Skip to main content
Log in

Magnetic Flux Emergence in a Coronal Hole

  • Editor’s Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole.

Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Notes

  1. solarwww.mtk.nao.ac.jp/en/solarobs.html.

References

  • Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Coronal holes. Solar Phys.26, 354. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arish, S., Javaherian, M., Safari, H., Amiri, A.: 2016, Extraction of active regions and coronal holes from EUV images using the unsupervised segmentation method in the Bayesian framework. Solar Phys.291, 1209. DOI . ADS .

    Article  ADS  Google Scholar 

  • Asai, A., Shibata, K., Hara, H., Nitta, N.V.: 2008, Characteristics of anemone active regions appearing in coronal holes observed with the Yohkoh soft X-ray telescope. Astrophys. J.673, 1188. DOI . ADS .

    Article  ADS  Google Scholar 

  • Asai, A., Shibata, K., Ishii, T.T., Oka, M., Kataoka, R., Fujiki, K., Gopalswamy, N.: 2009, Evolution of the Anemone AR NOAA 10798 and the Related Geo-effective Flares and CMEs. J. Geophys. Res.114, A00A21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bethge, C., Peter, H., Kentischer, T.J., Halbgewachs, C., Elmore, D.F., Beck, C.: 2011, The chromospheric telescope. Astron. Astrophys.534, A105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bodnárová, M., Utz, D., Rybák, J.: 2014, On dynamics of G-band bright points. Solar Phys.289, 1543. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Palacios, J., Saiz, E., Guerrero, A., Cerrato, Y.: 2014, On extreme geomagnetic storms. J. Space Weather Space Clim.4, A28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Palacios, J., Saiz, E., Guerrero, A.: 2016, Redefining the boundaries of interplanetary coronal mass ejections from observations at the ecliptic plane. Astrophys. J.828, 11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Diercke, A., Denker, C.: 2019, Chromospheric synoptic maps of polar crown filaments. Solar Phys.294, 152. DOI . ADS .

    Article  ADS  Google Scholar 

  • Druckmüller, M.: 2013, A noise adaptive fuzzy equalization method for processing solar extreme ultraviolet images. Astrophys. J.207(2), 25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev.86, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-ray telescope (XRT) for the hinode mission. Solar Phys.243, 63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res.99, 5771. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Martin, S.F.: 1973, Ephemeral active regions. Solar Phys.32, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys.211, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Temmer, M., Hofmeister, S.J., Veronig, A.M., Vennerstrøm, S.: 2018a, Three-phase evolution of a coronal hole. I. 360o remote sensing and in situ observations. Astrophys. J.861, 151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Hofmeister, S.J., Veronig, A.M., Temmer, M.: 2018b, Three-phase evolution of a coronal hole. II. The magnetic field. Astrophys. J.863, 29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Temmer, M., Heinemann, N., Dissauer, K., Samara, E., Jerčić, V., Hofmeister, S.J., Veronig, A.M.: 2019, Coronal Hole Statistical Analysis and Catalogue Covering the SDO-Era. arXiv . ADS .

    Google Scholar 

  • Hofmeister, S.J., Veronig, A., Reiss, M.A., Temmer, M., Vennerstrom, S., Vršnak, B., Heber, B.: 2017, Characteristics of low-latitude coronal holes near the maximum of solar cycle 24. Astrophys. J.835, 268. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hofmeister, S.J., Utz, D., Heinemann, S.G., Veronig, A., Temmer, M.: 2019, Photospheric magnetic structure of coronal holes. Astron. Astrophys.629, A22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Solar Syst. Res.136, 5. DOI . ADS .

    Article  Google Scholar 

  • Karachik, N.V., Pevtsov, A.A., Abramenko, V.I.: 2010, Formation of coronal holes on the ashes of active regions. Astrophys. J.714, 1672. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kentischer, T.J., Bethge, C., Elmore, D.F., Friedlein, R., Halbgewachs, C., Knölker, M., Peter, H., Schmidt, W., Sigwarth, M., Streander, K.: 2008, In: McLean, I.S., Casali, M.M. (eds.) ChroTel: A Robotic Telescope to Observe the Chromosphere of the Sun, Proc. SPIE7014, 701413. DOI . ADS .

    Chapter  Google Scholar 

  • Kontogiannis, I., Tsiropoula, G., Tziotziou, K., Gontikakis, C., Kuckein, C., Verma, M., Denker, C.: 2020, Emergence of small-scale magnetic flux in the quiet Sun. Astron. Astrophys.633, A67. DOI .

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The hinode (solar-B) mission: an overview. Solar Phys.243, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys.29, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys.256, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuckein, C., Martínez Pillet, V., Centeno, R.: 2012, An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astron. Astrophys.539, A131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys.275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/michelson Doppler imager. Solar Phys.279, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moreno-Insertis, F., Galsgaard, K., Ugarte-Urra, I.: 2008, Jets in coronal holes: hinode observations and three-dimensional computer modeling. Astrophys. J. Lett.673, L211. DOI . ADS .

    Article  ADS  Google Scholar 

  • Navarro, A., Murawski, K., Wójcik, D., Lora-Clavijo, F.D.: 2019, Numerical simulations of the emerging plasma blob into a solar coronal hole. Mon. Not. Roy. Astron. Soc.489, 2769. DOI . ADS .

    Article  ADS  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J.333, 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • O’Dwyer, B., Del Zanna, G., Mason, H.E., Weber, M.A., Tripathi, D.: 2010, SDO/AIA response to coronal hole, quiet sun, active region, and flare plasma. Astron. Astrophys.521, A21. DOI . ADS .

    Article  Google Scholar 

  • Ogilvie, K.W., Desch, M.D.: 1997, The WIND spacecraft and its early scientific results. Adv. Space Res.20, 559. Results of the IASTP Program. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, J.E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71, 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Palacios, J., Blanco Rodríguez, J., Vargas Domínguez, S., Domingo, V., Martínez Pillet, V., Bonet, J.A., Bellot Rubio, L.R., Del Toro Iniesta, J.C., Solanki, S.K., Barthol, P., Gandorfer, A., Berkefeld, T., Schmidt, W., Knölker, M.: 2012, Magnetic field emergence in mesogranular-sized exploding granules observed with SUNRISE/IMaX data. Astron. Astrophys.537, A21. DOI . ADS .

    Article  Google Scholar 

  • Palacios, J., Cid, C., Guerrero, A., Saiz, E., Cerrato, Y.: 2015, Supergranular-scale magnetic flux emergence beneath an unstable filament. Astron. Astrophys.583, A47. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys.275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiss, M.A., Hofmeister, S.J., De Visscher, R., Temmer, M., Veronig, A.M., Delouille, V., Mampaey, B., Ahammer, H.: 2015, Improvements on coronal hole detection in SDO/AIA images using supervised classification. J. Space Weather Space Clim.5, A23. DOI . ADS .

    Article  Google Scholar 

  • Sakurai, T., Hanaoka, Y., Arai, T., Hagino, M., Kawate, T., Kitagawa, N., Kobiki, T., Miyashita, M., Morita, S., Otsuji, K., Shinoda, K., Suzuki, I., Yaji, K., Yamasaki, T., Fukuda, T., Noguchi, M., Takeyama, N., Kanai, Y., Yamamuro, T.: 2018, Infrared spectro-polarimeter on the solar flare telescope at NAOJ/Mitaka. Publ. Astron. Soc. Japan70, 58. DOI . ADS .

    Article  ADS  Google Scholar 

  • Samanta, T., Tian, H., Yurchyshyn, V., Peter, H., Cao, W., Sterling, A., Erdélyi, R., Ahn, K., Feng, S., Utz, D., Banerjee, D., Chen, Y.: 2019, Generation of solar spicules and subsequent atmospheric heating. Science366, 890. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scharr, H.: 2007, Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, B., Scharr, H. (eds.) Complex Motion, Lec. Notes Comp. Sci.3417, Springer, Berlin. 14.

    Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys.275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr.333, 796. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2005, Local correlation tracking and the magnetic induction equation. Astrophys. J. Lett.632, L53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J.646, 1358. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shen, Z., Diercke, A., Denker, C.: 2018, Calibration of full-disk He i 10830 ÅFiltergrams of the chromospheric telescope. Astron. Astrophys.339, 661. DOI . ADS .

    Article  Google Scholar 

  • Shibata, K., Nakamura, T., Matsumoto, T., Otsuji, K., Okamoto, T.J., Nishizuka, N., Kawate, T., Watanabe, H., Nagata, S., UeNo, S., Kitai, R., Nozawa, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Katsukawa, Y., Tarbell, T.D., Berger, T.E., Lites, B.W., Shine, R.A., Title, A.M.: 2007, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science318, 1591. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev.86, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Utz, D., del Toro Iniesta, J.C., Bellot Rubio, L.R., Jurčák, J., Martínez Pillet, V., Solanki, S.K., Schmidt, W.: 2014, The formation and disintegration of magnetic bright points observed by sunrise/IMaX. Astrophys. J.796, 79. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys.561, A29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verma, M., Denker, C., Balthasar, H., Kuckein, C., González Manrique, S.J., Sobotka, M., Bello González, N., Hoch, S., Diercke, A., Kummerow, P., Berkefeld, T., Collados, M., Feller, A., Hofmann, A., Kneer, F., Lagg, A., Löhner-Böttcher, J., Nicklas, H., Pastor Yabar, A., Schlichenmaier, R., Schmidt, D., Schmidt, W., Schubert, M., Sigwarth, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Horizontal flow fields in and around a small active region – the transition period between flux emergence and decay. Astron. Astrophys.596, A3. DOI . ADS .

    Article  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German vacuum tower telescope on Tenerife. New Astron. Rev.42, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2009, Coronal holes and open magnetic flux. Space Sci. Rev.144, 383. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.P. acknowledges support from Leibniz-Institut für Sonnenphysik (KIS) on funding, computational resources, and material for the creation and preparation of this manuscript. D. U., J. I. C. R., and K. K received funding for this research project from the FWF under project grant P27800. P.G., S.J.G.M., and J.K. acknowledge project VEGA 2/0048/20. This work is part of a collaboration between AISAS and AIP supported by the German Academic Exchange Service (DAAD) under project No. 57449420. C.D., C.K., I.K., and M.V. acknowledge support by grant DE 787/5-1 of the Deutsche Forschungsgemeinschaft (DFG). M.T. acknowledges funding by the Austrian Space Applications Programme of the Austrian Research Promotion Agency FFG (859729, SWAMI). The support by the European Commission Horizon 2020 Programs under grant agreements 824135 (SOLARNET) and 824064 (ESCAPE) are highly appreciated. Thanks to Y. Hanaoka for providing data from the infrared Stokes polarization full-disc images from the Solar Flare Telescope. Moreover, the authors want to acknowledge SDO/AIA and SDO/HMI Data Science Centers and Teams. Data were obtained during a joint GREGOR campaign with support by Hinode, IRIS, VTT, plus Chrotel. The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of KIS with AIP, and MPS as partners, and with contributions by the IAC and ASU. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners, which is operated by these agencies in cooperation with ESA and NSC (Norway). We acknowledge data use from ACE and Wind spacecraft instruments, and to STEREO as well. We acknowledge data use from WDC of Geomagnetism, Kyoto, and LMSAL SolarSoft. NASA Astrophysics Data System (ADS) has been used as bibliographic engine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Judith Palacios or Dominik Utz.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 1.1 MB)

Appendix

Appendix

The AIA 193 Å images used for the supplementary movie were processed by the noise adaptive fuzzy equalisation method (NAFE, Druckmüller, 2013) to enhance visibility of the fine structures. The two free parameters of the code are \(\gamma\) and w. They are used to control the brightness and level of enhancement of the processed image. For a detailed mathematical explanation of these parameters see Druckmüller (2013). In our case, we chose \(\gamma= 2.6\) and w = 0.25 for all processed images.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, J., Utz, D., Hofmeister, S. et al. Magnetic Flux Emergence in a Coronal Hole. Sol Phys 295, 64 (2020). https://doi.org/10.1007/s11207-020-01629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01629-9

Keywords

Navigation