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Abstract In this work we describe a numerical optimization method for computing sta-
tionary MHD equilibria. The newly developed code is based on a nonlinear force-free op-
timization principle. We apply our code to model the solar corona using synoptic vector
magnetograms as boundary condition. Below about two solar radii the plasma β and Alfvén
Mach number MA are small and the magnetic field configuration of stationary MHD is basi-
cally identical to a nonlinear force-free field, whereas higher up in the corona (where β and
MA are above unity) plasma and flow effects become important and stationary MHD and
force-free configuration deviate significantly. The new method allows for the reconstruction
of the coronal magnetic field further outwards than with potential field, nonlinear force-free
or magnetostatic models. This way the model might help to provide the magnetic connec-
tivity for joint observations of remote sensing and in-situ instruments on Solar Orbiter and
Parker Solar Probe.

Keywords Magnetic fields, corona · Magnetic fields, models · Magnetohydrodynamics ·
Velocity fields, solar wind

1. Introduction

Traditionally the global structure of the coronal magnetic field is modeled with the help
of source surface potential field models (PFSS, see Schatten, Wilcox, and Ness, 1969). In
potential field models electric currents are neglected and they require as photospheric bound-
ary condition only line-of-sight magnetic field measurements. Nevertheless, the effect of a

B T. Wiegelmann
wiegelmann@mps.mpg.de

1 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen,
Germany

2 School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS, UK

3 Astronomical Institute, Czech Academy of Sciences, Fričova 298, 25165 Ondřejov, Czech Republic
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solar wind flow is considered by the introduction of a so called ‘source surface’ as outer
boundary condition. At this artificial surface, usually at 2.5 Rs , all field lines are assumed
to become radial, thereby mimicking the effect of the solar wind. Going beyond this simple
potential field approach with non-potential global coronal magnetic field models has been an
active research topic for several years with various physical models (see, e.g., Mackay and
Yeates, 2012; Wiegelmann, Petrie, and Riley, 2017, for review articles on global coronal
magnetic field modeling). Recently, several of the non-potential methods (seven different
codes) have been compared in the framework of an ISSI meeting and the results have been
published (Yeates et al., 2018). While all of the models are non-potential and incorporate
electric currents, the physical assumptions and computational implementations are different
and the models used also different input data. One group of codes are nonlinear force-free
extrapolations (3 different implementations have been compared), which do not consider
time dependence and plasma effects. As boundary condition these codes require measure-
ments of the photospheric magnetic field vector. Codes for solving the nonlinear force-free
equations have been first applied to active regions and different numerical methods and im-
plementations have been intensively compared and evaluated in a number of studies, e.g.,
Schrijver et al. (2006), Metcalf et al. (2008), Schrijver et al. (2008), DeRosa et al. (2009,
2015). Active region and global nonlinear force-free codes finally solve the same nonlin-
ear force-free equations, but do so with different numerical implementations. Well known
codes for global nonlinear force-free computations are based on the Grad–Rubin method
(see Amari et al., 2013, 2014), an optimization principle (see Wiegelmann, 2007; Tadesse
et al., 2014) and force-free electrodynamics (see Contopoulos, Kalapotharakos, and Geor-
goulis, 2011; Contopoulos, 2013).

Other approaches go beyond the force-free assumption and take effects like plasma
forces, flows and time-dependence into account. In the linear magnetostatic approaches (see
Bogdan and Low, 1986; Neukirch, 1995) the Lorentz force is compensated by plasma pres-
sure and gravity forces. Coronal equilibria with plasma pressure and steady 3D nonlinear
flows have been found in Nickeler et al. (2017). The evolving magnetofrictional method
(see Mackay and van Ballegooijen, 2006; Yeates, 2014) solves also the force-free equations,
but takes the time dependence into account and requires therefore a time sequence of photo-
spheric magnetograms (radial component only) as boundary condition and incorporates flux
transport. MHD codes from different research groups (see, e.g., Mikic and Linker, 1994;
Mikić et al., 1999 and Feng et al., 2012; Feng, 2020) are capable to solve the full MHD
equations.

For global corona models these codes use the radial photospheric field as boundary con-
ditions. It is possible, however, to limit the MHD simulations to the assumption of a zero-β
plasma, and to incorporate additional observations, e.g., use results from magnetofrictional
simulations (see Yeates et al., 2018, for details).

An interesting point is that only the (static) nonlinear force-free codes make use of the
photospheric vector magnetograms, whereas all other methods compared in Yeates et al.
(2018) use the radial photospheric field only. As a consequence the study of Yeates et al.
(2018) revealed that the nonlinear force-free extrapolations are superior in active regions
(where the vector magnetic field measurements are most accurate) while quiet Sun features
like filament channels are better modeled by other approaches. These findings stimulated us
using vector magnetograms as boundary condition and go beyond the force-free assumption.
To do so we develop a new stationary MHD code with field aligned plasma flow, which uses
synoptic vector magnetograms as boundary condition.

We organize the paper as follows: In Section 2 we present the stationary MHD-equations
and how we aim to solve them with the help of an optimization principle. Section 3 contains
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an application and evaluation of the newly developed code to a synoptic vector magnetogram
observed with SDO/HMI. Finally we draw conclusions and give an outlook for future work
in Section 4.

2. Basic Equations

2.1. Stationary Compressible MHD

To model the coronal magnetic field and plasma environment we use the equations of sta-
tionary compressible ideal MHD,

ρ (v · ∇)v = 1

μ0
(∇ × B) × B − ∇p − ρ∇� , (1)

∇ · B = 0 , (2)

∇ · (ρv) = 0 , (3)

p = ρR T, (4)

E + v × B = 0, (5)

where B is the magnetic field, p the plasma pressure, ρ the mass density, v the flow ve-
locity, � the gravity potential, μ0 the permeability of free space, T the temperature, R the
gas constant and E the electric field. The stationary MHD equations are given by the force
balance Equation 1, the solenoidal condition (Equation 2), mass continuity Equation 3, an
energy equation or an equation of state (Equation 4) and ideal Ohm’s law (Equation 5).
We are aware that non-ideal effects as, e.g., caused by turbulence, can lead to a violation
of ideal Ohm’s law and play an important role for coronal heating and solar wind ex-
pansion (see Cranmer et al., 2015, for a review article). For special cases (2.5D, incom-
pressible flow and no gravity) stationary solutions of resistive MHD have been found (see,
e.g., Throumoulopoulos, 1998; Throumoulopoulos and Tasso, 2000; Nickeler et al., 2014).
Studying turbulence and resistivity is well outside the scope of this work, however. For sim-
plicity we assume an isothermal equation of state in Equation 4, which leads to a linear
relation of plasma pressure and density. We replace p by ρRT in Equation 1 to reduce
the number of independent quantities. For the highly conducting coronal plasma we have to
consider ideal Ohms law, which is for a vanishing electric field satisfied if v×B = ∇f , with
an arbitrary scalar function f , which is constant on magnetic field lines. For the particular
choice f = 0, which we use here, the plasma flows and magnetic fields are parallel.

2.2. Optimization Principle for Stationary MHD

Minimizing a functional L of quadratic terms to compute 3D coronal magnetic field models
has been introduced by Wheatland, Sturrock, and Roumeliotis (2000) for computing non-
linear force-free fields. First implementations of this optimization approach have been done
in Cartesian geometry to model active regions. A spherical implementation for global force-
free optimization has been done in Wiegelmann (2007) and was first applied with synoptic
vector magnetograms as boundary condition in Tadesse et al. (2014). A magnetohydrostatic
optimization code has been developed in Wiegelmann et al. (2007) for global computations
in spherical geometry. Within this work we try to extend this optimization approach towards
stationary MHD.
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We aim to solve the stationary MHD Equations 1–5 by minimizing a functional L which
we define as

L(B,v, ρ) = Lforce + LdivB + Lcont + Langle(B,v), (6)

where all terms in the functional have a quadratic form as defined below. This means that
the stationary MHD equations are solved when L is zero. The term Lforce is

Lforce =
∫

V

[
(∇ × B) × B − μ0∇(ρRT ) − μ0ρ∇� − μ0ρ (∇ × v) × v − μ0ρ

2 ∇v2
]2

B2
dV,

(7)
and if this term vanishes, Equation 1 is satisfied. We applied vector identities to the flow
terms to bring them into a similar form as the magnetic terms. The linearity in the isothermal
equation of state (Equation 4) has been used to substitute p by ρRT .

The other parts of the functional are linked to the solenoidal condition, the steady-state
continuity equation, and the condition that the flow is field aligned:

LdivB =
∫

V

[∇ · B]2 dV, (8)

Lcont =
∫

V

[∇ · (ρv)]2 dV, (9)

Langle(B,v) =
∫

V

tanh(M2
A)

[v × B]2

v2 B2
dV, (10)

where MA = v/vA is the Alfvén Mach number and vA = B/
√

μ0ρ is the Alfvén velocity. In
the Langle(B,v) term we use a weighting with the Alfvén Mach number MA to give a stronger
weight to regions with strong flow. The B2 in the nominator of Equation 7 originates from
the nonlinear force-free and magnetohydrostatic optimization codes. Dividing by this term
ensures that sufficient weight is given to the equilibrium in weak field regions and gives
the terms Lforce and LdivB the same dimensionality. While in the functional all terms are
of quadratic form, it might be convenient for humans to monitor also the angle between
magnetic fields and flows in degrees,

angle(B,v) = asin

((∫ |v × B|
|B| dV

)
/

∫
|v| dV

)
. (11)

This formula is similar to the definition of the weighted average angle between magnetic
field and electric currents used for evaluating the quality of force-free computations (see
Schrijver et al., 2006, for details).

3. Testing and Application of the Method

Previous versions of optimization codes have been tested first with known analytical or semi-
analytical equilibria, see e.g. Low and Lou (1990) for nonlinear force-free active region
models and Neukirch (1995) for global magnetostatic equilibria. Unfortunately we are not
aware of analytic 3D solutions of stationary MHD-equilibria with compressible plasma flow
and gravity. We therefore use the code to construct a numerical equilibrium by minimizing
the functional (Equation 6) and monitoring the individual terms (Equations 7–10).



Optimization Code for Stationary MHD Equilibria with Solar Wind Flow Page 5 of 14 145

3.1. Boundary Conditions and Initial Force-Free Model

If all non-magnetic terms in the stationary MHD Equations 1–5 are neglected, we get as a
subclass the nonlinear force-free field equations, which are given as

(∇ × B) × B = 0, (12)

∇ · B = 0. (13)

As boundary data we use a synoptic vector magnetogram from SDO/HMI for Carrington
rotation 2099 as shown in Figure 1, which has been observed between 13/07/2010 and
09/08/2010. Because of the grid convergence problem at the poles (see Wiegelmann, 2007)
and because accurate vector field measurements at poles are still not available, we cut out po-
lar regions and limit our computation to latitudes θ = 20 . . .160. The spatial grid resolution
is 2 degrees. As initial state we compute a nonlinear force-free field up to r = 10 Rs , which
solves the force-free Equations 12–13 with the global force-free optimization approach as
described in Wiegelmann (2007), Tadesse et al. (2014). The force-free iteration itself uses a
potential field as initial state and the potential field solution is also kept on the theta bound-
aries. We would like to point out that the initial state for the force-free iteration is not a PFSS
model, because that is radially limited to the source surface located at 2.5 Rs . We use just
the decaying mode of a spherical harmonic representation and for the tests done here limit
them to l = 12. This corresponds to a special case of the global linear magnetostatic model
developed in Bogdan and Low (1986) with α = 0 and a = 0.

3.2. Initial Parker Solar Wind Solution

If all magnetic terms in the stationary MHD Equations 1–5 are neglected, we get as a sub-
class the stationary hydrodynamic equations

ρ (v · ∇)v = −∇p − ρ∇�, (14)

∇ · (ρv) = 0, (15)

p = ρR T, (16)

where the gravitational potential is � = −GMs/r , where G is the gravity constant, Ms the
solar mass and r the distance from the center of the sun. To initialize the plasma and flow
variables we use the spherical symmetric solution of the stationary hydrodynamic Equa-
tions 14–16, which was found by Parker (1958) and describes the solar wind. We use an
isothermal solution which can be solved analytically by using the Lambert W function
(see Cranmer, 2004, for details). In the isothermal case there are only two free parame-
ters, T and p (or alternatively T and ρ). We use T = 3 MK and p is so specified that the
average plasma beta at r = 1 Rs is β = 0.01, whereas the magnetic pressure was computed
(and averaged over the sphere) from the initial force-free magnetic field. The sound velocity
is cs = 157 km/s and the corresponding critical radius is rc = 3.84 Rs . Figure 2 shows sev-
eral quantities of this spherically symmetric solution as a function of the radius r . Panel a)
contains the plasma pressure gradient force (black), gravity force (green) and the flow force
(red). At low coronal heights the flow force is small and gravity and pressure forces com-
pensate each other. With increasing distance from the sun the flow becomes more and more
important. The flow velocity is shown in panel b). In panel c) we compare the magnetic
pressure (green), plasma pressure (black) and solar wind ram pressure (red). At low heights
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Figure 1 As boundary data we use a synoptic vector magnetogram from SDO/HMI for Carrington rotation
2099, which has been observed between 13/07/2010 and 09/08/2010. The polar regions have been cut out.
One active region (white box in top panel) and a quiet sun area of the same size (black box) are investigated
in Section 3.5.
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Figure 2 The variation of the
initial conditions, based on a
combination of a force-free
magnetic field and a spherically
symmetric Parker wind solution.
a) Shows the different force
terms. b) Solar wind velocity as a
function of r c) Plasma and
kinematic pressure from Parker’s
model, magnetic pressure from
force-free field model. d) Plasma
Beta and Alfvén Mach number:
If both quantities are small,
plasma and flow forces can be
neglected for computing the
coronal magnetic field.

Table 1 Value of the different terms of the functional L (see Equations 6–10) for the initial state and the
final stationary MHD equilibrium. The evolution of these quantities during the iteration is shown in Figure 3.
We monitor also the weighted angle between magnetic field and plasma flow as defined in Equation 11.

L Lforce LdivB Lcont Langle(B,v) Angle

NLFFF, Parker 973.6 5.6 2.7 1.1 964.2 31.1◦
Stationary MHD 24.6 5.6 2.7 8.3 8.0 2.0◦

in the low β corona (black line in panel d) the magnetic pressure dominates. This is also the
region which is usually computed using the force-free assumption. With increasing height
the plasma pressure and kinematic pressure become more important and finally dominate
over the magnetic pressure. The red line in panel d) shows the Alfvén Mach-number MA. In
the lower corona MA is very small, but increases to values above unity with increasing dis-
tance from the sun. In regions with β � 1 and MA � 1 it is justified to neglect the influence
of plasma effects and flows and this is a justification why these regions are usually modeled
under the force-free assumption. Higher up in the corona, however, β and MA exceed unity
and the force-free assumption is not valid. Therefore plasma and flow effects have to be
taken into account, which is done here in the framework of stationary MHD.

3.3. Evaluation of the Initial State and Optimization

In the initial state the force-free Equations 12–13 and the hydrodynamic Equations 14–16
are fulfilled separately. Table 1 shows in the line ‘NLFFF, Parker’ the discretization errors of
the terms Lforce, LdivB and Lcont in the initial state. The term Langle(B,v) is not a discretization
error, it indicates how well the magnetic field and the plasma flow are aligned. For a perfect
equilibrium with field aligned flow all terms would be zero. While this initial state contains
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Figure 3 In the initial state the
force-free magnetic field and
plasma properties are decoupled.
During the iteration B and V
become parallel. In the final state
we have found a solution of the
stationary compressible MHD
equations with field aligned
plasma flow. The residual
discretization errors are similar to
those of nonlinear force-free
computations.

a force-free magnetic field configuration and a spherically symmetric hydrodynamic solar
wind, the magnetic field and plasma flow are not aligned. The averaged weighted angle
between v and B is 31.1◦ and the corresponding term of the functional Langle(B,v) is more than
two orders of magnitude larger than the discretization errors in final state after relaxation.

We minimize the functional L iteratively with a steepest descent method, which has been
successfully used in the global nonlinear force-free and magnetohydrostatic optimization
codes (see Wiegelmann, 2007; Wiegelmann et al., 2007, for details). Figure 3 shows the
evolution of L in black and its individual terms: Lforce in green,LdivB in blue, Lcont in orange
and Langle(B,v) in red. While the Lforce and LdivB term stay approximately constant, the term
Langle(B,v) decreases rapidly until it is of the order of the discretization errors of the initial
equilibrium, which corresponds to an average weighted angle between flow and magnetic
field of 2◦. An exception is the term Lcont which increases somewhat. To understand the
evolution of the Lcont term we must consider that while the initial force-free magnetic field
is already complex, the plasma flow is smooth and strictly radial in the initial state, which
results in a low initial value of Lcont. This is not the case in the final equilibrium, when the
flow becomes field aligned and thereby more complex. In the final state all terms of L are
roughly of the same order and of the level of the discretization error of the initial NLFFF-
solution (see also Table 1, line ‘Stationary MHD’). It can therefore be considered that a
solution of the stationary MHD equations with field aligned plasma flow has been reached
to a good approximation.

3.4. Brief Analysis of the Final Stationary MHD Equilibrium

Figure 4 shows in the top panel ‘NLFFF’ selected field lines for the initial force-free equi-
librium. In the bottom panel ‘FlowMHD’ field lines (same starting points) of the final sta-
tionary MHD equilibrium are shown. It seems that low lying field lines are hardly affected,
whereas further away from the sun the field lines become considerably more radial in the
stationary MHD equilibrium. Physically this can be understood in the sense that the solar
wind flow stretches and opens the field lines. In Figure 5 we investigate the differences more
quantitatively. Panel a) shows how radial the magnetic field is as a function of the radius,
where |Br | and |B| have been averaged over the whole sphere. The black line ‘NLFFF’
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Figure 4 Comparison of
magnetic field lines for the initial
force-free field [NLFFF] and the
final stationary MHD equilibrium
[FlowMHD]. Solar wind in
stationary MHD stretches and
opens magnetic field lines.

Figure 5 Panel a) Compared
with the initial NLFFF the
stationary MHD field becomes
more radial from about 2 solar
radii on. Panel b) Comparison of
(horizontal averaged) magnetic
field. NLFFF and stationary
MHD are almost identical below
2 solar radii, where MA � 1 and
flow effects are not important.



145 Page 10 of 14 T. Wiegelmann et al.

shows the initial force-free field and the red line ‘FlowMHD’ the stationary MHD solution.
A value of unity means that the field is fully radial while a value of zero means the field
is horizontal. The plot corroborates that the magnetic field becomes more radial on average
with increasing distance from the Sun. At low heights both solutions agree, but above about
2 Rs the stationary MHD solution becomes significantly more radial then the initial field,
as was already qualitatively seen in the field line plots in Figure 4. Figure 5 panel b) shows
the relative quadratic difference (quadratic difference of the magnetic field vectors averaged
over the entire sphere at each radial distance and divided by the averaged magnetic field
strength). This plot confirms that below about 2 Rs the initial force-free and final stationary
MHD equilibria are almost identical and deviate higher up in the corona.

Figure 6 shows some quantities at a height of r = 2.5 Rs , which is usually the distance the
source surface in located in PFSS-models. Panel a) shows the radial magnetic field compo-
nent Br . Between the positive (red) and negative (green) magnetic field areas is the polarity
inversion line. Around this line the plasma pressure increases (panel b) and the kinematic
pressure pkin = ρv2/2 of the solar wind decreases (panel c). A reduced kinematic pressure
around the polarity inversion line happens naturally, because here the magnetic field and
consequently the aligned plasma flow are not dominated by the radial component.

3.5. Influence of Initial Conditions

An important question is to which extent simpler force-free extrapolations are justified in
some areas. From the equilibrium investigated so far, it seems that non-force-free effects
become important above about 2 Rs . In the following we want to quantify this further and
investigate how the radii where the transition from force-free to non-force-free occur de-
pend on the initial conditions. We also investigate if the results based on global averaging
(marked ‘Global’ in Table 2) are different from a selected active region (marked ‘AR’ in
Table 2 and with a white box in Figure 1 top panel) and a selected quiet sun area (marked
‘QS’ in Table 2 and with a black box in Figure 1). We investigate the effect of the initial
magnetic field (either a nonlinear force-free field (marked with NLFFF) or a potential field
(marked Potential). We also investigate the effect of the initial hydrodynamic Parker solar
wind equilibrium by varying the temperature. Similar as in Figure 5 panel b) we compute
the relative quadratic difference of the initial magnetic field and the final stationary MHD
equilibrium. In Table 2 we check at which radii the relative quadratic differences exceed
thresholds of 10−4, 10−3, and 10−2, respectively.

The areas with r below the radius defined by a relative quadratic difference of 10−4 can
be considered as force-free. For areas with r larger than the radius defined by a relative
quadratic difference of 10−2 the effects of plasma flow and plasma forces are important.
Between the two radii the transition between force-freeness and stationary MHD takes place.
For the equilibrium investigated earlier (first row in Table 2) this transition area is between
1.80 Rs and 2.54 Rs for the global case. Restricting the computations on a selected active
region or quiet sun area hardly changes anything. The corresponding radii change only by
less than 0.1 Rs (upward for the active region and downward for the quiet sun). The influence
of using a potential field as initial state instead of a force-free one is very small, too and
leads to a very small (well below 0.1 Rs ) shift upwards. Changing the initial solar wind
equilibrium has a significantly stronger effect. For a lower temperature the sound velocity
cs decreases and the critical radius rc where the flow transits the sound velocity increases.
The opposite happens for an increased temperature. This results in a higher sound velocity
and the radius rc, where the wind passes the sound velocity is lower. Consequently one
has significant faster flows at lower heights. It is found that the plasma flow starts having a
significant effect already at a radial solar distance of approximately rc/2.
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Figure 6 Along the polarity inversion line of the magnetic field (panel a) the plasma pressure (panel b)
becomes enhanced and the kinematic pressure (panel c) decreases.
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Table 2 Comparison of initial and final magnetic field. The first four columns contain information on the ini-
tial state and the investigated area. Column one names the investigated area, either the entire sphere ‘Global’,
or an active region ‘AR’, or a quiet Sun area ‘QS’ (see the white and black boxes in Figure 1. Column two
contains the initial magnetic field model, either a potential field ‘Potential’ or a nonlinear force-free field
‘NLFFF’. The third, fourth and fifth column contain the temperature on the initial hydrodynamic equilib-
rium, the sound velocity cs and the related critical radius rc where the solar wind passes the sound velocity.
The remaining columns six, seven and eight contain the results. Computed is the relative quadratic differences
of the initial and final magnetic field as a function of the radius and subsequently it is checked at which radial
distance from the sun the difference exceeds 10−4, 10−3 and 10−2, respectively.

Area Initial B Initial T cs rc 10−4 10−3 10−2

Global NLFFF 3 MK 157 km/s 3.84 Rs 1.80 Rs 2.11 Rs 2.54 Rs

AR NLFFF 3 MK 157 km/s 3.84 Rs 1.87 Rs 2.22 Rs 2.57 Rs

QS NLFFF 3 MK 157 km/s 3.84 Rs 1.77 Rs 2.08 Rs 2.53 Rs

Global Potential 3 MK 157 km/s 3.84 Rs 1.84 Rs 2.15 Rs 2.61 Rs

AR Potential 3 MK 157 km/s 3.84 Rs 1.91 Rs 2.26 Rs 2.61 Rs

QS Potential 3 MK 157 km/s 3.84 Rs 1.80 Rs 2.12 Rs 2.61 Rs

Global NLFFF 2 MK 129 km/s 5.77 Rs 2.82 Rs 3.20 Rs 3.62 Rs

AR NLFFF 2 MK 129 km/s 5.77 Rs 2.82 Rs 3.10 Rs 3.44 Rs

QS NLFFF 2 MK 129 km/s 5.77 Rs 2.96 Rs 3.58 Rs 4.35 Rs

Global NLFFF 4 MK 182 km/s 2.88 Rs 1.45 Rs 1.62 Rs 1.91 Rs

AR NLFFF 4 MK 182 km/s 2.88 Rs 1.45 Rs 1.63 Rs 1.98 Rs

QS NLFFF 4 MK 182 km/s 2.88 Rs 1.42 Rs 1.59 Rs 1.87 Rs

4. Conclusions and Outlook

In this paper we developed an optimization principle for the computation of stationary MHD
equilibria, using synoptic vector magnetograms as boundary condition. As a first step we
used a rather simple spherically symmetric and isothermal solar wind model as initial con-
dition for the plasma and flow variables. We found that the newly developed code converged
towards a stationary MHD equilibrium because the residual errors of the equilibrium are
comparable with discretization errors of nonlinear force-free solution. Below about 2Rs the
MHD solution is very similar to a nonlinear force-free field. The reason is that because of
the low plasma β and small Alfvén Mach number MA in these regions, plasma and flow ef-
fects can be neglected. Higher up in the corona the solar wind flow stretches out and opens
up the magnetic field line. Such an effect of the solar wind is considered already in PFSS
model, but with an artificial source surface, whereas in stationary MHD the influence of the
wind flow on the magnetic field is computed self-consistently. While the choice of the initial
magnetic field configuration hardly influences this result, the profile of the outflow velocity
is important. Fast flows in lower heights do obviously require that the effects of these flows
have to be taken into account.

In the application of the method there is certainly room for improvement. Naturally one
could relax the isothermal condition used here just for reasons of simplicity and use a more
involved energy equation. In principle it is also possible to take measurements into account
for the solar wind profile, which does not necessarily have to be spherically symmetric in the
initial state. Including the observations of coronal loops to constrain the magnetic field as
done in the force-free models of e.g. Aschwanden (2013), Chifu, Wiegelmann, and Inhester
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(2017) can in principle also be incorporated in stationary MHD models. It is a useful feature
of optimization principles that additional constraints are straightforward to implement by
additional terms in the functional L.
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