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Abstract Solar activity slowly and irregularly decreases from the first spotless day (FSD) in
the declining phase of the old sunspot cycle and systematically, but also in an irregular way,
increases to the new cycle maximum after the last spotless day (LSD). The time interval
between the first and the last spotless day can be called the passive interval (PI), while the
time interval from the last spotless day to the first one after the new cycle maximum is the
related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside
AIs. In this article, we study the properties of passive and active intervals to determine the
relation between them. We have found that some properties of PIs, and related AIs, differ
significantly between two group of solar cycles; this has allowed us to classify Cycles 8 – 15
as passive cycles, and Cycles 17 – 23 as active ones. We conclude that the solar activity in
the PI declining phase (a descending phase of the previous cycle) determines the strength
of the approaching maximum in the case of active cycles, while the activity of the PI rising
phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles.
This can have implications for solar dynamo models. Our approach indicates the important
role of solar activity during the declining and the rising phases of the solar-cycle minimum.

Keywords Spotless days · Solar phase tracking · Waldmeier effect · Prediction

1. Introduction

In a recently published paper (Zięba and Nieckarz, 2012), we have shown that the relations
based on the position of the longest spotless segment (LSS, the longest sequence of con-
secutive days when no spots were observed) with respect to locations of some characteristic
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extreme points in the daily sunspot numbers are statistically significant and have a predictive
value. This indicates that the passive interval (PI) as well as the location and length of the
LSS can be useful for studying of the physical processes responsible for the solar variabil-
ity, especially since their values do not result from any smoothing procedure but are really
observed.

In this article, we examine relationships between various parameters characterizing the
passive and active intervals whose definition was given by Zięba et al. (2006). The active
interval (AI) complements the passive interval in the sense that its covers also the time
interval between the border spotless days but includes the cycle maximum. The proposed
decomposition of sunspot time series into passive and active intervals is unambiguous. PI
and related AI carry the same number, which is assigned from the number of the cycle of
which minimum and maximum are inside of these intervals. Each passive interval and the
active interval occurring after it form the ordered pair PI–AI. As the classically understood
solar cycle and the pair PI–AI with the same number include the same maximum phase of
solar cycle we use the name cycle also for the ordered pair PI–AI.

The basis for our research was and is the daily international sunspot number (ISN) se-
ries provided by the Solar Influences Data Center (SIDC, http://sidc.oma.be/) of the Royal
Observatory of Belgium. Until 1980 the ISN, better known as the Wolf or Zürich number,
was compiled by the Swiss Federal Observatory. In this work we use the daily ISN series
covering the period between January 1830 and June 2012. This period includes the decline
phase of Cycle 7, Cycles 8 – 23 and the initial rise of Cycle 24. Cycles 7 – 9 include the era
of Schwabe’s records with a large number of days without observations (Wilson, 1998). Cy-
cles 10, 11, and the rise of Cycle 12 belong to Wolf’s era (years 1848 – 1882), while those
of Cycles 13 – 21 belong to the Zürich era. Since 1981, when the International Astronomical
Union World Data Center for sunspot numbers was transferred from the Zürich Observa-
tory to Brussels, a new approach for calculation of the sunspot number has been established
(Clette et al., 2007). The intrinsic nature and accuracy for four main eras of sunspot number
observations are different in the ISN time series and this is the reason for treating the daily
ISN series with care. However, we have shown in Zięba and Nieckarz (2012) that differences
arising from heterogeneous ISN data among Cycles 8 – 23 can be neglected.

This article is organized as follows. In Section 2 we describe characteristic points of
the daily ISN series and define various time intervals whose lengths and amplitudes are
studied in Sections 3 and 4. Next, in Section 5 we discuss relations between lengths (periods)
and amplitudes (strength) of the intervals considered, including the Waldmeier effect. Some
predictions for Cycle 24 are given in Section 6, and Section 7 comprises a summary and a
discussion.

2. Definition of Characteristic Points and Time Intervals

The passive interval (PI) is defined as the time interval (denoted ‘00’) from the first spotless
day (FSD) after an old cycle maximum to the last spotless day (LSD) before the next new
cycle maximum (Zięba et al., 2006; Zięba and Nieckarz, 2012). All spotless days occur
within the passive intervals. For each passive interval we have a minimum of activity (cycle
minimum) and the occurrence of the longest spotless segment (LSS). We accept the center
of LSS as the distinctive point of the PI.

The idea of using spotless days to find the minimum of activity was suggested by Wald-
meier (1961) and McKinnon (1987). Wilson (1995) proposed to use the first spotless day as

http://sidc.oma.be/
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Figure 1 The daily values of ISN drawn for passive (PI) and active (AI) time intervals of Cycles 14, 15, 22,
and 23. The black curve represents the data smoothed with the Gaussian filter of full width at half maximum
(FWHM) of 810 days. LSS stands for the longest spotless segment; it is the longest sequence of consecutive
days when no spots were observed. The positions of the characteristic extreme points near sunspot minimum
and maxima are denoted together with various time intervals used in this article and defined in Table 1. The
numbers are enumerated from 1 January 1818 (for dates see Table 2).

a predictor for the sunspot minimum. The possible connections of spotless days with the tim-
ing and length of the solar cycle were more accurately examined by Wilson and Hathaway
(2005, 2006, 2007).

The time interval (denoted ‘xx’), between the last spotless day before the upcoming new
cycle maximum and the first spotless day after it, includes all the days when sunspots are
observed and we called it the active interval (AI). The day with the highest sunspot number
(RP, the day with the maximum number of sunspots in a given cycle) is inside AI and we
consider its position as an AI distinctive point.

Figure 1(a) presents the PI and AI for Cycles 22 and 23, while Figure 1(b) shows the
same for Cycles 14 and 15. Various time intervals used in this article are also marked. They
are defined in Table 1, while Table 2 lists the positions of the distinctive points within each
solar cycle and the calculated lengths of intervals. Comparison of Cycle 22 (see Figure 1(a))
with Cycle 14 (see Figure 1(b)) shows the clear difference between the passive and active
intervals related to these cycles. Cycle 22 is untypical because inside its AI there are three
peaks, almost equal in size: 296, 295, and 300. The active interval of Cycle 14 is the shortest
one (xx = 445) from all the cycles.

The definition of PI and AI, as well as the location of the LSS and the peak maximum,
is based on the precisely determined observables. For comparative purposes we also distin-
guish the days having the minimal (RGm) and maximal (RG) sunspot number after smooth-
ing the ISN time series using an 810-day Gaussian filter. The Gaussian filter, having a full
width at half maximum (FWHM) equal to 810 days, effectively removes short-term vari-
ations of solar activity on time scales of about two years that can produce double peaked
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Table 1 Definitions of the intervals and the time distances used in this article.

Interval
(distance)

Definition Cycle All cycle

14 22 Mean sem1

[days]

002 Passive interval (PI), the time interval covering all the
days from the first spotless day (FSD) after a cycle
maximum to the last spotless day (LSD) before the
next cycle maximum along with them

3548 1331 2334 216

0s Declining segment of the PI, the time interval from the
FSD after a cycle maximum to the central day of the
LSS

1983 774 1512 131

s0 Rising segment of the PI, the time interval from the
central day of the LSS to the LSD before the next
cycle maximum

1565 557 822 100

0m The time distance from the FSD after a cycle
maximum to the day of minimum given by the
810-day Gaussian filter (Gaussian minimum, Gm)

2105 834 1404 138

0p The time distance from the FSD after a cycle
maximum to the day with the maximal daily sunspot
number (peak maximum, Px) inside the next cycle
maximum

3653 2829 2919 164

0g The time distance from the FSD after a cycle
maximum to the day of maximum given by the
810-day Gaussian filter (Gaussian maximum, Gx)
inside the next cycle maximum

3831 2327 3020 153

sp The time distance from the central day of the LSS to
the successive Px

1671 2056 1407 74

xx Active interval (AI), the time interval covering all the
days from the LSD after a cycle minimum to the FSD
before the next cycle minimum without spotless days

445 2453 1638 173

xp The time distance from the LSD before a cycle
maximum to the Px

106 1499 585 97

px The time distance from the Px to the FSD before the
next cycle minimum

339 954 1052 109

ss The time distance between the central days of two
successive LSS

4422 3927 4002 86

1 sem, the standard error of the mean.

2 Intervals ‘00’, ‘xx’, and two others similar to ‘0m’ and ‘0g’ were considered by Wilson and Hathaway in
2005 in a NASA Technical Report. They used a smoothed (12 month moving average) monthly mean sunspot
number for calculation their time parameters.

maxima. The size of this filter is similar to the 24-month Gaussian filter used when monthly
averaged sunspot numbers are considered (Hathaway, Wilson, and Reichmann, 1999;
Hathaway, 2010).

Differences between the position of the LSS and the Gaussian minimum as well as
between the peak maximum and the Gaussian one are small. Figure 2 depicts their loca-
tions measured with respect to the FSD. The correlation coefficients between ‘0s’ and ‘0m’
(r = 0.965) as well as between ‘0p’ and ‘0g’ (r = 0.949) are very high. In Figure 2(b), Cy-
cle 22 clearly stands out of the relation we have found; this is probably due to the presence
of three almost equal peaks (see Figure 1(a)). When the relation is calculated without in-
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Figure 2 (a) Scatterplot of time distances ‘0m’ (positions of the Gaussian minimum) versus ‘0s’ (positions
of the LSS). (b) Similar to (a) for ‘0g’ (positions of the Gaussian maximum) versus ‘0p’ (positions of the
peak maximum) for the indicated cycles. The equation of the best linear fit, the correlation coefficient (r), the
significance level (p), and the standard error of the estimation (see) are also given.

cluding Cycle 22, then the correlation grows (r = 0.98 and see = 110, where ‘see’ stands
for standard error of the estimation). The mean and standard deviation (μ and σ in days)
for the differences ‘0s’, ‘0m’ and ‘0p’, ‘0g’ are (122 and 141) and (−101 and 208), respec-
tively. The high correlations and small differences between ‘0s’ and ‘0m’ and between ‘0p’
and ‘0g’ confirm the treatment of the LSS and the peak maxima as observables describing
minima and maxima of solar activity.

We suppose that the central day of the LSS represents better the time of real minimum,
interpreted according to Cameron and Schüssler (2008) as the epoch when the sum of the
activities of the old and the new cycle is minimal, than the Gaussian minimum. Various
definitions of the cycle minimum were considered by Harvey and White (1999), who among
others took into account the monthly averages of spotless days.

3. Lengths of Intervals – Two Types of Solar Cycles

Lengths of passive and active intervals vary from cycle to cycle, as is seen in Figure 3.
Passive intervals associated with Cycles 9 – 15 (‘00’ = 3175 ± 192, the mean and the

standard error of the mean are given) are clearly longer than the related active intervals
(‘xx’ = 998 ± 168). The mean and the standard error of the ratio are ‘xx/00’ = 0.330 ±
0.065. In contrast to these cycles, Cycles 17 – 23 have short passive intervals (‘00’ = 1551±
76) and long active intervals (‘xx’ = 2276 ± 75) for which the mean and its standard error
are ‘xx/00’ = 1.485 ± 0.079 (see Figure 4). Despite the large differences between the ratios
xx/00, the additions of passive to active intervals do not differ so much for these two types
of solar cycles.

To check which parameters characterizing the passive and active intervals are signifi-
cantly different in both types of cycles, we applied, because of the very small number of
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Figure 3 Cyclic variation of time distances measuring positions of the characteristic extreme points of the
daily sunspot series with respect to the first spotless day (FSD) for Cycles 8 – 24. ‘0s’, the position of the
central day of the longest spotless segment, ‘0m’, the position of the Gaussian minimum, ‘0p’, the position of
the peak maximum, ‘0g’, the position of the Gaussian maximum. Vertical bars show lengths of passive ‘00’
and active ‘xx’ intervals for Cycles 8 – 24.

Figure 4 Scatterplot of the ratio xx/00 between lengths of active and passive intervals for Cycles 8 – 23. The
mean values and the standard errors of the means are shown for the two selected types of cycles.

cases (7 cases in each type), two statistical tests: Student’s t-test and the Mann–Whitney U
non-parametric test. The results are presented in Table 3.

The conclusions from a careful analysis of Table 3 are:

i) Lengths of cycles measured from one LSS to the next one (see row 9) and the time
distance from the LSS minimum to the peak maximum are the same for both types of
cycles (row 8).

ii) There are significant differences between both types of cycles in the lengths of their
segments, such as ‘0s’, ‘s0’, ‘xp’, and ‘px’ (rows 2, 3, 5, 6).

iii) The AI mean sunspot numbers of Cycles 17 – 23 are sightly higher than those of Cycles
9 – 15, but the differences are mainly in the ‘xp’ segments (rows 12, 13).

iv) The PI mean sunspot numbers of Cycles 9 – 15 are significantly larger than those in the
other type of cycles; this is mainly because of the relatively large sunspot numbers in
their rising segments ‘s0’, along which a high variability of the sunspot numbers is also
observed (rows 10, 11).

v) The number of the spotless days, the longest spotless segments and longest segments of
days with spots in a row are significantly larger in the PI of Cycles 9 – 15 (rows 14, 15,
16).
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Table 3 Results of statistical tests calculated for various parameters of the passive and active intervals.

No. Parameter Cycles 9 – 15 Cycles 17 – 23 p-value1

Mean SD Mean SD Test F Test t Test U

1 Length of the PI ‘00’ 3175.0 507.5 1551.4 200.1 0.039 0.00000 0.0006

2 Length of the PI declining segment
‘0s’

2009.1 306.1 1027.7 171.1 0.183 0.00001 0.0006

3 Length of the PI rising segment ‘s0’ 1165.9 340.6 523.7 106.0 0.012 0.00046 0.0006

4 Length of the AI ‘xx’ 998.3 445.6 2276.3 199.0 0.071 0.00002 0.0006

5 Length of the AI rising segment ‘xp’ 341.4 287.8 880.1 308.9 0.868 0.00551 0.0070

6 Length of the AI declining
segment ‘px’

656.9 278.6 1396.1 253.7 0.826 0.00022 0.0023

7 Ratio xx/00 0.330 0.171 1.485 0.209 0.637 0.00000 0.0006

8 Time elapsed since the LSS to the
day of the peak maximum ‘sp’

1507.3 236.9 1403.9 332.8 0.428 0.516 0.383

9 Time distance between two
subsequent LSS segments ‘ss’

4154.3 216.0 3951.6 422.0 0.128 0.280 0.209

10 Mean sunspot number of the PI 30.86 6.82 22.07 4.95 0.455 0.01729 0.0379

11 Mean sunspot number of ‘s0’
segment in the PI

30.39 11.29 18.13 2.87 0.004 0.01656 0.0262

12 Mean sunspot number of the AI 85.64 23.20 106.15 20.77 0.795 0.10684 0.0973

13 Mean sunspot number of ‘xp’
segment in the AI

82.37 14.26 105.48 27.56 0.134 0.07239 0.0728

14 Number of spotless days in the PI 740.6 268.9 337.7 123.2 0.079 0.00362 0.0070

15 Length of the LSS 49.86 24.84 29.14 9.60 0.036 0.062 0.0728

16 Length of the longest segment of
days with spot in a row in the PI

373.1 131.6 191.9 121.5 0.851 0.02011 0.0262

1 p-value, the probability of the test statistic used for verifying the null hypothesis of tests: Test F, the F-test
of equality of variances, Test t, the Student’s t-test for the comparison of two means, Test U, the Mann–
Whitney U non-parametric test for comparing two samples.

Large and statistically significant differences between various parameters of intervals
associated with the two types of solar cycles lead us to assume that the spacing of days with
small and large sunspot numbers are different. For Cycles 9 – 15, the probability to find a day
with a relatively large sunspot number outside of the active intervals is higher than in cycles
of the other type (compare Figure 1(a) with Figure 1(b) and Figure 5). We think that this
division is not random but reflects some physical reason, which would explain the observed
features of the pair PI-AI in these groups. Further in this article we call Cycles 9 – 15 the
passive cycles and Cycles 17 – 23 the active ones (see Figure 4).

4. Amplitudes of Passive and Active Cycles

Active and passive cycles differ largely not only in the previously discussed interval lengths,
but also in other features. Besides the lengths, the amplitude is the second key characteristic
of a cycle. We distinguish four various measures of a cycle amplitude which can be specified
for any defined time segment (‘ts’): the peak amplitude RPts, the highest sunspot number
during ‘ts’, the mean amplitude RMts, the mean sunspot number calculated from days in the
‘ts’, the Gaussian maximum RGts, the maximal sunspot number in the ‘ts’ after smoothing
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Figure 5 Distribution of the
days with spots in the three
phases of a solar cycle: ‘growth’,
the time interval from the longest
spotless segment (LSS) minimum
to the last spotless day (LSD),
‘maximum’, the time interval
between the LSD and the first
spotless day (FSD) comprising
the peak maximum, ‘decay’, the
time interval between the FSD
and the next LSS minimum.
(a) Days with the spot number
greater than 0.25 of the peak
maximum. (b) Days with the spot
number greater than 0.5 of the
peak maximum.

the ISN time series using the 810-day Gaussian filter, the integrated amplitude RIts, the sum
of daily sunspot numbers in the ‘ts’. We examine the following time segments: the passive
interval ‘00’, the declining segment of the passive interval ‘0s’, the rising segment of the
passive interval ‘s0’, the active interval ‘xx’, the rising segment of the active interval ‘xp’
(from the beginning of the active interval to the day of peak maximum), and the declining
segment of the active interval ‘px’. Figure 6 shows the peak amplitudes which are observable
values. There are three peak amplitudes linked with each active interval and two linked with
each passive interval. This is a consequence of the clear division of each active and passive
interval into two segments.

For the active interval, the day of the peak maximum is used as the split point, while for
the passive interval, the central day of the LSS fulfills this role. The peak maxima in both
segments of the passive interval are simple to define but for the active interval an additional
rule is that the day corresponding to the maximum in each segment has to belong to a
different solar rotation from the day of the split point.

For the active cycles the following characteristics can be noticed.

• All the three active interval peak amplitudes are apparently higher than peaks observed
during passive intervals. Student’s t-test gives the p-values (see the footnote in Table 3)
smaller than 0.0006 for all the possible pairs of AI peak amplitudes versus PI peaks.
Furthermore, we find that the non-parametric Wilcoxon T test (a signed-rank paired dif-
ference test) confirms these differences by giving a p-value of 0.018 for all the pairs.

• In Figure 6, the peaks of the PI declining segments of active cycles (red circles) are typ-
ically higher than the peaks of the rising segments (red triangles). The non-parametric
Wilcoxon T test gives a p-value equal to 0.028.
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Figure 6 The scatterplots of the peak amplitude (RP) for the following time segments: the active interval
‘xx’ (RPxx), the rising segment of the active interval ‘xp’ (RPxp), the declining segment of the active interval
‘px’ (RPpx), the declining segment of the passive interval ‘0s’ (RP0s), the rising segment of the passive
interval ‘s0’ (RPs0). The best sinusoidal fit (F-RPxx) for the active interval peak amplitudes is also shown.
The black color is for active intervals and the red one for passive intervals.

Figure 7 Similar to Figure 6, but in this case the scatterplots of the mean amplitude (RM) are shown. RM00
stands for the mean amplitude of the passive interval. The best sinusoidal fit (F-RMxx) for the active interval
mean amplitudes is also shown.

• The peaks of PI rising segments of active cycles are significantly lower than the same one
in the passive cycles. Student’s t-test gives a p-value equal to 0.000027 while p-value of
the Mann–Whitney U non-parametric test is 0.00058.

The differences among peak amplitudes of the active and passive intervals for the passive
cycles are still evident, but peaks of the AI rising segments (black circles) are not signifi-
cantly higher than those characterizing the passive segments. Figures 7 to 9 are similar to
Figure 6 but depict the other defined amplitudes.

In Figure 7, the curves of the mean amplitudes support the same results we infer from
the curves in Figure 6. The statistical significance of the differences between the mean am-
plitudes of the active and passive intervals for all the cycles is evident. Results of the com-
parison between the mean amplitudes of the passive and active cycles calculated separately
for the passive and active intervals are given in Table 3 (row 10 and 12).

Both peak and mean amplitudes of the active intervals (except for the even-odd cycle pair
22 – 23 and, probably, 8 – 9) follow the Gnevyshev-Ohl rule, which states that in consecutive
odd–even cycle pairs the odd cycle tends to be the stronger (Gnevyshev and Ohl, 1948;
Kopecky, 1950). Also the curves of the Gaussian maximum amplitude (RGxx in Figure 8)
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Figure 8 Scatterplot of the AI Gaussian maximum (RGxx, black) and PI Gaussian minimum (RGm00, red)
amplitude. The best sinusoidal fit (F-RGxx) for the Gaussian maximum amplitude and the two best sinusoidal
fits (with F-RGm24 and without F-RGm23 data for the PI 24) for the Gaussian minimum are shown.

Figure 9 Similar to Figure 7, but in this case scatterplots of the integrated amplitude (RI) are shown.

and the AI integrated amplitude (RIxx in Figure 9) confirm this rule. The basic pattern of
the curves in Figure 9 agrees with that in Figure 6.

The scatterplots of the AI peak, the mean and Gaussian amplitudes, and the PI Gaus-
sian minimum amplitude suggest that these parameters can be fitted by sinusoids. The best
fitted sinusoids, all in the form y = a · sin(2π · (n − 7)/T + �) + b (n is the cycle num-
ber, and the other parameters are described in Table 4) are drawn in the corresponding fig-
ures.

All the best-fitted sinusoids indicate a period of about 14 solar 11-year cycles, which can
be associated with the Gleissberg-cycle period (Gleissberg, 1939; Hathaway, Wilson, and
Reichmann, 1999; Ogurtsov et al., 2002).

5. The Relations Between the Time Distances and the Amplitudes

5.1. The Relations Between the Amplitude and the Period of Activity

The first attempt to connect the amplitude of a cycle maximum with a selected time distance
was made by Wolf (1861) who noticed that “greater activity on the Sun goes with shorter
periods”. This relationship is clearly seen especially when the integrated amplitude RIxx
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Table 4 Parameters of the sinusoids (Amplitude = a · sin(2π · (n − 7)/T + �) + b, where n stands for the
cycle number) that best fit the curves in Figures 6 to 8. R2 (the coefficient of the determination) indicates
how well data points fit a curve.

Amplitude Symbol a T , the period � b R2

RPxx F-RPxx in Figure 6 41±20 13.6±2.7 1.8±0.9 250±14 0.27

RMxx F-RMxx in Figure 7 25±6 12.0±1.2 1.0±0.6 91±5 0.57

RGxx F-RGxx in Figure 8 40±8 14.0±1.3 1.9±0.4 108±6 0.65

RGm00 F-RGm23 in Figure 8 5.6±0.9 13.9±1.2 1.6±0.4 11±0.7 0.77

RGm00 F-RGm24 in Figure 8 5.8±1.0 12.5±0.9 1.2±0.4 10±0.7 0.71

RGxx/RPxx in Figure 8 in ZN1 0.086±0.008 14.0±0.6 1.9±0.2 0.42±0.006 0.90

1 Zięba and Nieckarz (2012).

Figure 10 (a) Scatterplot of the peak (RPxx) and the Gaussian maximum (RGxx) versus lengths ‘xx’ for the
indicated active intervals. (b) Scatterplot of the integrated amplitude (RIXx) versus ‘xx’. The equation of the
best linear fit and statistical parameters r , p, and the standard error of the estimation (see) are also given.

is taken as the measure of the solar activity. Figure 10 depicts the scatterplots of the peak
maximum (RPxx), the Gaussian maximum (RGxx), and the integrated amplitude versus the
active interval length (‘xx’).

Although these relationships have not directly a predictive value, ‘xx’ must be known
from other relationships, they indicate a clear separation between passive and active cycles.
The scatterplots in Figures 10(a) and (b) suggest high correlations among the three consid-
ered measures of the AI amplitude. The highest correlation coefficient, which equals 0.90,
is between the peak (RPxx) and the Gaussian maximum (RGxx) (Figure 11).
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Figure 11 Scatterplot of the Gaussian maximum (RGxx) versus the peak maximum (RPxx) for the indicated
AI. The equation of the best linear fit and statistical parameters r , p, and the standard error of the estimation
(see) are also given.

5.2. Waldmeier Effect

The Waldmeier Effect (Waldmeier, 1935, 1939) is one of the widely quoted relationships
in which the rise time elapsed between minimum and maximum of a cycle is inversely cor-
related with the cycle amplitude. The effect was analyzed using various monthly averages
smoothed data sets such as: international (Wolf) and group sunspot numbers (Hathaway,
Wilson, and Reichmann, 2002), Wolf sunspot numbers and sunspot area (Dikpati, Gilman,
and de Toma, 2008), Wolf sunspot numbers, group sunspot numbers, sunspot area and 10.7
cm radio flux (Karak and Choudhuri, 2011). Among the time distances defined using the
LSS location, the time distances ‘s0’ and ‘sp’ are the closest to the most commonly used
definition of the rise time when the cycle maximum has occurred. The correlation coeffi-
cients between ‘sp’ and the discussed amplitudes RPxx, RGxx and RIxx are not significant
(they are about −0.23), while those between ‘s0’ and these amplitudes are −0.62, −0.76,
and −0.79, respectively. All these values are significant with p-values smaller than 0.011.

Beside the study of the classical Waldmeier effect, some authors have tried to find
correlations showing that stronger cycles tend to rise faster (Lantos, 2000; Cameron
and Schüssler, 2008; Kane, 2008; Podladchikova, Lefebvre, and van der Linden, 2008;
Karak and Choudhuri, 2011). There are no simple observables to measure the growth and
decay rates of solar activity. Various authors proposed different approaches to define a
parameter measuring a growth rate of solar activity. All these authors used monthly av-
erages smoothed data, but took differently defined time distance values (Lantos, 2000;
Karak and Choudhuri, 2011) or sunspot numbers difference (Cameron and Schüssler, 2008)
between two separated months selected during the cycle’s ascending phase for their growth
rate definition. Because many of the above-mentioned articles show that growth and decay
rates can be treated as a precursor quantity, we examine for this purpose two values, RP0s/0s
and RPs0/s0, formed by such observables as the segments ‘s0’ and ‘s0’ as well as the max-
imal sunspot number in these segments RP0s and RPs0. We call these ratios declining and
rising indices.

Figures 13 show the best linear relations for the amplitudes versus RP0s/0s while Fig-
ures 14 correspond to the same amplitudes versus RPs0/s0. Comparing the curves presented
in both of these figures, we can see that the scatter of points representing the passive cycles
in Figures 13 distort the relations. Similarly, the scatter of points representing the active
cycles in Figures 14 decrease the correlations. Scatterplots drawn separately for the passive
and active cycles are depicted in Figure 15. The relations present in Figure 12 can be seen as
an equivalent of Waldmeier effect WE1, while those in Figure 14 can be seen as the Wald-
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Figure 12 (a) Scatterplot of the peak (RPxx) and the Gaussian maximum (RGxx), and (b) scatterplot of the
integrated amplitude (RIxx) versus lengths of the rising segment of the related passive intervals ‘s0’ for the
indicated AI. The equation of the best linear fit and statistical parameters r , p, and the standard error of the
estimation (see) are also given. ‘All’ denotes Cycles 8 – 23, while ‘> 9’ denotes Cycles 10 – 23.

meier effect WE2, in accordance with the distinction introduced by Karak and Choudhuri
(2011).

Although both of the specified types of cycles are small samples, the correlations be-
tween the peak maximum and the RPs0/s0 for the passive cycles and between RP0s/0s for
the active ones are high and statistically significant. Taking into account both of these in-
dices and the other observables describing passive intervals, we have constructed, separately
for the passive and active cycles, the best multiple-linear regression models for the maximal
sunspot number RPxx and RGxx of the studied cycles. In Table 5, we present the obtained
coefficients of the models together with the statistical significance of the estimated parame-
ters and R2 value, which checks the goodness of the fit.

6. Predictions for Cycle 24

In this section we address the prediction of the timings and the amplitude of the ongoing
sunspot active interval for Cycle 24, using relations based on the description of the sunspot
time series as a sequence of non-overlapping segments called passive and active intervals.
Some relations inferred from the location of LSS with respect to the occurrences of the
FSD and the former sunspot maximum were discussed in Zięba and Nieckarz (2012) for a
prediction of the peak and the Gaussian-smoothed maximum sunspot number for the present
cycle.
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Figure 13 Similar to Figures 12(a) and (b), but in this case the scatterplots correspond to the amplitudes
versus RP0s/0s.

Figure 14 Similar to Figures 13(a) and (b), but in this case the scatterplots correspond to the amplitudes
versus RPs0/s0.



Sunspot Time Series: Passive and Active Intervals 2721

Figure 15 Scatterplots of the
peak and the Gaussian maximum
amplitudes drawn for the passive
(a) and active (b) cycles versus
RPs0/s0 and RP0s/0s,
respectively.

To assess the length of the ongoing active interval we have examined how the PI lengths
‘00’, ‘0s’ and ‘s0’ affected the length ‘xx’ of the subsequent active interval. The highest
correlation coefficient was found between ‘xx’ and ‘s0’. Figure 16 presents this relation
and indicates a clear concentration of active cycles near the coordinates (524, 2276). It is
evident, from the curves for the passive and active cycles in Figure 17, that the lengths of the
active cycles do not correlate with the ‘s0’ lengths, while the lengths of the passive cycles
do.

The position of the peak maximum can also be predicted from the relations between the
time distance ‘0p’ and the PI lengths ‘00’ as well as ‘0s’ (Figure 18). The correlations of
these parameters with the position of the Gaussian maximum ‘0g’ are higher than those with
‘0p’ and are equal to 0.97 and 0.96, respectively.

Assuming that the ongoing Cycle 24 is a passive one, we calculated (Table 6) the peak
and Gaussian maxima and other parameters for this cycle, using the models presented in
Table 5 and some other relations given above.

The number of days, which elapsed from the last spotless day of the PI of Cycle 24,
is 809 days counted from 31 October 2013 (the day on which this article was submitted).
According to the relation presented in Figure 17, we assume that the end of the maximum
phase of Cycle 24 (i.e. the active interval) can occur in the second half of 2015. The daily
maximal ISN was 136 on 21 October 2011, but on 16 May 2013 this number was 135. Our
predictions for the day of the peak maximum do not exclude that it can still happen, but the
maximum value of the sunspot number is smaller than the one predicted by us (198) up to
now. Our prediction for the Gaussian maximum is that it will happen around 100 days after
the peak maximum.
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Figure 16 Scatterplot of the active interval lengths ‘xx’ versus lengths of the PI rising segments ‘s0’. The
equation of the best linear fit and statistical parameters r , p, and the standard error of the estimation (see) are
also given.

Figure 17 Similar to Figure 16, but separating the passive and active cycles.

Figure 18 In (a) the position of the peak maximum with respect to the FSD of the passive interval ‘0p’
versus the length of the PI ‘00’ and in (b) versus the length of the PI declining segment ‘0s’. The equation of
the best linear fit and statistical parameters r , p, and the standard error of the estimation (see) are also given.
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Table 5 The parameters of the multi-linear regression models for the prediction of the maximal peak (RPxx)
and Gaussian amplitude (RGxx) of the studied passive or active cycles using the following predictors (vari-
ables): RP0s/0s, the declining index, RPs0/s0, the rising index, nlss, the number of the spotless days in the
LSS, n00, the number of the spotless days in the passive interval.

Passive cycle

Model: RPxx = a + b1 · RP0s/0s + b2 · RPs0/s0 + b3 · nlss Analysis of variance for
3RegressionVariable Coefficient Value 1Std. Error 2p-value

a −50.306 24.9104 0.13672 SSM = 15834.29 SSE = 138.57
F = 114.27 p-value = 0.00137
R2 = 0.9956
Adjusted R2 = 0.9826 see = 6.8

RP0s/0s b1 729.391 254.7788 0.06443

RPs0/s0 b2 1380.260 79.6949 0.00042

nlss b3 0.637 0.1316 0.01685

Model: RGxx = a + b1 · RP0s/0s + b2 · RPs0/s0 Analysis of variance for
RegressionVariable Coefficient Value Std. Error p-value

a −41.096 12.4554 0.02995 SSM = 2993.77 SSE = 89.04
F = 67.24 p-value = 0.00083
R2 = 0.9711
Adjusted R2 = 0.95667 see = 4.7

RP0s/0s b1 909.152 164.3010 0.00521

RPs0/s0 b2 421.323 52.4448 0.0013

Active cycle

Model: RPxx = a + b1 · RP0s/0s + b2 · RPs0/s0 + b3 · n00 Analysis of variance for
RegressionVariable Coefficient Value Std. Error p-value

a −22.716 27.4782 0.46902 SSM = 15634.5 SSE = 285.5
F = 54.75 p-value = 0.004056
R2 = 0.9910
Adjusted R2 = 0.9641 see = 9.8

RP0s/0s b1 1074.876 108.6869 0.00220

RPs0/s0 b2 771.194 103.9258 0.00506

n00 b3 0.116 0.0340 0.04216

Model: RGxx = a + b1 · RP0s/0s + b2 · RPs0/s0 + b3 · n00 Analysis of variance for
RegressionVariable Coefficient Value Std. Error p-value

a −25.040 30.1489 0.46714 SSM = 4807.0 SSE = 343.7
F = 13.98 p-value = 0.02868
R2 = 0.9333
Adjusted R2 = 0.8665 see = 10.7

RP0s/0s b1 669.175 119.2504 0.01119

RPs0/s0 b2 321.174 114.0266 0.06692

n00 b3 0.0662 0.0373 0.17409

1 Std. Error, estimates how much a coefficient is likely to vary, similar to the standard error of the mean (sem).

2 p-value the probability of a test statistic used for verifying the null hypothesis.

3 SSM, the model sum of squares, it is the sum of squared deviations of the model predicted values from the
mean of the observed values, SSE, residuals sum of squares, F , F-test statistic, used in testing the model
validation, R2, the coefficient of determination, indicates how well data points fits a statistical model. An R2

of 1 indicates that the model perfectly fits the data, Adjusted R2 is a modification of R2 that adjusts for the
number of input variable in a model relative to the number of data points, ‘see’ is the standard error of the
estimation.

7. Summary and Discussion

Taking into account spotless days, we have represented the ISN time series as the sequence
of precisely defined consecutive time intervals, called passive and active intervals, according
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Table 6 Some predictions for the AI in Cycle 24 derived from the relations found from previous cycles.

Variables r Fig. Equation
y = a + bx

See y Prediction for the
AI of Cycle 24

x y a b

s0 = 727 xx −0.89 17 2321 −1.13 243 1499 1 FSD 72217
Sep 2015

00 = 2757 0p 0.91 18a 1310 0.69 248 3212 2 DPx 71174
Nov 2012

0g 0.97 – 1414 0.69 148 3316 2 DGx 71278
Feb 2013

0s = 2029 0p 0.90 18b 1218 1.12 297 3490 DPx 71452
Aug 2013

0g 0.96 – 1327 1.12 170 3599 DGx 71561
Dec 2013

RP0s/0s = 0.0527 RPxx R2

0.983
See Table 5 for the
parameters of the linear
regression.

7 198 95 % CI
175 – 222

RPs0/s0 = 0.1375
nlss = 32

RGxx R2

0.956
5 64 54 – 76

1 FSD, the first spotless day of the PI of Cycle 25 at the end if of the AI of Cycle 24.

2 DPx, DGx, the day of the peak and Gaussian maximum, respectively.

to whether they contain minimal or maximal daily sunspot numbers. Active intervals corre-
spond to a phase of maximal sunspot numbers (both the peak and the Gaussian maximum
are inside an AI), but passive intervals are extended beyond a classically understood mini-
mum phase of the solar cycle and include the declining phase of the previous maximum. The
properties of each passive interval, such as characteristic lengths, numbers of spotless days,
declining, and rising indices are predictors of the length and amplitudes of the approaching
active interval.

We have found clear differences between properties of two types of solar cycles (see
Table 3) referred to as the passive (Cycles 9 – 15) and active (Cycles 17 – 23) cycles. Each
group contains seven cycles in a row. According to the Hathaway division of cycles into
small, medium and large (Hathaway, 2010, 2011), the passive cycles are small and medium
ones, while the active cycles are large and medium. The distribution of days with spots
having a relatively high sunspot number is different in the both types of cycles (see Figure 5).
All the three discussed cycle amplitudes (the peak, the Gaussian, and the integrated one)
show a variation with time that can be fitted using sinusoidal functions. The periods of these
functions (see Table 4) change from 12 to 14 solar 11-year periods. These facts indicate
that the occurrence of passive and active cycles can be connected with a higher mode of the
Gleisberg cycle (Gleissberg, 1939; Ogurtsov et al., 2002).

Analyzing the influence of different properties of the passive intervals on the length
and amplitudes of the related active intervals we have shown that solar activity in the PI
declining-segment (a decay phase of the previous cycle) has a greater impact on the strength
of the approaching maximum in the case of the active cycles, while activity in the PI rising-
segments in the case of the passive cycles. To circumscribe solar activity in the PI segments
we have introduced indices defined as a ratio of the maximal sunspot number recorded dur-
ing the declining or the rising PI segment to the length of this segment (RP0s/0s and RPs0/s0,
respectively). We have found multi-linear relations (see Table 5) predicting the strength of
the approaching maximum using the introduced indices. The linear version of these models
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Figure 19 Values of the declining and rising index calculated for the subsequent passive intervals (epochs
of solar minimum previous to the maxima indicated by the cycle number).

(see Figure 15) can be considered as the Waldmeier effect WE2, while the relation seen
in Figure 12 can be seen as the Waldmeier effect WE1, in accordance with the distinction
introduced by Karak and Choudhuri (Karak and Choudhuri, 2011).

The variations of these indices, which are the main predictors of the multi-linear models,
with solar cycles are presented in Figure 19. The declining index (RP0s/0s) is small and
practically constant for the passive cycles and rises to a statistically significantly higher
values for the active cycles. The opposite is observed for the rising index (RPs0/s0). Its
values fluctuate around 0.16 in both groups.

The main questions resulting from our analysis based on the daily sunspot time series
can be formulated as follows:

i) What is the cause of the apparent difference between passive and active cycles? We can
answer that it can be either the specific cycle phase division based on the spotless days
or that there is a key physical reason that underlies the different observed distribution
of days with a relatively high sunspot number for this group of cycles. The fact that
the passive and active cycles occur in a row, and in a number which corresponds to the
Gleisberg cycle, indicates a possible underlying physical cause.

ii) The cycle overlapping effect revealed by Cameron and Schüssler (2007, 2008) can ex-
plain the high fluctuation of the sunspot numbers of the passive cycles during their pas-
sive intervals (a relatively large overlapping) as well as the marked reduction of this
fluctuation in the case of the active cycles (a small overlapping). This is also confirmed
by the large number of spotless days during the passive cycles because their long pas-
sive intervals lead to more days without activity even if some days have relatively large
sunspot numbers.

However, we cannot say whether changes of the declining index (see Figure 19)
are related only to the overlapping of cycles and the Waldmeier effect (Cameron and
Schüssler, 2007), or whether they are connected also with the meridional plasma flow
variations considered by Nandy, Muñoz-Jaramillo, and Martens (2011). Similarly, it is
difficult to assume without further study that one of the various possible mechanisms,
i.e. the evolution of the polar field around solar minimum, could explain the observed
fluctuations of our rising index (Cameron et al., 2010, 2013; Dasi-Espuig et al., 2010;
Jiang et al., 2010; Cameron and Schüssler, 2012).

Svalgaard and Kamide (2013) have shown that the polar fields play a crucial role in the
solar cycle. Because of solar-cycle N–S asymmetries, polar-field reversals do not occur at
the same times in both hemispheres (Norton and Gallagher, 2010; Muñoz-Jaramillo et al.,
2013b, 2013a; Zhao, Landi, and Gibson, 2013), and some differences among various pas-
sive intervals may be expected. The long-term persistence of a phase leading in one of the
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hemispheres (Zolotova et al., 2009) can explain a repetition of some noticed properties of
passive and active intervals.

The focus of this article is to analyze the daily sunspot time series using the days for
which timing and sunspot number are precisely defined, and we have done so. We have,
however, found some other facts and characteristics that will be the object of further analysis.
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