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Abstract
The aggregation of multiple metrics of corporate social performance (CSP) poses one of 
the major problems in CSP research. In this paper we propose a new method to compute a 
composite indicator of CSP from an efficiency perspective using data envelopment analy-
sis. The new approach makes it possible to appropriately account for both positive and 
negative aspects of CSP, and also to measure CSP for firms for which some of the metrics 
are exhibiting zero values. Within the new method, we propose measuring global (meta-
frontier) CSP inefficiency with regard to all firms in the sample and decomposing it into 
within-industry CSP inefficiency measured with regard to own industry group and industry 
gap CSP inefficiency. In this way, we measure inefficiencies due to shortcomings in mana-
gerial practices and due to the differences between industries in relation to CSP. Using 
a sample of United States firms in a variety of economic sectors from 2004 to 2015, as 
covered by the Kinder, Lydenberg and Domini database, we find considerable potential for 
improvement in CSP practices, with the most CSP-efficient firms representing mining and 
manufacturing sectors, and the most inefficient belonging to the construction sector. We 
also find that CSP inefficiency dropped in the period related to the recent financial crisis.

Keywords  Corporate social responsibility · Data envelopment analysis · Directional 
distance function · Benefit of the doubt · Bad outputs

1  Introduction

Corporate social responsibility (CSR) is a concept that has attracted a great deal of 
attention in recent decades from practitioners and researchers across different disci-
plines. CSR consists of “discretionary responsibilities” of a business (Carroll 1979) 
and relates to firms’ actions that promote social good beyond economic interest of the 
firm or shareholders and beyond legal requirements (McWilliams and Siegel 2001). In 

 *	 Magdalena Kapelko 
	 magdalena.kapelko@ue.wroc.pl

1	 Center of Operations Research (CIO), Miguel Hernandez University of Elche (UMH), 
03202 Elche, Alicante, Spain

2	 Department of Logistics, Institute of Applied Mathematics, Wrocław University of Economics, 
Wrocław, Poland

http://orcid.org/0000-0003-2020-2374
http://crossmark.crossref.org/dialog/?doi=10.1007/s11205-018-02052-1&domain=pdf


808	 J. Aparicio, M. Kapelko 

1 3

general, CSR activities and outcomes are predictors of corporate social performance 
(CSP) (Waddock and Graves 1997), which consists of “a broad array of strategies and 
operating practices that a company develops in its effort to deal with and create relation-
ships with its numerous stakeholders and the natural environment” (Surroca et al. 2010).

One of the major problems in the research on CSR and CSP lies in the construc-
tion of the appropriate overall measure of the complex CSP concept (Chen and Delmas 
2011; Surroca et  al. 2010; Waddock and Graves 1997). Because CSP encompasses a 
broad range of activities, multiple metrics are required in order to reflect its full scope. 
Researchers have used these metrics from a variety of sources, including question-
naires, annual reports, and dedicated databases created by professional companies such 
as Kinder, Lyndenberg, and Domini (KLD), Sustainalytics, or Thomson Reuters. How-
ever, the aggregation of these metrics is challenging. Most existing studies have used 
simple aggregates by summing up the scores on different metrics (dimensions of CSP) 
by assigning equal weights to these metrics (for example, Flammer 2015; Servaes and 
Tamayo 2013; Siegel and Vitaliano 2007) or introducing subjective weighting based on 
the views of a panel of experts (for example, Ruf et  al. 1998; Waddock and Graves 
1997).

Another stream of literature proposes using data envelopment analysis (DEA) (Banker 
et al. 1984; Charnes et al. 1978) to aggregate multiple CSP metrics and derive the com-
posite measures of CSP from an efficiency perspective. DEA is based on mathematical 
programming and makes it possible to assess the relative efficiencies of decision making 
units (DMUs) with multiple inputs and multiple outputs. The main advantage of DEA is 
that it does not require a priori weights to aggregate different CSP metrics as weights are 
derived directly from the data, thus allowing for an objective weighting. The use of DEA to 
aggregate CSP metrics was initiated by Bendheim et al. (1998), who applied the so-called 
benefit of the doubt (BoD) DEA model or the model without inputs (Cherchye et al. 2004, 
2007a, b; Lovell and Pastor 1997, 1999; Lovell 1995) to derive a composite indicator of 
CSP. The use of BoD in the CSP context was further extended in the studies by Belu and 
Manescu (2013) and Chen and Delmas (2011). However, the CSP research also used a 
standard DEA model considering both inputs and outputs, with examples being the studies 
by Lee and Saen (2012) and Belu (2009).

In the present study, we build on the aforementioned research that used DEA to assess 
CSP and propose a further extension of the methodology to aggregate CSP metrics in the 
DEA framework that makes it possible to tackle some of the issues pertaining to CSP 
measures. Firstly, CSP metrics usually contain both positive and negative aspects to repre-
sent strengths and concerns of CSP activities of firms. An example is the case of the KLD 
database. An example of a positive aspect of CSP includes investing in product and ser-
vices that address the issues of resource conservation and climate change, while examples 
of a negative aspect could be paying a settlement, fine, or penalty for non-compliance with 
environmental regulations. In order to appropriately account for both positive and nega-
tive aspects of CSP, our method uses the approach developed by Chung et al. (1997) that 
measures efficiency asymmetrically modeling the two types of outputs; that is, increasing 
intended (“good”) outputs while reducing undesirable (“bad”) outputs. In our context, the 
proposed method increases good CSP practices and decreases negative CSP practices in 
order to measure the inefficiency of CSP. Chung et al.’s (1997) approach is based on the 
directional distance function (DDF) of Chambers et al. (1996, 1998) in the DEA frame-
work, which considers both inputs and outputs in the model. However, as CSP metrics are 
usually output measures, we apply the DEA model without inputs—that is, the BoD model 
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in the directional distance function context as proposed by Fusco (2015)—and we further 
modify it to include “bad” outputs (CSP concerns).1

Secondly, it is often the case in practice that CSP metrics can present zero values for 
some firms. In general, traditional DEA models are designed for positive input or output 
values, which means they cannot be applied in this context. Only models that are character-
ized by the property of translation invariance (that is, those that are independent of affine 
translation of the input and output variables) are suitable in this case (Pastor and Aparicio 
2015; Lovell and Pastor 1995). As a standard directional BoD model cannot deal with zero 
values for outputs, we propose a further extension of it by using the directional distance 
function model of Portela et al. (2004), which is translation-invariant following Aparicio 
et al. (2016).

Thirdly, the CSP metrics are created for a wide range of industries and it is important to 
be able to appropriately compare the CSP aggregated measures between different sectors. 
This is especially crucial when creating CSP measures from an efficiency perspective since 
not all inefficiency measures can be directly compared between them due to the possible 
existence of multiple different technologies. In order to account for this issue, we use the 
concept of a metafrontier (O’Donnell et al. 2008; Battese et al. 2004) and propose comput-
ing CSP inefficiency both with regard to a metafrontier composed of all observations in the 
sample and with regard to an industry-specific frontier, and finally calculating the differ-
ence and gap between both inefficiencies.2

The originality of this study consists of the development of a new approach to the meas-
urement of CSP and aggregation of CSP metrics through DEA that makes it possible to 
appropriately account for both positive and negative aspects of CSP, as well as to meas-
ure CSP for firms that do not have some of the metrics presented (that is, exhibiting zero 
values). Overall, these are advantageous characteristics and the new approach can serve 
as a tool for academics and practitioners to compute CSP inefficiency for all firms cov-
ered by datasets. In addition, the proposed approach can be used to measure CSP inef-
ficiency and compare it between firms representing different technologies as embedded in 
the industries. The resulting approach makes it possible to measure global CSP inefficiency 
and decompose it into within-industry CSP inefficiency and industry gap CSP inefficiency. 
This allows for a deeper understanding of differences in CSP inefficiency between indus-
tries. In particular, the approach makes it possible to identify the main source of CSP inef-
ficiency in each sector, that is how much is caused by shortcomings in managerial practices 
and how much by the differences between industries in relation to CSP. This can provide 
further managerial and policy implications on how to improve CSP efficiency in different 
industries. The empirical application of the proposed approach uses the KLD dataset of 
CSP metrics for a large sample of United States firms in a variety of sectors from 2004 to 
2015.

The remainder of the paper is structured as follows. In Sect. 2 we describe in details 
our proposal for the measurement of CSP and aggregation of CSP metrics. In Sect. 3 we 
explain the dataset of CSP metrics, and in Sect.  4 we present the results on CSP ineffi-
ciency using the proposed approach. Section 5 concludes, presenting the implications of 
results, limitations, and future research areas.

1  Other extensions of BoD model are developed, for example, in Rogge (2018), Van Puyenbroeck and 
Rogge (2017), Vidoli et al. (2015) or Shen et al. (2013).
2  The initial developments regarding these concepts date back to Charnes et al. (1981), who proposed dis-
tinguishing between managerial efficiency and program efficiency.
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2 � Measuring CSP—Our Proposal

In this section, we introduce the main notation and the methodology used in our data analy-
sis. Our approach is based on aggregating CSP metrics through DEA in order to obtain an 
overall measurement of CSP.

DEA is a mathematical programming, non-parametric technique that is commonly used 
to measure the relative performance of a set of homogeneous processing units, which use 
several inputs to produce several outputs (Banker et al. 1984; Charnes et al. 1978). These 
operating units are usually called decision making units (DMUs) in recognition of their 
autonomy in setting their input and output levels. DEA allows one to determine a techni-
cal efficiency score for each assessed unit in the sample data by estimating a frontier that 
envelops the data from above.

DEA includes a battery of measures with plenty of possibilities for determining techni-
cal efficiency. Examples include Shephard’s input and output distance functions (Shephard 
1953), the Weighted Additive Model (Lovell and Pastor 1995), the Directional Distance 
Function (DDF) (Chambers et al. 1996, 1998), the Range-Adjusted Measure (Cooper et al. 
1999), and the Enhanced Russell Graph/Slacks-Based Measure (Tone 2001; Pastor et al. 
1999). The main difference among these is the way of implementing the notion of distance 
from each observation (DMU) to the estimated frontier of best practices. In particular, a 
measure that has attracted special attention in the literature is the DDF, which implies a 
directional vector that allows for a flexible choice of orientation in the output and input 
dimensions in order to project each DMU onto the frontier. Additionally, in a DEA frame-
work, the DDF may be easily determined from a computational point of view since, in this 
case, researchers, analysts, practitioners, and scholars only need to resort to well-known 
and easy-to-use linear programming techniques.

DEA has played an important role recently in the context of building composite indica-
tors. In particular, a related relevant approach based on DEA is the benefit of the doubt 
(BoD) model (see Cherchye et al. 2004, 2007a, b). This is a DEA model without inputs 
and where subindicators are all treated as outputs to generate an overall and objective 
aggregated indicator for each assessed DMU. In our framework, we collect information 
about a number of positive subindicators, or “good” outputs (CSP strengths), and nega-
tive subindicators, or “bad” outputs (CSP concerns) of the firms, rather than just positive 
subindicators, as is usually the case. Consequently, our approach for measuring CSP per-
formance through the aggregation of CSP metrics must take this fact into account. The 
DDF has been one of the most used measures for dealing with undesirable (“bad”) outputs 
in DEA since the publication of the paper by Chung et al. (1997). Those authors showed 
how to adapt the original DDF for working in the context of pollution, where firms produce 
intended (“good”) outputs and unintended (“bad”) outputs from a set of resources. The 
Chung et al. (1997) version of the DDF specifically seeks the largest feasible increase in 
desirable outputs compatible with a simultaneous reduction in undesirable outputs. This 
type of projection is what we are seeking for our application on CSP; that is, an increase 
in the positive aspects of CSP (strengths) and a decrease in negative aspects of CSP (con-
cerns). In this way, it seems that a natural tool for building a composite indicator from CSP 
subindicators through a DEA-BoD model is the DDF, which also considers desirable and 
undesirable (output) metrics.

Another challenge that faces our approach is developing a composite indicator from 
CSP metrics that also allows us to appropriately account for firms with some metrics that 
may exhibit zero values, which is often the case of CSP datasets. Historically speaking, 
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Charnes et al. (1978) defined the first DEA model, the so-called CCR model, which is a 
constant returns to scale (CRS) radial measure, requiring strict positivity of all the input 
and output values. Ali and Seiford (1990) relaxed this requirement, but avoided the use of 
the CCR model. Specifically, they proposed considering an additive model, instead of a 
radial one, under variable returns to scale (VRS), showing that it is possible to deal with 
DMUs with all their inputs at level zero and/or all their outputs at level zero (something 
that happens for some firms in many of CSP datasets for CSP strengths or concerns). Ali 
and Seiford (1990) suggested considering a derived set of DMUs to be rated, where each 
derived unit is obtained by translating the original data. If the original DEA problem and 
the corresponding translated problem are equivalent—that is, if both problems rate each 
original unit and its corresponding translated unit in exactly the same way—then it is said 
that the corresponding model satisfies the translation invariance property. Another relevant 
contribution to the literature on DEA and translation-invariant models is that by Lovell and 
Pastor (1995), who concluded that the key to satisfying translation invariance is the VRS 
assumption. However, the same authors showed that the (radial) BCC model by Banker 
et al. (1984), which assumes VRS, is only partially translation-invariant: the input-oriented 
BCC model is invariant to output translations, whereas the output-oriented BCC model 
is invariant to input translations. Consequently, radial models, even under VRS, are not 
the solution in the context of working with zeros. More recently, Aparicio et  al. (2016) 
analyzed the satisfaction of the translation invariance property in the case of the direc-
tional distance function, concluding that the DDF is translation-invariant if and only if 
the prefixed directional vector is also translation-invariant. This means that the most usual 
directional vector, which is that associated with the actual values of the evaluated DMU, is 
not translation-invariant and, therefore, neither its related DDF. Fortunately, Aparicio et al. 
(2016) also showed some examples of translation-invariant directional distance functions, 
such as the Range Directional Model (RDM) by Portela et al. (2004), which is additionally 
unit-invariant. In particular, the satisfaction of these good properties by the RDM are the 
reasons why we select this measure to be adapted to our context of the measurement of 
CSP where we jointly consider DEA, the BoD model, the directional distance function, the 
treatment of undesirable outputs, and the presence of zeros in the data.

Before introducing the specific mathematical model to be solved in this paper, it is 
worth mentioning that, as far as we are aware, there are no contributions in the literature 
that combine the DDF and the BoD and adapt them to deal with good and bad outputs and 
zeros. Nevertheless, a few recent papers have worked with a directional-benefit-of-doubt 
model. These are, for example, Fusco (2015), where a principal component analysis is 
applied to choose the directional vector, and Sahoo et al. (2017), who developed a compos-
ite indicator of research productivity of Indian management schools. However, neither of 
these papers focus on adapting the corresponding model to deal with bad outputs and the 
presence of zeros, as we do.

Additionally, and regarding the method of modeling bad outputs in DEA, it is worth 
mentioning that the main contributions draw on how the axioms underlying the produc-
tion technology should reflect strong or weak disposability, and ultimately, whether they 
should be modeled as outputs or as inputs. Dakpo et al. (2016) is an updated revision of the 
most recent contributions on how to characterize undesirable production based on alterna-
tive approaches, which include the standard approach by Chung et al. (1997) based on the 
directional distance function; the materials balance principles requiring knowledge of the 
technical coefficients between desirable outputs, undesirable outputs and inputs (Hampf 
and Rødseth 2015); and the use of two sub-technologies (by-production), one generat-
ing the desirable outputs and a second generating the undesirable outputs (Førsund 2009; 
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Murty et al. 2012). We have adopted the Chung et al. approach because it is the most used 
model in the literature; while we recognize that other alternatives exist, comparing them is 
beyond the scope of this paper.

Let us now assume that we have observed M non-negative strengths (denoted as y) and I 
non-negative concerns (denoted as b) for each DMU in a sample of size Kh of units belong-
ing to industry h , h = 1,… ,H . Mathematically, a particular observation j of firm j belong-
ing to industry h is denoted as 

(

yh
j1
,… , yh

jM
, bh

j1
,… , bh

jI

)

.
Following this notation, the model to be solved in order to aggregate strengths and con-

cerns in a final composite indicator when DMU0 is evaluated with respect to its industry-
specific frontier is as follows:

where the directional vector g =
(

g
y

0
, gb

0

)

 is defined as gy
0m

= max
1≤h≤H

{

max
1≤k≤Kh

{
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km

}

}

− yh
0m

 , 

m = 1,… ,M , and gb
0i
= bh

0i
− min
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ki
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}

 , i = 1,… , I . This vector is, therefore, 

in line with the RDM by Portela et al. (2004), where an ideal point is defined from the data 
(with coordinates corresponding to the maximum value observed for outputs and the mini-
mum value observed for inputs), which is used as a reference point in the projection of the 
assessed DMUs onto the DEA frontier. By analogy, our directional vector projects each 
unit towards an ideal point with coordinates corresponding to the maximum value observed 
for CSP strengths and the minimum value observed for CSP concerns for all the industries. 
Model (1) is an adaptation of Chung et al.’s (1997) directional distance function for dealing 
with good and bad outputs together, when inputs are not considered, so following the BoD 
approach, and using as a directional vector a variation of the directional vector used in the 
case of the RDM. Moreover, in order to estimate the inefficiency for all observations in the 
sample, model (1) must be used for each industry separately.

We also use the concept of a metafrontier by O’Donnell et al. (2008) to compare the 
performance of firms that may be classified into different groups, in our case in differ-
ent industries. We next present how a metafrontier can be estimated using non-parametric 
techniques and show how to decompose the ‘pooled’ CSP inefficiency into within-industry 
CSP inefficiency and CSP industry gap.

In order to make inefficiency comparisons across groups of firms, we build a common 
frontier (the metafrontier), defined as the boundary that envelops all industry-specific fron-
tiers. In this way, inefficiencies measured relative to the metafrontier can be decomposed 
into two components: one that measures the distance from a DMU to its industry-specific 
frontier (model (1) above) and one that measures the distance between the industry-specific 
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frontier and the metafrontier. This last term may be interpreted as representing the restric-
tive nature of the production environment. The initial idea of decomposing inefficiency into 
these two sources comes from Charnes et al. (1981), who distinguished between manage-
rial efficiency measured in relation to firm’s group-specific frontier and program efficiency 
that measures the difference between the group-specific frontier and the frontier composed 
of all observations. Using these ideas, in our context we can explore the inefficiencies due 
to shortcomings managerial practices and due to the differences between industries in rela-
tion to CSP.

Model (2) shows how to determine the distance between the DMU0 belonging to indus-
try h to the metafrontier, defined from all the observations for all the industries:

While h is fixed in ��⃗D1,…,H

0
(yh

0
, bh

0
;g

y

0
, gb

0
) , which denotes the distance for DMU0 that 

belongs to a specific industry h to the metafrontier, superscript p, used in zp
k
 , yp

km
 and Kp in 

model (2), is variable ( p = 1,… , h,…H ). We use p in the constraints of model (2) so that 
yh
0m

 and bh
ki
 , where h is fixed, are not confused with yp

0m
 and bp

ki
 , with p = 1,… , h,…H.

Finally, the ‘pooled’ CSP inefficiency, ��⃗D1,…,H
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related to CSP ‘industry gap’:
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We illustrate the above ideas and notions through a simple numerical example with only 
one strength and one concern. Assume that we have observed two industries. In particu-
lar, we have observed a sample of four units (A, B, C, and D) of the first industry and a 
sample of three units (E, F and G) of the second one. The circles in Figs. 1 and 2 repre-
sent the DMUs of the first industry, whereas the triangles represent the DMUs of the sec-
ond industry. On one hand, in Fig. 1, we show the estimation of the two industry-specific 
frontiers (the solid line for the first industry and the dash line for the second industry). 
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Fig. 1   Illustration of two industry-specific frontiers

Fig. 2   Illustration of a metafrontier
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We also illustrate graphically how the directional distance function defined by model (1) 
works for two units. In the case of unit D, which belongs to the first industry, we show the 
directional vector that projects this DMU onto its industry-specific frontier. In the case of 
unit G, which belongs to the second industry, we also show its projection onto its specific 
frontier. On the other hand, in Fig. 2, we show the estimation of the corresponding meta-
frontier, which envelops the two industry-specific frontiers. The directional distance func-
tion defined by model (2) coincides with that defined by model (1) in the case of evaluating 
DMU D, while yielding a greater value in the case of unit G. Thus, the industry gap equals 
zero in the case of unit D, but this is not true for G. In this last case, we illustrate in Fig. 2 
the projection of unit G onto its industry-specific frontier and also the distance between 
this projection and the metafrontier, as a way of graphically illustrating the value of the 
industry gap measured at point G.

3 � Dataset and Variables

In this research we use the KLD dataset as a source of information on CSP. KLD cov-
ers CSP activities of a large subset of publicly traded firms in the USA and has been 
used extensively in the scholarly literature (for example, in Flammer 2015; Servaes and 
Tamayo 2013; Chen and Delmas 2011; Lev et  al. 2010; McWilliams and Siegel 2000). 
KLD assesses social performance based on multiple data sources, included surveys, firms’ 
financial statements, annual and quarterly reports, articles in the popular press, and govern-
ment reports. KLD has compiled information on CSP since 1991, but we have focused our 
analysis on the period 2004–2015, as this widens the coverage of firms in the database.

KLD rates firms along seven dimensions, including community, diversity, employee 
relations, human rights, product, environment, and corporate governance.3 Following prior 
research (such as Lys et  al. 2015) we further classify these dimensions into three major 
CSP categories: social (including community, diversity, employee relations, human rights, 
and product dimensions), environmental, and governance. Such aggregation also allows for 
a more viable analysis with DEA since it considerably reduces the problem of dimension-
ality, which is related to having many variables together with a limited number of observa-
tions.4 For each dimension, KLD measures a number of positive aspects (strengths) and 
negative aspects (concerns), assigning a value of 1 when a firm presents a certain strength 
or concern and a value of 0 otherwise. The examples of community strengths include char-
itable giving and community engagement, while concerns include community impact con-
troversies. The diversity dimension includes strengths such as board diversity and women/
minority contracting, while workforce diversity controversies is an example of diversity 
concern. Employee relations dimension include indicators such as union relations strengths 
and concerns. Strengths connected with human rights are represented by indigenous 

3  KLD also contains the categories regarding firms’ involvement in controversial activities, including 
alcohol, gambling, military contracting, nuclear power, and tobacco. The literature usually excludes these 
dimensions from the computation of CSP scores since they are inherently different to other areas covered by 
KLD (El Ghoul et al. 2011). Hence, for the same reason we do not consider these dimensions in our study.
4  In general, the greater the number of variables, the less discerning the DEA analysis is (Jenkins and 
Anderson 2003). The literature indicates some empirical rules regarding the number of DMUs versus the 
number of inputs and outputs. See, for example, Cooper et al. (2007), Dyson et al. (2001) and Homburg 
(2001).
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peoples relations and concerns relate to firms’ operations in Burma and Sudan. Positive 
aspects of product dimension include quality, while negative aspects include product qual-
ity and safety controversies. Environmental strengths concern pollution prevention, while 
substantial emissions are categorized as concerns. Finally, corporate governance strength 
relates to reporting quality, while business ethics controversies is an example of govern-
ance concern. Because the number of categories in KLD has evolved over the years, it 
is not possible to directly compare strengths and concerns within each dimension across 
years. To account for this limitation, following prior research (for example, Servaes and 
Tamayo 2013; Deng et  al. 2013), we have created adjusted measures of strengths and 
concerns by scaling the strength and concern scores for each firm year within each CSP 
dimension by the maximum number of items of the strength and concern scores of that 
dimension in each year.5 We then took a sum of adjusted strengths and concerns for five 
dimensions—community, diversity, employee relations, human rights, and product—to 
obtain the measures of social strengths and social concerns, respectively (environmental 
and governance categories of CSP do not require any summation as they are not composed 
of any further dimensions).6 Furthermore, to distinguish the industry to which each firm 
belongs, we match the data in KLD with information on industry (SIC codes) from Thom-
son Reuters Datastream. The final sample represents an unbalanced panel of 37,765 obser-
vations for 4824 firms.

Table 1 presents the sample distribution by the industry SIC code and year. The most 
heavily represented industries are finance (SIC code 37) and manufacturing (SIC code 38). 
Throughout the period 2004–2012, the sample size is relatively stable, but it decreased 
from 2013 due to the slight change in the coverage of US firms that occurred in the KLD 
dataset.

Table 2 reports descriptive statistics of adjusted CSP strengths and concerns for each 
of CSP category: social, environmental, and governance, and for each dimension of social 
CSP (community, diversity, employee relations, human rights and product). The mean 
values of CSP strengths for social and governance categories are smaller than CSP con-
cerns for these categories; therefore, firms in the sample are, on average, irresponsible with 
regard to these aspects of CSP. Larger concerns than strengths for social category are due 
to the dimensions of diversity, employee relations and product. On the contrary, the mean 
values of CSP strengths with regard to environmental aspects of CSP are larger than their 
concerns. Nevertheless, there is also a considerable variation in the sample regarding these 
variables.

5  Alternatively, one might consider scaling by the mean values of the strengths and concerns of each 
dimension in each year. However, such an approach would not be viable in the context of our data since for 
some categories and some years these mean values are equal to zero (that is, all firms present zero values 
for these specific scores). Nevertheless, even if the dataset is able to accommodate mean values, the usage 
of mean values would not change the inefficiency results because the DEA model we apply is characterized 
by the property of units invariance; that is, it is independent of the units in which the input and output vari-
ables are measured (Lovell and Pastor 1995).
6  For example, suppose that in 2006 a company X has strengths in zero areas of community, one of diver-
sity, one of employee relations, two of human rights, one of product, zero of environment, and one for gov-
ernance, and the maximum number of strength indicators across these seven dimensions are 7, 8, 6, 3, 4, 6, 
and 5, respectively. The adjusted strength score for the company for community dimension is then 0/7, 1/8 
for diversity, 1/6 for employee relations, 2/3 for human rights, 1/4 for product, 0/6 for environment, and 1/5 
for governance. Thus, the adjusted strength score for the company for social category is equal to 0/7 + 1/8 + 
1/6 + 2/3 + 1/4 = 1.21, the score for environmental category is equal to 0/6 = 0, and the score for the govern-
ance category is equal to 1/5 = 0.2.
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4 � Results

Our empirical analyses are divided into two parts. First, we look at the evolution over time 
(from 2004 till 2015) of each of CSP inefficiency indicators (pooled, within-industry, and 
industry gap) to assess how the inefficiency changes around the period related with recent 

Table 1   Sample description—Industry representation by year

CON = construction (SIC codes = 15–17); FIN = finance (SIC codes = 60–67); MAN = manufacturing 
(SIC codes = 20–39); MIN = mining (SIC codes = 10–14); RTRADE = retail trade (SIC codes = 52–59); 
SERV = services (SIC codes = 70–89); TRANS = transportation (SIC codes = 40–49); WTRADE = whole-
sale trade (SIC codes = 50–51)

Year CON FIN MAN MIN RTRADE SERV TRANS WTRADE All sectors

2004 27 1199 1047 90 178 427 234 62 3264
2005 27 1253 1003 106 178 420 240 66 3293
2006 30 1179 1000 117 173 398 242 69 2209
2007 30 1170 994 121 165 407 257 68 2159
2008 30 1172 1008 132 165 412 253 65 3237
2009 28 1117 1045 129 172 416 245 65 3217
2010 35 1202 1065 134 176 421 243 70 3346
2011 33 1164 1027 124 166 396 239 71 3220
2012 35 1202 1007 133 169 407 233 72 3258
2013 37 998 871 112 161 369 203 64 2815
2014 39 1017 885 115 154 374 209 65 2858
2015 36 1021 876 94 160 377 208 65 2837
TOTAL 387 13,694 11,828 1407 2017 4824 2806 802 37,765

Table 2   Descriptive statistics 
of CSP strengths and concerns, 
2004–2015

Variable Mean SD Coefficient 
of variation

CSP strengths-social 0.166 0.323 1.946
 Community strengths 0.026 0.105 3.974
 Diversity strengths 0.071 0.161 2.262
 Employee relations strengths 0.042 0.100 2.352
 Human rights strengths 0.008 0.072 9.347
 Product strengths 0.018 0.069 3.792

CSP concerns-social 0.316 0.328 1.038
 Community concerns 0.022 0.111 5.027
 Diversity concerns 0.187 0.229 1.229
 Employee relations concerns 0.058 0.117 2.026
 Human rights concerns 0.007 0.045 6.286
 Product concerns 0.043 0.123 2.888

CSP strengths-environmental 0.028 0.090 3.214
CSP concerns-environmental 0.018 0.069 3.833
CSP strengths-governance 0.042 0.115 2.738
CSP concerns-governance 0.068 0.118 1.735
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financial crisis that, in the USA, began in 2007 and ended in 2009, as reported by the US 
National Bureau of Economic Research (2012). Then, in the second step, we analyze the 
mean values of each indicator for the whole period 2004–2015 to assess the differences 
between indicators as well as between industries.

We begin by looking at the results of evolution of CSP inefficiency over time for each 
sector. Tables  3, 4, and 5 summarize these results for CSP inefficiency estimated with 
regard to pooled frontier composed of firms in all industries, within-industry CSP ineffi-
ciency estimated with regard to industry-specific frontier, and the residual term of industry 
gap, respectively. The findings in Table  3 show that, for all industries, the CSP pooled 

Table 3   Pooled CSP inefficiency, mean values reported

CON = construction; FIN = finance; MAN = manufacturing; MIN = mining; RTRADE = retail trade; 
SERV = services; TRANS = transportation; WTRADE = wholesale trade

Year CON FIN MAN MIN RTRADE SERV TRANS WTRADE All sectors

2004 0.373 0.302 0.316 0.317 0.342 0.313 0.307 0.328 0.312
2005 0.443 0.415 0.422 0.463 0.448 0.426 0.433 0.415 0.423
2006 0.572 0.527 0.511 0.540 0.550 0.536 0.516 0.538 0.525
2007 0.514 0.463 0.461 0.486 0.476 0.473 0.461 0.474 0.466
2008 0.495 0.437 0.429 0.442 0.448 0.443 0.424 0.437 0.436
2009 0.493 0.439 0.429 0.437 0.446 0.438 0.417 0.439 0.435
2010 0.623 0.578 0.556 0.579 0.537 0.578 0.541 0.570 0.566
2011 0.565 0.530 0.519 0.539 0.490 0.529 0.519 0.540 0.525
2012 0.570 0.564 0.557 0.518 0.582 0.584 0.564 0.582 0.564
2013 0.593 0.560 0.560 0.545 0.578 0.584 0.556 0.599 0.565
2014 0.515 0.494 0.507 0.432 0.515 0.521 0.501 0.534 0.502
2015 0.568 0.542 0.535 0.409 0.560 0.549 0.530 0.564 0.537

Table 4   Within-industry CSP inefficiency, mean values reported

CON = construction; FIN = finance; MAN = manufacturing; MIN = mining; RTRADE = retail trade; 
SERV = services; TRANS = transportation; WTRADE = wholesale trade

Year CON FIN MAN MIN RTRADE SERV TRANS WTRADE All sectors

2004 0 0.062 0.287 0.048 0.173 0.090 0.163 0.058 0.150
2005 0.035 0.021 0.419 0.067 0.185 0.100 0.155 0.044 0.173
2006 0.034 0.070 0.501 0.062 0.153 0.145 0.123 0.039 0.221
2007 0.029 0.059 0.444 0.047 0.117 0.243 0.105 0.024 0.207
2008 0.019 0.102 0.415 0.065 0.148 0.201 0.113 0.026 0.211
2009 0.021 0.093 0.415 0.060 0.149 0.186 0.112 0.025 0.210
2010 0.005 0.269 0.543 0.083 0.244 0.318 0.190 0.027 0.340
2011 0.011 0.341 0.495 0.065 0.288 0.443 0.267 0.119 0.376
2012 0.067 0.404 0.485 0.202 0 0.328 0.247 0.086 0.369
2013 0.037 0.287 0.497 0.253 0 0.425 0.188 0 0.335
2014 0.033 0.199 0.490 0.190 0 0.331 0.201 0 0.289
2015 0.056 0.323 0.474 0.183 0.183 0.364 0.247 0.124 0.339
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inefficiency (assessed with regard to year-specific frontier) increased steadily until 2006, 
but dropped consistently in the period related to recession; that is, 2007–2009. On aver-
age, across all industries CSP pooled inefficiency increased from 0.312 in 2004 to 0.525 
in 2006, and then dropped to 0.435 in 2009. Such a result might indicate that the crisis 
actually improved CSP efficiency by forcing firms to increase CSP strengths and decrease 
CSP concerns. This result might be interpreted as follows: it is possible that firms in the 
sample used CSP activities and increased their efficiency during the crisis to protect them-
selves against the decreasing number of customers. Such an interpretation might further 
strengthen the benefits of CSP as a marketing tool (García de los Salmones et  al. 2005) 
and positive consumer responses to CSP (Sen and Bhattacharya 2004). In addition, in the 
light of our findings, it is possible that in the period of recession firms in the sample tended 
to eliminate some inefficient CSP activities. Further, the findings in Table 3 indicate that 
pooled inefficiency increased considerably throughout all industries in the first year follow-
ing from the crisis (2010) and then fluctuated in the years thereafter. On average, across all 
industries, CSP pooled inefficiency increased from 0.435 in 2009 to 0.566 in 2010. Hence, 
such a result might indicate that when economic conditions improved, firms in the sample 
worsened their CSP efficiency and possibly became less concerned about the efficiency of 
their CSP activities.

The sources of pooled CSP inefficiency can be explored further by looking at the 
results of within-industry CSP inefficiency (Table 4) or industry gaps in CSP inefficiency 
(Table 5). In particular, similar trends of CSP inefficiency evolution over time are found for 
the within-industry indicator as for the pooled indicator; that is, CSP within-industry inef-
ficiency (assessed with regard to year-specific frontier) decreased in the crisis throughout 
all industries except for services (SERV), as shown in Table 4. Hence, this result might 
indicate that firms in the sample generally improved their efficient CSP performance in 
recession when assessed in comparison to firms belonging to the same industry. However, 
this finding was less pronounced than for pooled inefficiency since it was observed mainly 
in the first year of the crisis; that is, 2007. In average terms across all industries, within-
industry CSP inefficiency increased from 0.150 in 2004 to 0.221 in 2006, and then dropped 

Table 5   CSP industry gap, mean values reported

CON = construction; FIN = finance; MAN = manufacturing; MIN = mining; RTRADE = retail trade; 
SERV = services; TRANS = transportation; WTRADE = wholesale trade

Year CON FIN MAN MIN RTRADE SERV TRANS WTRADE All sectors

2004 0.373 0.240 0.028 0.269 0.170 0.223 0.145 0.270 0.162
2005 0.407 0.394 0.003 0.396 0.264 0.326 0.278 0.372 0.250
2006 0.538 0.457 0.010 0.477 0.397 0.392 0.393 0.499 0.304
2007 0.486 0.404 0.017 0.439 0.359 0.230 0.356 0.450 0.259
2008 0.476 0.335 0.015 0.377 0.300 0.242 0.311 0.411 0.224
2009 0.472 0.346 0.014 0.377 0.299 0.252 0.305 0.414 0.224
2010 0.619 0.308 0.013 0.496 0.293 0.260 0.351 0.543 0.226
2011 0.554 0.189 0.024 0.473 0.202 0.086 0.251 0.421 0.149
2012 0.503 0.160 0.072 0.316 0.582 0.256 0.317 0.496 0.196
2013 0.556 0.273 0.063 0.291 0.578 0.160 0.368 0.599 0.229
2014 0.482 0.295 0.017 0.242 0.515 0.189 0.300 0.534 0.213
2015 0.512 0.219 0.061 0.227 0.560 0.185 0.282 0.441 0.198
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to 0.207 in 2007. Also, as for pooled CSP inefficiency, within-industry CSP inefficiency 
generally increased in the first year after the crisis (with the exception of the construction 
industry, CON) and fluctuated in the years thereafter. In addition, for some industries and 
some years (for example, the construction sector in 2004) the results in Table 4 show the 
average values of within-industry CSP inefficiency being equal to 0, which requires further 
explanation. Such a finding occurs in situations when all firms in the sample have at least 
one concern (that is, at least one bad output) equal to 0. This stems from the optimiza-
tion programs used to compute CSP inefficiency, which consider improvements in all CSP 
outputs simultaneously; this means that it is not possible to reduce the bad output with a 
zero, so generating a directional distance function value equals zero.7 Finally, the results 
on the gaps in efficiency between the best practices of each industry and the pooled best 
practices (CSP industry gap) contained in Table 5 show that, similarly to the previous inef-
ficiency indicators, the CSP industry gap decreased in the periods related to crisis (on aver-
age, across all industries, from 0.304 in 2006 till 0.224 in 2009), with the exception of the 
manufacturing industry (MAN), for which a slight increase was observed in these periods.8

We now turn to analyze the average CSP inefficiency indicators (pooled, within-indus-
try, and industry gap) for the whole period 2004–2015, for each industry. These results are 
contained in Table 6, which also reports the findings of Simar and Zelenyuk’s (2006) test 
(S-Z test) that allows statistical assessment of the differences between indicators for each 
industry as well as between industries for each indicator.

First of all, these results allow for the assessment of the differences in average CSP inef-
ficiency between firms representing different industries (pooled CSP inefficiency). In par-
ticular, they show that there are small differences in the average CSP inefficiency between 
industries, as revealed by the similar average values of pooled inefficiency. However, in 
most cases, these small differences are statistically significant. The average pooled inef-
ficiency ranges from 0.481 (mining) to 0.533 (construction), which indicates the consider-
able potential for improvement; that is, that firms can achieve more in their social, environ-
mental, and governance CSP practices by increasing CSP strengths levels and decreasing 
the level of CSP concerns. The most CSP-efficient firms appear to belong to the mining 
and manufacturing sectors, as they produce more CSP strengths and fewer CSP concerns 
in comparison to other sectors. This finding could indicate that the sectors that tend to 
contribute most to environmental pollution and other harmful activities, such as mining 
and manufacturing, are more heavily scrutinized by public opinion and face more pressure, 
which results in them making better efforts regarding socially responsible practices. It is 
also possible that these sectors need to face stronger regulations towards CSP activities 

7  If a firm presents a value of zero for some concern (bad output)—that is, it presents the best possible per-
formance in that dimension—then no other firm exists in the sample that strictly dominates its performance. 
In other words, one cannot find another DMU that dominates this firm in the sense of Pareto. Consequently, 
the “directional distance function” inefficiency is directly zero; that is, the evaluated firm is not inefficient. 
This is what happens in our approach. However, it is true that other types of technical inefficiency (slacks) 
can be present and the directional distance function approach is not able to consider them. This is a limita-
tion of the directional distance function in general, which our approach naturally inherits.
8  Nevertheless, the results on the evolution of inefficiency over time need to be interpreted with caution. 
This is because inefficiency is a relative measure estimated with regard to frontier of best practice firms, 
which makes it difficult to compare inefficiency over time estimated with regard to frontiers of different 
years. In order to provide more conclusive interpretations, one would need to (1) assume that technology 
does not change over time and estimate inefficiency for all years together or (2) assume that technology 
changes over time, estimate inefficiency for each year separately, but try to distinguish the absolute ineffi-
ciency change from the frontier shift. We thank an anonymous reviewer for these insights.
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than other sectors. On the other hand, construction firms appear to have the poorest results 
in CSP activities, as revealed by the largest values of CSP inefficiency. The results of previ-
ous research indicate that very few construction companies have positively embraced the 
ideas of sustainability and CSP, and have made slower progress towards CSP in compari-
son to other industries (Murray and Dainty 2008; Myers 2005).

The decomposition of pooled CSP inefficiency into inefficiency within each sector and 
the gap in inefficiency between the best practices of each industry and the overall best prac-
tices suggests that, on average across all industries, firms’ management and skills regarding 
CSP is a slightly larger source of CSP pooled inefficiency than reasons embedded in indus-
try (0.267 against 0.220 of inefficiency). Therefore, on average, shortcomings in managerial 
practices regarding CSP cause the most inefficiency. The smaller sources of this inefficiency 
are potential differences from industry characteristics as every industry has its specific com-
binations of CSP strengths and concerns arising from, for example, the industry’s greater or 
lesser impact on the environment, the ease with which it conducts CSP activities, its greater 
or smaller scope for improving CSP, or its attitude towards marketing of CSP activities. Nev-
ertheless, looking at specific sectors, we can see that the industries have different profiles 
in their CSP inefficiency. In particular, firms in the construction industry operate closest to 
their own industry profile compared to firms in other industries, as revealed by the lowest 
values of within-industry CSP inefficiency for these firms; that is, they obtain good results 
in management of their CSP activities. Hence, assessed in relation to own industry profile, 
construction companies produce CSP strengths and concerns under more stable conditions 
and are most homogenous in terms of their inefficiency in CSP. Taking high values of pooled 
inefficiency and low values of within-industry inefficiency for construction firms together 
results in the highest values of industry gap observed for this sector; that is, belonging to this 
specific industry creates large inefficiencies. On the contrary, the interesting case are firms 
in the manufacturing sector that have the highest values of within-industry CSP inefficiency 
compared to firms in other sectors, which means that they are more heterogeneous in terms 
of their inefficiency in CSP and are subject to highest fluctuations in CSP strengths and con-
cerns. It also indicates shortcomings in managerial practices regarding CSP of these firms. 
However, the values of pooled inefficiency and within-industry inefficiency are comparable, 
which means that manufacturing firms have the lowest values of industry gap. Therefore, 
industry-related reasons consist of a relatively small portion of these firms CSP inefficiencies. 
Overall, we find that within-industry CSP inefficiency explains the largest part of pooled CSP 
inefficiency for firms in manufacturing and services sectors, while the CSP industry gap is 
much more relevant in explaining CSP pooled inefficiency for construction, finance, mining, 
retail trade, transportation, and wholesale trade sectors.9

9  It would be interesting to compare the results obtained in the paper using the new approach to these 
applying the traditional methods. With this respect, the natural comparison would be with the standard 
‘radial’ BoD model (Cherchye Lovell, et al. 2007a, b; Cherchye et al. 2004; Lovell and Pastor 1997, 1999; 
Lovell 1995). However, it is worth remembering that the traditional BoD model deals only with good out-
puts as well, as it cannot be computed for firms that present zero values for some indicators because it 
generally lacks the property of translation invariance (see Pastor and Aparicio 2015). Therefore, to be able 
to apply it with our dataset we needed to: (1) use only CSP strengths (positive CSP), hence reducing the 
number of outputs into three, and (2) remove all firms that present zero values for at least one of three out-
puts. After such modifications, the resulting dataset was only 1045 observations out of the total of 37,765 
observations (in other words, approximately 97 percent of the sample size was removed). As a result, the 
majority of sectors were not sufficiently represented to be able to compute within-industry inefficiency and 
only pooled inefficiency was calculated with this reduced sample (these results on pooled inefficiency can 
be obtained from the authors upon request). Therefore, it is clear that the comparison efforts result in set 
of findings that are not comparable to these reported in the paper. These efforts also further emphasize the 
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5 � Conclusions

This paper proposes a new approach to measure corporate social performance (CSP) 
through the definition of a composite indicator based on frontier techniques. In particular, a 
set of CSP metrics is aggregated into an overall measure by using data envelopment analy-
sis. Our approach is based specifically on the benefit of the doubt model and was imple-
mented through the directional distance function. Our approach is original in the sense that 
we introduce a model adapted for dealing with good outputs (CSP strengths), bad outputs 
(CSP concerns) and, at the same time, the presence of zeros in the CSP data. Another 
novel point of our contribution in the analysis of CSP is the determination of a metafron-
tier enveloping all the observations for all analyzed industries. This allows us to calculate 
several CSP measures: pooled CSP inefficiency, within-industry CSP inefficiency, and CSP 
industry gap. As a result, we are able to explore the sources of pooled inefficiency; that is, 
how much pooled inefficiency is due to management behavior with regard to CSP and how 
much is related to firms belonging to a particular industry.

The workability of the proposed approach is illustrated by means of empirical applica-
tion that focused on CSP performance of US firms over the period 2004–2015 included 
in the Kinder, Lydenberg and Domini database. The results show that there is a consider-
able potential for improvement in the CSP performance of firms in the analyzed sample 
by increasing CSP strengths and reducing CSP concerns. The most CSP-efficient firms 
appear to belong to the mining and manufacturing sectors, while firms from the construc-
tion industry obtained the poorest results in terms of CSP efficiency. Moreover, we find 
that, on average across all industries, firms’ managerial behavior towards CSP is a slightly 
larger source of CSP pooled inefficiency than differences related to industry. In addition, 
the findings of this study also indicate that sample firms actually improved their CSP effi-
ciency in the period related to the recent financial crisis; that is 2007–2009. These results 
provide some managerial and policy implications. For example, the CSP efficiency results 
can help firm managers design operational strategies to improve CSP performance. From a 
policy perspective, the result of this study on the most inefficient CSP of construction firms 
might indicate that, for these firms to improve their social, environmental and governance 
performance, more investments in good CSP practices should be encouraged, for example 
through more favorable lending rates for these investments.

Future research could consider the extension of the model proposed in the paper towards 
the measurement of CSP inefficiency for each of the outputs separately. This will enable 
researchers to explore which of the dimensions of CSP (social, environmental, or govern-
ance) contributes most to the findings. As some of the CSP metrics are measured on the 
ordinal scale, another possible future research line could apply and extend DEA models 
designed for ordinal input and output variables, such as the one proposed by Cook and Zhu 
(2006). Finally, future research could undertake more in-depth analysis of the reasons for 
the differences in CSP inefficiency between industries.
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advantageous characteristics of the developed approach in comparison to the traditional one and that using 
the traditional BoD model for CSP measurement can bias the findings when some important dimensions of 
CSP are not taken into account.
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