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Abstract
This study introduces an innovative tool to analyse how various inequality factors, includ-
ing geography, race, and gender, contribute to overall inequality. Traditional approaches 
typically partition populations into groups based on a single factor and assess inequality 
by additively decomposing an inequality measure into within- and between-group com-
ponents. After discussing the theoretical impossibility of additively decomposing the Gini 
index into within- and between-group components, in fact, we propose a Gini decompo-
sition into two highly informative within- and between-components, with substantial 
improvement upon the usual assessment of horizontal inequality. This method represents a 
significant advancement over the traditional horizontal inequality assessment, which only 
compares group means and overlooks the complexities of differences between groups. Our 
approach accurately captures the nuances of group disparities, offering a robust measure of 
horizontal inequality. Through rigorous simulations and empirical analysis of the OECD 
Income Distribution Database, we validate the effectiveness of our method in evaluating 
and understanding inequality. This work enriches the toolkit available to researchers in the 
field by offering a framework for selecting the most suitable measure of horizontal inequal-
ity, along with the code for implementing the proposed decomposition.

Keywords Horizontal inequality · Inequality decomposition · Gini index · Regional 
inequality

1 Introduction

Evaluating population inequality necessitates an analysis of disparities among subgroups, 
particularly when examining populations distinguished by pronounced gender or territorial 
divides, or disparities linked to age, ethnicity, or religion. All these sources of horizon-
tal inequality hamper well-being and development. Their negative impact is widely recog-
nised, to the extent that their reduction is the focus of Sustainable Development Goals 5 
and 10 of the United Nations Development Programme.
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What are the principal factors-such as geography, ethnicity, gender, etc.-underpin-
ning economic divides? Are these disparities narrowing over time? What interventions 
are most effective in bridging the gaps between population subgroups? Convention-
ally, addressing these policy questions involves decomposing inequality by factors to 
derive two components: one measuring within-group disparities and the other captur-
ing between-group disparities, the latter of which significantly informs on horizontal 
inequality. This approach has been extensively used in the literature on horizontal ine-
quality (see, e.g., Gachet et  al., 2019; McDoom et  al., 2019; Canelas & Gisselquist, 
2019). Given the wide range of possible inequality measures and decompositions, Josa 
& Aguado (2020) offers a comprehensive review of the available methodologies and 
their implications, providing a practical framework for choosing the most appropriate 
measure.

This work introduces a further decomposition of the Gini index, which contributes to 
the existing literature because its between-component is well suited to measure horizontal 
inequality and addresses a critical issue that we term oversimplification. This distinguishes 
our decomposition from other methodologies prevalent among researchers. The methods 
for decomposing inequality indicators (see Deutsch & Silber, 1999 for a review) share a 
common approach, pursuing the additive decomposability property (Bourguignon, 1979; 
Shorrocks, 1980). An inequality measure is additively decomposable if it can be expressed 
as the sum of two components observing the following constraints: the within-group com-
ponent has to be the average inequality within subgroups weighted by population size, 
while the between-group component has to depend explicitly on the distance between the 
group means and on the group sizes.

Ebert (2010) highlights how the conventional constraint on the between-group com-
ponent can lead to oversimplification, especially when examining horizontal inequality 
between groups with similar means but different distributions, or when analyzing inequal-
ity dynamics. While some indicators based on means might suggest converging groups, 
the underlying distributions could be diverging. While this phenomenon is occasional, it is 
common for the distance between means to differ from the distance between distributions, 
or for the two distances to have different dynamics.

The Gini index, a commonly used measure of inequality, is not additively decomposa-
ble. Its conventional decompositions require an additional term if the within- and between-
components observe the constraints of additive decomposability.

In this paper we show that, by relaxing these constraints, it is possible both to obtain 
a two-component decomposition of the Gini index and to solve oversimplification. This 
innovative approach features two components that quantify inequality within and between 
groups, the latter of which solves the issue of oversimplification by calculating the average 
inequality between individuals ranking in identical quantiles across different subgroups.

The paper unfolds as follows. Section 2 introduces the notation that we use throughout 
the paper; then it discusses the conventional subgroup decompositions of the Gini index 
and introduces a benchmark measure for horizontal inequality, before presenting the intui-
tion leading to our decomposition. Section 3 formalises the new decomposition in the case 
of equal-sized groups and shows its properties. Section 4 extends the decomposition to the 
case of groups with different sizes. Section  5 presents the Monte Carlo experiment that 
studies the correlations between alternative measures, highlighting the informativeness of 
the proposed decomposition. Section 6 uses the OECD Income Distribution Database to 
analyse the income inequality of EU countries, providing striking evidence in favour of our 
between-component. Section 7 provides conclusive remarks and a vademecum for choos-
ing the most appropriate measure of horizontal inequality.
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2  The Gini Index and Horizontal Inequality

Consider a population of N units. We denote by xi the income of the generic individual 
i = 1,… ,N , by � =

∑N

1
xi∕N the average income of the population, and by G its Gini 

index. When considering a partition of the population into K groups, denote the vector of 
their sizes with n =

(
n1,… nK

)
 , where 

∑K

k=1
nk = N . Let xk

i
 be the i-th element of the group 

k = 1,… ,K (non decreasing) vector of incomes xk = (xk
1
,… , xk

nk
) . Furthermore, we denote 

by �k the mean of group k, and by Gk its Gini index.
Among the many different formulations of the Gini index (see Giorgi et  al., 2005; 

Giorgi, 2011; Ceriani & Verme, 2015 and Ceriani & Verme, 2012), we consider the 
following:

where the numerator g is the sum of all the pairwise absolute differences between indi-
vidual income. It is normalised by the factor (2�N2)−1 , so that G is scale invariant and 
G ∈ [0, 1] if all xi ≥ 0.

2.1  Subgroup Decomposition of the Gini Index

A wide variety of Gini index decompositions exist, originating from alternative formula-
tions of the index and diverse methodological approaches.

We mainly focus on the most widespread and intuitive decomposition, whose between-
component, often called GGini, is widely used to measure horizontal inequality. It was pre-
sented for the first time in Bhattacharya and Mahalanobis (1967). This decomposition con-
sists of two components that measure inequality within and between groups, plus a third 
term, which by construction is the residual of the decomposition. We can express the gen-
eral structure of the Bhattacharya and Mahalanobis decomposition as follows:

The within component GBM
w

 measures the inequality within groups by a weighted average 
of the Gini index of each group. It reads:

and each weight is the product between the income and population shares of the group k.
As for the between component in Eq. (2), it reads:

A notable feature of the GGini is that the weight of each mean difference is the product 
of the sizes of the groups. This means the GGini quantifies between-group inequality by 
applying the Gini index to scenarios devoid of inequality within groups, i.e. when each 

(1)G =
1

2�N2

N∑
i=1

N∑
j=1

|xi − xj| = g

2�N2

(2)G = G
BM

w
+ G

BM

b
+ R

BM

(3)GBM
w

=

K∑
k=1

�k

�

n2
k

N2
Gk

(4)GGini = GBM
b

=
1

2�N2

K∑
k=1

K∑
h=1

nknh|�k − �h|
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observation has the average income of its group. It is the inequality between the weighted 
means. Unfortunately, due to oversimplification, this is not always fully representative of 
horizontal inequality. As a compelling example, GGini = 0 when groups have the same 
mean but their distributions differ in terms of variability, skewness, or higher moments, 
indicating the presence of horizontal inequality. Oversimplification also arises when the 
averages are different, being not the predominant source of the differences between the 
distributions of the groups. Except in rare cases, this oversimplification manifests as an 
underestimation of horizontal inequality.

Equation  4 represents the reference for further decompositions of the Gini index pro-
posed over time; a contribution that partially deviates from the approach of Bhattacharya and 
Mahalanobis is attributed to Yitzhaki and Lerman (1991). Its general structure is the same as 
Eq. (2). We identify the components of this decomposition by replacing the superscripts of the 
three components with YL. Regarding GYL

w
 , it only differs from Eq. (3) in the structure of the 

weights, weighting each Gk by the income share of group k:

Given the structure of the weights, the correlation ρ (GBM
w

,GYL
w
) = 1 if the groups have the 

same size, but it decreases with the size variability.
Regarding GYL

b
 , it reads:

where F̄k is the average rank of the members of group k in the overall population. The two 
between-components in Eqs. (4)–(6) appear very different, but, like any between compo-
nent of a subgroup decomposition of inequality, GYL

b
 is also based on the comparison of the 

means of the groups and suffers from oversimplification.

2.2  A Benchmark Measure of Horizontal Inequality

Having two vectors of m quantiles representing two income distributions, we consider the fol-
lowing as a measure of their diversity:

It is proposed by Ebert  (1984) and is the simple average difference between quantiles. 
In his paper, Ebert proposes a more general class of measures based on a parameter r. 
Ebkh corresponds to r = 1 . A previous proposal by Dagum (1980) had already developed 
a measure of economic distance between two income distributions, but it has been criti-
cised by Shorrocks (1982) due to its asymmetric nature. Ebert proposal, instead, presents 
all the properties of a distance and observes a general axiomatic approach. Furthermore, 
it perfectly reflects our idea that a measure of horizontal inequality between groups must 
compare their overall distributions. We generalise this measure to the case of K groups by 
using the same weighting structure of Eq. (4):

(5)GYL
w

=

K∑
k=1

�k

�

nk

N
Gk

(6)GYL
b

= 2cov(𝜇k, F̄k)∕𝜇

Ebkh =
1

m

m∑
j=1

|xk
j
− xh

j
|
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so that HI is scale invariant and the weight of each Ebkh depends on the number of pairs 
between the two groups.

We provide an additional reason why HI is a suitable benchmark for horizontal inequal-
ity. We define the GGini for quantile j as

where �j =
∑K

k=1
xk
j
∕K is the average, across groups, of observations ranking in the j − th 

position of their group. Using Eq. (7), we can rewrite HI as follows:

This benchmark evaluates the horizontal inequality of each quantile using the Gini index, 
then averages the results weighting each GGinij by the income share of quantile j. The 
advantage of HI over GGini in measuring horizontal inequality is twofold. First, HI allows 
us to consider the differences between groups that are not captured by the mean. Second, 
decomposing HI in its addenda by k and/or by j produces informative indicators that allow 
one to know which groups and which parts of their distributions struggle the most. One can 
study the contribution of the bottom quartile to horizontal inequality and discover that the 
poor in one group suffer relatively more inequality than the poor in the other group, or that 
even if the groups are not equal on average, the poor are similar in the two groups. Hori-
zontal inequality between two groups has different implications if it originates at the top, 
middle, or bottom of the distribution. For example, knowing the sources of horizontal ine-
quality could be crucial when relating it to conflicts. Horizontal inequality triggers the start 
of conflicts, while within-group inequality shapes their intensity (Cederman et al., 2011; 
Esteban & Ray, 2011; Huber & Mayoral, 2019). The inequality-conflict literature clearly 
states that the presence of poor people experiencing bad living conditions and rich people, 
who can finance the conflict, is an essential engine for civil war. Explicitly considering 
horizontal differences at the top, middle, or bottom of the distribution helps to study which 
aspects of group distributions and group differences shape the incentive to fight, allowing 
one to test refined hypotheses about the drivers of conflicts and their intensity.

To conclude this section, we describe the intuition to derive, from the Gini index, a 
measure with the peculiarities of HI and such that its complement to the Gini measures the 
inequality within groups.

2.3  A New Insight

Consider a population partitioned into K equal-sized groups and define n as their size. The 
numerator of the Gini index in Eq. (1) can be written as:

HI =
1

2�N2

K∑
k=1

K∑
h=1

nknhEbkh

(7)GGinij =
1

2�jN
2

K∑
k=1

K∑
h=1

nknh|xkj − xh
j
|

(8)HI =
1

m

m∑
j=1

1

2�N2

K∑
k=1

K∑
h=1

nknh|xkj − xh
j
| =

m∑
j=1

�j

m�
GGinij
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Figure 1 provides an innovative insight into the structure of the Gini index. It illustrates 
a two-group-two-individual situation, with group k = {8, 3} and group h = {6, 2} . Fig-
ure 1a highlights all pairwise differences between units, considered twice so that their sum 
constitutes g.

As the scheme suggests, we can distinguish three kinds of difference: vertical, horizon-
tal, and diagonal. Vertical differences involve same-group pairs. Horizontal differences 
involve same-rank (same-quantiles) pairs from different groups. Diagonal differences 
involve different-rank pairs from different groups. We assign vertical and horizontal dif-
ferences to within and between components, respectively. Although diagonal differences 
involve pairs of different groups, they also reflect vertical (same-group) differences and are 
not entirely attributable to inequality between groups. For example, imagine replacing the 
values in the scheme so that the groups are identical: pose xh

1
= xk

1
= 8 and xh

2
= xk

2
= 3 . 

The values of the diagonal differences - 5 - are equal to the vertical ones and should not 
contribute to the absent horizontal inequality.

At this stage, diagonal differences can be instinctively thought of as the addenda of a 
residual term arising from the decomposition, and it seems natural to associate their sum 
with the conventional residuals RBM and RYL . These residuals - which are non-negative 
and disappear if the distributions of the groups do not overlap - are interpretable in terms 
of overlapping, stratification, and transvariation between the distributions of the groups 
(Yitzhaki & Lerman, 1991; Lambert & Aronson, 1993; Yitzhaki, 1994; Dagum, 1997 and 
Costa, 2021). This interpretation does not apply to the sum of diagonal differences, which 
is positive even when the groups do not overlap. The sum of diagonals is zero only if there 

(9)g =

N∑
i=1

N∑
j=1

|xi − xj| =
K∑
k=1

K∑
h=1

n∑
i=1

n∑
j=1

|xk
i
− xh

j
|

Fig. 1  A two-group-two-individual illustration, with group k = {8, 3} and group h = {6, 2} . The left panel 
highlights all the pairwise differences between units, considered twice so that their sum constitutes g. The 
vertical, horizontal, and black diagonal differences have intuitive decomposition. The right panel illustrates 
the decomposition of the grey diagonals
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is perfect equality, since the diagonals contain information on both within- and between-
group inequality. Going back to Fig. 1, we propose a strategy to disentangle each diagonal 
difference in two informative contributions to within- and between-group inequality.

The two black diagonals in Fig.  1a are intuitively decomposable. For example, look-
ing at the solid black diagonal line and moving along the legs of the solid black triangle, 
the difference between the richest member of group k and the poorest member of group h 
is 6 since the former is 5 points richer than the poorest individual in her group, who is 1 
unit richer than her counterpart in group h ( 6 = 5 + 1 ). A similar argument holds from the 
opposite point of view, which is looking at the dashed black diagonal line, representing 
the difference between the poorest member of group h and the richest member of group k 
( 6 = 4 + 2 ). The two black diagonal differences are predominantly due to and reflect the 
inequality within the two groups. Consequently, we suggest splitting their contribution to 
g ( 6 + 6 = 12 ) assigning 5 + 4 = 9 to the within component and 1 + 2 = 3 to the between 
one.

This strategy becomes inapplicable for grey diagonals, which are the focus of Fig. 1b. 
Here, the three values involved in the path along the grey legs do not increase or decrease 
monotonically as for the black lines, namely the product between the horizontal and the 
vertical signed differences is negative. In such cases, we should subtract the horizontal 
value from the vertical value to obtain the value of the diagonal difference. However, it 
would be paradoxical to decrease the between component by the horizontal value, i.e. by 1 
in the case of the solid grey lines.1

As Fig.  1b illustrates, we suggest splitting each diagonal difference proportionally to 
the vertical and horizontal ones and assigning these two (positive) values to the within 
and between components, respectively. Using the proportional scaling to decompose the 
diagonals ensures that adding all their contributions to the within and between components 
preserves the proportion between the sum of vertical and horizontal differences. This is the 
key for the informativeness of the final components.

We have just presented the intuition that underlies the decomposition. In the next sec-
tion, we formalise the decomposition under the hypothesis of equal-sized groups, which is 
relaxed in Sect. 4.

3  The Decomposition Proposal

Starting from Eq.  (9), we suggest the following decomposition for each non-zero 
difference2:

1 To see the paradox, imagine replacing the poorest individual of group h with a poorer one. Subtracting 
3 − (2 − 𝜖) > 1 would produce a lower value of the between component, although intuition suggests that the 
between inequality is now higher because the poor group is poorer.
2 It is important to note that the assumption of equal-sized groups ensures that for any pair (xk

i
, xh

j
) , the ele-

ment xk
j
 always exists. Considering xk

j
 or xh

i
 is equivalent, since the Gini index accounts for each difference 

twice, reversing the indices in the summation.
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where the two addenda are, respectively, contributions to the within and between com-
ponents, while wkh

ij
= |xk

i
− xh

j
|∕(|xk

i
− xk

j
| + |xk

j
− xh

j
|) is the scaling factor. The scal-

ing factor wkh
ij

 equals 1 in cases of vertical differences (where k = h ), horizontal differ-
ences (where i = j ), and for specific differences like the black diagonals (where k ≠ h , 
i ≠ j and (xk

i
− xk

j
) ⋅ (xk

j
− xh

j
) ≥ 0 ). This equality simplifies Eq.  (10), which reduces to 

|xk
i
− xh

j
| = |xk

i
− xk

j
| + |xk

j
− xh

j
| for these particular instances, reflecting the intuitive alloca-

tion of differences to the within and between components. Differences such as grey diago-
nals ( k ≠ h , i ≠ j and (xk

i
− xk

j
) ⋅ (xk

j
− xh

j
) < 0 ) are associated with wkh

ij
∈ [0, 1) . In this case, 

wkh
ij
< 1 because 

|xki − xhj | < |xki − xkj | + |xkj − xhj | : the scaling factor reduces the vertical and hori-
zontal differences so that the contributions to the within and between components add up 
to |xk

i
− xh

j
|.

The decomposition of the Gini index follows by substituting Eq.  (10) into Eq. (9). 
Denoting 

∑K

h=1
wkh
ij
= wk

ij
 and 

∑n

i=1
wkh
ij
= wkh

j
 , we obtain:

and we can write

The Gini index consists of two terms. We interpret GA
w
 and GA

b
 as the within and between 

components of inequality because, respectively, they depend on the contributions from 
same-group and same-rank pairwise differences. Clearly, GA

b
 does not explicitly depend 

on the group means, therefore it does not observe the additive decomposability property. 
Pursuing a between-component that measures horizontal inequality while comparing the 
entire distributions of the groups inevitably leads to contrast with the definition of additive 
decomposability. However, while additive decomposability is desirable when the goal is to 
understand how resources are unequally distributed between groups, we believe that relax-
ing the constraint it imposes on the between component is essential to accurately capture 
horizontal inequality.

The within and between components involve, respectively, wk
ij
 and wkh

j
 . These weights 

ensure that each same-group (same-rank) difference contributes to within (between) 
inequality according to how much it affects the diagonal ones. For example, if a vertical 
difference increases, thus enlarging some of the grey-like diagonal differences, then the 
related scaling factors consistently increase and inflate the weight wk

ij
 . The structure of 

the weights follows from that of the scaling factors, which is not necessarily unique. In 
Eq. (10) we multiply |xk

i
− xh

j
| by 1, expressed as the ratio of |xk

i
− xk

j
| + |xk

j
− xh

j
| to itself. 

Alternatively, we might consider multiplying by the ratio of f (xk
i
− xk

j
) + f (xk

j
− xh

j
) to 

(10)

|xk
i
− xh

j
| = |xk

i
− xh

j
|
|xk

i
− xk

j
| + |xk

j
− xh

j
|

|xk
i
− xk

j
| + |xk

j
− xh

j
|

= |xk
i
− xk

j
|

|xk
i
− xh

j
|

|xk
i
− xk

j
| + |xk

j
− xh

j
| + |xk

j
− xh

j
|

|xk
i
− xh

j
|

|xk
i
− xk

j
| + |xk

j
− xh

j
| =

= |xk
i
− xk

j
|wkh

ij
+ |xk

j
− xh

j
|wkh

ij

(11)g = gw + gb =

K∑
k=1

n∑
i=1

n∑
j=1

wk
ij
|xk

i
− xk

j
| +

K∑
k=1

K∑
h=1

n∑
j=1

wkh
j
|xk

j
− xh

j
|

(12)G = GA
w
+ GA

b
=

gw

2�N2
+

gb

2�N2
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itself, where f (⋅) represents any monotonic and continuous function. This adjustment 
introduces a broader class of decompositions, enabling a focus on either large or small 
differences based on the choice of f (⋅) (e.g., f (x) = x2 or f (x) =

√�x� would put more 
emphasis on large or small differences, respectively). However, since we are decompos-
ing a measure of inequality based on the linear distance (Mehran, 1976), we think that 
the natural choice is proportional scaling, which is the only one that preserves the lin-
earity of the Gini index in the components of its decomposition.

The R package implementing the described decomposition technique is available on 
GitHub. To ensure the GiniDecA package can be installed from GitHub, first check if 
the devtools package is installed. If not, install devtools using the following com-
mand in R:

Afterward, install GiniDecA in the R environment

and use the GiniDec function as in the example below:

3.1  Properties of the Decomposition

Our decomposition enjoys relevant properties, both in the within- and the between-
group components. Given wkk

ij
= 1 , wkh

jj
= 1 and wkh

ij
≥ 0 , we have wk

ij
≥ 1 and wkh

j
≥ 1 . 

Therefore, the following properties hold: 

 The first relation ensures that the within component is zero iff all the same-group differ-
ences are zero, i.e. there are no differences between groups. The second condition guaran-
tees that the between-component is zero iff all the same-rank differences are zero, i.e. the 
groups have the same distribution.

(i)GA
w
= 0 ⇔

|||x
k
i
− xk

j

||| = 0 ∀i, j, k

(ii)GA
b
= 0 ⇔

|||x
k
j
− xh

j

||| = 0 ∀j, k, h
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Properties (i)-(ii) are conceptually analogous. All the most widespread decomposi-
tions of inequality have a within component that, like ours, observes property (i). As 
for property (ii), GBM

b
 and GYL

b
 satisfy its sufficiency—they are zero if the groups have 

the same distribution - while they do not satisfy its necessity - they are zero even if 
the groups have different distributions. Our between-component observes both the 
sufficiency and necessity of property (ii), being zero iff the groups have the same 
distribution.

Additional important properties concern the algebraic similarity of GA
w
 with 

Eqs. (3)–(5), and of GA
b
 with Eq. (8). Regarding GA

w
 , we can rewrite it as

The term ∑n
i=1

∑n
j=1 w

k
ij|x

k
i − xkj |∕2�kn2 would equal Gk if all the weights wk

ij
= 1 , resulting in 

GA
w
= GBM

w
 . This never happens but, as we discussed, each wk

ij
 preserves the information of 

the vertical differences that it multiplies. Therefore, the correlation between GA
w
 and GBM

w
 is 

naturally high. Being n∕N = 1∕K , if all the weights are wk
ij
= K then GA

w
= GYL

w
 . Actually, 

1 ≤ wk
ij ≤ K , therefore the weighting structure of GA

w
 is the middle ground between those of 

GBM
w  and GYL

w  . This is why GA
w
 is highly correlated with both GBM

w
 and GYL

w
.

A similar discussion holds by comparing GA
b
 with the horizontal inequality benchmark 

defined in Eq. (8). Our between component reads:

which has a comparable structure to Eq.  (8). GA
b
 and HI would be equivalent if all the 

weights were wkh
j
= n . Again, it never happens and since 1 ≤ wkh

j
≤ n then GA

b
 is usually 

lower than HI. It is important to avoid confusing this relation with an underestimation of 
horizontal inequality. We argue that the weights wkh

j
 guarantee such a strong correlation 

between GA
b
 and HI that we can consider GA

b
 lower than HI simply due to a scaling trans-

formation. We confirm the high correlation between GA
b
 and HI, and between GA

w
 , GBM

w
 and 

GYL
w

 , using a Monte Carlo simulation. We present the experiment and its results in Sect. 5.
Concluding this section, we observe that, as discussed for HI, isolating the addenda of 

GA
b
 by j and k provides indicators which allow one to understand which parts of the dis-

tributions differ the most between the groups, and which group differs the most from the 
others. We believe that these indicators are another tool from which several fields of the 
inequality literature can benefit.

(13)

GA
w
=

1

2�N2

K∑
k=1

n∑
i=1

n∑
j=1

wk
ij
|xk

i
− xk

j
|

=

K∑
k=1

�k

�

n2

N2
⋅

1

2�kn
2

n∑
i=1

n∑
j=1

wk
ij
|xk

i
− xk

j
|

(14)

GA
b
=

1

2�N2

K∑
k=1

K∑
h=1

n∑
j=1

|xk
j
− xh

j
|wkh

j

=

n∑
j=1

�j

n�

1

2�jN
2

K∑
k=1

K∑
h=1

nwkh
j
|xk

j
− xh

j
|
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4  The Different‑Sized Groups Extension

This section shows that our methodology is robust even when groups are of different 
sizes, extending beyond the initial assumption of equal-sized groups. It was necessary to 
understand the decomposition arguments, but our decomposition approach can be flexibly 
adapted to scenarios where groups vary in size, ensuring broader applicability. In this case, 
Eq. (9) becomes:

and a way to ensure the existence of the element xk
j
 is necessary for the implementation 

of our decomposition proposal. We propose two distinct solutions. The first evaluates the 
two components without approximation. However, this exact approach may require com-
putational resources that are impractical for large datasets. The second solution drastically 
reduces computational requirements by paying the cost of a negligible approximation.

4.1  The Exact Approach

Consider a new common size n = lcm(n) and the weights pk = nk∕n , so to build the repop-
ulated vectors yk = (yk

1
,… , yk

n
) = (xk

1
… xk

1
⏟⏟⏟

p−1
k

,… xk
nk
… xk

nk
⏟⏞⏟⏞⏟

p−1
k

) . We can show:

Figure 2 provides the intuition of Eq. (15). Imagine two groups composed, respectively, of 
two and three individuals, as reported in the left rectangle. Replace them with those in the 

g =

N∑
i=1

N∑
j=1

|xi − xj| =
K∑
k=1

K∑
h=1

nk∑
i=1

nh∑
j=1

|xk
i
− xh

j
|

(15)
nk∑
i=1

nh∑
j=1

|xk
i
− xh

j
| =

n∑
i=1

n∑
j=1

pkph|yki − yh
j
|

Fig. 2  A two-group illustration of repopulation in the exact approach. The left panel represents two groups 
composed, respectively, of two and three individuals. The exact approach replace them with the equal-sized 
groups in the right rectangle and introduces the weights pk and ph in Eq. (15) to preserve the correspond-
ence with the Gini index
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right rectangle. According to the principle of population, xk and yk (as well as xh and yh ) 
have the same within-group inequality. In addition, the cumulative distribution functions 
of the two groups are the same before and after the replacement, and hence the distance 
between the two groups is also unvaried. However, each difference between couples in the 
left scheme appears, in the right scheme, 9 times if the couple belongs to yk , 4 times if 
it belongs to yh and 6 times if the two units belong to different groups. The pk and ph in 
Eq. (15) adjust by multiplying the differences, respectively, by 1/9, 1/4 and 1/6. In this way, 
equal-sized groups are obtained preserving the correspondence with the Gini index and 
with the original distributions of the groups.

We decompose the Gini index using a technique that is analogous to the one used 
to derive Eq.  (11). The only difference is in the new weights wk

ij
=
∑K

h=1
pkphw

kh
ij

 and 
wkh
j
=
∑n

i=1
pkphw

kh
ij

 , which incorporate the information needed to preserve the original 
importance of each couple.

Unfortunately, in most cases, this approach requires an unaffordable computational 
effort because of the potentially huge magnitude of the least common multiple. To reduce 
computational requirements, we present an alternative procedure, which we refer to as 
quantilisation.

4.2  Quantilisation

Differently from the exact approach, we propose to consider a lower value of n and to cal-
culate differently each yk : for each group, the vector yk contains the n quantiles from the 
income vector of the group. As for pk , their calculation is the same employed in the exact 
approach, but now nothing constrains n ≥ nk , thus it can be pk > 1 . The decomposition is 
the same, but G, Gw and Gb now incur in some approximation.

To employ this method, there are the definition of quantile and the value of n to be 
selected. For the former, we advise the Definition 7 reported in Hyndman and Fan (1996), 
which is the default definition adopted by the quantile function in various statistical soft-
ware. Given each vector xk , accordingly to this definition and in order to minimise the 
approximation, we suggest first to interpolate linearly the nk vertices 

(
(i − 1)∕(nk − 1), xk

i

)
 , 

and then to estimate the n quantiles by the values associated with the probabilities

on the resulting piecewise linear curve.
Regarding the value of n, we define wk = nk∕

∑K

k=1
nk and advise the value:

which determines n as the average of the nk , each weighted by its own share of population 
wk.

The decisions proposed for both the quantile definition and for the value of n are moti-
vated in the appendix. Here, we only inform that, if they are employed, the approximation 
that the quantilisation procedure copes with is minimal and negligible. To obtain two esti-
mates of the exact components, which are consistent and sum up to the Gini index of the 

(16)probj =
j − 1

n − 1
j = 1,… , n

(17)n =

K�
k=1

wknk =

∑K

k=1
n2
k∑K

k=1
nk
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original data, it is sufficient to multiply the shares of the components, obtained by quantili-
sation, by the value of the index evaluated on original data.

5  Monte Carlo Experiment: Comparison of Alternative Decompositions

This section details the Monte Carlo simulation developed to examine the correlations 
between alternative decomposition components and established benchmarks. In particular, 
the experiment studies the correlation of GA

w
 and GBM

w
 with GYL

w
 ; and the correlation of GA

b
 , 

GGini and GYL
b

 with HI. The aim is to validate the effectiveness of our approach in captur-
ing within-group and between-group inequality. We also carried out the experiment using 
GBM

w
 instead of GYL

w
 as the reference point for the inequality within the groups. This addi-

tional simulation confirms the discussion after Eq. (13), which stresses that the weighting 
structure of GA

w
 is the balancing between those of GBM

w
 and GYL

w
.

The experiment works with three predetermined parameters: the number of groups, the 
parameter(s) of the distribution of n and the coefficient of variation between the averages of 
the groups ( CV[� [�k]] ). The latter is an indirect parameter, which derives from imposing 
credible conditions on the parameters of the lognormal distribution that is used to sample 
incomes. More details about the income simulation procedure and its theoretical founda-
tions can be found in the Appendix. Here, we only stress that the parameters of the lognor-
mal distribution are micro-founded. Indeed, as detailed in the second part of the Appendix, 
they are chosen sampling from the parameters estimated in Bandourian et al. (2002) using 
real data along different countries and periods. This guarantees robust results with respect 
to real income distributions.

The procedure is schematised in Fig. 3 and can be summarised as follows:
Step I. Fixing K and (n,  r), generate the vector n : each nk is drawn from a uniform 

[n, (1 + r) ⋅ n] , where 100 ⋅ r is the maximum percentage deviation from the minimum n.
Step II. Fixing CV[� [�k]] , generate the income vectors from the lognormal distri-

bution 50 times, each time evaluating all the statistics involved ( GA
w
 , GBM

w
 , GYL

w
 , GA

b
 , GBM

b

(=GGini), GYL
b

 and HI). The 50 points allow us to estimate the following triples of correla-
tion estimates:

Fig. 3  The Monte Carlo experiment in a scheme
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Step III. To evaluate the correlation while increasing the variability of the means of the 
groups, repeat Step II for eight values of CV[� [�k]].

The simulation runs Step I-III 20 times and delivers, for each value of CV[� [�k]] , 20 
replicates of the triples defined in Step II. For each position in the triple, we summarise its 
20 replicates by their average and standard deviation. For each position in the triple, the 
eight pairs (�, sd) corresponding to the eight values of CV[� [�k]] are averaged pairwise, 
determining four pairs 

(
�, sd

)
 . They correspond to low, medium-low, medium-high, and 

high (L, M-L, M-H, H) CV[� [�k]] . The experiment evaluates multiple scenarios by also 
varying the number of groups K and the parameters (n, r).

Results  We present in Table  1 the four pairs (� , sd) for representative parameters 
( K = 3, 30 ; n = 10, 100 ; r = 1, 4).

As for the within component, both ρ (GA
w
,GYL

w
) and ρ (GBM

w
,GYL

w
) are rarely below 0.9, 

with the first being generally higher and less volatile. The only exception occurs when the 
variability in n is low (i.e. when r is low): in this case ρ (GBM

w
,GYL

w
) is sometime higher. 

This is because ρ (GBM
w

,GYL
w
) = 1 when the groups are equal-sized, decreasing with the var-

iability of n.
The correlations depend marginally on the specification of the parameters. Higher val-

ues of K negatively influence ρ (GA
w
,GYL

w
) , but increasing the values in n absorbs this small 

effect; ρ (GA
w
,GYL

w
) also decreases for higher values of CV[� [�k]] , while its variability 

increases. In any case, all the � referred to our within component are never below 0.92 and 
the highest sd is 2.8 ⋅ 10−2.

When performing the Monte Carlo experiment using GBM
w

 as the reference instead of 
GYL

w
 , we obtain results that substantially mirror those presented. As expected, thanks to its 

weighting structure, our within component is the middle ground between GYL
w

 and GBM
w

.
Regarding the comparison of GA

b
 , GBM

b
 and GYL

b
 with HI, regardless of K and n , ρ (GA

b
,HI) 

is always the highest ( ≈ 1 ) and least volatile, showing striking advantages in  situations 
where the variability of the means is not large. It slightly decreases and shows higher sd 
when the variability in n increases and the values in n and K are small. When the variabil-
ity of the means increases, explaining most of the differences between groups and reducing 
their overlap, ρ (GBM

b
,HI) increases and narrows the gap with ρ (GA

b
,HI) ; also ρ (GYL

b
,HI) 

increases with the variability of the means, but remains much smaller and the most volatile. 
In conclusion, according to the Monte Carlo experiment, GA

b
 is the most suitable between-

component to capture the complexity of horizontal inequality when the groups have similar 
means. It provides richer information than the conventional between-components unless 
the group averages are so far apart as to drastically reduce overlapping between the distri-
butions and explain most of the difference between the groups.

⎡
⎢⎢⎣

ρ
�
GA

w
,GYL

w

�
ρ
�
GBM

w
,GYL

w

�
ρ
�
GYL

w
,GYL

w

�
⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

ρ
�
GA

b
,HI

�
ρ
�
GBM

b
,HI

�
ρ
�
GYL

b
,HI

�
⎤
⎥⎥⎦
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6  Horizontal Inequality Between the EU Country Pairs

This section underscores the importance of choosing an accurate measure for effectively 
assessing and tracking the evolution of horizontal inequality. Our analysis makes use of 
the OECD Income Distribution Database, which provides the average household income 
in each decile of all EU countries, adequately transformed into Purchasing Power Parity 
(PPP) from 2004 to 2018, to ensure comparability.

First, we measure the income inequality across all pairs of EU countries for the year 
2018. For each country pair, we decompose the inequality between their income deciles 
by Eqs. (2) and (12). We also evaluate HI between the two countries. Finally, we compare 
the inequality between countries as measured by GA

b
 , GGini and HI to study the differences 

between alternative measures of horizontal inequality. In Fig. 4, each point represents the 
horizontal inequality of a country pair in the space (HI,Gb) . Black and grey points relate 
HI, respectively, to GGini and GA

b
 . Comparing GGini and HI highlights that they are per-

fectly correlated over several country pairs, especially the most dissimilar couples. How-
ever, there are couples of countries that significantly reduce ρ

(
GBM

b
,HI

)
 . Indeed, when 

the inequality between two countries is medium to low, GGini often underestimates the 
inequality between countries, sometimes being significantly lower than the value we would 
expect based on HI. The oversimplification issue does not involve our between-group com-
ponent. Comparing HI with GA

b
 highlights their strong correlation over all the country pairs, 

even those with similar means and different distributions.

Fig. 4  Horizontal inequality of the European Union country pairs in 2018, as measured by HI, GGini and 
GA

b
 . Comparison of HI (x-axes) with the GGini and GA

b
 (y-axes). Oversimplification of the GGini takes the 

form of underestimation of horizontal inequality and is not rare when groups have similar mean. The scatter 
relating HI and GA

b
 has no outliers and confirms ρ (GA

b
,HI) ≈ 1
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To explore how horizontal inequality has evolved over time, we examine two con-
trasting pairs of countries: a pair over which the GGini and HI are correlated, and a pair 
having distributions leading to the GGini oversimplification.

The first case study, featuring Italy and Greece, is illustrated in Fig.  5a, showcas-
ing their between-inequality dynamics as measured by GA

b
 , GGini and HI. All three 

measures report the same evolution, as long as the correlation between HI and GGini 
is perfect and that between HI and GA

b
 is above 0.99. The inequality between the two 

countries decreases slightly from 2004 to 2009, while it more than doubles between 
2009 and 2013. In order to investigate the reasons explaining the evolution of horizontal 
inequality, in Fig. 6a we focus on three peculiar years (2004, 2009, 2013) and plot the 
difference (as a fraction of the mean) between the income deciles of the two countries. 
The reduction of horizontal inequality between Italy and Greece from 2004 to 2009 is 
primarily due to the decrease in the gap in the richest decile. Between 2009 and 2013, 
all (positive) differences between deciles are at least double. Consequently, also the dif-
ference between the Italian and Greek means more than doubles, which explains the 
perfect correlation between GGini and HI in Fig. 5a.

The comparison between the United Kingdom and Italy presents a starkly different sce-
nario, as depicted in Figs. 5b and 6b. In this case, GGini evolves differently from HI - the 
correlation of the two series is 0.27. On the contrary, the correlation between GA

b
 and HI 

is still greater than 0.99. We use Fig. 6b to explain this contrasting evidence. We note that 
all the deciles of the two countries are quite similar in 2004, except for the last one. The 
distance between the deciles (but the first) increases considerably in 2009. Accordingly, 
both HI and GA

b
 reach their maximum in 2009, while GGini reaches its minimum. This hap-

pens because the 10th decile is higher in the UK while the other deciles are higher in Italy; 
therefore, the differences between the deciles compensate and produce a small difference 

Fig. 5  Horizontal inequality between Italy and Greece (left panel) and between the UK and Italy (right 
panel) from 2004 to 2018, as measured by HI, GGini and GA

b
 . All three measures in the left panel depict 

the same evolution of horizontal inequality between Italy and Greece, while HI and GA
b
 strongly differ from 

GGini when comparing the United Kingdom and Italy (right panel)
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between the means. Considering the distributions to be closer in 2009 than in 2004 over-
looks critical details, demonstrating a clear case of oversimplification. As further confirma-
tion of our argument, the GGini massively increases between 2009 and 2014, despite no 
evidence of such a large increase in the distance between the two distributions. Again, the 
fast increase of the GGini is motivated by the sign of the differences between the deciles, 
rather than their magnitude. Going back to Fig. 4, all perfectly correlated black dots corre-
spond to pairs of countries such that the income distribution of one country dominates the 
other over all quantiles (stochastic dominance), as in the case of Italy and Greece. When 
there is no stochastic dominance between distributions, it is our conviction that the ability 
of GA

b
 to measure horizontal inequality is considerably superior to that of the GGini.

Fig. 6  Differences between income deciles of Italy and Greece (top panel) and of the UK and Italy (bottom 
panel). The difference is reported as a fraction of the overall mean. The Italian deciles always dominate the 
Greek ones. Differently, there is stochastic dominance between income deciles of the UK and Italy only in 
the most recent years. This explains the conflicting trajectories of Fig. 5b
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7  Conclusions

This study introduces an innovative Gini index decomposition technique designed to over-
come the limitations of traditional methods in evaluating horizontal inequality. The most 
widespread subgroup decompositions of inequality deliver within- and between-group 
components. The latter, which is based on the comparison of the means of the groups, is 
commonly used to assess horizontal inequality. Yet, a comprehensive assessment of hori-
zontal inequality necessitates considering additional distributional characteristics beyond 
mere averages. Addressing this gap, our method introduces a between-group component 
that encompasses the full distributions of groups, offering a more detailed comparison than 
solely focusing on their means. This makes it particularly appropriate to measure hori-
zontal inequality, as confirmed by a Monte Carlo experiment and empirical analysis, both 
assessing the strong correlation of our component with a benchmark measure of horizontal 
inequality.

Our decomposition has another advantage. Conventional decompositions of the Gini 
index present a residual term in addition to the within- and the between-components. This 
residual disappears only if the distributions of the groups do not overlap. Exploiting a new 
insight into the Gini index, we disentangle each addendum of the index into two informa-
tive contributions to within- and between-group inequality, obtaining a two-component 
decomposition without the need to include a residual term. Hence, in our decomposition, 
inequality within groups explains a share of the Gini index, while excess inequality only 
depends on inequality between groups.

Empirical analysis confirms the relevance of our decomposition to support both cross-sec-
tional and longitudinal analysis of inequality. Studying the cross-sectional inequality between 
the European country pairs in 2018, we compare our between component ( GA

b
 ), and that of the 

most widespread Gini decomposition (GGini), with the horizontal inequality benchmark (HI). 
While GGini and HI show strong correlation across numerous country pairs, GGini tends to 
underestimate horizontal inequality in cases where countries have similar means but different 
distributions. On the contrary, GA

b
 and HI have a strong correlation over all the country pairs. 

Studying inequality over time, our analysis spans between 2004 and 2018 and involves the 
Italy-Greece and the United Kingdom-Italy country pairs. The analysis reveals that unlike GA

b
 

and HI, GGini occasionally falls short in capturing the intricate dynamics and evolution of dif-
ferences between groups.

Our discussion points out that both GGini and GA
b
 accurately measure horizontal inequal-

ity when there is stochastic dominance between the distributions. In this case, the information 
provided by the two measures is the same of HI, and the advantage of our decomposition is to 
avoid the residual. This advantage disappears when the distributions of the groups do not over-
lap because the residual of the conventional decompositions of the Gini index vanishes. When, 
instead, there is no distribution that dominates the other over all quantiles, ρ (GA

b
,HI) remains 

high while GGini underestimates horizontal inequality and fails to assess its evolution. In such 
cases, we argue that our decomposition provides a more nuanced understanding of inequality 
between groups.

In sum, we firmly believe that the decomposition technique presented herein significantly 
broadens the usefulness of the Gini index for inequality research, paving the way for novel 
investigations into horizontal inequality and beyond.
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Appendix

On the Quantilisation Procedure

This part of the appendix discusses the suggested value of n and of the definition of quan-
tiles in the quantilisation procedure, explaining their optimality and quantifying the magni-
tude of the approximation incurred.

Defining w =
(
w1,…wK

)
 we can rewrite the suggested value of n as n = wn⊺.

This expression determines n as the average of the nk , each weighted by the share 
of population wk . We study the performance of this value in Fig.  7, where we evalu-
ate the approximation by looking at the relative discrepancy between the two shares 
Gb∕G from the exact approach and the quantilisation method. To be precise, we define 
Sb = Gb∕G as the between component share obtained by the quantilisation method and 
Sr
b
= Gr

b
∕Gr as the reference share obtained by the exact approach. The relative discrep-

ancy is measured by the Mean and the Absolute Squared Error of Sb∕Srb w.r.t. 1 = Sr
b
∕Sr

b
 . 

They are calculated running 150 simulations and evaluating the empirical counterpart of 
MSE(Sb∕Srb) = � [(Sb∕S

r
b
− 1)2] and MAE(Sb∕Srb) = � [|Sb∕Srb − 1|].

At each iteration, we draw lognormal income vectors with sizes n , as described in the 
second section of this Appendix. We compare the approximation with alternative choices 
of n, which are the minimum and the maximum of n , its deciles (expressed in the plot 
as probabilities of the inverse distribution function) and the value obtained by Eq.  (17). 
Generating the vector n , we impose constraints on its elements to ensure affordable values 
for lcm(n) . To be specific, the algorithm firstly specifies K ( = 5 , 10 or 20). Then it builds 
a vector mul composed by the divisors of 24335 that belong to an interval [min,max] . The 
min ( = 36 or 72) and the max ( = 360 or 720) are both included in n . The other K − 2 
values are sampled with repetition from mul . With this choice the lcm cannot exceed the 
value 2160 and the computations are affordable. Figure 7 represents the results for K = 20 , 
min = 72 and max = 720.

As we show in Fig.  7a, the proposed value of n - represented by the solid indicators 
- minimizes (or reach a value very close to the minimum of) the approximation that this 
method copes with, both for the MSE (left scale) and the MAE (right scale). This result is 
achieved thanks to vanished distortion and variance reduction, as we show in Fig. 7b. We 
stress the irrelevance of the approximation when the suggested n is employed: according to 
the MAE, which is interpretable as average absolute percentage error, the error is 0.22%.

The magnitude of the percentage approximation changes with the simulation param-
eters, as Table 2 points out. It reports the percentage MAE of the between component share 
for different choices of n, K and of the interval [min, max]. Results are really encouraging. 
The values of the MAE are below the percentage point in half of the parameter specifica-
tions, and they are always below 1% when the suggested choice of n is employed.

For each choice of n, when the ratio max∕min decreases, the approximation reduces, too. 
If that ratio stays constant, the MAE informs about better performance for higher min and 
max. Results are enhanced when n is selected by Eq.  (17) and the number of groups is 
high. The described dependence of the MAE on the values of n, K and of the interval 
[min, max] proves the consistency of our procedure, and may ensure even lower approxi-
mation in many realistic scenarios where the parameters are presumably more conducive.

The suggested choice of n almost always guarantees a relevant reduction in the compu-
tational cost associated to n = max(n) . This reduction is not negligible in our simulations: 
p̄ is the average value, in the 150 simulations, associated to our choice of n in the inverse 
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distribution function of n . It is reported in the last column of the table and range from 0.69 
to 0.84.

As supported by the values in the third column of the table - which decrease when 
min(n) increases - it could be also acceptable to choose a value n << min(n) if min(n) is 
high and a computational saving choice is required.

Fig. 7  Approximation of the between component share for different choices of n (expressed in terms of the 
probability associated to n in the inverse distribution function of the vector n ). The approximation is evalu-
ated by comparing the 150 between-share obtained by the quantilisation procedure with the 150 obtained by 
the exact approach. The left panel summarises those differences by MSE(Sb∕Srb) (left scale) and MAE(Sb∕Srb) 
(right scale). Right panel shows the boxplots of the 150 relative differences for each choice of n 

Table 2  Percentage approximation of the quantilisation procedure as measured by the MAE of the between 
component share, for different parameter specifications. The last column represents the average fraction of 
elements in the vector n which are lower than the suggested n 

K [min,max] Percentage approximation for different deciles n = wn
⊺

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 n p̄

5 [36, 360] 6.12 4.88 4.14 3.20 2.53 2.17 1.42 1.20 1.00 0.92 0.90 0.94 0.78
[36, 720] 8.28 6.41 5.45 4.13 3.26 2.79 1.71 1.44 1.05 0.91 0.86 0.91 0.83
[72, 360] 2.66 2.19 1.93 1.52 1.18 1.01 0.76 0.69 0.61 0.57 0.58 0.60 0.73
[72, 720] 4.07 3.24 2.79 2.14 1.70 1.45 1.00 0.86 0.69 0.61 0.59 0.64 0.79

10 [36, 360] 4.72 3.90 2.97 2.23 1.61 1.14 0.86 0.65 0.55 0.56 0.60 0.53 0.77
[36, 720] 5.44 4.42 3.35 2.56 1.94 1.43 0.99 0.69 0.52 0.45 0.47 0.45 0.84
[72, 360] 2.11 1.76 1.41 1.11 0.87 0.65 0.49 0.38 0.34 0.33 0.35 0.35 0.71
[72, 720] 3.17 2.66 2.13 1.63 1.20 0.85 0.61 0.47 0.38 0.32 0.32 0.34 0.78

20 [36, 360] 3.72 2.94 2.26 1.77 1.26 0.83 0.54 0.37 0.31 0.36 0.42 0.30 0.75
[36, 720] 4.85 3.81 2.93 2.20 1.55 1.08 0.67 0.43 0.29 0.25 0.30 0.24 0.82
[72, 360] 1.78 1.53 1.17 0.89 0.64 0.44 0.29 0.22 0.21 0.23 0.26 0.21 0.69
[72, 720] 2.68 2.20 1.66 1.26 0.89 0.61 0.43 0.29 0.24 0.26 0.32 0.22 0.78
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All these results are associated to the quantile definition that we suggest. Our choice 
comes from the comparison of the approximation achieved using the nine different quantile 
definitions presented in Hyndman & Fan (1996) in the procedure which generates Fig. 7a. 
As we show in Fig. 8, the Definition 7 essentially presents the lowest MSE (and MAE) for 
each choice of n and it ensures computational advantages because the MSE approaches 0 
for smaller n.

The outstanding performance of Definitions 1 and 2 when the probability is close to 
1 are exceptions. Both the definitions rely on a stepwise cumulative probability function 
which selects the quantiles from the set of values in the starting vector. Thus, if p = 1 and 
max(n) = lcm(n) , the vector of quantiles corresponds to the yk of the exact approach, and 
no approximation is encountered, with evident advantages starting from p = 0.8 . Nonethe-
less, in the vast majority of real applications, the vector n is much more variable than the 
bounded vectors used in these simulations. Hence lcm(n) is generally far from max(n) and 
the Definition 7 from Hyndman & Fan (1996) is definitely recommended.

Actually, the optimal performance associated to the suggested quantiles selection strat-
egy should not come as a surprise. Its outstanding results have a twofold explanation. First, 
the performance of the proposed choice of n directly derives from its consistency with the 
exact-approach weighting system. This choice assigns greater weights wk to the sizes of the 
most sized groups, which is desirable because these are the groups with the biggest pk . It is 
reasonable to preserve their information by choosing a large n and by resampling the small-
est groups. But if many small groups are present, n is attracted towards their small size. 
Here, the quantilisation of the biggest groups is preferred to resampling the many small 
groups. The second explanation for the optimal performance of the suggested strategy is 
the following. Eq. (16) selects the values probj so as to partition the interval [0, 1] in n − 1 
equal parts, with 0 and 1 two of the n vertices of the partition. It is straightforward to verify 
that, with our suggestions, min(xk) and max(xk) are preserved for each n and k. Moreover, 
if nk = n   ∀  k, then the vectors xk are entirely preserved, too. Both these properties, which 

Fig. 8  Between component share 
approximation of the 9 quantile 
definitions presented in Hynd-
man & Fan (1996), for different 
choices of n (expressed in terms 
of the probability associated to n 
in the inverse distribution func-
tion of the vector n ). Approxima-
tion is measured by MSE(Sb∕Srb) , 
calculated by the same procedure 
generating Fig. 7. Using the 
software R, each quantile defini-
tion can be selected by the option 
type of the function quantile(). 
Here, Tj stands for selecting the 
option type=j 
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ensure robustness w.r.t. outliers, hold at the same time only employing Definition 7 from 
Hyndman & Fan (1996) and the suggested choice of the values probj.

The Income Simulation Algorithm

A Monte Carlo algorithm is employed to evaluate the approximation of the quantilisation 
procedure and to estimate correlations. This section of the appendix provides with the the-
oretical foundations of the income simulation procedure feeding both these algorithms.

The distribution of n is a K-variate uniform, where the number of groups K and 
the extremes of the distribution are determined ex-ante. A uniform distribution is also 
exploited to draw the expected average income of each group: �

[
�k

]
∼ Unif(m,M) . 

The minimum m of this distribution is set to 104 . As for the maximum M, it is fixed 
to 5 ⋅ 104 in the simulations described in the first part of this appendix. Differently, in 
the simulations presented in Sect. 5, M is varied to highlight how correlations depend 
on the variability of the means of the groups. This is possible because a modification 
of M directly affects CV[� [�k]] . For the uniform distribution � u

[

�
[

�k
]]

= (M + m)∕2 and 
Varu

[
�
[
�k

]]
= (M − m)2∕12 , therefore the coefficient of variation of �

[
�k

]
 is

and, with m fixed, it only depends on the value of M.
The values of M are selected so that the coefficient of variation divides the interval into 

S equal parts. Denote by M(s) , s = 1… S the different values required for this scope. The 
values M(s) satisfy:

with M(0) = m and c = 1∕
�√

3S
�
 . With easy calculations, the following holds:

and the M(s) can be calculated iteratively.
Once all the parameters are fixed, we draw the incomes of each group from a lognormal 

distribution with expected value �
[
�k

]
∼ Unif(m,M) . The last requirement is to define a 

meaningful way to determine the two parameters � and �2 of the distribution. As it is well 
known, for a lognormal distribution the following holds:

This equation allows an effective way to determine the two elements �k e �k:

CV
�
�
�
�k

��
=

�
�u

�
�
�
�k

��

�u

�
�
�
�k

�� =
1√
3

(M − m)

(M + m)
∈

�
0,

1√
3

�

M(s) − m

M(s) + m
−

M(s−1) − m

M(s−1) + m
= c

M(s) =
m(cM(s−1) + cm + 2M(s−1))

(2m − cM(s−1) − cm)

(18)�
[
�k

]
= e

�k+
�2
k

2

(19)�k = �k ln �
[
�k

]
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Their ratio is

At this point, we consider the 82 couples of lognormal parameters estimated in Bandourian 
et al. (2002) using 82 real income distributions from 23 countries over several years (from 
the end of sixties to the end of nineties). We evaluate all the ci = �2

i
∕�i , i = 1,… , 82.

Realistic values for �k can be obtained sampling a value of i for each group and posing 
ck = ci , solving the following equation:

Therefore �k and �2

k
 are determined by Eqs. (19)–(21).

The appropriateness of the last step - i.e. sampling a value of i for each group and using 
the correspondent ci - is justified by the fact that the 82 values of � in Bandourian et al.
(2002) are not influenced by the associated � [�k] : a simple linear regression reports an 
approximately null coefficient ( 5.6 ⋅ 10−4 ) and a large p-value (0.65) for the regressor 
� [�k] . Consequently, there are 82 credible proportions to split � [�k] in �k and �2

k
∕2 . We 

exploit them to simulate income.
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