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Abstract
We study kink oscillations of a straight magnetic tube in the presence of siphon flows. The
tube consists of a core and a transitional or boundary layer. The flow velocity is parallel to
the tube axis, has constant magnitude, and confined in the tube core. The plasma density
is constant in the tube core and it monotonically decreases in the transitional layer to its
value in the surrounding plasma. We use the expression for the decrement/increment pre-
viously obtained by Ruderman and Petrukhin (Astron. Astrophys. 631, A31, 2019) to study
the damping and resonant instability of kink oscillations. We show that, depending on the
magnitude of siphon-velocity, resonant absorption can cause either the damping of kink os-
cillations or their enhancement. There are two threshold velocities: When the flow velocity
is below the first threshold velocity, kink oscillations damp. When the flow velocity is above
the second threshold velocity, the kink oscillation amplitudes grow. Finally, when the flow
velocity is between the two threshold velocities, the oscillation amplitudes do not change.
We apply the theoretical result to kink oscillations of prominence threads. We show that, for
particular values of thread parameters, resonant instability can excite these kink oscillations.

Keywords Sun · Plasma · Magnetohydrodynamics · Waves · Oscillations · Stability

1. Introduction

Kink oscillations of coronal magnetic tubes were first observed by the Transition Region
and Coronal Explorer (TRACE) mission in 1998. These observations were reported by As-
chwanden et al. (1999) and Nakariakov et al. (1999). Now these oscillations are routinely
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observed by space missions (e.g. Erdélyi and Taroyan, 2008; Duckenfield et al., 2018; Su
et al., 2018; Abedini, 2018, and the references therein). Kink oscillations were also observed
in prominence threads (e.g. Arregui, Oliver, and Ballester, 2018).

Flows are ubiquitously present in magnetic structures in the solar atmosphere. In par-
ticular, they were observed in active-region loops by the Solar and Heliospheric Observa-
tory (SOHO) (Brekke, Kjeldseth-Moe, and Harrison, 1997; Teriaca et al., 2004), TRACE
(Winebarger, DeLuca, and Golub, 2001; Winebarger et al., 2002; Doyle et al., 2006), and
more recently by Hinode (Teriaca et al., 2004; Tian et al., 2008; Ofman and Wang, 2008),
and the Solar Terrestrial Relations Observatory (STEREO) (Tian et al., 2009). Flows with
the speed between about 5 km s−1 and 30 km s−1 were also often observed in prominence
threads (Chae et al., 2008; Terradas et al., 2008).

A few mechanisms of this have been considered. Nakariakov et al. (1999) suggested that
the kink oscillations of coronal magnetic loops are excited by nearby solar flares. It was
confirmed by the statistical analysis by Zimovets and Nakariakov (2015) that the majority
of coronal-loop kink oscillations are excited by this mechanism. For some time this was the
only mechanism suggested by theorists. Later two other mechanisms were proposed: The
first one is the Alfvénic vortex shedding suggested by Gruszecki et al. (2010). The second
mechanism is the excitation of kink oscillations by coronal rain studied by Kohutova and
Verwichte (2017). Mechanisms of excitation of the prominence-thread kink oscillations are
not very well known.

One more possible mechanism of excitation of kink waves in coronal magnetic tubes is
the instability caused by the presence of a flow. The excitation of propagating kink waves by
the Kelvin–Helmholtz (KH) instability has been studied intensively (e.g. Zhelyazkov, 2012;
Zhelyazkov and Zaqarashvili, 2012; Zaqarashvili, Vörös, and Zhelyazkov, 2014; Zhelyazkov
et al., 2015). It was found that magnetic-flux tubes with flows can be subject to the KH
instability for the observed values of the flow speed, but the unstable modes are propagat-
ing fluting waves with relatively high azimuthal wave numbers. To make propagating kink
waves KH unstable, flow speeds greatly exceeding the observed ones are needed.

To our knowledge the excitation of standing kink waves in magnetic-flux tubes in the
solar corona by the KH instability has not been studied. However, we can use the results
obtained by Ruderman (2010) who studied the effect of siphon flow on kink oscillations
of thin magnetic-flux tubes. He found that the tube is KH unstable with respect to kink
oscillations when the flow magnitude exceeds VAi[2(1 + ρi/ρe)]1/2, where VAi is the Alfvén
speed inside the tube, and ρi and ρe are the plasma densities inside and outside the tube.
Then, for typical values of the coronal loops, we see that to excite kink oscillations in loops
by the KH instability we need a siphon speed of the order of or larger than 1000 km s−1. The
same estimate is valid for prominence threads. Hence, we should reject the KH instability
as a possible mechanism of excitation of kink oscillations in coronal magnetic tubes.

However, there is another instability mechanism that can excite kink waves in magnetic-
flux tubes. This is the Negative Energy (NE) wave instability. The concept of NE waves
was first introduced by Chua in 1951 (Pierce, 1974) in application to electron beams. Then
it became very popular in plasma physics (e.g. Kadomtsev, Mikhailovskii, and Timofeev,
1965; Mikhailovskii, 1974; Nezlin, 1976). In hydrodynamics the concept of negative-energy
waves was first used by Benjamin (1963). However, it became popular in hydrodynamics
much later when Cairns (1979) applied it to the stability of shear flows. Reviews of the
theory of negative-energy waves in hydrodynamics have been given by Ostrovskii, Rybak,
and Tsimring (1986) and Stepanyants and Fabrikant (1989) (see also Fabrikant and Stepa-
nyants, 1998). To our knowledge, Ryutova (1988) was the first who applied the concept of
NE waves to magnetohydrodynamic (MHD) waves. She studied kink waves in thin magnetic
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tubes in the presence of a homogeneous flow outside the tube and considered the implica-
tion of the obtained results to space physics. After that the application of theory of negative-
energy waves to problems of space physics was considered by many authors (e.g. Joarder,
Nakariakov, and Poberts, 1997; Ruderman and Wright, 1998; Andries and Goossens, 2001;
Erdélyi and Taroyan, 2003; see also reviews by Ruderman and Belov, 2010 and Taroyan and
Ruderman, 2011). The main property of the NE instability is that its threshold velocity is
substantially smaller than that of the KH instability.

The first observation of standing kink waves revealed that they are strongly damped, with
the damping time of the order of a few oscillation periods (Nakariakov et al., 1999). Later
observations showed that this property of coronal-loop kink oscillations is ubiquitous (e.g.
Nechaeva et al., 2019). Kink oscillations of prominence threads also quickly damp (e.g. Ar-
regui, Oliver, and Ballester, 2018). At present it is almost generally accepted in the solar
physics that this damping is caused by resonance absorption. After Ionson (1978) pointed
out the importance of resonance absorption for physical processes in the solar atmosphere,
it remains a popular mechanism for explaining various solar phenomena, especially wave
damping. Hollweg and Yang (1988) studied resonant damping of surface waves on a thin
transitional layer sandwiched between two semi-infinite regions with cold homogeneous
plasmas and constant magnetic field. Considering the limiting case of surface waves propa-
gating almost perpendicular to the magnetic field, they managed to obtain the expression for
the damping rate of kink waves propagating in a thin magnetic-flux tube. Goossens, Holl-
weg, and Sakurai (1992) derived the general expression for the decrement of kink waves
propagating in a twisted magnetic tube. After Ruderman and Roberts (2002) and Goossens,
Andries, and Aschwanden (2002) showed that resonant absorption not only adequately ex-
plains the observed damping of coronal-loop kink oscillations but also can be used to obtain
seismological information about the transverse structure of coronal loops, this mechanism
became especially popular in solar physics (see, e.g., Goossens, Erdélyi, and Ruderman,
2011).

When there is a negative-energy wave in a system related to the presence of flow then, as
we have already mentioned, this wave becomes unstable if there is a mechanism causing the
decrease of the wave energy. One such mechanism is resonant absorption. When it provides
the energy sink that results in the instability of a wave, the corresponding instability is called
the resonant instability. The application of resonant instability to solar physics is sparse.
Andries, Tirry, and Goossens (2000) and Andries and Goossens (2001) studied the resonant
instability of the magnetic slab with flow in the application to coronal plumes. Recently
Bahari, Petrukhin, and Ruderman (2020) studied the resonant instability of propagating kink
waves in magnetic tubes with flow with the application to waves in spicules and filaments
in the solar atmosphere.

Until recently the theory of NE instability has dealt with propagating waves. Ruderman
(2018) studied standing NE waves on the surface of a tangential MHD discontinuity. He
used the equation derived by Ruderman and Goossens (1995) that describes surface waves
on the surface of such a discontinuity in the presence of flow and fluid viscosity. This article
aims to extend his analysis to kink waves in magnetic-flux tube and study their resonant
instability, which is a particular case of NE instability. The article is organised as follows:
In the next section we formulate the problem. In Section 3 we present the expression for
the decrement/increment of kink oscillations. In Section 4 we study the resonant damping
and instability of kink oscillations. In Section 5 we apply theoretical results to the problem
of excitation of kink oscillations of prominence threads. Section 6 contains the summary of
results and our conclusions.
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2. Problem Formulation and Governing Equations

We consider the plasma motion in the zero-β plasma approximation. The unperturbed mag-
netic field is straight. In cylindrical coordinates (r,φ, z) it is given by B = B êz, where êz is
the unit vector in the z-direction and B is a constant. In the unperturbed state there is also a
plasma flow with the velocity U = U(r)êz. The equilibrium density is given by

ρ(r) =

⎧
⎪⎨

⎪⎩

ρi, r ≤ R(1 − �/2),

ρt(r), R(1 − �/2) ≤ r ≤ R(1 + �/2),

ρe, r ≥ R(1 + �/2),

(1)

where R is the tube radius, ρi and ρe are constants, ρe < ρi, ρt(r) is a monotonically
decreasing function, and ρ(r) is continuous at r = R(1 ± �/2). The domain defined by
r ≤ R(1 − �/2) is the core part of the magnetic tube, while R(1 − �/2) ≤ r ≤ R(1 + �/2) is
the transitional region. The velocity is in the z-direction and it is equal to U in the core region
(r ≤ R(1−�/2)), and zero in the transitional region and outside of the tube (r > R(1−�/2)),
where U is a constant. We always can choose the direction of the z-axis in such a way that
U > 0. Since the magnetohydrodynamic equations are invariant with respect to the substi-
tution B → −B we can assume that B > 0. The unperturbed state that we use is almost the
same as that used by Ruderman and Petrukhin (2019: Article I below). The only difference
is the following: While it was assumed in Article I that the velocity magnitude monoton-
ically decreases in the transitional layer from U to zero, here we assume that it is a step
function equal to U . Hence, the surface r = R(1 − �/2) is a tangential discontinuity. We
explain below why we decided to consider a simpler unperturbed state.

In general, there are three numbers characterising wave modes propagating in a magnetic
tube: They are the azimuthal wave number [m], the axial wave number [kz], and the number
of modes in the radial direction. We consider kink oscillations, which correspond to m = 1.
We also consider only the first wave mode in the radial direction, which is the fundamental
radial mode. Hence only one free parameter characterising the wave remains. This is the
axial wave number kz. Below we assume that the tube ends are frozen in a dense plasma
mimicking the solar photosphere and consider standing waves. This implies that kz can
take only discrete values, kz = πn/L, n = 1,2, . . . , where L is the tube length. Here n = 1
corresponds to the fundamental mode and n > 1 to the overtones. We assume that the tube is
thin: R � L. In addition, we assume that the transition (also called boundary) layer is also
thin: � � 1. Hence, we use the thin-tube and thin-boundary layer (TTTB) approximation.
In this approximation the plasma displacement η in the core region is independent of r (e.g.
Goossens et al., 2009; Ruderman, 2011; Ruderman, Shukhobodskiy, and Erdélyi, 2017).
The displacement satisfies the frozen-in boundary conditions at the tube ends,

η = 0 at z = 0,L. (2)

3. Expression for Decrement/Increment

In Article I, damping of standing kink oscillations caused by resonant absorption was stud-
ied. As we have already stated, the equilibrium considered in Article I is similar to that
described in the previous section. The only difference is that it was assumed that the flow
speed is continuous and monotonically decreases in the transitional layer to zero, while in
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this article we assume that it is zero in this layer. Hence, the internal boundary of the tran-
sitional layer is a tangential discontinuity. The decrement/increment of standing kink os-
cillations was calculated. Thorough investigation of the derivation given in Article I shows
that, in fact, it is also valid for the equilibrium considered in this article. The only condition
that was used in Article I is the continuity of the radial plasma displacement and magnetic-
pressure perturbation at the boundaries of the transitional layer. This condition is satisfied
even when the internal boundary is a tangential discontinuity.

The second important assumption made in Article I is that U is less than the Alfvén speed
in the core region VAi defined by

VAi = B√
μ0ρi

, (3)

where μ0 is the magnetic permeability of free space. This condition was only used in Arti-
cle I to guarantee that the flow speed everywhere in the transitional region is less than the
local Alfvén speed. Since in the equilibrium considered here the flow speed is zero in the
core region, we can relax this condition. The kink wave is subjected to the KH instability
when (e.g. Ruderman, 2010)

U > VAi

√
2(ζ + 1) = UKH, (4)

where ζ = ρi/ρe. The quantity UKH is called the KH threshold. We only consider the KH-
stable kink oscillations and assume that U < UKH. However, this restriction is not sufficient.
Below we impose a stronger restriction on the flow speed U .

It is shown in Article I that, in the leading-order approximation with respect to �, the
oscillation frequency is

ω = πn
√

ζ |2V 2
Ai − U 2|

L

√

2(ζ + 1)V 2
Ai − U 2

. (5)

The plasma displacement in the core region is given by

η = η0e−ihz sin
πnz

L
= η0

2i
e−ihz

(
eiπnz/L − e−iπnz/L

)
, (6)

where

h = ωU

2V 2
Ai − U 2

. (7)

In Equations 5 and 6, n = 1 corresponds to the fundamental mode in the z-direction, and
n > 1 to the (n − 1)th overtone. Important quantities are the Alfvén frequencies in the tube
core and outside of the tube, [ωAi and ωAe], defined by

ωAi = πVAi

L
, ωAe = πVAe

L
, (8)

where V 2
Ae = B2/μ0ρe. It follows from Equation 5 that ω → ∞ as U → UKH. Hence, for

sufficiently large U the wave frequency exceeds nωAe and the wave becomes leaky. Below
we only consider trapped waves and impose the condition ω < ωAe. It is not difficult to show
that this condition is equivalent to

M2
A < M2

L = 3 + √
8ζ + 1

2
, (9)
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where MA is the Alfvén Mach number calculated with respect to the Alfvén speed in the
tube core. It is defined by

MA = U

VAi
. (10)

It is easy to see that ML < MKH = UKH/VAi. Hence, trapped kink waves are always KH-
stable.

We see that η is the superposition of two propagating waves. It is easy to show that these
waves always propagate in opposite directions in the reference frame moving together with
the plasma in the tube-core region. However, in the reference where the external plasma is
at rest both waves propagate in the same direction when

U 2 > 2V 2
Ai. (11)

In this case, in accordance with the general theory the wave with smaller phase speed is a
negative-energy wave.

Resonant damping or instability is related to the existence of Alfvén continuum. The
Alfvén continuum [V] is defined by

V =
∞⋃

j=1

([−jωAe,−jωAi] ∪ [jωAi, jωAe]) . (12)

A standing kink wave damps or is subjected to resonant instability only if its frequency is
in the Alfvén continuum, [ω ∈ V], otherwise the tube oscillates with constant amplitude.
In the expression for V the two intervals with j = 1 correspond to the Alfvén continuum
related to the fundamental mode, while the two intervals with j > 0 correspond to the Alfvén
continuum related to the (j − 1)st overtone. Hence, the complete Alfvén continuum is a
union of an infinite number of intervals.

The condition ω ∈ V is only satisfied if there is an integer k such that kω ∈ [kωAi, kωAe].
Since we assume that ω < ωAe, this condition is equivalent to ω > kωAi. The intervals con-
stituting the Alfvén continuum can overlap. Hence, the condition ω > kωAi can be satisfied
for a few values of k. Let ω > kωAi for k = 1,2, . . . , k1. If ω > kωAi then there is such a
position r = rk in the transitional layer where ω = kωA(rk). The equation r = rk defines a
resonant surface. We see that there are k1 resonant surfaces in the transitional layer. Since
the density monotonically decreases in the resonant layer, it follows that ωA(r) is a mono-
tonically increasing function. Then it is obvious that rk1 < rk1−1 < · · · < r1.

All the resonant surfaces contribute in the decrement/increment γ . It is clearly seen in
the expression for γ obtained in Article I. For the particular equilibrium considered in this
article this expression reduces to

γ = 4π2L2√ζ

RV 2
Ai

√

2(ζ + 1)V 2
Ai − U 2

k1∑

k=1

khWkV
2

Ak

�k

×
[

hLC2 + π(n − k)C1

h2L2 − π2(n − k)2
+ hLC2 + π(n + k)C1

h2L2 − π2(n + k)2

]

× 1 − (−1)n+k cos(hL)

[h2L2 − π2(n − k)2][h2L2 − π2(n + k)2] . (13)
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Here

�k = π2k2

L2

dV 2
A

dr
, Wk = π2k2V 2

Ai

L2
− ω2

ζ
, (14)

C1 = 2πn

L
[h(V 2

Ai − U 2) − ωU ], (15)

C2 =
(

h2 + π2n2

L2

)

(V 2
Ai − U 2) − ω(ω + 2hU), (16)

h is defined by Equation 7, and the subscript k indicates that a quantity that depends on r

is calculated at r = rk , and, as a result, it becomes a discrete function of k. The quantity W

is independent of r ; however, the expression defining this quantity contains k, meaning that
W is also a discrete function of k. To explicitly show this we write Wk .

4. Evaluation of γ

Below we will only consider the fundamental mode and take n = 1. Since the (n − 1)th
overtone has a node at z = L/n we can obtain the corresponding result for the (n − 1)th
overtone just using the results obtained for the fundamental mode and reducing the tube
length n times. Using Equation 5 with n = 1 we show that the condition that ω > ωAi is
satisfied if either

M2
A < M2

0 = 4ζ − 1 − √
8ζ 2 + 1

2ζ
, (17)

or

M2
A > M2

1 = 4ζ − 1 + √
8ζ 2 + 1

2ζ
. (18)

Next, ω > kωAi, k ≥ 2, if

M2
A > M2

k = 4ζ − k2 + k
√

8ζ 2 + k2

2ζ
. (19)

It is easy to show both that {Mk} is a monotonically increasing sequence and Mk →√
2(ζ + 1) as k → ∞. The condition that Mk < ML reduces to k <

√
ζ . Hence, for ζ ≤ 4 the

condition given by Equation 19 cannot be satisfied for any k ≥ 2. This implies that for ζ ≤ 4
there is either one resonant surface if MA < M0 or MA > M1, or no resonance surfaces at all.
In general, for k2

0 < ζ ≤ (k0 +1)2 Equation 19 can be satisfied for k = 2,3, . . . k0. Hence, for
k2

0 < ζ ≤ (k0 + 1)2 either there is no resonance surface at all, or there are up to k0 resonant
surfaces.

As an example, we consider the equilibrium with the linear density profile in the transi-
tional layer defined by

ρt = ρi

[
ζ + 1

2ζ
+ (ζ − 1)(R − r)

�Rζ

]

. (20)
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4.1. Resonant Damping of Kink Oscillations

In this section we assume that MA < M0 and study the wave damping. As was shown above,
in this case there is exactly one resonant surface and we have k1 = 1. The position of this
resonant surface is defined by

ωA(r1) = ω, ωA(r) = πVA(r)

L
= πB

L
√

μ0ρ(r)
. (21)

Taking k1 = 1 in Equation 13 and using the expressions obtained in Appendix yields

� = γ

�ω
= 8[1 − cos(πσMA)][ζ − σ 2(2 − M2

A)2]
πσ 2(ζ − 1)(2 − M2

A)3(4 − σ 2M2
A)

×
[

(2 − σ 2M2
A)(M2

A − 1 + 4σ 2)

σ 2M2
A(4 − σ 2M2

A)
− 1

]

, (22)

where

σ =
√

ζ
√

2(ζ + 1) − M2
A

. (23)

It is straightforward to show that � > 0 in complete agreement with the previous discussion.
When there is no flow, that is MA = 0, this expression reduces to

� = π(ζ − 1)

8(ζ + 1)
. (24)

This expression coincides with the one obtained previously (see, e.g., Goossens, Erdélyi,
and Ruderman, 2011). The dependence of � on MA is shown in Figure 1 for a few values
of ζ . We see that the decrement increases when MA increases. It also increases with the
increase of ζ .

It is necessary to comment on the dependence of � on MA. It looks as though the function
�(MA) has a discontinuity at MA = M0 because � = 0 for MA > M0. In fact, the expression
for � given by Equation 22 is not valid when MA is very close to M0. The reason is that,
formally, the resonant surface coincides with the internal boundary of the transitional layer
when MA = M0. The solution in the dissipative layer surrounding the ideal resonant surface
is only valid when the distance between the resonant surface and the internal boundary of the
transitional layer is larger than the thickness of the dissipative layer. When this distance de-
creases below the thickness of the dissipative layer the decrement starts to decrease sharply
and becomes zero when the two surfaces coincide.

4.2. Resonant Instability of Kink Oscillations

Now we assume that Equation 18 is satisfied. As we have pointed out earlier, now it is
possible that there are a few resonant surfaces. In Equation 13 the only restriction imposed
on k1 is k1 <

√
ζ . The position of the kth resonant surface is determined by r = rk , where rk

is defined by

kωA(rk) = ω. (25)
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Figure 1 Dependence of � on
MA/M0 given by Equation 22.
The solid, dotted, and dashed
curves correspond to ζ = 3,10,
and 100, respectively.

Using the expressions obtained in Appendix we obtain from Equation 13

� = 8σ 2M2
A

πζ(ζ − 1)(M2
A − 2)2

k1∑

k=1

k
[
(M2

A − ζ − 3)

× (σ 2M2
A − k2 − 1) − 4(ζ + 1)

]

× [k2ζ − σ 2(M2
A − 2)2][1 + (−1)k cos(πσMA)]

[σ 2M2
A − (k − 1)2]2[σ 2M2

A − (k + 1)2]2
. (26)

It is shown in Appendix that the first term in the sum in this expression is negative. This
implies that � < 0 for M1 < MA < ML when k1 = 1 for all values of MA < ML, or M1 <

MA < M2 when M2 < ML. Consequently, there is a resonant instability for these values of
MA. We can see this in Figure 2. |�| takes its maximum when MA = M1, and it follows
from Figure 2 that this maximum is almost independent of ζ . On the other hand, � = 0 for
MA = M1, so that the function �(M1) is discontinuous at MA = M1. However, when MA

tends to M1 from larger values, the resonant surface moves towards the internal boundary of
the transitional layer. Equation 26 is not valid when the distance between the two surfaces is
comparable with the thickness of the dissipative layer. In fact, there is a fast but continuous
transition from the maximum value of |�| to zero when M1 varies in a small interval near
M1.

As we have already pointed out, the number of terms in the sum in Equation 26 depends
on the value of MA, but it always less than

√
ζ . Since the left panel of Figure 2 corresponds

to ζ = 3 it follows from the inequality k1 <
√

ζ that the sum in Equation 26 contains only
one term. As a result, the dependence of � on MA is continuous on the whole interval
M1 < MA < ML. We also note that the increment of resonant instability decreases when MA

increases.
The middle panel in Figure 2 corresponds to ζ = 10, so that k1 ≤ 3. The dependence of

� on MA is discontinuous at MA = M2 and MA = M3. However, Equation 26 is not valid
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Figure 2 Dependence of � on MA/ML given by Equation 26. The upper-left, upper-right, and lower panels
correspond to ζ = 3,10, and 100, respectively. In accordance with Equations 9 and 18 each curve is shown
in the interval [M1/ML,1]. The vertical dotted lines in the upper-right panel correspond to MA = M2 and
MA = M3, while in the lower-right panel they correspond to MA = M2,. . . MA = M9, where the quantities
Mk , k > 1, are defined by equation 19.

for MA close to M2 and M3 because the second resonant surface coincides with the internal
boundary of the transitional layer when MA = M2, and the third resonant surface coincides
with this boundary when MA = M3. We note that the increment is a decreasing function of
MA in the intervals (M1,M2) and (M2,M3). We also see that the appearance of the second
resonant surface when MA moves from the first interval to the second results in the increase
of the increment. Finally, we note that � > 0 when MA ∈ (M3,ML). A propagating negative-
energy wave always grows when there is an energy sink. In the case of a standing wave,
the situation is much more complex. It is a superposition of positive- and negative-energy
waves. Whether the amplitude of a standing wave grows or decays depends on which of
the two processes dominates: the amplification of the negative-energy wave or the damping
of the positive-energy wave. We see that in the case when the energy sink is provided by
resonant absorption both scenarios are possible.
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Finally, let us turn to the upper-right panel of Figure 2. It corresponds to ζ = 100. Since√
ζ = 10 it follows that the sum in Equation 26 can contain up to nine terms. When MA

passes through Mk , k = 1, . . . ,9, a new resonant surface appears in the transitional layer.
Again |�| monotonically decreases in the intervals (M1,M2) and (M2,M3). However, now
the appearance of the second resonant surface decreases the increment, and the appearance
of the third resonant surface makes � positive, so that the wave damps. We recall that � > 0
corresponds to wave damping, and � < 0 to wave growth. The wave damps for MA > M3;
however, the decrement is very small when MA > M5.

5. Application to Prominence Threads

In this section we consider the possibility of excitation of kink oscillations of prominence
threads by resonant instability. Flows are ubiquitously observed in prominences. Typical
values of the flow speed in quiescent prominences do not exceed 35 km s−1 (Labrosse et al.,
2010; Mackay et al., 2010; Arregui, Oliver, and Ballester, 2018); however, they can be as
high as 200 km s−1 in active-region prominences. The magnetic-field magnitude also can
vary by more than an order of magnitude, from 3 G to 45 G, while the typical neutral hy-
drogen number density is 3 × 1016 m−3 (Labrosse et al., 2010). This implies that the Alfvén
speed can vary from as low as 30 km s−1 to as high as 500 km s−1. In prominence threads
ζ 
 1, so that M1 ≈ 1.85. Hence, in accordance with the results obtained in the previous
section, prominence threads can be resonantly unstable if the flow speed is larger that 1.85
times the Alfvén speed in the thread. We see that the resonant instability threshold velocity
is approximately 55 km s−1 when the Alfvén speed is 30 km s−1, and it is approximately
185 km s−1 when the Alfvén speed is 100 km s−1. Hence, the resonant-flow instability must
be considered as a possible mechanism of excitation of prominence-thread kink oscilla-
tions. We recall that the KH instability threshold is

√
2(ζ + 1) times the Alfvén speed, so

for ζ = 100 it is approximately 420 km s−1 even for the lowest possible value of Alfvén
speed equal to 30 km s−1. Hence, the prominence-thread kink oscillations definitely cannot
be excited by the KH instability.

Another interesting phenomenon that can appear in a prominence thread is the existence
of undamped oscillations. As was shown in Section 4, the amplitude of kink oscillations
does not change when M0 < MA < M1. We obtain M0 ≈ 0.765 for ζ 
 1.

6. Summary and Conclusion

In this article we studied kink oscillations of a magnetic tube with siphon flow. We used the
cold-plasma approximation and assumed that the background magnetic field everywhere
has constant magnitude and is parallel to the tube axis. Siphon flow has constant velocity
parallel to the magnetic field, and it is confined to the tube core. The tube consists of the
core and transitional or boundary layer where the plasma density decreases from its value
in the tube core to that in the surrounding plasma. We used the thin-tube and thin-boundary
(TTTB) approximation. To study the evolution of kink oscillations we used the expression
for the decrement/increment γ derived by Ruderman and Petrukhin (2019).

The decrement/increment [γ ] is proportional to the relative thickness of the transitional
layer [�], which is the ratio of the thickness of transitional layer to the tube radius. We intro-
duced the dimensional quantity � that is the ratio of γ to � times the oscillation frequency.
This quantity depends on two dimensionless parameters: ζ , which is the density contrast,
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and the Mach number MA, which is the ratio of the flow speed to the Alfvén speed in the
tube core.

In our analysis we concentrated on the fundamental mode of kink oscillations. We only
considered non-leaky oscillations with the oscillation frequencies below the fundamental
Alfvén frequency in the external plasma. This condition is written as MA < ML, where ML

is defined by Equation 9. We proved that � > 0 when MA < M0 where M0 is defined by
Equation 17. This result implies that the fundamental kink mode damps due to resonant
absorption when MA < M0. Next, we showed that � = 0 when M0 < MA < M1, where M1

is defined by Equation 18. Hence, the fundamental kink mode does not either damp or grow
when M0 < MA < M1.

The standing kink mode is a superposition of two propagating kink modes. One of them
becomes a negative-energy wave when MA >

√
2. Then the kink oscillation can be unstable.

However, to make this oscillation growing one needs to have an energy sink. In the problem
studied in this article, the energy sink is provided by resonant absorption. It only operates
when the oscillation frequency is in the Alfvén continuum. To satisfy this condition we need
MA > M1 >

√
2. The Alfvén continuum is the union of an infinite number of intervals corre-

sponding to the fundamental mode of local Alfvén frequency as well as all of its overtones.
This implies that, in principle, it is possible that the condition of resonance is satisfied in a
few spatial positions in the transitional layer, that is, there can be a few resonant surfaces.
The number of resonant surfaces depends on the value of MA, but it is less than

√
ζ .

When MA > M1 one of the two waves constituting the standing wave should grow due to
resonant absorption, while the positive-energy wave should decay. Since both waves must
either grow or decay simultaneously, the standing wave either grows or damps depending
of which of the two processes, the negative-wave growth or positive-energy wave decay,
dominates. The examination of Figure 2 show that both scenarios are possible.

We applied the theoretical results to the problem of excitation of kink oscillations in
prominence threads. We showed that, for particular values of thread parameters, kink oscil-
lations of prominence threads can be excited by resonant instability related to the presence
of siphon flows.

Finally, we make a brief comment on the approximations used in this article. The first
one is the zero-β approximation. This approximation is sufficiently accurate for kink waves
both in coronal magnetic loops as well as prominence threads. In addition, in the thin-tube
approximation the finite plasma pressure does not affect the properties of kink waves. This is
because in a thin tube a kink wave practically does not perturb the plasma density and pres-
sure. The second is the thin-tube approximation. We expect that this approximation should
work very well because the radii of coronal loops and prominence threads are much smaller
than their lengths. The last approximation is the thin-boundary-layer approximation. At first
sight using this approximation looks doubtful. Actually, it seems more realistic that the den-
sity varies either through the whole loop cross-section or at least through a substantial part.
This problem has been addressed by a few authors. Tatsuno and Wakatani (1998) studied the
resonant damping of surface waves in a magnetic slab. They found that the thin-boundary-
layer approximation works very well for � � 0.2 For larger values of � the dependence of the
damping rate on � is not monotonic. Van Doorsselaere et al. (2004) and Soler et al. (2013)
considered the same problem for magnetic tubes. Again they found that the dependence
of decrement on � is not monotonic. However, the thin-tube approximation works better
for magnetic tubes than for slabs. The analytically found decrement using the thin-tube ap-
proximation differs from that found in the direct numerical modelling by less than 10% for
� � 0.5. We note that the thickness of the transitional layer is twice as big as the tube-core
radius when � = 0.5. We believe that the thin-tube approximation works equally well when
calculating the increment of the resonant instability.
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Appendix: Calculation of Decrement/Increment

In this appendix we calculate various quantities present in Equation 13. We recall that n = 1.
Using Equations 8 and 10 yields

4π2L2√ζ

RV 2
Ai

√

2(ζ + 1)V 2
Ai − U 2

= 4π5σ

RLω3
Ai

. (27)

Next, we use Equations 7, 8, 10, 12, 13, 20, and 21 to obtain

h = πσMA

L
, �k = ω2

Aiσ
4(ζ − 1)(M2

A − 2)4

lRζk2
, (28)

khWkV
2

Ak

�k

= k�RLMAω2
Ai[k2ζ − σ 2(M2

A − 2)2]
πσ(ζ − 1)(M2

A − 2)2
, (29)

hLC2 + π(n ± k)C1

h2L2 − π2(n ± k)2
= ω2

AiσMA[σ 2(M2
A − 4) ∓ 2k − 1 − M2

A]
π [σ 2M2

A − (k ± 1)2] , (30)

1 − (−1)n+k cos(hL)

[h2L2 − π2(n − k)2][h2L2 − π2(n + k)2]

= 1 + (−1)k cos(πσMA)

π4[σ 2M2
A − (k − 1)2][σ 2M2

A − (k + 1)2] . (31)

Using Equations 23 and 30 we obtain

hLC2 + π(n − k)C1

h2L2 − π2(n − k)2
+ hLC2 + π(n + k)C1

h2L2 − π2(n + k)2

= 2σMAω2
Ai

π [σ 2M2
A − (k − 1)2][σ 2M2

A − (k + 1)2]
×{

(σ 2M2
A − k2 − 1)[σ 2

(
M2

A − 4
) − 1 − M2

A] − 4k2
}

= 2σ 3MAω2
Ai(M

2
A − 2)

πζ [σ 2M2
A − (k − 1)2][σ 2M2

A − (k + 1)2]
× [(σ 2M2

A − k2 − 1)(M2
A − ζ − 3) − 4(ζ + 1)]. (32)

Now we prove that the first term in Equation 26 is negative. We take k = 1 and write

(M2
A − ζ − 3)(σ 2M2

A − 2) − 4(ζ + 1) = F(M2
A)

2(ζ + 1) − M2
A

, (33)

where

F(M2
A) = (ζ + 2)M4

A − (ζ + 2)(ζ + 3)M2
A − 4(ζ 2 − 1). (34)

We prove that F(M2
A) < 0 for M1 < MA < ML when k1 = 1, and for M1 < MA < M2 when

k1 > 1. Since the roots of F(M2
A) considered as a quadratic polynomial of M2

A have different
signs it is enough to prove that F(M2

L) < 0 when k1 = 1 and F(M2
2 ) < 0 when k1 > 1.
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First we consider the case where k1 = 1. In this case

2F(M2
L) = −ζ [(ζ + 1)

√
8ζ + 1 + 7ζ + 2]. (35)

When k1 > 1 we obtain

ζ 2F(M2
2 ) = −ζ 2(6ζ 2 − 4ζ − 2) + 16ζ 2 + 4ζ + 16

− 2(ζ 3 + ζ 2 + 2ζ + 8)
√

2ζ 2 + 1. (36)

We prove that

(ζ 3 + ζ 2 + 2ζ + 8)
√

2ζ 2 + 1 > 2(4ζ 2 + ζ + 4). (37)

Squaring the two parts of this inequality we see that it is equivalent to an obvious inequality

2ζ 6 + 4ζ 5 + 11ζ 4 + 42ζ 3 − 19ζ 2 + 52ζ + 16 > 0. (38)

It follows from Equations 36 and 37 that F(M2
2 ) < 0. Next, we obtain

m2ζ − σ 2(M2
A − 2)2 = ζ

(

1 − (M2
A − 2)2

2(ζ + 1) − M2
A

)

> ζ

(

1 − (M2
L − 2)2

2(ζ + 1) − M2
L

)

= 0. (39)

It follows from Equation 39 and the inequality F(M2
A) < 0 that the first term in the sum in

Equation 26 is negative.
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