CORRECTION

Correction to: On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux Ropes Undergoing Isotropic Expansion

Daniel Benjamín Berdichevsky¹

Published online: 28 November 2019 © Springer Nature B.V. 2019

Correction to: Solar Phys. (2013) 284:245 – 259 https://doi.org/10.1007/s11207-012-0176-5

When expressing the steady current density \mathbf{J}_{c} (convection-current) it is easy to check that, up to $O(R_{FRcore}/R_{cFR})^2$, its evaluation ($\mathbf{J}_{c} = \nabla \times \mathbf{H}$, see *e.g.* Jackson, 1963) gives an axial component that is

$$J_{cx}(modified) = A(t)/\mu_0 \left\{ H B_x \left[1 - 2\rho/R_{cFR} \left(\cos(\varphi) - |\sin(\varphi)| \right) \right] + \Delta j_{cx} \right\}$$

with

$$\Delta j_{\rm cx} = \rho / R_{\rm cFR} (\cos(\varphi) - |\sin(\varphi)|) J_1 (A(t, \rho, \varphi)) / A(t, \rho, \varphi)$$

correcting/completing the J_c expression presented before Equation 8 in the paper. The meaning for each symbol used follows:

H = +1 or -1) is the handedness of the flux rope (FR).

 $\mathbf{H} (= \mathbf{B}/\mu_0)$ is the magnetic field intensity, and \mathbf{B} the magnetic field density.

 μ_0 is the magnetic permeability of the vacuum. (We assume no magnetization.)

 R_{FRcore} is the cross section radius of the FR modeled.

 $R_{\rm cFR}$ is the distance from the center of the Sun to the axis of the flux rope modeled.

 $A(t) = j_0/R_{\rm FRcore}$, where j_0 is the first node of the grade 0 cylindrical Bessel function $\mathcal{J}_0(A(t, \rho, \varphi))$ ' of the first kind.

Flux-Rope Structure of Coronal Mass Ejections Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

The original article can be found online at https://doi.org/10.1007/s11207-012-0176-5.

D.B. Berdichevsky dbberdi@gmail.com

College Park, MD 20740-4111, USA

167 Page 2 of 2 D.B. Berdichevsky

 $B_x = B_0(t_0/t)^2 \mathcal{J}_0(A(t, \rho, \varphi))$ is the axial field of the flux-rope, where B_0 is the magnetic field strength parameter in the MHD flux-rope solution at the initial time t_0 in its evolution. Finally, the argument of the Bessel function $\mathcal{J}_{0(1)}$ is

$$A(t, \rho, \varphi) = A(t)\rho \left[1 + \rho/R_{cFR}(\cos(\varphi) - |\sin(\varphi)|)\right],$$

which is given in Equation 7 of the paper. (ρ, φ) are polar radial and angle coordinates.)

The other two corrected components are

$$\begin{split} J_{c\rho} &= -A(t)/\mu_0 H B_{\phi} \rho/R_{\text{cFR}} \big[\sin(\varphi) + \partial_{\varphi} |\sin(\varphi)| \big] \\ J_{c\phi} &= A(t)/\mu_0 H B_{\phi} \big[1 - 2\rho/R_{\text{cFR}} \big(\cos(\varphi) - |\sin(\varphi)| \big) \big] \end{split}$$

where $B_{\phi} = H B_0 (t_0/t)^2 J_1 (A(t, \rho, \varphi))$ is the polar component of the magnetic field density **B**.

The relevance of the previously missing term Δj_{cx} is that it dominates the axial current contribution within the FR plasma located in the region defined by $0.93R_{\rm FRcore} < \rho < 1.07R_{\rm FRcore}$.

It is straightforward to check that $\mathbf{div}(\mathbf{J}_c) = 0$ is well satisfied up to n = 1 in a perturbation expansion in ε^n of our 3D MHD analytical solution of a FR evolution, where $\varepsilon \equiv R_{\text{FRcore}}/R_{\text{cFR}}$ is a small quantity.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Jackson, D.: 1963, Classical Electrodynamics, Section 5.8, 3rd edn. Wiley, New York.

