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Abstract For the extrapolation of magnetic fields into the solar corona from measure-
ments taken in the photosphere (or chromosphere) force-free magnetic fields are typically
used. This does not take into account that the lower layers of the solar atmosphere are not
force-free. While some numerical extrapolation methods using magnetohydrostatic mag-
netic fields have been suggested, a complementary and numerically comparatively cheap
method is to use analytical magnetohydrostatic equilibria to extrapolate the magnetic field.
In this paper, we present a new family of solutions for a special class of analytical three-
dimensional magnetohydrostatic equilibria, which can be of use for such magnetic field
extrapolation. The new solutions allow for the more flexible modeling of a transition from
non-force-free to (linear) force-free magnetic fields. In particular, the height and width of
the region where this transition takes place can be specified by choosing appropriate model
parameters.

Keywords Magnetic fields, models - Magnetic fields, corona - Magnetic fields,
chromosphere - Magnetic fields, photosphere

1. Introduction

Modeling the magnetic field in the solar atmosphere is of great importance for our inter-
pretation of many of solar observations, in particular in the solar corona (e.g. Wiegelmann,
Thalmann, and Solanki, 2014). Because coronal magnetic fields cannot be measured rou-
tinely with the required accuracy, extrapolation methods with photospheric magnetic field
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measurements as boundary conditions are normally used, usually assuming that the mag-
netic field is force-free (see e.g. recent reviews by Wiegelmann and Sakurai, 2012; Régnier,
2013). In recent years measurements of the magnetic field in the chromosphere have also
become available (e.g. Harvey, 2012). An overview of measurements of photospheric and
chromospheric magnetic fields can, for example, be found in the paper by Lagg et al. (2017).

While the assumption of force-free magnetic fields is well satisfied in large parts of the
solar corona due to the low plasma 8, the lower parts of the solar atmosphere (chromosphere
and photosphere) can in general not be considered to be force-free (e.g. Metcalf ef al., 1995;
De Rosa et al., 2009; Wiegelmann, Thalmann, and Solanki, 2014) and hence magnetohydro-
static (MHS) models, including pressure and gravity, would be more appropriate for these
regions. Developing numerical extrapolation methods for the magnetostatic case has, for
example, been attempted in Wiegelmann and Neukirch (2006) (including pressure only),
Gilchrist and Wheatland (2013), and Zhu and Wiegelmann (2018).

These numerical approaches are usually computationally expensive. Hence, a comple-
mentary approach for including pressure and gravity forces in magnetic extrapolation, which
is computationally relatively cheap, would be to use analytical three-dimensional MHS equi-
librium solutions. Obviously, just as for 3D force-free fields only a limited number of analyt-
ical 3D MHS solutions suitable for magnetic field extrapolation are known, with the known
3D MHS solutions useful for extrapolation purposes being comparable in status to 3D lin-
ear force-free solutions. We emphasize that in order to find analytical solutions to the MHS
equations in 3D one has to make a number of assumptions, which may limit the applicability
of the method to some extent. Hence, this approach using analytical MHS equilibria has to
be regarded as an alternative method which allows one to get a reasonably fast extrapolation
method including a non-force-free part of the solar atmosphere, but not as a replacement for
the numerical approaches mentioned above.

Various aspects of the theory of analytical 3D MHS solutions have been developed in a
series of papers by Low (1982, 1984, 1985, 1991, 1992, 1993a,b, 2005) and Bogdan and
Low (1986), both in Cartesian' and in spherical geometry. Additions, extensions and appli-
cations of this work were provided by, for example, Neukirch (1995, 1997a,b), Neukirch
and Rastitter (1999), Petrie and Neukirch (2000), Neukirch (2009), Al-Salti, Neukirch, and
Ryan (2010), Al-Salti and Neukirch (2010), Gent et al. (2013), Gent, Fedun, and Erdélyi
(2014), MacTaggart et al. (2016) and Wilson and Neukirch (2018). A different, but less
general approach has been pursued by Osherovich (1985b,a).

Subsets of these three-dimensional MHS solutions have been used for modeling both
global solar magnetic field models, using spherical coordinates (e.g. Bagenal and Gibson,
1991; Gibson and Bagenal, 1995; Gibson, Bagenal, and Low, 1996; Zhao and Hoeksema,
1993, 1994; Zhao, Hoeksema, and Scherrer, 2000; Ruan ez al., 2008), and local solar coro-
nal structures, using Cartesian or cylindrical coordinates (e.g. Aulanier et al., 1999, 1998;
Petrie, 2000; Gent et al., 2013; Gent, Fedun, and Erdélyi, 2014; Wiegelmann et al., 2015,
2017). Other applications include, for example, models of the magnetic fields of stars (e.g.
MacTaggart et al., 2016) and their interaction with exoplanets (e.g. Lanza, 2008, 2009).
In this paper, we shall focus on 3D MHS solutions in Cartesian geometry, i.e. assuming a
constant gravitational force, which we take to point in the negative z-direction (hence the
coordinate z has the meaning of height above the photosphere from now on).

If we follow the argument that small plasma-8 should imply nearly force-free magnetic
fields (and vice versa), there should be a marked transition from non-force-free to force-free

UIn this paper, we designate as “Cartesian” solutions all solutions that use a constant gravitational force along
one Cartesian direction; this includes solutions that are actually formulated in cylindrical polar coordinates.
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fields with increasing height when moving from the photosphere through the chromosphere
into the corona. Of the currently known solutions the one which comes closest to showing
this feature has been suggested by Low (1991, 1992) and has an exponential height profile
of the non-force-free current density. This solution has been used repeatedly for modeling
purposes (see e.g. Aulanier et al., 1998, 1999; Wiegelmann et al., 2015, 2017). It is the
aim of this paper to provide another set of 3D MHS solutions whose non-force-free current
density has a more flexible dependence on height.

A general problem which arises in the use of this class of 3D MHS solutions for extrap-
olation purposes is that one has to be careful to avoid generating regions of negative plasma
pressure or density (see e.g. Petrie and Neukirch, 2000; Petrie, 2000; Gent et al., 2013). This
problem is caused by the mathematical structure of the expressions for the plasma pressure
and density, both of which are written as the difference between a positive background
pressure and density, and potentially negative terms, depending on the a priori unknown
magnetic field solution. In theory, this problem can always be solved by either increasing
the background plasma pressure and density or by decreasing the amplitude of the negative
terms. In practice, the former often leads to an unrealistically high value of the plasma-3
throughout the model domain, whereas the latter can cause the loss of meaningful spatial
structures in plasma pressure and density. Being able to control the solution structure better
should be of advantage for modeling purposes and may also have a (positive) bearing on the
problem of keeping plasma pressure and density positive everywhere.

The structure of the paper is as follows. In Section 2 we briefly summarize the basic
theory of the particular class of 3D MHS solutions we use in this paper and then present the
calculation leading to the new set of solutions in Section 3. In Section 4, we present some
example solutions and in Section 5 a discussion and conclusions.

2. Basic Theory

The MHS equations are given by

jxB—Vp—pV¥ =0, Y]
VxB=uj, (@)
V-B=0. 3)

Here B denotes the magnetic field, j the current density, p the plasma pressure, p the mass
density, W the gravitational potential and 1 is the permeability of free space.

In this paper we use Cartesian geometry with a constant gravitational force pointing in
the negative z-direction, i.e. ¥ = gz with g being the constant gravitational acceleration.
The general theory for this case was first developed by Low (1991, 1992). Later, Neukirch
and Rastitter (1999) presented a somewhat simpler, albeit equivalent, formulation and we
will follow their approach in the following brief summary. The main assumption made is
that the current density can be written in the form

woj =aB +V x (FZ). 4)

It can be shown (Low, 1991; Neukirch and Rastitter, 1999) that F' has to be a function of
B, and z. The form for F suggested by Low (1991, 1992) was

F=f(z)B, (&)
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i.e. linear in B, but with an arbitrary function f(z). Clearly, the function F is responsible for
the non-force-free, i.e. perpendicular, part of the current density in this approach, although it
should be noted that it will generally also contribute to the parallel part of the current density.
Hence, the choice of the free function f(z) influences the dependence of the non-force-free
part of the current density with height.

Choosing F to be a linear in B, leads to a linear partial differential equation for B, (e.g.
Low, 1991). Alternatively, representing the magnetic field B in the form (e.g. Nakagawa
and Raadu, 1972)

B=V x[Vx (92)]+V x (02), (6)

one can show that (Neukirch and Rastitter, 1999)
AD — f(2)A,d +a’d =0, 7

where
P 92D 9D

A= —+ — +— 8
0xz  9yr 09z ©
is the Laplace operator, and
Ay® = 0o + o ©)
T 9x2 dy?
is the two-dimensional Laplace operator in x and y. Additionally, one finds that
O=u0d, (10)
and hence that
0’0 N AP (11
* = oxaz ¢ ay’
B GRS AP (12)
= —— s
YT 9yaz dax
5 — e 9’ 13)
ST ax2 ay?
The plasma pressure and the plasma density are given by the expressions
BZ
P=ro@ =[5 =, (14)
Ho
1/ d df B?
p=—<—ﬁ+—f : +iB-VBZ), (15)
g\ dz  dz2uo o

where g is the constant gravitational acceleration. The plasma temperature can be deter-
mined from the plasma density and pressure via an equation of state, for example, the ideal
gas law
ro b
kgp
with i the mean atomic weight of the plasma and kg the Boltzmann constant.

(16)
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3. A New Family of Solutions

Solutions to Equation 7 have been found for several different choices of the function f(z),
using either separation of variables (see e.g. Low, 1991) or the Green’s function method
(e.g. Petrie and Neukirch, 2000). We will use separation of variables in this paper. Leaving
f (z) unspecified for the time being, separation of variables leads to

o0
b= // ®(z; ky, ky) explithex + kyy)| dk,dky (17)
—00

in Cartesian coordinates x, y, z with the equation for 1) being

d’o B
d—22+[a2—k2+k2f(z)]q>:0, (18)

where k? = kﬁ + k%. In Equation 18 we have suppressed the parametric dependence of ® on
k. and k, in the Cartesian coordinate case. At this point it is also convenient to normalize
all coordinates by a typical length scale L, and regard « as the normalized oL and k as kL
from now on.

In practical applications, for example using potential or linear force-free magnetic fields
to extrapolate photospheric field measurements, different versions of periodic boundary con-
ditions are often imposed (e.g. Seehafer, 1978; Alissandrakis, 1981; Otto, Biichner, and
Nikutowski, 2007). If periodic boundary conditions in x and y are imposed k,, k, take on
discrete values and the integrals in Equation 17 are replaced by infinite sums (which are
then truncated in applications to observational data). With such boundary conditions Fast
Fourier transformation (FFT) techniques can be used to implement the boundary conditions
very effectively.

As pointed out by Neukirch (1995) Equation 18 is analogous to a one-dimensional
Schrédinger equation with the potential —k? f(z) with energy eigenvalue —(a® — k2) (or
alternatively —k2[ f(z) — 1] with energy eigenvalue —a?). Thus solutions to Equation 18
are known for a large class of functions f(z), but not all of these will be of use for mod-
eling solar magnetic fields. Examples of functions f(z) which have been used for mod-
eling solar magnetic fields are f(z) = fy =constant, for which the solutions for ® are
exponential functions (e.g. Neukirch, 1997a; Petrie, 2000; Petrie and Neukirch, 2000),
and f(z) = aexp(—«kz), with Bessel functions with an argument that is proportional to
exp(—kz/2) as solutions (e.g. Low, 1991, 1992; Aulanier ef al., 1998, 1999).

In this paper we aim to find solutions to Equations 7 or 18, respectively, which show
a transition from non-force-free behavior to (linear) force-free behavior as the height z in-
creases from the photosphere through the chromosphere into the corona. Hence, we would
like f(z) to possibly decrease from non-zero values to a value close to zero when reaching
the corona. While it is also in principle possible to model such a behavior with the exponen-
tial f(z) mentioned above, the transition is only controlled by the parameter «. Because we
would like to be able to control both the height at which the transition from non-force-free
to force-free fields happens and the range in height over which this happens we here suggest
to use the function

f(z):a[1 —btanh(Z;ZZ())], (19)
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Figure 1 The shape of f(z) [

(solid line) defined in Equation | ... f2) =1,
1.9. ‘Also shown are _the two - - —f(2) = a-exp(—«2)
hm.mng cases described in the f(z) = a-[1 — b-tanh((z—z,)/A2)]
main text.
e
N
N
N

with a, b, zp and Az real parameters. The parameters a and b are dimensionless and we
assume a > 0 and 1 > b > 0 in this paper. At z =0 we have

20

f(O):a[l—l—btanh(—)] (20)
Az

The parameters a and b control the overall magnitude of f in the regimes (z — zo)/
Az < 0and (z —z0)/Az > 0. It is easy to see that f — a(1 + b) for (z — z9)/Az < 0 and
f — a(l —b) for (z — z9)/Az > 0. The parameter zy controls where this transition takes
place and the parameter Az is the length scale over which the transition happens. We see that
f — 0for (z —z9)/Az > 0if b =1 is chosen. This means that any perpendicular electric
currents go to zero above the region in which the transition happens and the magnetic field
becomes a (linear) force-free field.

We remark that the form of f(z) in Equation 19 includes the possibility of f(z) = fo =
constant, by choosing b = 0. As discussed above, for this special case the z-dependence of
the solutions is given by exponential functions (e.g. Neukirch, 1997a; Petrie, 2000; Petrie
and Neukirch, 2000). In principle, Equation 19 also includes the case of an exponentially
decaying function of z (e.g. Low, 1991) by choosing b = 1 and letting

lim aexp(2z0/Az) =a > 0. (21)
70— —00

As stated above, in this case the z-dependence is given by Bessel functions with exponential
arguments of the form exp(—«z/2), with x/2 = 1/(Az) in our limit (see e.g. Low, 1991).
However, as one can see from the expression inside the limit, this case combines two of
the parameters of f into one parameter a and hence has less flexibility in applications. Al-
though, as discussed before, the model with an exponential f(z) also allows for a transition
from non-force-free to force-free fields one can only control the length scale over which this
happens, but one does not have an additional specific height at which this happens such as
zo in the f considered in this paper. We show example plots of the three different forms of
f(z) discussed above in Figure 1.
Substituting the function f(z) given in Equation 19 into Equation 18 we obtain

d*o - -
FE [az—kz(l —a>—k2abtanh(ZA;°)]q>:o. (22)

@ Springer



3D MHS Equilibria for Extrapolation Page 7 of 18 171

Making use of the coordinate transformation

_1 Z—20
n_z[l—tanh< = )] 23)

with 0 < 5 < 1, we can transform Equation 22 into the differential equation

d2c1>+<1 1)d<i>+(C1 C2> ® —o 24)
dn? n l—n)dy n 1-n)nd-n 7
where
1 .2 -2
c1=1[1< (1—a+ab)—a*], (25)
1.-
C, = Z[k2(1 —a—ab) —&*], (26)

with k = kAz and & = @ Az. Equation 24 can be solved using the hypergeometric function
2Fi(a, b, c; z) (see e.g. Abramowitz and Stegun, 1965; Olver et al., 2010; NIST Digital
Library of Mathematical Functions, 2014) in the form

S =A0—n)" JFi(y +8+1,y+68,28+1;1n)
+ By (L—n) 2Fi(y =8+ 1,y — 8,1 -28; 1), 27)

with y = /C,, § = 4/C1, and A, B constants to be determined by boundary conditions
at z = Zmin (here we take zy,in = 0) and z = zy.x. For example, if we want the solution to
tend to zero as z — oo (n — 0), we have to choose B = 0. The other coefficient A will be
determined by the boundary condition at z = zy,;; = 0 in the same way as in the potential
or linear force-free magnetic field case. The only difference is the functional dependence of
the individual modes on z.

We notice that for given values of a, b and & the parameters C; and C, become negative
for small k (in particular C; < 0 if k< a@?/[1 —a(l —b)] and C, < 0 when k< a’/[1—
a(1l + b)]). This implies that y, § or both become imaginary. The change in nature of the
solution is similar to the change from exponential to trigonometric in the linear force-free
case and while this can in principle be incorporated into a Green’s function approach (for
a discussion see e.g. Chiu and Hilton, 1977; Wheatland, 1999; Petrie and Lothian, 2003;
Priest, 2014) one usually has to impose restrictions on the values of a, b and « in the case
with periodic boundary conditions and discrete Fourier modes. As in the linear force-free
case the specific bounds are determined by the smallest value of the wave vector k2. We will
discuss an example in Section 4.

4. Illustrative Examples

Instead of using an arbitrary magnetogram we investigate the effects of the solution parame-
ters on the structure of the magnetic field and the plasma pressure, density and temperature,
by using a relatively simple, doubly periodic example which allows us to control the shape
of the bottom boundary conditions and hence enables us to undertake a study of the solutions
that highlights the features of the solutions more clearly.

@ Springer
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(a) (b)

ABXS ABXS

Figure 2 Surface plot of the B;-component of the magnetic field at z = 0 used for the examples
in this paper. Panel (a) shows a plot of the exact expression 28 and panel (b) an approximation
based on a Fourier expansion using ten Fourier modes. The parameter values used in this plot are
Ayl = [yl = —flx2 = —fy2 = 1.2/m ~ 0.382 and kx| = kyp = ky] = kyp = 10. The maximum value
of |Bz|/ By in this plot is & exp(2/t,1)/[271g (kx| )I* = 1.55. The difference between the exact plot and the
ten-mode approximation is of the order of 1073,

To achieve this we will use the following boundary condition for B, at z =0:

expliy1 COS(X — fix1)] explicys cos(y — fiy1)]
2mlo(ky1) 2mlo(iy1)

Bz(x7 yvo) = BO{

 explxa cos(E — )] expliy2 cos(F — jiyo)] } o8)

21 Iy (kx2) 271y (icy2)

This choice is based on a special case of the bivariate von Mises distribution which is used,
for example, in directional statistics (see e.g. Mardia and Jupp, 1999) and we combine two
of these functions, one with a positive sign and one with a negative sign, to balance the
magnetic flux through the lower boundary. Here X = 7x /L and y = wy/L, with the domain
size in the x- and y-directions given by —1 < X, ¥ < 1. All other quantities with a tilde that
are directly related to length scales are also normalized by L. Furthermore, By is a reference
magnetic field value, the k;; (> 0) values determine the width of the flux distribution, with
larger k;; values making the width to smaller, the fi;; values specify the positions of the max-
imum or minimum of the magnetic flux distribution. The function Iy(x) is a modified Bessel
function of the first kind (see e.g. Abramowitz and Stegun, 1965; Olver et al., 2010; NIST
Digital Library of Mathematical Functions, 2014). The denominator is included to normal-
ize the integral of the bivariate von Mises distribution over the x—y box to unity, so that
the positive and the negative magnetic flux through the bottom boundary cancel exactly and
the total magnetic flux through the bottom boundary vanishes, independently of the values
chosen for &;; and [i;;. The remaining boundary condition imposed is B, — 0 as z — oo.

The function 28 is periodic in the x- and the y-direction and can easily be expanded into
a Fourier series, which allows us to find the general solution for these boundary conditions
without problems (for mathematical details see Appendix A). We show surface plots of the
exact expression 28 and an expansion based on the first ten Fourier modes in both x and y in
Figure 2. The parameter values used in this plot are fiy; = fly] = —fixa = —flyo = 1.2/m ~
0.382 and k| = Kkx» = ky1 = ky» = 10. The maximum difference between the exact plot and
the ten-mode approximation is of the order of 10=> and hence the ten-mode approximation
is considered to be sufficiently accurate for this choice of parameter values.

For the MHS examples we will be showing we have used the values zop = 0.2L, Az =
0.1z and b = 1.0, which means that for z > z, the magnetic field tends towards a potential
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- ] g E
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Figure 3 Field line plots for the boundary conditions shown in Figure 2. The box is a cube with size
—1<x/L,y/L <1,0<z/L <2.Panel (a) shows the potential magnetic field (a = 0, & = 0), panel (b)
a linear force-free magnetic field (a =0, @ = 0.5) and panels (c¢) and (d) two MHS solutions with a = 0.24,
& = 0.5, in panel (¢) and a = 0.48, @ = 0.5, in panel (d). In each panel we show field lines traced from the
same foot points located on two concentric circles around the position of the positive polarity maximum. The
field lines are traced until the encounter the lower boundary, with the periodic boundary conditions taken into
account.

state (in the case o = 0) or a linear force-free state (if o # 0). By choosing b < 1.0 one
could retain a controlled level of MHS behavior of the magnetic field above zo.

We will present solutions for different values of the parameter a below the maximum
value for a, which is given by

-t
Aoy = =20 —— 29
ki (1+b) @

As discussed in Section 3 the condition 29 follows directly from the definition of y and for
given b, & and minimum value of k? corresponds to the value of a at which ¥ becomes imag-
inary. One can also see from Equation 29 that to have dp, > 0 one has to have k2, > o
which is the condition for linear force-free field modes to drop off exponentially with height.

We present magnetic field line plots for four different parameter combinations in Fig-

ures 3 and 4. For reference we present the potential magnetic field for the given bound-
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Figure 4 The same field line
plots as in Figure 3, but viewed
along the y-direction (i.e.
projected onto the x—z-plane). As
in Figure 3 we have

—1 <x/L <1 (horizontal
direction) and 0 < z/L <2
(vertical direction). The field
lines in the MHS cases (panels
(¢) and (d)) show clear signs of
steepening below

z/L = zo/L = 0.2 (second tick
mark on the vertical z-axis), as
expected.

ADAS

| 7400 I L B R B

(b)

NI AN

ASAS

Figure 5 The same field line plots as in Figure 3, but with 0 < z < 2z to make the difference between the

various cases more obvious.

ary conditions (a = 0.0, « = 0.0) in panel (a) and the linear force-free magnetic field with
o =0.5 (a =0) in panel (b) of Figures 3 and 4. We compare these two cases with two field
line plots for non-zero values of a, one roughly half of @y, and the other 0.99 an,x. To
highlight the region where the field lines change the most between the different cases, we

also present the same field line plots on a domain with z < 2z, in Figures 5 and 6.

@ Springer



3D MHS Equilibria for Extrapolation Page 11 of 18 171

NZEANNEEIA
NAIANY W

Figure 6 The same field line plots as in Figure 5, but viewed along the y-direction (i.e. projected onto the
x—z-plane).

As expected, the main difference between the linear force-free case and the two MHS
cases can be seen for z < zo. This is particularly obvious in Figure 4, in which a consider-
able steepening of the field lines is noticeable in the region below zo = 0.2. This change in
the field line behavior can be attributed to the value of the smallest y in the series expansion
approaching zero which leads to a less rapid decrease of the lowest order mode with height
for z < zy. Due to our choice of a relatively small value for Az this behavior changes rela-
tively sharply around z = zy and hence no major changes in the magnetic field can be seen
at heights above zy. The magnetic field above z; is therefore basically identical to a linear
force-free field.

In Figures 7 and 8 we show the spatial variation of

B2

A =—f@5 (30)
and

2
s B

az 20 + MOB VBZ). (31)
In these two figures Ap is normalized by B,znax /1o, where B, is the maximum value of
B, at z =0, and Ap is normalized by Bﬁm /(rogL). Figure 7 shows the variation of Ap
and Ap with height for 0 < z < 2z at the position of the maximum of |B,| on the lower
boundary, i.e. x = y = fi,; & —0.382. We have chosen these x and y-coordinates because
one expects the largest variations of Ap and Ap to happen there. As one can see both Ap
and Ap have negative values and they generally increase with z from their lowest value at
z = 0 until approaching zero around z = zo, as expected. The increase of the amplitude of
Ap and Ap and their slower increase with z with increasing value of a is also obvious. The
latter is caused by the Fourier modes, in particular the lowest order mode, to decrease less
fast with height when a increases. Although a detailed analysis is a bit more complicated,
one can roughly regard the z dependence of each mode as being given by exp(—2yz) below
and exp(—23z) above z & zp. AS @ — amax We have y — 0 for the lowest order mode and
hence the mode decreases more slowly with z.

We also note that Ap has a local maximum and minimum just below z. This is caused
by the % term in Ap, which is largest at zo. This term becomes the larger the sharper the
gradient of f at z = z( is made, i.e. the smaller Az becomes (the derivative actually tends to
a §-function in the limit Az — 0 in which case the tanh-function tends to a step function).
For this reason one should not attempt to make Az too small.

To keep the pressure and density positive everywhere we need to make the background

pressure po(z) and the corresponding background density py(z) = ; 4o positive and larger
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Figure 7 Plots of the variation (a) x=-0.38, y=-0.38, a= 0.50, z,= 0.20, Az= 0.02
with height z of the pressure 0.1 I I T

(panel (a)) and density (panel

(b)) deviation from a stratified 0.0

background atmosphere for
a=0.5,z9/L=0.2 and

Az =0.1z(, and three different
values of a (a = 0.0, 0.24 and
0.48). The x- and y-coordinates
of these plots are the position of
the maximum value of | B;| on 03
the lower boundary,

x/L=puy/m~—0.38,

a= 048

Ap
<)
)

y/L =y /7~ —0.38. 0.4 ]
05 | | |
0.0 0.1 0.2 0.3 0.4
z/L
(b) x=-0.38, y=-0.38, a= 0.50, z,= 0.20, Az= 0.02

5 | | |
0.0 0.1 0.2 0.3 0.4

z}L

at every height z than the minimum values of Ap and Ap for all x, y values at the same
height (see e.g. Wiegelmann et al., 2015). As one can see from Figures 7 and 8 for this new
solution family this condition is only needed to be satisfied for z < z in the case b = 1.0
because the contributions to the pressure and the density by Ap and Ap become arbitrarily
small very fast for z > zo. In Figure 9 we show a comparison of variation with z of the
absolute values of Ap and Ap (again at x = y = ji,; & —0.382), for a solution of the family
presented in this paper and a solution for f(z) = aexp(—«z) (Low, 1991). We remark that in
order to start with the same pressure at z = 0 one has to set a = 2a. We have also chosen the
inverse length scale k = 1/z¢, corresponding to the height of the transition of the solutions
presented in this paper from non-force-free to force-free. These plots clearly show that while
for both sets of solutions the pressure and density deviations decrease rapidly for z > z, the
decrease is much more rapid for our solutions, which, as already stated above, reduces the
need for artificially adjusting the stratified background atmosphere in this region to avoid
negative density or pressure values.

One could of course argue that by increasing «, i.e. reducing the length scale over which
the exponential f(z) and hence the pressure and density deviations decay, one could in prin-
ciple achieve a similar effect for the exponential f(z). However, for this f(z) this would also
decrease the effect of the non-force-free part of the current density in the regions below z,
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<
ABXS

Figure 8 Surface plots of Ap and Ap at the heights z =0 ((a) and (b)), z =z0/2 ((¢) and (d)) and z =z
((e) and (f)), showing the variation of pressure and density in the x- and y-directions.

and hence reduce the effect of the non-force-free part of the current density, which some-
what defeats the purpose of using such a magnetic field model for extrapolation in the first
place. Because the solutions presented in this paper can guarantee a very rapid transition to
a linear force-free magnetic field, but still allow us to control the region z < zo separately
this problem does not arise in the new family of solutions.
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Figure 9 Comparison of the
variation with height z of the

()

x=-0.38, y=-0.38, a= 0.50, z,= 0.20, Az= 0.02

T

absolute values of the pressure
(panel (a)) and density (panel
(b)) deviation from a stratified
background atmosphere for the
solutions presented in this paper
(solid lines) and for a solution
with an exponential f(z) (Low,
1991). The plots have a
logarithmic y-axis to emphasize
the difference of the quantities of
the solutions, especially the much
faster drop-off of the solutions
presented in this paper above the
transition height z(. The
parameters chosen for this plot
are « =0.5,a =048,

z0/L =0.2 and Az =0.1z¢ for
the solid line, whereas we have

1

1
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5. Discussion and Conclusions

We have presented a new family of three-dimensional MHS solutions based on the general
theory originally developed by Low et al. (e.g. Low, 1985; Bogdan and Low, 1986; Low,
1991, 1992), although we have used the alternative mathematical formulation by Neukirch
and Rastitter (1999). The main motivation for trying to find these solutions was that they are
of potential importance for analytical non-force-free magnetic field extrapolation methods.
The new family of solutions allows for the MHS nature of the equilibria to be limited to
a domain below a specific pre-determined height with a smooth transition to a potential or
linear force-free solution possible above that height. This is achieved by choosing one of the
fundamental free functions of the theory in the form of a hyperbolic tangent. It is important
to emphasize that this is just one possibility of choosing the parameters for this equilibrium
family and that MHS solutions in the full domain are also possible.

While such a transition is also possible with the free function mentioned above chosen
in the form a decaying exponential function (e.g. Low, 1991, 1992; Aulanier et al., 1998,
1999; Wiegelmann et al., 2015, 2017), the new solution family allows much more control
over the transition from the MHS domain to the non-MHS domain, in particular regarding
the departures of the plasma pressure and density from a stratified atmosphere. This property
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can be of importance for keeping the plasma pressure and density of the solution positive and
should make this equilibrium family interesting for magnetic field extrapolation purposes
when a non-force-free layer has to be included. We emphasize that we do not regard these
analytical extrapolation methods as replacements for numerical methods for non-force-free
magnetic field extrapolation, but as a numerically relatively cheap complementary method,
which could be used as an initial “quick look” tool. Obviously, the limitations that arise from
having to make a number of strong assumptions to allow analytical progress have to born in
mind when applying these methods.
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Appendix A: Fourier Decomposition of Example Magnetic Field

Using the identity (e.g. Abramowitz and Stegun, 1965; Olver et al., 2010; NIST Digital
Library of Mathematical Functions, 2014)

exp[x cos(y)] =Io(x) +2 Z I, (x) cos(ny), (32)

n=1

plus trigonometric identities, it is straightforward (albeit a bit tedious) to write the expression
for B,(x, y,0) in Equation 28 in the form

oo o0

B.(x,y,0) =Y > [y sin(nx) sin(my) + by, sin(nx) cos(my)

n=1 m=1

+ Cpm cO8(nX) sin(my) + d,,,, cos(nx) cos(my)

+ Y [buo sin(n¥) + dyo cos(n)]

+ ) [com sin(m3) + don cos(m3)], (33)

m=1
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with
A = %[1 Pl SIN(R L) SiN(MLy1) — 1o SIN(N L) SiD(M L) ], (34)
by = % (L1 m Sin(nfi1) €OS(miy1) — Lyam sin(nfia) cos(miiy)],  (35)
G = 2t €05 S0 L) — oSt sinmi )], (36)
dum = %[1 FLm €08(nfix1) COS(Miy1) — I p2,um COS(Nfix2) COS(mMfLy2) ], (37)

where the factors I; ,,, are defined as

fi,nm =

In ~xi Im~i = =
(Kxi) (Ky)x{l form=0,n>00rn=0,m >0, (38)

20o (R (K ;) 2 form>0andn > 0.

The corresponding series for B, is given by

B.(x,y,0) = ZZ D, (0)[ @ SIN(1F) SIN(M ) + by SIN(1F) COS(MF)

n=1 m=1

~+ Cum cos(nx) sin(my) + dy cOS(NX) cos(m)';)]

+ Z kio q_Dnm (0) [EnO sm(ni) + gn() COS(I’l)E)]

n=1

+ Zk D, (0)[Com sin(my) + do cos(m3)], 39)

m=1

with ®,,,(z) the solution of Equation 22 for the wave vector

2

k2

=17 (n*+m?). (40)

‘We remark that n or m are allowed to take on the value 0, but not both at the same time.
Comparing Equations 33 and 39 one can easily see that a,,, = @,/ (knm m(0)) etc.
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