un(x,ω)dx = O(�). This implies that Wn(r,ω)

is given by the first term on the right-hand side of Equation 35 in the leading-order approxi-
mation with respect to �. Then using Equation 34 and 35 we obtain

ûT n(ω) = 2ω2f̂T (ω)

πn[n2ω2
k − ω2 + K(ω)] . (55)

Now, it follows from Equation 50 that

�f ∗un(ω) = 2ω2�f (ω)

πn[n2ω2
k − ω2 + K(ω)] . (56)

It follows from Equations 19 and 20 that K(ω) = O(�). Then, using Equations 56, we obtain
the approximate expression

�[�f ∗un(ω)] = 2ω2(n2ω2
k − ω2)�f (ω)

πn|n2ω2
k − ω2 + K(ω)|2 . (57)
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Substituting Equation 57 and Equation 36 with Wn(r,ω) given by Equation 35 with the
second term on the right-hand side neglected in Equation 47 yields

〈|ξr |2〉 = 1

2π

∫ ∞

−∞

(
2ω2

π2

∞∑

n=1

2n2ω2
k − ω2

n2|n2ω2
k − ω2 + K(ω)|2 + 1

3

)

�f (ω)dω. (58)

Equation 58 gives the square of the amplitude of radial plasma displacement. We see that
this amplitude is independent of r in the leading-order approximation with respect to �.
This result agrees very well with the fact that the variation of the plasma radial displacement
across the transitional layer is of the order of �.

Finally we proceed to calculating 〈|P |2〉. Using Equations 39, 40, and 49 we obtain

〈|P |2〉 = ρ2
i R

2

π3

∞∑

n=1

1

n2

∫ ∞

−∞

ω4|n2(ω2
k − ω2

Ai) + K(ω)|2
|n2ω2

k − ω2 + K(ω)|2 �f (ω)dω. (59)

Let us compare the behaviour of the plasma displacement and magnetic-pressure perturba-
tion in the transitional layer described in this article with the behaviour of these quantities
in the case of harmonic driving. First we consider the plasma radial displacement and the
magnetic-pressure perturbation. We see that in the case of stochastic driving the amplitudes
of both quantities are of the order of unity with respect to the large parameter Re (however,
recall that the amplitude of the magnetic-pressure perturbation is also of the order of ε2). The
behaviour of the magnetic-pressure amplitude is the same in the case of harmonic driving.
The behaviour of the amplitude of the radial plasma displacement in the case of harmonic
driving is slightly different. It is of the order of ln Re in the vicinity of the resonant surface
where the driver frequency coincides with the local Alfvén frequency. We see that, since in
the case of stochastic driving each magnetic surface is in resonance with the corresponding
component of the driver spectrum, this increased amplitude is smeared out over the whole
transitional layer. As a result, it becomes of the order of unity everywhere.

The most interesting is the behaviour of the azimuthal plasma displacement. In the case
of harmonic driving, the amplitude of the azimuthal plasma displacement is strongly en-
hanced in the dissipative layer with the thickness of the order of Re−1/3 that embraces the
resonant surface. It is of the order of Re1/3 in this layer. Far from the resonant layer it is
of order of unity. Again, in the case of stochastic driving it is smeared out over the whole
transitional layer and becomes of order Re1/6 everywhere. This behaviour is similar to that
found by Ruderman (1999) who studied driven standing torsional waves in an inhomoge-
neous magnetic tube. However, there is also some difference. In the case of torsional waves
the dependence of the oscillation amplitude on r is defined by the radial dependence of the
density and, possibly, the driver amplitude. The characteristic scale of the amplitude vari-
ation is the same as that of the density variation. In the case of stochastically driven kink
oscillations there is one special magnetic surface r = rk where the local Alfvén frequency
coincides with the kink frequency ωk . We consider the vicinity of this surface defined by
the inequality |r − rk| � �2R. Below we call this vicinity the resonant layer. In this layer we
have |ω2

k − ωA(r)| � �ω2
k . Since in accordance with Equations 19, 20, and 22 K(ω) ∼ �ω2

k

it follows that the term is the square brackets in Equation 54 is of the order of �−2. This
implies that the amplitude of the azimuthal plasma displacement is of the order of �−1Re1/6

in the resonant layer, while it is of the order of Re1/6 outside of this layer.
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6. Linear Density Profile

In this section we consider a particular case where the density profile in the transitional layer
is linear. Hence, the density in the transitional layer is given by

ρt(r) = ρi

2�ζR
[�R(ζ + 1) − 2(r − R)(ζ − 1)], (60)

where ζ = ρi/ρe. Similar to Afanasyev, Van Doorsselaere, and Nakariakov (2020) and Arti-
cle I we assume that �f (ω) is proportional to |ω|−5/3 for not very small |ω|. We also make
a viable assumption that �f (ω) monotonically decreases to zero as |ω| decreases from κω0

to zero, where ω0/ωk is of order unity and κ < 1. Hence, we put

�f (ω) = d2

{
κ−8/3|ω|/ω0, |ω| ≤ κω0,

(ω0/|ω|)5/3, |ω| ≥ κω0,
(61)

where d2 is a quantity with the dimension of time times length squared. Then we obtain

〈|f (t)|2〉 = 1

π

∫ ∞

0
�f (ω)dω = 2

π
d2ω0κ

−2/3. (62)

Introducing the amplitude of the driver A = √〈|f (t)|2〉 we obtain

d = Aκ1/3

√
π

2ω0
. (63)

Using Equations 11, 21, and 60 yields

ω2
A = �Rω2

k(ζ + 1)

�R(ζ + 1) − 2(r − R)(ζ − 1)
(64)

and

� = �R2ω3
k(ζ + 1)3/2(ζ − 1)2

6π
√

2ζ [�R(ζ + 1) − 2(r − R)(ζ − 1)]3
. (65)

Using Equations 22 and 64 we obtain for ω > 0 and ω ∈ [nωAi, nωAe]

rn = R + �R(ζ + 1)(ω2 − n2ω2
k)

2ω2(ζ − 1)
, �n = − ω3(ζ − 1)

�R(ζ + 1)n2ω2
k

. (66)

Then using these results yields

K(ω) = n6ω4
k(ζ − 1)

4ω2(ζ + 1)

⎧
⎨

⎩

�2 +O(�3), ω /∈ [nωAi, nωAe],

−πi�

2
+ �2 +O(�3), ω ∈ [nωAi, nωAe].

(67)

We note that this expression is only valid when |ω−nωAi| � � and |ω−nωAe| � �. The term
K(ω) in the expression for 〈|ξφ |2〉 given by Equation 54 is only important for |n2ω2

k −ω2| �
�ω2

k . This implies that in the leading-order approximation with respect to � we can use the
expression for K(ω) valid for ω ∈ [nωAi, nωAe] even when ω is out of this interval. Below
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we take κ � 1. Since the integrand in Equation 58 is very small for ω � ωk we can use the
expression for �f (ω) valid for ω ≥ κω0 in the whole interval ω ∈ [0,∞] when calculating
the integral in the expression for 〈|ξr |2〉. We will see that 〈|ξr |2〉 is proportional to �−1. Then
we can neglect the term 1/3 in the curly bracket in Equation 58 and obtain the approximate
expression

〈|ξr |2〉 ≈ 128d2ω
5/3
0 (ζ + 1)2

π3

×
∞∑

n=1

1

n2

∫ ∞

0

ω13/3(2n2ω2
k − ω2)dω

64ω4(ζ + 1)2(n2ω2
k − ω2)2 + π2�2n12ω8

k(ζ − 1)2
. (68)

The integral on the right-hand side of this equation is evaluated in Appendix D. Using Equa-
tions 63 and 129 we reduce Equation 68 to

〈|ξr |2〉 = 8A2κ2/3(ζ + 1)[1 +O(�1/2)]
π2�(ζ − 1)

(
ω0

ωk

)2/3 ∞∑

n=1

1

n14/3

≈ 0.85
A2κ2/3(ζ + 1)

�(ζ − 1)

(
ω0

ωk

)2/3

. (69)

The typical amplitude of the decayless oscillations of coronal loops is 0.2 Mm. We empha-
sise that this is the amplitude of a coronal-loop oscillation as a whole. The amplitude of
radial motion in the transitional layer is approximately the same. However, the amplitude of
the azimuthal motion in the transitional layer is Re1/6 larger. This large-amplitude azimuthal
motion cannot be observed directly because magnetic surfaces oscillate with random phases
and, as a result, signals from various magnetic surfaces cancel each other. Since 〈|ξr |2〉 is in-
dependent of r this amplitude is equal to 〈|ξr |2〉1/2. We take ζ = 3 as the typical density ratio
and ω0 = ωk . We also choose such a value of κ that κω0 = 1

2 ωAi, which gives κ = 1/
√

6.

Then we obtain 〈|ξr |2〉1/2 ≈ 0.7A�−1/2. If, in addition, we take � = 0.25 as a typical value,
then we obtain A = 0.13 Mm.

We used Equations 54, 60, and 61 to calculate numerically the dependence of the ampli-
tude of azimuthal plasma displacement on the dimensionless radial variable

x = 2(r − R)

�R
. (70)

Figure 1 displays the dependence of the quantity

Dφ =
√
√
√
√ 〈|ξφ |2〉

〈|ξφ |2〉e

(71)

for ζ = 3 and � = 0.1, 0.2, and 0.3. Here the subscript “e” indicates that a quantity is cal-
culate at the external boundary of the transitional layer. It is worth noting that Dφ is in-
dependent of κ and ω0. The only condition that we imposed when calculating Dφ is that
κω0 < ωAi. We can see in Figure 1 that the graph of Dφ(x) has a peak at x = 0 correspond-
ing to the spatial position where ωA(x) = ωk . The height of this peak increases when �

decreases. This behaviour is in complete agreement with the qualitative analysis presented
in the previous section.
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Figure 1 Dependence of Dφ on
x for ζ = 3. The solid, dashed,
and dash–dotted curves
correspond to � = 0.1, 0.2, and
0.3, respectively.

7. Summary and Conclusion

In this article we studied the plasma motion in a transitional layer of a magnetic loop stochas-
tically driven in the transverse direction at the footpoint. We used the zero-β approximation
and the TTTB approximation. We assumed that the driving at the footpoint is described by
a stationary random function. We used the results previously obtained by Ruderman and
Petrukhin (2021). The plasma displacement and the magnetic-pressure perturbation are also
described by stationary random functions. We calculated the mean values of squares of sta-
tionary random functions describing the radial and azimuthal plasma displacements as well
as the magnetic-pressure perturbation. These mean values can be considered as the squares
of amplitudes of the corresponding quantities. The main results obtained in the article can
be summarised as follows:

i) The amplitude of the magnetic-pressure perturbation does not change across the transi-
tional layer. It is of the order of the driver amplitude times the ratio of the loop radius
and the loop length squared.

ii) The amplitude of the plasma radial displacement also does not vary across the transi-
tional layer. It is of the same order as the driver amplitude.

iii) The amplitude of the plasma azimuthal displacement does vary across the transitional
layer. It is of the order of the driver amplitude times Re1/6, where Re is the Reynolds
number. It also has a peak at the point rk defined by the equation ωA(rk) = ωk , where
ωk is the kink frequency. The ratio of the amplitude at r = rk to its value far from rk is
of the order of �−1, where � is the ratio of the thickness of the transitional layer to the
loop radius.

Since the ratio of the amplitude of the plasma azimuthal displacement to the driver am-
plitude is of the order of Re1/6, and the typical value of Re in coronal loops is 1012, we can
expect very high plasma azimuthal displacement, of the order of 10 Mm. This can result in
the development of the Kelvin–Helmholtz instability in the transitional layer. We emphasise
that this is the displacement in the azimuthal direction. The amplitude of the plasma dis-
placement varies along the loop. It is zero at one footpoint and equal to the driver amplitude
at the other footpoint, which is quite small. It takes its maximum value somewhere in the
middle of the loop. If we take the loop cross-section radius equal to 2 Mm then the azimuthal
displacement equal to 10 Mm corresponds to about one full turn of the cross-section along
the loop. The ratio of the velocity to the displacement is about the ratio of the loop radius to
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the loop length. If we take this ratio equal to 10−2 then we obtain that the velocity amplitude
is 100 km s−1, which is much smaller than the typical Alfvén speed of 1000 km s−1.

It is worth briefly discussing the main assumptions made in our analysis. We assumed
that the driver is described by a stationary random function. Obviously this is an idealisation.
In reality the mean driver amplitude and energy spectrum vary with time. However, the
decayless kink oscillations of coronal loops are only observed for a few tens of periods
at best. If the driver parameters do not change during this time interval then the driver is
approximately described by a stationary random function. In Section 6 it is described by
the power law with the index equal to 5/3. Kolotkov, Anfinogentov, and Nakariakov (2016)
used the empirical mode decomposition technique to analyse the spectral distributions of
solar signals of various types. They found that, in general, the spectral distribution is not
described by a single power law. Rather it is a composite of two or more power laws. Hence,
the assumption made in Section 6 is also an idealisation. However, qualitatively, the analysis
will remain the same even if we consider a more complex spectral distribution.

Appendix A: Calculation of ĝT n(ω)

In this appendix we calculate ĝT n(ω), where gT (t) is given by Equation 9 with fT (t) and
ηT n(t) substituted for f (t) and ηn(t), respectively. Differentiating fT (t) we obtain

dfT

dt
= f (T1)δ(t − T1) − f (T + T1)δ(t − T − T1) +

(
df

dt

)

T

, (72)

where

(
df

dt

)

T

is defined by Equation 17 with
df

dt
substituted for f (t) and δ(t) is the δ-

function. Using this result and integration by parts yields

∫ ∞

−∞

dfT

dt
e−iωtdt = f (T1)e

−iωT1 − f (T + T1)e
−iω(T +T1)

+
∫ ∞

−∞

(
df

dt

)

T

e−iωtdt = f (T1)e
−iωT1 − f (T + T1)e

−iω(T +T1)

− f (T1)e
−iωT1 + f (T + T1)e

−iω(T +T1) + iωf̂T (ω) = iωf̂T (ω). (73)

Using this relation twice, we further obtain

∫ ∞

−∞

d2fT

dt2
e−iωtdt = −ω2f̂T (ω). (74)

With the aid of this result we arrive at

ĝT n(ω) = 2ω2(ρ − ρi)

πnρ
f̂T (ω) + ρi

ρ
(ω2 − n2ω2

Ai)η̂T n. (75)
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Appendix B: Calculation of
∫ ∞
−∞ �vn(ω)dω

In this appendix we calculate the asymptotic expression for
∫ ∞

−∞ �vn(ω)dω valid for Re �
1. We introduce the small parameter

ε = 1

ωk

(
3n2�

Re

)1/3

. (76)

Note that ε depends on r through the variation of �. Using Equations 26 and 31 we rewrite
Equation 32 as

�vn(r,ω) = ε−2
∣
∣
∣F

(
− ω + nωA

εωk

)
− F

(
− ω − nωA

εωk

)∣
∣
∣
2
Mn(r,ω), (77)

where

Mn(r,ω) = ω4

π2n4ρ2ω2
Aω2

k

∣
∣
∣
∣ρ − ρi + ρi(ω

2 − n2ω2
Ai)

n2ω2
k − ω2 + K(ω)

∣
∣
∣
∣

2

�f (ω). (78)

Then we obtain
∫ ∞

−∞
�vn(r,ω)dω = I1(r) − 2I2(r) + I3(r), (79)

where

I1(r) = ε−2
∫ ∞

−∞

∣
∣
∣F

(
− ω + nωA

εωk

)∣
∣
∣
2
Mn(r,ω)dω, (80)

I2(r) = ε−2�
∫ ∞

−∞
F

(
− ω + nωA

εωk

)
F

(ω − nωA

εωk

)
Mn(r,ω)dω, (81)

I3(r) = ε−2
∫ ∞

−∞

∣
∣
∣F

(
− ω − nωA

εωk

)∣
∣
∣
2
Mn(r,ω)dω. (82)

Here we make a comment about the convergence of the integrals in Equations 80 – 82. It
follows from Equation 28 that the first multiplier in Equation 77 decays at least as ω−4

as ω → ∞. It follows from this estimate and Equation 78 that �vn(r,ω) decays as fast as
�f (ω) as ω → ∞. Usually it is assumed that �f (ω) decays at least as ω−α with α > 1
as ω → ∞. For example, α = 5/3 was taken in Article I. This implies that the integral in
Equation 79 is convergent. Consequently we can approximate this integral taking �f (ω) = 0
for sufficiently large |ω|. Then we do not have to care about the convergence of integrals in
Equations 80 – 82.

Making the variable substitution ω = −εxωk − nωA we transform Equation 80 to

I1(r) = ε−1ωk[I11(r) + I12(r)], (83)

where

I11(r) =
∫ ε−1/2

−ε−1/2
|F(x)|2Mn(r,−nωA − εxωk)dx, (84)
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I12(r) =
(∫ −ε−1/2

−∞
+

∫ ∞

ε−1/2

)

|F(x)|2Mn(r,−nωA − εxωk)dx. (85)

Using Equation 28 we transform Equation 85 to

I12(r) =
(∫ −ε−1/2

−∞
+

∫ ∞

ε−1/2

)∣
∣
∣

i

x
+O

(
x−4

)∣∣
∣
2

× Mn(r,−nωA − εxωk)dx = O(ε). (86)

To evaluate I11(r), we use the relation

Mn(r,−nωA − εxωk) = Mn(r,−nωA) − εxωk

∂Mn

∂ω

∣
∣
∣
∣
ω=−nωA

. (87)

Now we assume that the characteristic scale of variation of �f (ω) is ωk . Then it follows
that the ratio of the second term on the right-hand side of Equation 87 to the first term is of
the order of ε1/2 for x ∈ (−ε−1/2, ε−1/2), and we obtain

I11(r) = Mn(r,−nωA)

∫ ε−1/2

−ε−1/2
|F(x)|2 dx +O

(
ε1/2

)
. (88)

Next we use the relation

∫ ε−1/2

−ε−1/2
|F(x)|2 dx =

∫ ∞

−∞
|F(x)|2 dx −

(∫ −ε−1/2

−∞
+

∫ ∞

ε−1/2

)∣
∣
∣

i

x
+O

(
x−2

)∣∣
∣
2
dx

=
∫ ∞

−∞
|F(x)|2 dx +O(ε). (89)

Now we calculate the integral on the right-hand side of this equation:

∫ ∞

−∞
|F(x)|2 dx =

∫ ∞

−∞
dx

∫ ∞

0
exp(ixθ − θ3/3)dθ

∫ ∞

0
exp(−ixϑ − ϑ3/3)dϑ

=
∫ ∞

0
e−θ3/3 dθ

∫ ∞

0
e−ϑ3/3 dϑ

∫ ∞

−∞
eix(θ−ϑ)dx

= 2π

∫ ∞

0
e−θ3/3 dθ

∫ ∞

0
e−ϑ3/3δ(θ − ϑ)dϑ = 2π

∫ ∞

0
e−2θ3/3 dθ

= π

(
2

3

)2/3 ∫ ∞

0
θ−2/3e−θ dθ = π

(
2

3

)2/3

�

(
1

3

)

≈ 6.42. (90)

Using Equations 83, 86, and 88 – 90 we obtain that

I1(r) = 6.42 ε−1ωkMn(r,−nωA) +O
(
ε−1/2

)
. (91)

In a similar way, we obtain

I3(r) = 6.42 ε−1ωkMn(r, nωA) +O
(
ε−1/2

)
. (92)
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Finally we estimate I2(r). We write

∫ ∞

−∞
F

(
− ω + nωA

εωk

)
F

(ω − nωA

εωk

)
Mn(r,ω)dω = J1 + J2 + J3 + J4 + J5, (93)

where J1, J2, J3, J4, and J5 are the integrals over the intervals

(−∞,−nωA − ε1/2ωk),

(−nωA − ε1/2ωk,−nωA + ε1/2ωk),

(−nωA + ε1/2ωk,nωA − ε1/2ωk),

(nωA − ε1/2ωk,nωA + ε1/2ωk),

(nωA + ε1/2ωk,∞),

(94)

respectively. Making the variable substitutions ω = −εxωk − nωA in J1, J2, and J3, and
ω = −εxωk + nωA in J4 and J5 we obtain

J1 = εωk

∫ ∞

ε−1/2
F(x)F (−x − x0ε

−1)Mn(r,ω(x))dx

= εωk

∫ ∞

ε−1/2

(
1

x(x + x0ε−1)
+O

(
ε4

)
)

Mn(r,ω(x))dx = O
(
ε5/2

)
, (95)

J2 = εωk

∫ ε−1/2

−ε−1/2
F(x)F (−x − x0ε

−1)Mn(r,ω(x))dx

= εωk

∫ ε−1/2

−ε−1/2
F(x)

( −i

x + x0ε−1
+O

(
ε2

)
)

Mn(r,ω(x))dx = O
(
ε4

)
, (96)

J3 = εωk

∫ −ε−1/2

ε−1/2−x0ε−1
F(x)F (−x − x0ε

−1)Mn(r,ω(x))dx

= εωk

∫ −ε−1/2

ε−1/2−x0ε−1

(
1

x(x + x0ε−1)
+O

(
x4

)
)

Mn(r,ω(x))dx = O
(
ε2

)
, (97)

J4 = εωk

∫ ε−1/2

−ε−1/2
F(−x)F (x − x0ε

−1)Mn(r,ω(x))dx

= εωk

∫ ε−1/2

−ε−1/2
F(−x)

(
i

x − x0ε−1
+O

(
ε4

)
)

Mn(r,ω(x))dx = O
(
ε2

)
, (98)

J5 = εωk

∫ −ε−1/2

−∞
F(−x)F (x − x0ε

−1)Mn(r,ω(x))dx

= εωk

∫ −ε−1/2

−∞

(
1

x(x − x0ε−1)
+O

(
x−4

)
)

Mn(r,ω(x))dx = O
(
ε5/2

)
, (99)

where x0 = 2nωAω−1
k . It follows from Equations 81, 93, and 95 – 99 that I2(r) = O(1).

Using this estimate and Equations 79, 91, and 92 we obtain that in the leading-order approx-
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imation with respect to ε

∫ ∞

−∞
�vn(r,ω)dω = 6.42 ε−1ωk[Mn(r,nωA) + Mn(r,−nωA)]. (100)

Appendix C: Evaluation of
∫ r
R(1−�/2) Un(x,ω)dx

In the previous appendix, r was a parameter and the dependence of ε on r did not cause any
problem. Since the expression for Wn(r,ω) involves the integral with respect to r , it is more
convenient in this section to have a small parameter independent of r . In accordance with
this we re-define the expression for ε as

ε =
(

3n2

Re

)1/3

. (101)

∫ r

R(1−�/2)

Un(x,ω)dx = ω2

πn2

[
I+(ω) − I−(ω)

]
, (102)

where

I±(ω) = ε−1
∫ r

R(1−�/2)

�−1/3(x)Nn(x,ω)F
( − ε−1χn±(x,ω)

)
dx, (103)

Nn(x,ω) = 1

ρ(x)ωA(x)

(

ρ(x) − ρi + ρi(ω
2 − n2ω2

Ai)

n2ω2
k − ω2 + K(ω)

)

, (104)

χn±(x,ω) = �−1/3(x)[ω ± nωA(x)]. (105)

We consider I+(ω). First we assume that ω /∈ [−nωAe,−nωAi]. Then using Equation 28 we
obtain

I+(ω) = −
∫ r

R(1−�/2)

iNn(x,ω)

ω + nωA(x)
dx +O(ε3). (106)

Next we assume that ω ∈ [−nωAe,−nωAi]. We introduce xc defined by the equation
nωA(xc) = −ω. Then we write

I+(ω) = I1+(ω) + I2+(ω), (107)

where

I1+(ω) = ε−1

(∫ xc−s

R(1−�/2)

+
∫ r

xc+s

)

�−1/3(x)Nn(x,ω)F
( − ε−1χn+(x,ω)

)
dx, (108)

I2+(ω) = ε−1
∫ xc+s

xc−s

�−1/3(x)Nn(x,ω)F
( − ε−1χn+(x,ω)

)
dx, (109)

and s = �Rε1/2. Using Equation 28 we obtain

I1+(ω) = −i

(∫ xc−s

R(1−�/2)

+
∫ r

xc+s

)
Nn(x,ω)

ω + nωA(x)
dx +O(ε3). (110)
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Then we obtain
(∫ xc−s

R(1−�/2)

+
∫ r

xc+s

)
Nn(x,ω)

ω + nωA(x)
dx = P

∫ r

R(1−�/2)

Nn(x,ω)

ω + nωA(x)
dx

−
∫ xc+s

xc−s

(
Nn(x,ω)

ω + nωA(x)
− Nn(xc,ω)

nω′
A(xc)(x − xc)

)

dx

= P
∫ r

R(1−�/2)

Nn(x,ω)

ω + nωA(x)
dx +O(ε5/2), (111)

where the prime indicates the derivative. When obtaining this result, we took into account
that the integrand in the integral in the second line is a regular function, which implies that
the integral in the second line is of the order of s = O(ε1/2). We also note that the integral
of the second term in the second line is zero. It follows from Equations 110 and 111 that

I1+(ω) = −P
∫ r

R(1−�/2)

iNn(x,ω)

ω + nωA(x)
dx +O(ε5/2). (112)

Now we consider I2+(ω). Using Equation 27 and changing the order of integration we
transform Equation 109 to

I2+(ω) = ε−1
∫ ∞

0
e−θ3/3dθ

∫ xc+s

xc−s

�−1/3(x)Nn(x,ω) exp
( − iε−1θχn+(x,ω)

)
dx. (113)

We introduce the function

ψ(x) = ∂χn+
∂x

= nω′
A(x)

�1/3(x)
− �′(x)[ω + nωA(x)]

3�4/3(x)
. (114)

Since ω + nωA(xc) = 0, it follows that the ratio of the second term on the right-hand side of
this expression to the first term is of the order of ε1/2 in the interval [xc − s, xc + s]. Then
for x ∈ [xc − s, xc + s] we have

ψ(x) = nω′
A(x)

�1/3(x)
+O(ε1/2). (115)

Now, using integration by parts we transform Equation 113 to

I2+(ω) = iNn(xc + s,ω)G(−ε−1χn+(xc + s,ω))

ψ(xc + s,ω)�1/3(xc + s)

− iNn(xc − s,ω)G(−ε−1χn+(xc − s,ω))

ψ(xc − s,ω)�1/3(xc − s)

− i
∫ xc+s

xc−s

G
( − ε−1χn+(x,ω)

) ∂

∂x

(
Nn(x,ω)

ψ(x,ω)�1/3(x)

)

dx, (116)

where the function G(x) is defined by (Goossens, Ruderman, and Hollweg, 1995; Goossens,
Erdélyi, and Ruderman, 2011)

G(x) =
∫ ∞

0

eixθ − 1

θ
e−θ3/3dθ. (117)
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Next we use the asymptotic expansion of G(x) valid for |x| � 1 (Goossens et al. 1995)

G(x) = − ln |x| − 2

3
C − 1

3
ln 3 + π i

2
sgn(x) + o(1), (118)

where o(1) is a function tending to zero as |x| → ∞ and C ≈ 0.577 is the Euler–Mascheroni
constant. Using this asymptotic formula we obtain from Equation 118

I2+(ω) = πNn(xc,ω)

ψ(xc)�1/3(xc)
+ o(1), (119)

where we took into account that ψ is independent of ω at x = xc . Then it follows from
Equations 112 and 118 that in the leading-order approximation with respect to ε

I+(ω) = πNn(xc,ω)

ψ(xc)�1/3(xc)
−P

∫ r

R(1−�/2)

iNn(x,ω)

ω + nωA(x)
dx, (120)

when ω ∈ [−nωAe,−nωAi]. Using the relation Nn(x,ω) = N∗
n (x,−ω) we obtain I−(ω) =

I ∗+(−ω). Then it follows from Equations 102, 106, and 120 that in the leading-order approx-
imation with respect to ε we obtain for ω < 0

∫ r

R(1−�/2)

Un(x,ω)dx = ω2

πn2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∫ r

R(1−�/2)

ω(Nn) + inωA�(Nn)

n2ω2
A − ω2

dx,

ω /∈ [−nωAi,−nωAe],

2P
∫ r

R(1−�/2)

ω�(Nn) + inωA(Nn)

n2ω2
A − ω2

dx,

+ πNn(xc,ω)

ψ(xc)�1/3(xc)
, ω ∈ [−nωAi,−nωAe].

(121)

For ω > 0 this integral is defined by
∫ r

R(1−�/2)

Un(x,ω)dx = −
∫ r

R(1−�/2)

U ∗
n (x,−ω)dx. (122)

Since the characteristic scale of variation of ωA(x) is �R it follows that ψ(x) = O(�−1).
Then it follows from Equation 121 that

∫ r

R(1−�/2)

Un(x,ω)dx = O(�). (123)

Appendix D: Evaluation of Integral in Equation 68

We write the integral in Equation 68 as

∫ ∞

0

ω13/3(2n2ω2
k − ω2)dω

64ω4(ζ + 1)2(n2ω2
k − ω2)2 + π2�2n12ω8

k(ζ − 1)2
= I1 + I2, (124)

where

I1 = 1

2n2/3ω
2/3
k

(∫ 1−�1/2

0
+

∫ ∞

1+�1/2

)
x5/3(2 − x)dx

64x2(ζ + 1)2(1 − x)2 + π2�2n4(ζ − 1)2
, (125)
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I2 = 1

2n2/3ω
2/3
k

∫ 1+�1/2

1−�1/2

x5/3(2 − x)dx

64x2(ζ + 1)2(1 − x)2 + π2�2n4(ζ − 1)2
. (126)

When deriving the expressions for I1 and I2 we made the variable substitution ω2 = xn2ω2
k .

Using the variable substitution x = y3 and integration by parts we obtain

I1 = 3[1 +O(�1/2)]
128n2/3ω

2/3
k (ζ + 1)2

(∫ 1−�1/2

0
+

∫ ∞

1+�1/2

)
y(2 − y3)dy

(1 − y3)2

= 1 +O(�1/2)

128n2/3ω
2/3
k (ζ + 1)2

[
y2

1 − y3

∣
∣
∣
∣

1−�1/2

0

+ y2

1 − y3

∣
∣
∣
∣

∞

1+�1/2

+
(∫ 1−�1/2

0
+

∫ ∞

1+�1/2

)
4y dy

1 − y3

]

= 1

128n2/3ω
2/3
k (ζ + 1)2

[
2

3
�−1/2

− 4

3

(∫ 1−�1/2

0
+

∫ ∞

1+�1/2

)(
1

y − 1
− y − 1

y2 + y + 1

)

dx +O(1)

]

= 1

64n2/3ω
2/3
k (ζ + 1)2

[
1

3
�−1/2 −

(
1

3
ln

(y − 1)2

y2 + y + 1

+ √
3 arctan

2y + 1

4
√

3

)(∣
∣
∣
∣

1−�1/2

0

+
∣
∣
∣
∣

∞

1+�1/2

)

+O(1)

]

= �−1/2 +O(1)

192n2/3ω
2/3
k (ζ + 1)2

. (127)

Next we proceed to evaluating I2. We obtain

I2 = 1

2n2/3ω
2/3
k

∫ 1+�1/2

1−�1/2

[1 +O(�1/2)]dx

64(ζ + 1)2(1 − x)2 + π2�2n4(ζ − 1)2

= 1 +O(�1/2)

16π�n8/3ω
2/3
k (ζ 2 − 1)

arctan
8(ζ + 1)(x − 1)

π�n2(ζ − 1)

∣
∣
∣
∣

1+�1/2

1−�1/2

= 1 +O(�1/2)

16�n8/3ω
2/3
k (ζ 2 − 1)

. (128)

It follows from Equations 124, 127, and 128 that

∫ ∞

0

ω19/3 dω

64ω4(ζ + 1)2(n2ω2
k − ω2)2 + π2�2n12ω8

k(ζ − 1)2
= 1 +O(�1/2)

16�n8/3ω
2/3
k (ζ 2 − 1)

. (129)
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