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Abstract
The HDI (Human Development Index) is a widely used index based on the average of 
measures of health, education, and income. It assesses the progress of countries world-
wide. The publicly available data set associated with the HDI can be seen as a table with 3 
dimensions (three-way table): countries, indexes regarding progress, and years (from 2010 
to 2018). Thus, modeling the serial dependence structure of this type of intricate three-
way tables is a challenge. D-vine copulas are a special class of multivariate copulas that 
are particularly suited for modeling serial dependence. This work aims to assess the evo-
lution of the dependence relationship between the indexes of the HDI data set over time 
through D-vine copulas, which has not been fully used before in the area, as far as we are 
concerned. We tested our approach to European and African countries and compare their 
results.

Keywords Copulas · Longitudinal data · Human development index · Dependence

1 Introduction

The human development approach is based on expanding the richness of human life, rather 
than simply the richness of the economy in which human beings live. It is an approach that 
is focused on people and their opportunities and choices (see http:// hdr. undp. org/ en/ human 
dev). There are well-known indexes to measure human development in terms of economic 
factors such as the Gross Domestic Product (GPD) per capita, the index of innovation and 
ICT index. However, it is more difficult to capture the human development in terms of non-
economic factors (McGillivray 2005). There have been several efforts to describe human 
welfare based on non-economic facts. The probably more used and accepted is the Human 
Development Index (HDI). It was introduced in the first Human Development Report, 
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presented by the United Nations Development Program in 1990 (Undp 1990). The use of 
the HDI and its association with other index has been largely studied. For instance, Alija-
nzadeh, Asefzadeh, and Moosaniaye (2016) studied the association between the HDI and 
the infant mortality rate, Almasi-Hashiani et al. (2016) analyzed the association between 
the HDI and mortality rates in other ages and Yakunina and Bychkov (2015) computed the 
correlation among the HDI and other indexes such as the index of innovation, ICT index, 
Gross national income and life expectancy at birth (Alijanzadeh et al. 2016).

The HDI is based on the average over three main pillars: health, education, and income. 
Health is measured by life expectancy. Education is based on mean years of schooling for 
adults aged 25 and expected years of schooling for children of school age. Finally, income 
is based on the GDP per capita (see please here for technical notes of the computation 
of the HDI: http:// hdr. undp. org/ sites/ defau lt/ files/ hdr20 20_ techn ical_ notes. pdf). There is 
an assumption of minimum values for each of the variables. Thus, 0 years is assumed for 
education, 20 years for life expectancy, and 163 US dollars for income. The HDI provides 
a measure ranging between 0 and 1. Thus, the higher is the score the more is human devel-
opment. For instance, Germany and New Zealand scored the highest on the HDI in 2018, 
with 0.946 and 0.923, respectively. On the other hand, Niger and Eritrea had the lowest 
HDI with 0.247 and 0.269, respectively.

The HDI data set (we will refer to the data set in this way in this article from now 
on) can be seen as a table with 3 dimensions (three-way table, see Fig. 1). A first dimen-
sion (rows) is described by 188 countries. The second dimension (columns) would be the 
4 indexes: the HDI, life expectancy, income and education. The third dimension (layers) 
would be the years ranging from 2010 to 2018. The first two dimensions, i.e., countries and 
indexes are labeled as the domain indicators. Additionally, we cannot assume normality in 
the variables regarding the indexes. Moreover, the variable time (years) is involved in the 
data and, therefore, we deal with non-normal multivariate longitudinal data, which is quite 
common in this type of framework.

As we described above, the HDI index is formulated as a linear combination of the other 
three indexes. Therefore, one of the main challenges of working with this type of intricate 
3-way data sets is dealing with modeling a very complex dependence structure. Modeling 
dependence structures has become more and more popular in all areas of applications over 
the last two decades. Particularly, copulas have gained large popularity since they allow to 
model marginal distributions and the dependence structure separately (Sklar 1959). Conse-
quently, copulas were also applied for modeling longitudinal data. This approach was first 
used by Lambert and Vandenhende (2002) who developed a model for longitudinal data, 
where the dependence is described by the copula, although their work only applied the 
Gaussian copula. Shen and Weissfeld (2006) modelled serial dependence for continuous 

Fig. 1  Three-way data. In the 
HDI data set, N represents coun-
tries, R represents indexes, and 
T represents years, from 2010 
to 2018

http://hdr.undp.org/sites/default/files/hdr2020_technical_notes.pdf
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longitudinal data with a non-ignorable non-monotone missing-data process using a Gauss-
ian copula. Other examples are Lindsey (1999), who used the Gaussian copula among 
other multivariate models with correlation matrices for non-linear repeated measurements. 
Further, Sun et al. (2008) argued that elliptical copulas are better suited than Archimedean 
copulas (Joe 1997; Nelsen 2007) for modeling serial dependence in the context of longitu-
dinal data.

D-vine copulas are a special class of multivariate copulas that are particularly suited for 
modeling serial dependence (Bedford and Cooke 2002; Aas et al. 2009). Smith et al. (2010) 
used them to model longitudinal data in a Bayesian approach. Multivariate time series are 
considered in Smith (2015) and Nai Ruscone and Osmetti (2016). In Joe (2014) (Chap-
ter 7.5) discrete longitudinal count data are modeled using D-vines. Shi and Yang (2018) 
used a mixed D-vine to model semi-continuous longitudinal claims. The main advantage 
of this approach is to be able to overcome the problem of the multivariate copulas (Nelsen 
2007), which suffer from rather inflexible structures in high dimensions. Therefore, it is a 
reasonable approach to model our data.

The main aim of this article is to assess the evolution of the dependence relationship 
between the domain indicators (i.e., countries, indexes) over time (years) through a copula 
method. Thus, we present a model based on D-vine for longitudinal data, which allows us 
to represent a unified and general strategy for jointly modeling the variable and the tem-
poral dependence. This approach allows us to get insights into the data via a new flexible 
way of modeling the dependence between the components of the non-normal multivariate 
longitudinal data.

The paper is organized as follows: Sect. 2 briefly introduces the D-vine copula model 
approach for a three-way data set. The dependence relationships between domain indica-
tors over time in the HDI data set are described in Sect. 3. Finally, Sect. 4 contains the 
conclusions and an outlook on future research.

2  D‑vine‑based dependence model: a brief review

As mentioned in the previous section, we will apply a D-vine copula model approach to 
the HDI data set. In this section, we briefly introduce this kind of model. For a more thor-
ough introduction, we refer to Stöber and Czado (2012) and Joe (2014). Sects. 2.1 and 
2.2 introduce the general setting of copula and Vine copula, respectively. The particular 
case of characterizing the dependence relationship for a three-way data set is described in 
Sect. 2.3.

2.1  Copulas

Copulas provide a great deal of flexibility in modeling multivariate distributions, allow-
ing the researcher to specify the models for the marginal distributions separately from the 
dependence structure (copula) that links them to form a joint distribution. In addition to 
flexibility, this helps to expose and understand the various fallacies associated with cor-
relation. The mathematical description of the copula is as follows: let F be a d-dimen-
sional distribution function of the random vector � = (X1, ...,Xd) with univariate margin-
als F1, ...,Fd . A d-variate copula is a multivariate cumulative distribution function (cdf) 
C ∶ [0, 1]d → [0, 1] with d ∈ N (with N set of natural numbers) and a specific set of uni-
formly distributed marginals on the interval [0, 1], i.e. U(0, 1). The Sklar’s Theorem (Sklar 
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1959) provides a link between an arbitrary joint distribution and its marginal distributions 
and dependence structure. This result has been very important for applications since it 
allows the marginals and the dependence structure to be modeled separately.

The Sklar’s theorem (Sklar 1959) states that every multivariate distribution F with mar-
ginals F1, ...,Fd can be written as:

for some appropriate d-dimensional copulas C. For an absolutely continuous F with strictly 
increasing continuous marginals F1, ...,Fd the joint density function f is given by:

where c(⋅) denotes the copula density. More details on copulas theory can be found in 
Nelsen (2007) and Joe (1997) contains a thorough overview of copulas.

While there is exhaustive literature on bivariate copulas families for the bidimensional 
case (see Table  1 and Fig.  2), their extension to the multivariate case is not straightfor-
ward (Joe 1997). Standard multivariate copulas, such as elliptical or Archimedean (Nelsen 
2007), lack of flexibility and accuracy in modeling the dependence structure in a higher 
dimension. These multivariate extensions imply additional restrictions on the parameters 
that limit their flexibility. To overcome these problems, vine copulas are proposed by (Joe 
1997) and developed in more detail by several authors (see please e.g. Bedford and Cooke 
2001a, b; Kurowicka and Cooke 2006; Aas et al. 2009; Berg and Aas 2009).

2.2  Vine copulas

Vine copulas (Bedford and Cooke 2002) is a rich and flexible class of multivariate copulas 
based on the idea of Joe (1997) to decompose the dependence into a cascade of depend-
encies between (unconditional/conditional) pairs and permits to construct flexible high-
dimensional copulas by using only bivariate copulas as a building blocks (see please Aas 
et al. (2009)).

Bedford and colleagues (Bedford and Cooke 2002) introduced a graphical model, called 
regular vine (R-vine), that organizes all valid decompositions and Kurowicka and Cooke 
(2006) described it in more detail. It involves the specification of a sequence of trees where 
each edge corresponds to bivariate copulas, the so-called pair-copulas. Then these pair-
copulas constitute the building blocks of the joint regular vine distribution.

(1)F(x1, ..., xd) = C(F1(x1), ...,Fd(xd)), for all x ∈ ℝ
d.

(2)f (x1, ..., xd) =
[ d∏

k=1

fk(xk)
]

c(F1(x1), ...,Fd(xd)), for all x ∈ Rd,

Table 1  Four copulas functions and ranges of the dependent parameters. Note that x1 and x2 are uniform 
from [0, 1], Φ

G
(x1, x2) is the standard bivariate normal distribution with correlation parameter � , Φ is the 

distribution function of the standard normal distribution

Copula C
�
(x1, x2) Range of �

Gaussian Φ
�
(Φ−1

1
(x1),Φ

−1
2
(x2)) (−1, 1)

Clayton (x−�
1

+ x
−�
2

− 1)−1∕� [0,∞)

Gumbel exp
{
−
[
(− ln(x1))

� + (− ln(x2))
�
]1∕�} [1,∞)

Frank −
1

�
log

(
1 +

(e−�x1−1)(e−�x2−1)

e−�−1

)
[−∞,∞)�{0}
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Fig. 2  Plot and contour plots of 
bivariate copula models with 
normal standard margins and 
dependence parameter � . From 
the first raw: Independence, 
Gaussian ( � = 0.8 ), Clayton 
( � = 3 ), Gumbel ( � = 4 ) and 
Frank ( � = 10 ) copula
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According to Definition (4.4) of Kurowicka and Cooke (2006), a R-vine V on d vari-
ables consists of connected trees T1, ..., Td−1 with nodes Ni and edges Ei for i = 1, ..., d − 1 , 
which satisfy the following:

• T1 has nodes N1 = {1, ..., d} and edges E1

• For i = 2, ..., d − 1 the tree Ti has nodes Ni = Ei − 1.
• (proximity condition) If two edges in tree Ti are to be joined by an edge in tree Ti+1 they 

must share a common node.

To develop a statistical model on R-vine trees with the node set ℕ ∶= {N1, ...,Nd−1} and the 
edge set � ∶= {E1, ...,Ed−1} , one associates each edge e = j(e) , k(e)|D(e) in Ei with a bivar-
iate copula density cj(e),k(e)|D(e) . The nodes j(e) and k(e) are called the conditioned nodes, 
while D(e) is the conditioning set.

More generally, a d-dimensional R-vine is a set of d − 1 trees such that the first tree 
comprises d nodes, identifying d − 1 pairs of variables and also d − 1 corresponding edges. 
Therefore each subsequent tree is derived such that all the edges of the tree Ti turn into 
nodes of the tree i + 1 ; furthermore, two edges in Ti , which become nodes in Ti+1 are joined 
by an edge in Ti+1 only if these edges share a common node in Ti . In Fig. 3 a graphical 
representation of a regular vine tree sequence of five variable is given. The node in the first 
tree represent the random variables X1,X2, ...,X5 . The edges are identified with a bivariate 
copulas (called pair-copulas), where edge (j(e), k(e)) described the dependence between 

Fig. 3  Five dimensional R-vine tree specification. The figure shows examples of a five-dimensional R-vine 
copulas with five random variables, four trees and ten edges. The nodes in the first tree correspond to the 
five random variables that are being modeled and each edge corresponds to a bivariate unconditional or 
conditional pair-copulas
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Xj(e) and Xk(e) . In the second tree, the nodes are just the edges of the first tree. The edges are 
annotated by (j(e), k(e)|D(e))1 and describe the dependence between Xj(e) and Xk(e) condi-
tional on XD(e) . In subsequent trees, the number of conditioning variables increases.

In Theorem (4.2) of Kurowicka and Cooke (2006) it is proven that the joint density of � 
is uniquely determined and given by

where xD(e) denotes the sub-vector of x = (x1, ..., xd)
� determined by the indices in D(e). 

The rightmost part of equation (3), which involves the product of d marginal densities fk 
and d(d − 1)∕2 bivariate copulas densities evaluated at the conditional distribution func-
tions F(⋅|⋅) , is called an R-vine copulas.

One well-known specifications of such representations of R-vine were identified by 
(Bedford and Cooke 2002): the drawable vine ( D-vine, in short). Particularly, an R-vine 
is called a D-vine if each node in T1 has a degree at most 2, where the degree of a node 
denotes the number of connections or edges the node has to other nodes (path structure).

For distinct indices i, j, i1, ..., ik with i < j and i1 < ... < ik we use the abbreviation

Using this notation the D-vine density is given by

See Aas et al. (2009) for more on D-vine copulas.
Fig. (4) depicts the hierarchical nature of the R-vine copulas by plotting the tree struc-

ture of D-vine model.
Fitting an R-vine copulas specification to a given datatset requires the following sepa-

rate tasks: 

(a) selection of the R-vine (structure), i. e., selecting which unconditioned and conditioned 
pair to use,

(b) choice of a bivariate copulas family for each pair selected in (a),
(c) estimation of the corresponding parameters for each copula.

Since all the three step are needed for an R-vine copulas specification, one way of finding 
the “best” model is to accomplish steps (b) and (c) for all the possible R-vine constructions.

To select one possible R-vine for a given dataset it is necessary to decide for which pairs 
of variables we want to specify copulas. We proceed sequentially, starting by defining the first 
tree T1 = (N1,E1) for the R-vine, continuing with the second tree, and so on. The trees are 
selected in such a way that the chosen pairs model the strongest pairwise dependencies pre-
sent. The copulas families specified in the first tree of the R-vine have the greatest influence 
on the model fit. Later, we will refer to this method as the sequential method. This sequential 

(3)f (x1, ..., xd) =
[ d∏

k=1

fk(xk)
] [ d−1∏

i=1

∏

e∈Ei

cj(e),k(e)|D(e)(F(xj(e)|�D(e)),F(xk(e)|�D(e))
]
,

(4)ci,j|i1,...,ik ∶= ci,j|i1,...,ik (F(xi|xi1 , ..., xik ),F(xj|xi1 , ..., xik )).

(5)f (x1, ...xd) =
[ d∏

k=1

fk(xk)
] [ d−1∏

j=1

d−j∏

i=1

ci,i+j|i+1,...,i+j−1

]

1 As in (Aas et al. 2009) it is assumed here that this conditional distribution is independent of the condi-
tioning variable �

D(e)
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approach is reasonable because the copulas families specified in the first tree of the R-vine 
have the greatest influence on the model fit (Joe et al. 2010). Similarly, D-vines are also con-
structed by choosing a specific order of the variables (time ordered). Then in the first tree, the 
dependence of the first and second variable, of the second and third, of the third and fourth, 
and so on, is modeled using pair-copulas, i.e., if we assume the order 1, 2, ...d, we model the 
pairs (1, 2), (2, 3), (3, 4), etc. In the second tree, conditional dependence of the first and third 
given the second variable (the pair (1, 3|2)), the second and fourth given the third (the pair 
(2,  4|3)), and so on, is modeled. In the same way, pairwise dependencies of two variables 
a and b are modeled in subsequent trees conditioned on those variables which lie between 
the variables a and b in the first tree, e.g., the pair (1, 5|2, 3, 4). That is each D-vine tree has 
a path structure. Given the tree model structure we used the Dißann’s algorithm Dißmann 
et al. (2013) to fit the pair-copulas families and parameters. The bivariate copulas for each pair 
is selected based on the Akaike Information Criterion (AIC) (Akaike 1998) and the copulas 
selection is performed sequentially (Dißmann et al. 2013) from the lower to the higher trees. 
Dißmann’s algorithm starts with the estimation of the first tree and estimates the unconditional 
pair-copulas (and their parameters) via maximum-likelihood estimation. Then the observa-
tions are transformed into pseudo-observations needed for the estimation of the second tree 
using the estimated pair-copulas of tree 1. Continuing this way the vine is built up tree-by-tree.

2.3  Application: D‑vine for the HDI data set

The empirical evidence shows that normality is not a rule in practice, thus alternatives to the 
multivariate normal model must be found. With the aim of relaxing the normality assumption, 
the procedure based on D-vine copulas theory will be applied here to infer the dependence 
relationships between the HDI indexes over the years (2010-2018).

This relationship follows dynamics that are not homogeneous over the times and among 
the HDI indicators as they are characterized by a structurally different underlying phenomena. 
The D-vine approach allows the relaxation of the assumption of multi-normality that is typical 
of the usual model for multivariate longitudinal data and it can easily accommodate complex 
dependence structures such as asymmetric dependence or strong joint tail behavior Joe et al. 
(2010).

Let’s suppose the existence of dependence among the HDI indexes invariant over time. 
Therefore, the change over time of the distribution of the indexes is due only to a change of 
the marginal conditional (to the past) distributions of each index and not to the change of the 
dependence structure across the indexes. The proposed model considers two different lev-
els of analysis. In the first level, a multivariate copulas describes the relations of the indexes 
observed at a specific time. In the second level of analysis, each longitudinal series, which cor-
responds to a given index over time, is modeled separately using a pair copulas decomposition 
to relate the distributions of the variables describing the observation given in different times. 
The model that we consider starts from a given C� a multivariate copulas with parameter � of 
the multivariate index variable

such that the joint cumulative distribution function (cdf) is

and the joint density function (df) is

(�(1),�(2), ...,�(R))

(6)F(�(1), �(2), .., �(R)) = C�(F1(�
(1)),F2(�

(2)), ...,FR(�
(R)))
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Since longitudinal data are considered each index is observed over times. Therefore, for 
each index �(r) we observe n independent observations on a dependent time series vector 
�(�) = (y

(r)

1
, y

(r)

2
, ..., y

(r)

T
)� We model each continuous process which generates the longitudi-

nal data using a pair copulas decomposition ( as in (Smith and Khaled 2012), (Nai Ruscone 
and Osmetti 2016)). In so doing we decompose the distribution of the process at point in 
time, conditional to the past, into the product of a sequence of bivariate copulas density 
and marginal density. The advantage is that the marginal distribution of the process at each 
point can be modeled arbitrarily, while the dependence over time is capture by a sequence 
of bivariate copulas.

Let (y1, y2, ..., yT ) (a simplification of the notation dropping the index r) be the univar-
iate serie, the joint density function can be decomposed in a product of the conditional 
(to the past) distributions:

By using a pair copula decomposition we have:

where F(yt) and f (yt) are the cdf and the df of the marginal Yt and ct,j = ct,j|t−1,t−2,...,j+1 
are the pair copulas with parameters �t,j . Therefore, the joint distribution of the process 
becomes a D-vine copulas model of order T, which is a product of T marginal densities and 
T(T − 1)∕2 pair copulas densities:

where ut|j+1 = F(yt|yt−1, ..., yj+1) and uj|t−1 = F(yj|yt−1, ..., yj+1).
By substituting (9) and the correspondent cumulative distribution function in (7) we 

obtain the model for multivariate longitudinal data:

In (10) � describes the dependence between the indexes and �(r)
i,j

 describes the dependence 
between the r-th index at time t and the one at time j.

We define the distribution of the R index variables at time t conditional to their past. 
Let now y∗(r)t = y

(r)
t |y(r)

t−1
, ..., y

(r)

1
 , we consider the factorization:

(7)f (�(1), �(2), .., �(R)) = c�(F1(�
(1)),F2(�

(2)), ...,FR(�
(R)))

R∏

r=1

fr(�r)

(8)f (y1, y2, ..., yT ) =

T∏

i=1

f (yt|yt−1, ..., y1)f (y1)

f (yt|yt−1, ..., y1) =
t−1∏

j=1

ct,j(F(yt|yt−1, ..., yj+1),F(yj|yt−1, ..., yj+1);�t,j)f (yt)

(9)f (y1, y2, ..., yT ) =

T∏

t=2

[
t−1∏

j=1

ct,j(ut|j+1, uj|t−1;�t,j)f (yt)

]
f (y1)

(10)

f (Y (1), Y (2), ..,Y (R)) =

R∏

r=1

(
T∏

t=2

[
t−1∏

j=1

ct,j

(
u
(r)

t|j+1, u
(r)

j|t−1;�
(r)

t,j

)
f (y

(r)
t )

]
f
(
y
(r)

1

))
⋅

c�

(
T∏

t=2

[
t−1∏

j=1

C
(1)

t,j
(u

(1)

t|j+1, u
(1)

j|t−1;�
(1)

t,j
)

]
⋯ ,

T∏

t=2

[
t−1∏

j=1

C
(R)

t,j
(u

(R)

t|j+1, u
(R)

j|t−1;�
(R)

t,j
)

])
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Then by applying the PCC (respect to the time) to each conditional distribution we define 
the joint distribution as the extension of the D-vine model in R dimensions.

where ut|j+1 = F(y
∗(r)
t |y∗(r−1)t ,⋯ , y

∗(1)
t ) . The df f

�t
 can be also defined by a PCC (between 

the indexes). In (11) �t describes the dependence between the indexes at time t and �(r)
i,j

 
describes the dependence between the r-th index at time t and the one at time j.

Note that in both models we suppose that the response at time t is independent from the 
past of the other variables.

The code of the algorithm is based on functions in the R packages CDVine (Scheps-
meier et  al. 2015) and VineCopula (Schepsmeier et  al. 2015) and the MLE (Maximum 
Likelihood Estimation) used here therefore corresponds to the maximum pseudo likelihood 
method (MPL) (Genest et al. 1995).

3  Dependence relationships among indicators in the HDI data set

As we described in Sect. 1, the HDI data set used to apply the D-vine copulas methods 
described in 2.2 is composed of 4 indexes in a study period of 9 years (2010-2018): Edu-
cation, Income, Life Expectancy, and the HDI itself (see Appendix Figs. 5, 6, 7, 8, 9, 10, 
11, 12, 13). The region distribution over the 5 continents is as follows: 53 countries from 
Africa, 35 countries from America, 48 from Asia, 41 from Europa, and 11 from Oceania. 
Thus, we will find estimates for the set of pair-copula families in Eq. (11) and the relative 
set of parameters. Additionally, in the case of the HDI data set, we also want to jointly 
assess the evolution of the dependence relationship between the four domain indexes over 
time. Therefore, this copula approach will allow us to model the dependence structure 
between the indexes and the temporal structure from 2010 to 2018 at the same time.

For fitting the model in Eq.(11) with flexible lower/upper tail dependence, we con-
sidered the following copulas families, which are classified according to their different 
strengths of tail behavior in the estimation process of the copulas:

• Gaussian/Normal (tail-symmetric, with no tail dependence at all)
• Student-t (tail-symmetric,with upper and lower tail dependence)
• Clayton (tail-asymmetric, with only lower tail dependence)
• Gumbel (tail-asymmetric, with only upper tail dependence)
• Frank (tail-symmetric, with no tail dependence)

f (y
∗(1)
t , y

∗(2)
t , ..., y

∗(R)
t ) =

R∏

r=2

[
f
�t
(y

∗(r)
t |y∗(r−1)t ,… , y

∗(1)
t )

]
f (y

∗(1)
t )

(11)

f (�(1), �(2), ..., �(R)) =
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for more details see please Nelsen (2007). The suitable copulas approaches in the case of posi-
tive dependence, are the Gaussian, Student-t, Gumbel and Frank copulas. Otherwise, Clayton 
copula is the appropriate when we observed negative dependence see Tab. 1 and Fig. 2.

Given those different copulas candidates, the next step is to fit the model shown in Eq.(11) 
and select the best candidate for the HDI data set. In the first step, each longitudinal series of 
data corresponding to a given index is modelled separately using a D-vine copulas to relate the 
marginal distributions of the indexes at each time of observation. In other words, we assume 
that we can explain the effect of the past indexes on the rth index by the history of the rth 
index and by the current values of the other indexes. In the second step, at each observation 
time, the conditional (on the past) distributions of each index are related using another D-vine 
copulas describing the relationship between the corresponding variables.

As we want to test whether there are differences between countries according to location, 
we stratified the HDI data set into 2 data sets: countries with the lowest HDI (African coun-
tries), countries with the highest HDI (European countries). Thus, we compare the depend-
ence between these two data sets, but also comparing both data sets with the whole group of 
countries.

Following the decomposition shown in the Eq.(11), the 4 D-vine copulas (each one with 8 
trees) is fitted.

Tables 5–2 listed the �(r)
i,j

 estimates, which describe the dependence between the rth index at 
time t and the one at time j. Additionally, Figs. 14, 15, 16, 17 depict the graphical representa-
tion of the D-vine fitting results by means of contour plot. The results between Tables and Fig-
ures are equivalent. For each Figure, the contour of the D-vine for the whole countries (top), 
only the European countries (middle) and only the African countries (bottom) are depicted. 
These contour plots graphically show all the conditional/ unconditional copulas estimates in 
every tree D-vine (t the bottom of every picture the first tree, and on the top of every copulas 
the label as in Fig. 4.) As we can observe the dependence structure in all these D-vine cases 
(World, Europe, and Africa) is slightly different. Table 5 shows in the first two trees all sym-
metric dependence in all the three cases (World, Europe, and Africa) but in the Table 2 and 
the Table 3 we can observe upper tail dependence (Gumbel copula) in the first two trees in 
the case of Europe and Africa. This means that indexes emphasize dependence among the 
higher level of two consecutive years. For instance in Africa, c89 (Table 2) we got among HDI 
of 2017 and 2018 a Gumbel (18.36) copula, therefore there is dependence in the case of the 
higher values among the indexes HDI in those two years. One of the main results we observed 
in African countries is that there is a significant upper tail dependence in the case of both 
the life expectancy index and the HDI. This implies that there has been a positive tendency 
and improvement in living conditions in Africa over the last years. In the case of the Euro-
pean countries, we observed a quite significant right tail dependence in the HDI, which in this 
case might mean that the level of HDI is keeping slightly a positive tendency over the studied 
years. This makes sense as Europe has less to improve than in Africa. From the copulas fami-
lies selected, we see evidence of different types of asymmetric dependence. This demonstrates 
that the choice of D-vine was appropriate, since it guarantees enough flexibility to model 
the dependence structure. According to Joe et al. (2010) the copulas families in the first tree 
c12, c23, c34, c45, c56, c67, c78, c89 of the model have the greatest influence on the model fitting.
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4  Discussion

The HDI is one of the more used measures to rank countries into three tiers of human 
development: lifespan, education level and gross national income per capita. Its associ-
ated data set includes a temporal structure that motivates a dependency modeling, which 
has not been fully used before in the area, as far as we are concerned. Our research work 
employed a D-vine copulas approach to jointly modeling the dependence among the 
four HDI indexes (HDI itself, life expectancy, income, and education) at a given time 
and across time. This modeling approach allows us to describe a complex pattern of 
dependence structure in the HDI data set using a flexible high-dimensional model based 
on a D-vine copulas. Thus, it overcomes the problem of modeling simultaneous depend-
ence between non-normal responses over time. Particularly, this allows modeling non-
linear and asymmetric cross-sectional and serial dependence, using a D-vine copulas. 
The use of the methods described in this article may be advantageous for practitioners 
in the field because they can jointly model cross-section dependence and serial depend-
ence in a really flexible way. As the joint estimation of the D-vine copulas might be 
computationally slow and time consuming in high dimensional spaces, future research 
direction would include exploring possibilities of speeding up the estimation process. 
One option would be to implement a fast sequential alternative based on a simplified 
D-vine. Another possibility would be to use parallel computing approach via the R 
package parallel, which is included in the R base.

Another future research direction we would like to intent is to develop a model-
based clustering approach, which will take into account both cross-sectional and serial 
dependence for a comprehensive class of continuous three-way data sets. This modeling 

Fig. 4  Five dimensional D-vine copulas. The figure shows examples of a five-dimensional D-vine copulas 
with five random variables, four trees and ten edges. The nodes in the first tree correspond to the five ran-
dom variables that are being modeled and each edge corresponds to a bivariate conditional or unconditional 
pair-copulas
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strategy will determine clustering structures of countries according to low-, medium-, 
high-, and very high-HDI levels based on both cross-sectional and serial dependence 
and not only taking into account cross-sectional dependence.

The R code to fit the models is available upon request from the first author.

Appendix

Fig. 5  Pairwise scatter plot of the indexes, year 2010. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 6  Pairwise scatter plot of the indexes, year 2011. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 7  Pairwise scatter plot of the indexes, year 2012. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania



578 M. Nai Ruscone, D. Fernández 

1 3

Fig. 8  Pairwise scatter plot of the indexes, year 2013. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 9  Pairwise scatter plot of the indexes, year 2014. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania



580 M. Nai Ruscone, D. Fernández 

1 3

Fig. 10  Pairwise scatter plot of the indexes, year 2015. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 11  Pairwise scatter plot of the indexes, year 2016. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 12  Pairwise scatter plot of the indexes, year 2017. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Fig. 13  Pairwise scatter plot of the indexes, year 2018. Density distribution by continent on the diagonal. 
Red: Africa; yellow: America; green: Asia; Blue: Europe; pink: Oceania
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Table 2  D-vine parameter estimates for the HDI in all the 8 trees ( T1 the first tree, T8 the last tree). From 
the left to the right: the whole countries, only European countries, and only African countries. The selected 
copulas family (Cop: Gauss, t-Student (labeled as t), Clayton, Frank, and Gumbel copula) and the copulas 
parameters (par.1 and par.2) can be one or two according to the type of copulas. N/A identifies absence of 
one parameter)

All Countries Europe Africa

Cop fam par.1 par.2 fam par.1 par.2 fam. par.1 par.2

T1 c12 t 0.995 3.345 Gumbel 5.504 N/A Clayton 12.406 N/A
c23 t 0.993 2.390 Gumbel 8.33 N/A t 0.988 2
c34 t 0.994 2.000 Gauss 0.982 N/A t 0.99 2.913
c45 t 0.996 2.000 Gumbel 10.315 N/A Gumbel 17.438 N/A
c56 t 0.996 2.867 Gauss 0.982 N/A Gumbel 16.041 N/A
c67 t 0.996 2.355 Frank 27.975 N/A t 0.994 2
c78 t 0.996 2.209 Gumbel 11.541 N/A t 0.997 2
c89 t 0.998 2.375 t 0.997 2 Gumbel 18.836 N/A

T2 c13|2 t −0.098 4.414 Gumbel 1.027 N/A Gumbel 1.193 N/A
c24|3 t −0.052 3.217 Gumbel 1.109 N/A t −0.091 3.255
c35|4 t −0.072 4.933 Frank 1.2 N/A Gauss −0.121 N/A
c46|5 Gauss −0.143 N/A t −0.117 3.563 Gauss −0.019 N/A
c57|6 Gauss −0.094 N/A Gauss −0.346 N/A Frank 1.503 N/A
c68|7 Gauss −0.226 N/A Gumbel 1.139 N/A Gauss 0.116 N/A
c79|8 t −0.264 3.277 Clayton 0.259 N/A Gauss −0.186 N/A

T3 c14|23 t −0.282 3.268 Gauss 0.214 N/A Gauss −0.25 N/A
c25|34 Gauss −0.133 N/A t −0.07 2.726 Gumbel 1.102 N/A
c36|45 t −0.055 6.524 Gauss 0.36 N/A t −0.127 2.923
c47|56 t −0.119 8.646 Frank −2.936 N/A t 0.017 6.149
c58|67 t −0.085 4.915 t −0.418 2 t 0.084 2.438
c69|78 Gauss −0.147 N/A Frank −1.613 N/A Frank 0.76 N/A

T4 c15|234 Frank −0.449 N/A Frank −0.275 N/A Gauss 0.185 N/A
c26|345 t −0.195 5.260 Frank −0.583 N/A Frank −0.855 N/A
c37|456 Frank −0.738 N/A Frank 0.755 N/A Frank −1.235 N/A
c48|567 Gumbel 1.041 N/A Clayton 0.253 N/A Gauss −0.032 N/A
c59|678 Gauss −0.233 N/A Frank −0.786 N/A Frank −0.229 N/A

T5 c16|2345 Clayton 0.040 N/A Frank −0.691 N/A Clayton 0.381 N/A
c27|3456 Gauss 0.049 N/A Gauss 0.116 N/A Gauss −0.039 N/A
c38|4567 Gumbel 1.058 N/A Gauss 0.042 N/A Frank −0.405 N/A
c49|5678 t 0.019 6.723 t −0.364 2.273 Frank −1.323 N/A

T6 c17|23456 Frank −0.204 N/A Gauss −0.135 N/A Gumbel 1.034 N/A
c28|34567 t 0.085 5.975 Gauss −0.017 N/A Frank −0.286 N/A
c39|45678 t 0.040 6.429 Frank 0.184 N/A Gumbel 1.182 N/A

T7 c18|234567 Clayton 0.063 N/A Frank −1.286 N/A Frank −1.113 N/A
c29|345678 Frank −0.389 N/A Gauss −0.278 N/A Gauss −0.135 N/A

T8 c19|2345678 Gauss 0.090 N/A t 0.388 N/A Gauss −0.192 N/A
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Table 3  D-vine parameter estimates for the Life Expectancy in all the 8 trees ( T1 the first tree, T8 the last 
tree). From the left to the right: the whole countries, only European countries, and only African countries. 
The selected copulas family (Cop: Gauss, t-Student (labeled as t), Clayton, Frank, and Gumbel copula) and 
the copulas parameters (par.1 and par.2) can be one or two according to the type of copulas. N/A identifies 
absence of one parameter)

All Countries Europe Africa

Cop fam par.1 par.2 fam par.1 par.2 fam. par.1 par.2

T1 c12 t 0.998 2.899 Gumbel 3.248 N/A Frank 74.256 N/A
c23 t 0.998 4.409 Gauss 0.955 N/A t 0.994 2.125
c34 t 0.999 3.673 t 0.952 2 Gumbel 15.303 N/A
c45 Gumbel 39.708 N/A Gumbel 8.216 N/A Gumbel 27.351 N/A
c56 Gumbel 40.606 N/A Gumbel 7.498 N/A Gumbel 19.475 N/A
c67 Gumbel 42.232 N/A Gumbel 7.269 N/A Gumbel 26.213 N/A
c78 t 0.999 5.39 Gauss 0.991 N/A Gumbel 26.708 N/A
c89 Gumbel 62.675 N/A t 0.998 2.352 Gumbel 15.185 N/A

T2 c13|2 t −0.279 3.684 Clayton 0.217 N/A Frank -1.715 N/A
c24|3 t −0.168 5.463 t 0.295 2.285 t −0.431 2.737
c35|4 t −0.061 8.327 Clayton 0.547 N/A Frank −1.266 N/A
c46|5 t −0.159 6.042 t −0.173 2 Frank −1.871 N/A
c57|6 Frank −1.565 N/A t −0.206 3.436 Gauss −0.295 N/A
c68|7 Frank −1.435 N/A t −0.006 4.236 Gauss −0.203 N/A
c79|8 t −0.309 6.47 Frank 1.344 N/A t −0.252 4.126

T3 c14|23 t −0.171 4.362 Gauss 0.149 N/A Gauss −0.174 N/A
c25|34 Frank −2.148 N/A t −0.098 2.578 Gauss −0.089 N/A
c36|45 t −0.091 7.043 Gumbel 1.232 N/A Frank 0.993 N/A
c47|56 Frank −0.853 N/A Clayton 0.132 N/A t 0.003 4.689
c58|67 Gauss −0.081 N/A Gauss −0.09 N/A Frank −3.95 N/A
c69|78 Frank −1.136 N/A Frank −0.244 N/A Gumbel 1.112 N/A

T4 c15|234 t −0.163 10.192 Clayton 0.356 N/A Frank −0.673 N/A
c26|345 Frank −0.487 N/A Frank −0.517 N/A Frank 0.247 N/A
c37|456 Frank −0.643 N/A Gauss −0.115 N/A Frank −1.595 N/A
c48|567 t −0.028 11.186 t 0.124 3.024 t −0.198 2.241
c59|678 Frank −1.02 N/A Clayton 0.136 N/A t −0.2 3.696

T5 c16|2345 Gauss −0.094 N/A Frank −1.458 N/A Gumbel 1,049 N/A
c27|3456 Gumbel 1.044 N/A Clayton 0.265 N/A Gauss −0.116 N/A
c38|4567 Gauss −0.078 N/A Clayton 0.104 N/A Frank −0.731 N/A
c49|5678 Frank −0.12 N/A t −0.087 3.923 Clayton 0.081 N/A

T6 c17|23456 Frank 0.17 N/A Frank −0.663 N/A Gumbel 1.119 N/A
c28|34567 t 0.239 5.986 Gauss −0.169 N/A Gauss 0.041 N/A
c39|45678 Frank −0.616 N/A Clayton 0,482 N/A Frank 1.411 N/A

T7 c18|234567 Gauss −0.014 N/A Frank −0.06 N/A Gauss 0.231 N/A
c29|345678 Clayton 0.098 N/A Gauss −0.113 N/A Gauss −0.158 N/A

T8 c19|2345678 Gauss −0.043 N/A Clayton 0.446 N/A Gauss −0.184 N/A
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Table 4  D-vine parameter estimates for the Income in all the 8 trees ( T1 the first tree, T8 the last tree). From 
the left to the right: the whole countries, only European countries, and only African countries. The selected 
copulas family (Cop: Gauss, t-Student (labeled as t), Clayton, Frank, and Gumbel copula) and the copulas 
parameters (par.1 and par.2) can be one or two according to the type of copulas. N/A identifies absence of 
one parameter)

All Countries Europe Africa

Cop fam par.1 par.2 fam par.1 par.2 fam. par.1 par.2

T1 c12 t 0.992 2.000 Gauss 0.941 N/A t 0.978 2
c23 t 0.988 2 t 0.977 5.498 t 0.984 2
c34 t 0.988 2 t 0.97 5.582 t 0.979 2
c45 t 0.995 2 t 0.991 2 t 0.991 2
c56 t 0.993 2 t 0.988 2 t 0.99 2.147
c67 t 0.995 4.529 Gauss 0.992 N/A Gauss 0.988 N/A
c78 t 0.995 3.118 Gumbel 16.878 N/A t 0.99 2
c89 t 0.998 2 t 1 2 t 0.998 2

T2 c13|2 t −0.058 3.524 Gauss 0.161 N/A t 0.254 2
c24|3 Gumbel 1.098 N/A Gauss 0.459 N/A t 0.188 4.395
c35|4 t 0,126 3,967 Frank 0.347 N/A t 0.148 4.59
c46|5 Frank −1.434 N/A Frank 0.435 N/A Gauss −0.204 N/A
c57|6 Gauss −0.156 N/A Gauss −0.235 N/A Gauss −0.176 N/A
c68|7 t −0.183 4.977 Gumbel 1.111 N/A Gauss −0.312 N/A
c79|8 t −0.22 5.915 Gauss 0.081 N/A Gauss −0.38 N/A

T3 c14|23 t −0.092 8.904 Frank 0.896 N/A Clayton 0.205 N/A
c25|34 Frank −1.06 N/A Gauss −0.275 N/A Frank −1.321 N/A
c36|45 t 0.024 5.505 Frank 1.612 N/A Clayton 0.254 N/A
c47|56 Clayton 0.123 N/A Clayton 0.129 N/A Frank 1.727 N/A
c58|67 Frank −0.54 N/A Gauss −0.28 N/A t −0.077 4.124
c69|78 t −0.136 6.542 Frank 0.458 N/A Frank 0.852 N/A

T4 c15|234 t −0.14 5.405 Gumbel 1.135 N/A Gauss −0.144 N/A
c26|345 t −0.036 6.62 Frank 0.436 N/A Gumbel 1.062 N/A
c37|456 Clayton 0.048 N/A Gauss −0.05 N/A Frank 1.54 N/A
c48|567 Frank −0.284 N/A t 0 2.683 Gumbel 1.088 N/A
c59|678 Gauss −0.09 N/A Frank 1.711 N/A Frank −1.234 N/A

T5 c16|2345 Gauss −0.04 N/A Frank −1.037 N/A Gauss −0.169 N/A
c27|3456 Clayton 0.079 N/A Gauss −0.01 N/A Gumbel 1.085 N/A
c38|4567 Gumbel 1.051 N/A Frank −0.239 N/A Gauss 0.066 N/A
c49|5678 Gumbel 1.03 N/A Frank −0.035 N/A Frank 1.266 N/A

T6 c17|23456 Gauss −0.151 N/A Frank −1.531 N/A Frank −1.3 N/A
c28|34567 t 0.215 5.361 Frank −1.941 N/A Frank 0.38 N/A
c39|45678 Frank 0.204 N/A Gumbel 1.047 N/A Gauss −0.056 N/A

T7 c18|234567 Frank −0.347 N/A Frank 0.685 N/A Gauss 0.071 N/A
c29|345678 Gauss 0.134 N/A Gumbel 1.012 N/A Gumbel 1.138 N/A

T8 c19|2345678 Frank −0.686 N/A t −0.066 7.495 Gauss −0.025 N/A



587Dynamics of HDI Index: Temporal Dependence Based on D‑vine Copulas…

1 3

Table 5  D-vine parameter estimates for the Education in all the 8 trees ( T1 the first tree, T8 the last tree). 
From the left to the right: the whole countries, only European countries, and only African countries. The 
selected copulas family (Cop: Gauss, t-Student (labeled as t), Clayton, Frank, and Gumbel copula) and the 
copulas parameters (par.1 and par.2) can be one or two according to the type of copulas. N/A identifies 
absence of one parameter)

All Countries Europe Africa

Cop fam par.1 par.2 fam par.1 par.2 fam. par.1 par.2

T1 c12 t 0.997 2.338 t 0.987 2 Frank 48.894 N/A
c23 t 0.993 3.254 Frank 22.929 N/A t 0.987 3.657
c34 t 0.988 3.498 Gauss 0.962 N/A t 0.983 4.346
c45 t 0.984 4.887 Gauss 0.946 N/A t 0.98 4.539
c56 t 0.984 5.703 Gauss 0.944 N/A t 0.976 5.602
c67 t 0.983 5.699 Gauss 0.933 N/A t 0.975 4.788
c78 t 0.984 5.267 Gauss 0.944 N/A t 0.971 4.557
c89 t 0.984 4.921 Gauss 0.943 N/A t 0.971 5.321

T2 c13|2 t 0.815 3,154 Gauss 0.73 N/A Frank 9.483 N/A
c24|3 t 0.664 3.199 Gauss 0,435 N/A Frank 6.249 N/A
c35|4 t 0.581 3.279 Clayton 0.543 N/A t 0.599 4.585
c46|5 t 0.524 5.224 Clayton 0.826 N/A Gumbel 1.363 N/A
c57|6 t 0.492 5.319 Clayton 0.677 N/A Gauss 0.52 N/A
c68|7 t 0.47 5.468 Clayton 0.727 N/A Gauss 0.479 N/A
c79|8 t 0.464 5.789 Clayton 0.657 N/A Gauss 0.462 N/A

T3 c14|23 Frank 5.762 N/A Frank 5.948 N/A t 0.739 4.171
c25|34 Frank 4.92 N/A t 0,668 2 Gumbel 1.515 N/A
c36|45 Frank 4.991 N/A Frank 4.976 N/A Gumbel 1.458 N/A
c47|56 Frank 4.134 N/A t 0,613 2.591 Gauss 0.502 N/A
c58|67 Frank 3.876 N/A t 0,591 2.926 Gauss 0.505 N/A
c69|78 Frank 3.946 N/A Gauss 0.658 N/A Gauss 0.501 N/A

T4 c15|234 t 0.858 3.251 Gauss 0.846 N/A Frank 7.072 N/A
c26|345 t 0.699 3.79 Gumbel 1.994 N/A Frank 6.179 N/A
c37|456 t 0.628 4.807 Gauss 0.668 N/A t 0.636 4.359
c48|567 t 0.555 4.859 Gauss 0,66 N/A Clayton 0.936 N/A
c59|678 t 0.536 4.825 Gauss 0,65 N/A Clayton 0.887 N/A

T5 c16|2345 t 0.686 4.949 Frank 4.768 N/A Clayton 2.558 N/A
c27|3456 t 0.576 5.233 Clayton 0.739 N/A Frank 2.721 N/A
c38|4567 t 0.517 5.45 Frank 2.231 N/A Gauss 0.194 N/A
c49|5678 t 0,489 5.878 Frank 1.946 N/A Gauss 0.207 N/A

T6 c17|23456 t 0.787 3.872 t 0.392 2.89 Gumbel 1.411 N/A
c28|34567 t 0.691 5.252 Gumbel 1.359 N/A Gumbel 1.275 N/A
c39|45678 t 0.699 6.377 Frank 3.973 N/A Gumbel 1.313 N/A

T7 c18|234567 Frank 9.055 N/A Gumbel 2.836 N/A Frank 9.403 N/A
c29|345678 Frank 8.353 N/A Frank 6.152 N/A Frank 9.39 N/A

T8 c19|2345678 t 0.935 2 Frank 7.524 N/A t 0.959 2
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Fig. 14  Contour plots of D-vine 
Trees (see Table 2) for HDI. 
From the top to the bottom: the 
whole countries, only European 
countries and only African 
countries
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Fig. 15  Contour plots of 
D-vine Trees (see Table 3) for 
Life expectancy . From the top to 
the bottom: the whole countries, 
only European countries and only 
African countries
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Fig. 16  Contour plots of 
D-vine Trees (see Table 4) for 
Income index . From the top to 
the bottom: the whole countries, 
only European countries and only 
African countries
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Fig. 17  Contour plots of D-vine 
Trees (see Table 4) for Educa-
tion. From the top to the bottom: 
the whole countries, only Euro-
pean countries and only African 
countries
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