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Abstract

We consider a problem of parameter estimation for the state space model described by lin-
ear stochastic differential equations. We assume that an unobservable Ornstein—Uhlenbeck
process drives another observable process by the linear stochastic differential equation, and
these two processes depend on some unknown parameters. We construct the quasi-maximum
likelihood estimator of the unknown parameters and show asymptotic properties of the
estimator.

Keywords Partially observed linear model - State space model - Hidden Ornstein
Uhlenbeck model - Kalman—Bucy filter - Quasi-likelihood analysis

1 Introduction

On the probability space (€2, F, P) with a complete and right-continuous filtration {F;},
we consider a (d; + dz)-dimensional Gaussian process (X;, Y;) satisfying the following
stochastic differential equations:

dX, = —a(62)X,dt + b(62)d W}, (1.1)
dY, = c(62) X, dt + o (0))dW?, (1.2)

where W' and W? are independent d; and d»-dimensional {F; }-Wiener processes, (X, Yo)
is a gaussian random variable independent of W' and W2,6, € ®, c R™ and 6, €
®, C R™2 are unknown parameters, and a, b : @2 — My (R),c : @y — My, 4,(R) and
o : ©1 — My, (R) are known functions. Here M,, ,(R) is the set of m x n matrices over R
and M, (R) = M, ,(R), ®; and ®; are known parameter spaces. The solution of (1.1) is an
Ornstein—Uhlenbeck process and it has an ergodic property.

We assume that the process X is unobservable, and the purpose of this article is to construct
estimators of 0 and 6> based on discrete observations of Y ; we assume discrete observations
Yio. Yy, Yio, - -+, Yy, where t; = ih, for some h, > 0, instead of considering the contin-
uous observation {Y;}o<;<7. The discrete observation case is much more complicated and
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interesting because of the construction of the estimator for 65, which is the main object of
this paper and described in detail in Sect. 3, and also because there is no need to estimate 6
(Kutoyants 2004, 2019a).

Note that we can not identify b(8;) and c(6>) simultaneously from observation of {¥;}. In
fact, the system

dX, = —a(B) X,dt + 2b(62)d W},
1
dY, = Sc(O)Xdr + o (01)dW}?

generates the same {Y;} as (1.1) and (1.2). Therefore, we need to impose some restrictions
ona, b, c, o and the dimensions of the parameter spaces.

When 61 and 8, are known, one can estimate the unobservable state { X, } from observations
of {Y¥;} by the following well-known Kalman—Bucy filter.

Theorem 1.1 (Theorem 10.2, Liptser and Shiriaev 2001a) In (1.1) and (1.2), let o (0)c (8)
be positive definite, where the prime means the transpose. Then m; = E[X;|{Y;}o<s<:] and
vy = E[(X; — my)(X, — m,)'] are the solutions of the equations

dm; = —a(@)mdi + y,c(62)' {o (01)0 (61)'}{dY, — c(O2)m,d1}, (1.3)

d
77? = —a(02)y: — va(62)' — v:c(62)'{o (01)a (61)'} " c(O)y: +bEDb(B) .  (1.4)

Equation (1.4) is the matrix Riccati equation, which has been examined in the theory
of linear quadratic control (Sontag 2013). It is known that (1.4) has the unique positive-
semidefinite solution (Liptser and Shiriaev 2001a). Moreover, under proper conditions, one
can show that the corresponding algebraic Riccati equation

—a(@)y — ya(62) — yc(2){o01)a (601} ' c(62)y +b(62)b(02) = O (1.5)

has the maximal and minimal solutions (Coppel 1974; Zhou et al. 1996), and the solution
of (1.4) converges to the maximal solution of (1.5) at an exponential rate (Leipnik 1985).
Further details on this topic will be discussed in Sect. 3.

There are already several studies on parameter estimation in the system (1.1) and (1.2)
with the Kalman—Bucy filter. For example, Kutoyants (2004) discusses the ergodic case,
Kutoyants (1994) and Kutoyants (2019b) small noise cases, and Kutoyants (2019a) the one-
step estimator. However, all of them assume d; = d> = 1 and need continuous observation
of Y. The continuous observation case is simpler, because we do not have to estimate 6. In
fact, we have

t
Y2 — Yy = 2/ Y, dYs + o (0))%t
0

by It6’s formula and (1.1), and therefore we can get the exact value of ¢ (61).

On the other hand, parametric inference for discretely observed stochastic differential
equations without an unobservable process has been studied for decades (for example
Sgrensen 2002; Shimizu and Yoshida 2006; Yoshida 1992). Especially, Yoshida (2011)
developed Ibragimov—Khasminskii theory (Ibragimov and Has’ Minskii 1981) into the quasi-
likelihood analysis, and investigated the behavior of the quasi-likelihood estimator and the
adaptive Bayes estimator in the ergodic diffusion process. Quasi-likelihood analysis is help-
ful to discretely observed cases, and many works have been derived from it: see Uchida and
Yoshida (2012) for the non-ergodic case, Ogihara and Yoshida (2011) for the jump case,
Masuda (2019) for the Lévy driven case, Gloter and Yoshida (2021) for the degenerate case,
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Kamatani and Uchida (2015) for the multi-step estimator, and Nakakita et al. (2021) for the
case with observation noises.

This paper also makes use of quasi-likelihood analysis to investigate the behaviors of our
estimators. In Sect. 2, we describe the more precise setup and present asymptotic properties
of our estimators, which are main results of this paper. Then we go on to proofs of these
results in Sects. 3 and 5. We first discuss the estimation of 6, in Sect. 3 because it is the main
part of this article, whereas estimation of 6; is quite parallel to the usual case without an
unobservable variable. We also examine the Riccati differential equation (1.4) and algebraic
Riccati equation (1.5) in Sect. 3. In Sect. 4, we discuss the special case where dj = d» = 1.
In the one-dimensional case, we can reduce our assumptions to simpler ones. In Sect. 5, we
discuss estimation of 6. Finally, we show in Sect. 6 the result of computational simulation by
YUIMA (Brouste et al. 2014), an package on R, and suggest a way to improve our estimators
when the wrong initial value is given.

2 Notations, assumptions and main results

Let 6f € R™ and 65 € R™ be the true values of 6; and 6>, respectively, and define the
(dy + d»)-dimensional Gaussian process (X;, Y;) by

dX, = —a(03)X,dt + b(B3)d W], 2.1

dY; = c(0) X, dt + o (07)dW?, (2.2)

where Wy, W2, Xo, Yo, a, b, c and o are the same as Sect. 1;a,b : ©2 — My (R),c: Oy —

My, q,(R)and o : ®1 — My, (R). In this article, we have access to the discrete observations

Yin, @ =0,1,---,n), where h, is some positive constant, and we construct the estimators
of 01 and 6, based on the observations.

We assume that ®; C R™! and ®, C R™2 are open bounded subsets and that the Sobolev

embedding inequality holds on ® = ®; x ®,; forany p > m; +mp and f € C1(®), there
exists some constant C depending only on ® such that

sup [ (O < C (IfllLe + 1186, fllr) - (2.3)
0e®

For example, if each ®; (i = 1,2) has a Lipchitz boundary, this inequality is valid (Leoni
2017).

Let Z(0) (8 € ® = ©®1 x ®y) be aclass of random variables, where Z () is continuously
differentiable with respect to 8. Then by (2.3) and Fubini’s theorem, we get for any p >
mi1 +my

E |:Sup |Z(9)|p] <c2r! <E [/ |Z(6)|Pdeb; +/ |89Z(9)|1’d0,-i|>
0e® ®; (]

= Cor-! </ E[|Z(0)|P1d0 +/ E[IagZ(G)V’]dG)
0 e
<Gy gug (ENZ®)I"1+ E[19 Z(©)1"])

where C), is some constant depending on p and ©®. This result will be frequently referred to
in the following sections.
In what follows, we use the following notations:

e Ry =[0,00),N={1,2,---}.
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O =01 x 0,0 =0, ,0"), 0= (0], ,05%),0% = (0}, 605).

e For any subset E C R™, E is the closure of .

e For every set of matrices A, B and C, A’ is the transpose of A, A®Z = AA/, A[B,C] =
B'AC and A[B®?] = B'AB.

e For every matrix A,|A| is the Frobenius norm of A. Namely, if A =

|A]l =

e For every matrix A, Amin(A) denotes the smallest real part of eigenvalues of matrix A.

e For every symmetric matrix A and B € M;(R), A > B (resp. A > B) means that A — B
is positive (resp. semi-positive) definite.

e For any open subset E C R” and A : E — M;(R) of class c*k, Bé‘A(E) denotes the k-

a
dimensional tensor on M4 (R) whose (1, jo, - - , jk) entry is T e T A(6;), where
Ji Jk
I<ji,---,jt<mand§ = (&, ---,&).
o For every k-dimensional tensor A with (i1, i2, - - - , ix) entry A;,...;, € My(R) and every
matrix B € M4(R), AB denotes the tensor whose (i1, i2, - - - , ix) entry is A;,...;; B. BA

is also defined in the same way.
e For any partially differentiable function f : ®, — R% and S € My, (R), S [ag 2] f@@)is

ad 0
the matrix whose (i, j)-entry is — f(62)S;; — f(62).
a6, " 00y

e If both A and B are matrices with M;(R) entries, A B is the normal product of matrices.
For every matrix A on M;(R) with (i, j) entry A;; € M4(R), TrA is a matrix on R with
(i, j) entry TrA;;.

For every stochastic process Z, A;Z = Z;, — Z;,_,.

We write a*, b*, ¢*, o* and X* for a(63), b(65), c(85), o (8)) and X (0}).

We omit the subscript z in i, and just write 4 when there is no ambiguity.

We designate o (81)0 (01) as X (0)).

C denotes a generic positive constant. When C depends on some parameter p, we might
use C), instead of C.

Moreover, we need the following assumptions:

[A1] nh, — oo, nh,2 — 0asn — co. Moreover, we assume h, < 1 for every n € N.
[A2] a, b, c and o are of class ct.

Then we can extend a, b, ¢ and o to continuous functions on ®; and ©;.
[A3]

il’li Amin(a(62)) > 0
6he®y

inf Amin(b(62)%%) > 0
6re®y

inf Amin(3(01)) > 0.

01€0

[A4] For any 6, € ®; and 0, € ©,, the pair of matrix (a(6), 2(91)[6(92)®2]) is
controllable; i.e. the matrix

(ZO1e@)1 @) S O[] - a @) B EnIc©:)2))
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has full row rank.
Moreover, the eigenvalues of the matrix

a(@)’ 2(91)*1[c<92)®2]>

b —a(e) @4

H (01, 62) = (
are uniformly bounded away from the imaginary axis; i.e. there are some constant
C > 0O such that for any ; € ®; and 6, € ®; and eigenvalue A of H (61, 62), it holds

|Re(1)| > C.

By Assumption [A4] and the corollary of Theorem 6 in Coppel (1974), for every 6; € ©,
and 6, € ©,, Eq. (1.5) has the maximal solution y = y, (6, 6,) and minimal solution
y = y_(01, 6»), where y4 (61, 62) > y_(61, 6»). The meaning of the maximal and minimal
solutions is that for any symmetric solution y of (1.5), itholds y_ <y < y;.

Now we define Y; and Y; by

Y1(61) = —% {TrZ(elrlwf‘) —d +1ogj::§$;} (2.5)
and
Y2(62) = —%Tr /O Ty H /0 " c(02) exp(—a @)y, (07 0)c () £* 1 c*
x exp(—a*(s — u))y; (0%)c* du
+ ¢(62) exp(—a(62)s) v+ (07, 62)c(62)’ 26)
—c* exp(—a*s)y4 (0%)c" }®2][(U*’_])®2]ds,
respectively, where
a(62) = a(62) + y4(6F, 02)Z(0) ' [c(62)%], 2.7)
and assume the following condition.
[AS] There is some positive constant C > 0 satisfying
Yi(61) < —Cloy — 67 2.8)
and
Ya(62) < —Clo2 — 05, 2.9)

Remark By (2.7), it holds
s
/ ¢* exp(—a(0)u)yy (0F)c* £ e* exp(—a* (s — u)yy (6)c* du
0

= /0 c*exp(—a(@)u) {a(©5) — a*} exp(—a* (s — ) y+(O*)c*'du
= c* exp(—a(65)s) — c(62) exp(—a*s)y4 (6%)c*,

and therefore Y, (6) has the following expression:

1 o0 s
Va6 = 5T fo el H /0 {c(62) exp(—a(B)u)y4 (6} 02)c(6r) B ¢

@ Springer



284 Statistical Inference for Stochastic Processes (2023) 26:279-330

— c*exp(—a(BNu)y, (6%)c* =* ¥ du
+ ¢(62) exp(—a(62)$)y+ (65, 62)c(62)’

®2
—c* exp(—a(63)5)y+ (0¥)c*’ } ] [(@*™)®)ds.

In particular, we have Y (65) = 0.

Under these assumptions above, we set

n

H) (6)) = —% > {%2*1(91)[(AJ~Y)®2] + log det 2(01)} (2.10)
j=1

and
1 ®2
r=3 [Tr{z**l 36, 2(9;‘)}] ,
and we define our estimator of 61 as the maximizer of ]HI,IL (61). Note that Tr{E*_1 3, Z(O7)}

1 0
is a vector whose jth entry is Tr [ IR — 2(67) ] . Then the following theorem holds:
00
1
Theorem 2.1 We assume [Al]-[A5], and for each n € N, let é{’ be a random variable
satisfying
H, (87 = max H),(6)).

01€0

Then for every p > 0 and any continuous function f : R — R such that

i |f )]
im sup <

lx|—00 [x]?

it holds that
ELf(Vn@} —01)] — E[f(2)] (n — 00),
where Z ~ N(0, (TH~1).
In particular, it holds that
@ —67) % N©. ) (0 — o0).

Next we construct the estimator of 6, which is the main object of this article. Recall that
under Assumption [A4], (1.5) has the maximal solution y4 (61, 62). Now we replace y; with
y+(61, 62) in (1.3), and define m; (61, 62; mo) by

dm; = —a(@)mdt + y4 (01, 62)c(62) {0 (01)o (61)') " HdY; — c(62)m;d1} @11
mo(01, 62; mo) = mo,
where mo € R is an arbitrary initial estimated value of X.
Due to I1t6’s formula, the solution of (2.11) can be written as
m¢ (01, 02) = exp (—a (01, 02)1) mg
(2.12)

t
+/0 exp (—a (61, 02) (1 — 5)) y1 (61, 02)c(62) T(O1) ™' dYs,
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where
a(61,62) = a(62) + v+ (61,01 e (©2)®*]. (2.13)

The eigenvalues of « (61, 6») coincides with those of H (01, 67) in (2.4) with positive real part
(see Zhou et al. 1996), so there exists some constant C > 0 such that for any 8; € ®; and
6, € Oy,

inf Rer > C,
rea (a(61,62))

where o (« (01, 6»)) is the set of all eigenvalues of «(0;, 6>).
According to (2.12), we set fori,n € N,

i (623 mo) = exp (—a (@, 62)1; ) mo

i
+ > exp (—a @ 0 — 1;-0) v+ @7 0@ SN A Y, 214)
j=1

n

1 o
Hy (023 m0) = 5 3 [—hz(e?)—1 (@t (62))%°]

i=1
A" (02) c(02) SO ' AY + AjY’E(é{l)*lc(ez)n%’}_l(@z)} . (2.15)
and
r?= Tr/Ooo =9 {fos c(62) exp(—a(02)u)y4(02)c(02) * L c*
x exp(—a*(s — u))y; (0%)c* du (2.16)

ds,

+¢(62) exp(—a(62)s)y+(62)c(62) }
92=9;

where él” is the estimator of 6 defined in Theorem 2.1. Then the following theorem holds:

Theorem 2.2 We assume [Al]-[A5], and let my € R be an arbitrary initial value and
0) = 65 (mo) be a random variable satisfying

H2(92) = max HZ(6,)
6,e0,

for each n € N. Moreover, let T'? be positive definite. Then for any p > 0 and continuous
function f : RY — R such that

i |f ()]
im sup

|x|—o00 |x[P

’

it holds that
ELf (V1 (0 — )] = E[f(Z)] (n — ),

where Z ~ N(0, (I'*)~1).
In particular, it holds that

i@ =05 S N©O, D) (1 > ).
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Remark (1) In order to calculate 71}, one can use the autoregressive formula

My, 1 (62; mg) = exp (-a(éf', 92)h> ! (625 mo)
Texp (—a(éf‘, 92)11) Y@, 02)c(0) SO A Y.

(2) One can obtain y (01, 6>) in the following way (see Zhou et al. 1996 for details). Let
V1, V2, - - -, Vg, be generalized eigenvectors of H (01, 6») in (2.4) with positive real part
eigenvalues. Note that H (0], 6») has d; eigenvalues (with multiplicity) in the right half-
plane and d; in the left half-plane. We define the matrices X1(61, 62) and X, (61, 62)
by

(X161, 62)
(v vz oo vay) = <X2(91,92)> '
Then X1 (01, 67) is invertible and it holds y (61, 62) = X»(61, 62) X1(61, 6~ L.
(3) H2(6,) can be interpreted as a approximated log-likelihood function with 6; given. In
fact, if X; = X,(0) and Y; = Y;(0) are generated by (1.1) and (1.2), and we set mo =
E[Xo|Yo]and yo = E[(mo— X0)®?], thenit follows m, (6) = E[X,(0)|{Y;(6)}o<s</]1by

Theorem 1.1. Thus by the innovation theorem (Kallianpur 1980), we can replace X;(6)
with m,(0) in Eq. (1.2), and consider the equation

dY;(0) = c(B2)m;(©)dt + o (01)dW,
where W is a dp-dimensional Wiener process. We can approximate this equation as
AY(O) ~ c(@)my,_(O)h +0oO1)AW,
when & =~ 0. Then we obtain the approximated likelihood function
2 1

p@~]]

i=1 (2ﬂh)%{det2(91)}%

1
X exp (—%z(eo—‘ [(AY = cOmy,_, (9)h>®2]) :

(4) The condition the W' and W? are independent is not essential; according to Section 12
of Liptser and Shiriaev (2001b), Kalman—Bucy filter can be extended to the equation of
the form

dX; = {ao(62, Y1) + a1(62, Y1) X} dt + by (62, Y)W, + by(62, Y,)d W}
dY, = {co(62, Y1) + c1(62, Y) X, dt + 0 (61, Y )dW2.

However, this case is more complicated, and thus is left for future research.

3 Proof of Theorem 2.2
In this section, we write m,(6;), 1?1?(62),}1%1%(02), y+(02) and «(6,) instead of
m (05, 025 mo), m} (62; mo), H,%(ng mo), Y+ (67, 02) and @ (07, 02), respectively, for simplic-

1ty.
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Moreover, let m; = E[X;|{Yi}o<s</] and y;* = E[(X; — m/)(X; — m;)']. Then by
Theorem 1.1, they are the solutions of

dm’ = —a*m*dt + v/’ £ " HdY, — ¢*midt) (3.1)
dy;* _
% = —a"y; =y @) = By 4+ 0" (3.2)

We start with preliminary lemmas, which is frequently referred to in proving inequalities.

Lemma 3.1 Let {W;} be a d-dimensional {F;}-Wiener process.

(1) Let f : Ry — R™ be a measurable function. Then forany p > 1 and 0 < s < t, it holds

t )4 t
(/ If(u)ldu) s(r—s>P—1/ \f ) Pdu

(2) Let {A;} be a My q(R)-valued progressively measurable process and {W;} be a d-
dimensional Wiener process. Then for every 0 < s < t < T and p > 2, it

holds
¢ p T 4
/ AvdW,| | < CpaiEE (/ |Au|2du>
S S

t
< Cpai(T — S)%l/ E[|Ay|"1du.

N

E| sup
s<t<T

Proof (1) By Holder’s inequality, we obtain

t ! 3 t -1

/If(u)ldu§</ If(u)l”du> (/ du)

‘ R
=@-9'"" (f If(u)lpdu) :

and it shows the desired inequality.

(2) Let A;U ) be the (i, j)entryof A;,and Wt(j ) be the jthelement of W;. Then the Burkholder-
Davis-Gundy inequality gives

t
f AudW,

2] 2
p kofd oo .
=] s {53 [ aPawd
s<t<T 3

i=1

E| sup
s<t<T
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=CparE

T 5
/ |AuPedu
S

Hence we have proved the first inequality, and together with (1) we obtain the second

one.
[m}
Lemma3.2 Let A be a d x d matrix having eigenvalues Ay, - - - , Ax. Then for all € > 0,
there exists some constant C¢ 4 depending on € and d such that
|exp(AD)| < Cea(1+ |A]*HePmatOl (1 > 0),
where
Amax = max Rely.
i=1,- .k
Proof Let
A=U*(D+ N)U, D =diag(A1, A2, -+, Ag)
be a Schur decomposition of A, where A, A2, --- , A4 are the eigenvalues of A, U is an
unitary matrix, and N is a strictly upper triangular matrix. Then we have
|exp(Ar)| = |exp((D + N)t)| = |exp(Dr) exp(N1)|
< |exp(D1)|| exp(N1)|
d—1 k
. IN|
E Cde)\mdxl Z Ttk
k=1
d—1 k
)Lmaxl |A| k
= Cad™' )
k=1
d—1 |A|k
< Cde(kmax+e)t Z O tkefet
k=1
< Cea(1+ |A[elmator,
noting that U is unitary, NY = O, and |A| = |D + N| > N. o
Lemma3.3 Foranys,t > 0suchthatO <t —s <1and p > 1, it holds
sup E[|X,|P] < C), (3.3)
>0
E[|Ys — Y,|P] < Cpls — 1% (3.4)
and
E[|X, — X,|’] < Cpls —1]7. (3.5)
Proof By 1t6’s formula, the solution of (2.1) can be expressed as
t
X, = exp(—a*t)Xo + / exp(—a*(t — s))b*dWSI, (3.6)
0
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where exp is the matrix exponential. Hence by Lemmas 3.1 and 3.2, we have

E[1X/”] < lexp(—a*t)|” E[|Xo|"]

t P
+Cp (/ |b* %] exp(—a*(t — s))|2ds) ’
0

)4
t 2z
< Cpe ™+ C, ([ e—z'”ds) <Cp
0

for some constant > (. Therefore for s < t we obtain
p:|

'
=G ((f — 5! / E[1X,|P]du + (t —S)g>

E[|Y: — Y|P] = E[

t
c*/ X, du +o*(W> — W2)
N

=G (=97 +a-9%)
<Cpt—5)2.
We can show (3.5) in the same way. ]
We next discuss important properties of y4 (01, 62) and y;*.

Proposition 3.4 The maximal solution of (1.5) y+ (61, 62) is of class c*.

Proof Let 69 = (89, 93) € ®1 x O3, and we consider the mapping f : My (R) — My, (R)
such that

X a®)X + Xa®3) + =0)) (@) X)®2] — b(63) 2.
Since for every T € My, (R), we have
FX+T) = £(T) = {a@®) + X'T@O) '@} T
+ T {a®)) + @) [c(69)®*1X}
+ 2O @) T)®*)
and

0y—1 0 ®2
im [Z0])" [(c(6;)T)®"]] —0
IT]-0 |T|

)

the differential of f at X = y, (6) is given by
df)y, @0 : T = a@)T + Ta(b),

where « is defined by (2.13).

If (df)y+(9°) is not injective, «(fp) has eigenvalues x and A such that u + A = 0 (see
lemma 2.7 in Zhou et al. 1996). However, noting that y; (61, 6») is the unique symmetric
solution of f(X) = O such that —a(6p) is stable (Coppel 1974; Zhou et al. 1996), there are
no such eigenvalues. Therefore (df),,, o) is injective, and by the implicit function theorem,

there exists a neighborhood U C @ x @, containing #° and a mapping ¢ : U — My, (R)
of class C* such that

0% = y1(0%), f(p©®)=0 @O el).
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Since —a(6h) — ¢(O)T(0)) ' [c(62)®?] is stable at 6 = (61, 62) = 67, it is also stable
on a neighborhood of #°. Thus by the uniqueness of y., we obtain y, (§) = ¢(6) on that
neighborhood and therefore the desired result. O

By this proposition, Theorem 2.1 and the mean value theorem, we get the following
corollary.

Corollary 3.5 Forany p > 1, it holds

1
1

»
E |: sup |y, (07, 62) — V+(9f,92)|p:| <Cn™2
6he®y

and

1

N P |
E| sup |a(0],02) —a(®],0)IP| <Cn7Z.
6re®y

Proposition 3.6 For every 6; € ©1 and 6, € O,

y+(61,62) > 0 3.7
and

y—(61,62) <O. (3.8)

Proof Noting that for A and y € My, (R),

%(GXP(AI)V exp(A'r)) = exp(Ar)(Ay + yA')exp(A't),
and the Eq. (1.5) is equivalent to
[a@) +y =) 1c@)®) ¥ + v [a®) + y @) e2)®?1)
=y 2 [c@)®ly + b(62)®?,
we obtain

v+ (61, 62)

0
=/ exp(a (61, 02)0){a (01, 62)y + ya (61, 62)'} exp(a(61, 62) 1)dt

0
= / exp(a (61, 02)1) { Z(01) ' [c(02) 1y (61, 02)%%] + b(62) %7}
x exp(a (01, 62)t)dt > 0

by assumption [A3], (2.13) and the stability of —«(0;, 6>). In the same way, we can show
y-(01,62) < 0. o

Combining this result with assumption [A3], (2.13) and Lemma 3.2, we obtain the
following corollary.

Corollary 3.7 There exists some constant C1 > 0 and C2 > 0 such that
sup  |exp(—a(8),62))| < Cre™ .

0,€01,6,€0,
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Now we go on to the convergence of y,*. Concerning the convergence rate of Riccati
equations, Leipnik (1985) presents the following result.

Theorem 3.8 (Section 5, Leipnik 1985) Let A, B, C € M;(R) and consider the equation
d
50 =—A—POB- B'P(t) — P(t1)CP(1).

Moreover, assume C is symmetric, C < 0, (B, C) is controllable and the matrix

B C
i (5%
has no pure imaginary eigenvalues.
Then if Py — P is non-singular, then it holds for any € > 0 that

|P(t) — P7| < CU 9 (1 — o0)
and if Py — P~ is non-singular, then it holds for any € > 0 that
|P(t1) — PT| < Ce™ 29 (1 - —00),
where P™ and P~ are the maximal and minimal solutions of the algebraic Riccati equation
A+ PB+B'P+PCP=0
respectively, r < 0 is the maximum real part of the eigenvalues of B + C P,
Proposition 3.9 For any € > O, there exists some constant C > 0 such that
1" = y4(0%)] < CeVhmn(xCiN=elr,
In particular, |y*| is bounded.

Proof According to (3.2) and Theorem 3.8, it is enough show that y'—y_ (6*) is non-singular,
where y_ (61, 62) is the minimal solution of (1.5). If we assume y; — y— (9*) is singular, there
exists x € R41\{0} such that {yg —v—(0*)}x =0, and we get xyjx = xy_(6*)x. However,
since y; > 0 and we have y_(#*) < 0 by Proposition 3.6, that is a contradiction. O

Next we consider the innovation process

t
W, = (""" <Y, —[ c*m;‘ds) .
0

Note that the right-hand side is well-defined since {m;} has a progressively measurable
modification, and that W, is also a Wiener process (Kallianpur 1980). Since Y; is the solution
of

dY, = c*mldt + o*dW,, (3.9)
we obtain together with (3.1)
dm} = —a*m}dr + y,*c*/a*/_ldW,.

Therefore 1t6’s formula gives

t
m’ :exp(—a*z)m’5+/ exp(—a*(t — $)yrc¥'o™ ™ dW,. (3.10)
0

@ Springer



292 Statistical Inference for Stochastic Processes (2023) 26:279-330

Moreover, using Proposition 3.9, we can show for any p > 1,

sup E[|m}|1P] < C, (3.11)
t>0
and
sup  E[jm* —m*P1 < Cpt —s)* (3.12)

0<t—s<1

in the same way as Lemma 3.3.

Lemma3.10 For j = 0,1,2,--- and 6 € O, let Z;(0) be a My ;(R)-valued and Fij-
measurable random variable, and U (6) be an M; 4(R)-valued random variable. Moreover,
we assume Z(0) is continuously differentiable with respect to 6. Then for any n € N and
p > m1 + my, it holds

n p

E|sup|Y Z; ((OHUO)A;W
0e® =1

1
2
< CaiiE [sup |U<9>|2"]
0e®

1
p n p 2

n
x sup EAN1Zim@Phy [ +E 1Y |00Z210) h
S ; j=1

Proof Let Z(”) U and (Z;U)) be the (i, j) entries of Z;, U and Z;U, respectively,
and W) be the jth element of W) Then we have

P
E | sup ZZ, HOUO)A;W
Oer 1
k n d 1 i
= E|sp i 3 X A OU @8 W (3.13)
cé

p= Jj=lg=lr=

1
2 2
1 P

Ik 1
2
gcd,k,,E[supw(@)FP} YOS TE|sup >z @)a;w@

0eo p=lr=1 | ?€9 ;=i

Moreover, the Sobolev inequality and the Burkholder-Davis-Gundy inequality gives

2p
E | sup ZZ(‘W)(G)A W@
Ge()j 1
n 2p n a 2[)
<Cpsup {E |32 o)a;w?| | +E Zﬁz(””(em W@
6e® . .
Jj=1 Jj=1
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p " p
(PV) 2 (pr)
<CpsupiE Z:(0)h +E { Z (9)}
pé)e@) Z ;
" p
<Cpsup | E Zle_1(9)|2h { Z{agz, 1O
6e® i—1
(3.14)
By (3.13) and (3.14), we obtain the desired result. ]

Lemma 3.11 For every 6 € O, let {Z;(8)} be a My 4, (R)-valued progressively measurable
process. Moreover, we assume Z;(0) is differentiable with respect to 0, and for any T >
0,p>0and0,0 € ®
sup E[|Z:(0) — Z:(0"|P] < Cr pl6 — 6|7,
0<t<T

sup E [186Z:(0) — 39 Z,(6")|"] < Cr |0 —0'|".
0=<t<T

t

Then {£.(0)}gco with &(0) = / Z:(0)dW has a modification {§. (0)}oco Which is contin-

uously differentiable with respe%t to 6. Moreover, it holds almost surely for any t > 0 and
0c®
~ 4 JE—
9p&:(0) = /0 90 Z((0)dW.

Proof For any matrix valued function ¢ on R”172 and € > 0, let

; 1
Alp©;e) = (60 +eej) =& O)),

where ey, - -+, em,+m, is the standard basis of R™1*"2_ Then for 8,60’ € ©,¢,¢’ > 0 and

p > 1, we have
/ 1’]
pi|

1 1
d a
/0 597 —Z,(0 +ueej)du — /0 BQJZ (0 + ue' ej)du

a

sup E [’AjZ,(Q; €) —
0<t<T

= sup E
0<t<T

1

a a

5/ sup EH Z:(0 +uee;) — Z,(G + ue ej)
0 0<t<T 367

< Cpr(0 =8|+ e =€),

where 0 = (9!, ... , gmtm2),
Hence by Lemma 3.1, it follows for any 0,0’ € ®,¢,¢’ > 0and N € N

, ,,}
|

E| sup |al&©0: )~ AVE @
0<t<N

t
=E| sup /{AJZ,(G;G)—AJZ,(Q’;G/)}dWS
0<t<N |JO
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p
]ds

N
gc,,Ng—l/ EHA/Z,(G;e)—AJZt(O’; /
0

< CpN(0 =0+ e —€D.

Now for this C), y, we take a sequence oy > 0 (N € N) so that

[o¢] oo
Sy = E anyCp Ny < 00, ZaN<oo,
n=1 n=1

and define the norm on C(R4; My 4, (R)) by
o0
1Al =" an ( sup |A(s)| A 1) :
N=1 0<t<N

Then the topology induced by this norm is equivalent to the topology of uniform convergence,
and we have

E [HAJS.(G; ) —

l=cpto—o1+1e-eD. (3.15)

Therefore, by the the Kolmogorov continuity theorem, {ATE.(6; €)}6e®,0<¢|<1 has a uni-
formly continuous modification {{.(6; €)}ge@,0<|e|<1- Because of the uniform continuity,
£.(0; €) can be extended to a continuous processon 6§ € ©, |e| < 1.

On the other hand, we can show in the same way that {£.(0; €)}pce has a continuous
modification {£.(9; €)}oco. Then AJE.(9; €) and £.(0; €) are both continuous modifications
of AJ£.(8; €), and thus they are indistinguishable. Therefore almost surely for any ¢ > 0 and
0e®,

j(g) — lim §(0 +eej) —£(0)
e—0 €

= lim A/&(6; €)
e—>0

B
exists. The continuity of 8%(6) follows from the continuity of ¢.(0, €).

Moreover, by the assumption and Lemma 3.1 (2), we have for p > 2,

t

E|:/ {1(ZS(9+661) Zs(0)) — 0 Z (9)}

0

p
[
0
Sszg‘I/ E[ 02
0

39 €ej) = W(G)‘ ]

<Cpe—>0(—0),

]

where 0 < n; < 1. This means

AEO;€) > / Zs(G)ds (e = 0)
in L?, and hence there exists a subsequence {¢, }, <N such that €, — 0 and

Ajét(G €) —>/ —Zs0)ds (n — 00).
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Therefore we obtain almost surely
) E0) = ATE®; 0) f )z,
— = ;0) = —Z, s.
307" ! o 007"

m}

Lemma3.12 (1) For j € N, let f; : [tj—1,t;] x ©® — My 4,(R) be of class cl. Then for
any p > mp + my, it holds

. Py
L t‘/'
E|sup|>” f fi-1(s.0)dY;
0e® =1 tj—1
i t i t
< Cpsup Z/ |f,-(s,0)|ds+2/ 180 f(s. 0)ds (3.16)
6e® j=1 tji—1 j=1 tji—1

1
i 4 2 i 4
+ Z/ | fi—1(s,0)Pds | + Zf |00 fj—1(s, O)ds | ¢,
j=170 j=170

where C, is a constant which depends only on p.

(2) For j =0,1,2,--- and 6 € O, let Z;(0) be a My, (R)-valued and Fi; -measurable
randomvariable, and U (0) be an M| 4(R)-valued random variable. Moreover, we assume
Z;(9) is continuously differentiable with respect to 0. Then for any p > my + my, it
holds

j ak

E|sup|Y Z; 1(O)U®)A;Y

6e® =1

15
<C,E |:sup|U(9)| f’]

0e®
i 1 d 1
x sup SCENZj @) h+ Y E[106Z;1O)* ] h (3.17)
1=t j=1

+CpE [suplU(@)l ”]
0e®

1
2

xcsup § S ENZ; @) h+ Y El|aez,-10) 17k

0e® =1 =1

Proof (1) By Lemma 3.11, we can assume for every j
1 1 Zj _
/ fi-1(s,0)dYs = / fi—1(s,0)c* mids + / fi—1(s, )" W,
lj-1 1j-1 fj-1
is continuously differentiable, and

1j 1
39/ fi-1(s,0)dY; 2/ 09 fi—1(s,0)dY;.
ti—1 t

Jj—1
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Therefore by the Sobolev inequality and (3.9),

E | sup Z Si-1(s, 0)dY;
0e® j=I fj—1
1
i 1 e
<Cpsup | E Z Si—1(s, 0)dY;
0€® j=1 fj—1
1
i 4 e
B || [ st o,
j=170
1
P

iy
<Cpsup | E Z fi-1(s,0)c* mids
0e® =1 tji—1
Fl . L
+E|D | fioi(s.0)0dWy
=170
_ L

I
+E Z/ 3 fi—1(s,0)c*m’ds
j=1711

Py

i 1 _
+E Zf d fi—1(s,0)0*dW ) (3.18)
—1 V-1
In order to bound the first term of (3.18), we set

F(s.0) =" fi(s.0)1(,_,.0005).
j=1

Then we have

i 1 b 1 P
E\D | fiaGs.0mids :EH/O f(s,@)c*m;‘ds]

=111

1 14
§E|:</ |f(s,9)c*m;‘|ds>i|
0
I i L =5
(/ |f<s,e>|ﬁ|m;‘|1’ds) (/ |f(s,9>|ds>
0 0

t p—1 ti
§|c*|"(/0 |f<s,9)|ds) /Olf(s,O)IE[Im.fI”]ds

1 p i tj
scp(fo |f(s,e>|ds) =Cp Z/ |£i(s.0)\ds
j=171

P
<I|c*I’E

p
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In the same way, it holds for the third term
p

¢, Z/, 180 £1(s. 0)1ds
Jj—1

kG
Z/ Zj_1(s,0)c*m*ds
ti—1

Next by Lemma 3.1 (2), we obtain for the second term

i tj . r p %
E{]> fi-1(s,0)0*dW,| | = E [ }
j=171i-1
I 1
2

<C, / Zlf(s 0)%ds| =c, Z/ | fi—1(s,0)|*ds
ti—1
and in the same way it holds for the fourth term
p
Z/ d fi—1(s,0)dWs| | <Cp Zf 136 f—1(s, 0)|ds
Lj-1 tj—1

We complete the proof by the above inequalities.
(2) By the Sobolev inequality and (3.9),

~|—

. P,
E | sup sz HOUO)A;Y
Qeoj 1
1
t; b »
J
<C, | E|sup Zz, 1(9)/ U©)c*m*ds
0e® =1 tj—1
_ P %
+E | sup Zz] HOU @)™ (Wy, — Wy,_,) ) (3.19)
0e®
j=1

For the first term of the right-hand side, it follows from Lemma 3.1 (1), (3.11) and the Sobolev

inequality
ok
E sup Zz, 1(9)/ U(0)c*m*ds
1
pr
sup Z;_(0O)U@O)c*mids
j=1 6e® tji—1

S |=

[suplZ, 1)U O)c*m; |p]

ti—1 0e®

S
j=1
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) 3
E |:SUP 1Z;_10)] ”]
6e®

ti—1

! 1j
<tel | owrt [
=1

1

1 »
X E [sup |U(9)|4P] E[|m§|4l’]ids>

6e®
1 i % %
<CyE [sup |U(0>|4P} > WPE [sup |Z,>1(0>|2P}
He® j=1 fe®

1
< C,E [;ug |U(0)|41’]
ce

<=

th sup E[1Zj-1®)1] + E I8 Z;1@)"]}

1

s
< C,E [gug |U(9>|4p]
6

% L
) supz{ [1Z; @] +E[|an,,-_1(e>|2”]”}h‘

0e®

As for the second term, we have by Lemma 3.10

1

P
£ | sup _Zz] HOU @)™ (W, — Wy, )
%
P
<C,E [sup |U<0>|2P}
0e®
. P . P %
2
xcsup VE | [ D 1Z1@FPh ) | +E || |82;-10)]
fe® ; ;
— j=1
1
2 |
< CpE|sup|U®)|**
6e®
1
n P P n p % :
2
xsup A E | [ D 1Z;-10)1%h +E| D [00Zj10)] h
0e® . .
Jj=1 j=1

L

2p |27
< CyE [;uglU(G)l p}
6

Nl—=

X sup § ElZ;-10)1*"] ph+§ El]86Z;-1(®)]™1 2p
0e®
Jj=1 j=1

Thus we completed the proof. O

@ Springer



Statistical Inference for Stochastic Processes (2023) 26:279-330 299

Proposition 3.13 For any p > m + my, it holds

supE | sup |m}(62)|" | < o0
ieN _925(~)2

sup E | sup |892n%?(62)|P < 00
ieN _926@2

sup E | sup |8(§2n%;’(92)|p < 0
ieN _926@2

and

sup E | sup |832n%?(92)|p < 0.
ieN 926®2

Proof We only prove the first one; the rest can be shown in the same way. By (2.14) and the
stability of —a (61, 62), it is enough to show

i

sup E sup Z exp (—a (@)t —tj-1))
ieN 0=(01.6€0 ||

Y+ (©)c(62)' @O A "YH < o0.

To accomplish this, it is enough to show

Xi: lexp (= (@)t — 1j-1)) y+O)c@) @) [h < C (3.20)
j=1
Xi: lexp (—e(@)(ti — 1-1)) v+ @)c @) S@) [Pk < € (3.21)
j=1
Xi: |86 {exp (@) (i — 1j-D)) y+O)c@:)'EO) ' }|h < C (3.22)
j=1
i |9 {exp (~a (@)@ — 1j-1) y+@)c@)'S@) '} h < C (3.23)
j=1

according to (3.17).
These can be shown by using Corollary 3.7 and noting that it holds by Haber (2018)

|0 exp (—a®) (1 — 1)
1
_ “fo exp(—sa(0)(ti — 1j-1)) 3 (0)(t; — 1j-1)

exp(—(1 —s)a(0) (@ —1j-1))ds

< C(t; —tj_y)e Cli=ti-0),

[}
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Proposition 3.14 Foranyn,i € Nand p > m1 + my,

; 1
E [ sup |my; (62) — nﬁ?(%)l”} <Cp(n"7 +h).
926@2

Proof By (2.12) and (2.14), we have

1

3
E |: sup |my; (62) — V?l,r-l(92)|pj|
6he®y

7
< E| sup [{exp(—a (@], 0200 — exp(—a@, 60} mo|"
6,e0;
1
+E| sup / exp (—a(0F, 02)(ti — 5)) v+ (6], 0)c(2) =+ 'Y,
6Oy |JO

1
Ly

i
- exp (—a(éi’, 02)(t; — rH)) v @F ., 02)c0) =@ AGY
j=1
1

{exp(—a(@f“, 62)1) — exp(—a (@l Gz)t)] mO‘P:|

< E| sup
6,eO)

+ E |: sup
6, €0

1
/ exp (—a (0] 02)(t; — 5)) v+ (0} . 62)c(62) T Yy
0

1
Pi|1,

1
=Y exp (—a(B}. 02)(ti — 1;-1)) 4 (67 62)c(62) B* ' A ;Y
j=1

i
+E| sup |} exp(~a(6f.02)(t —1;-1))
0he®y j=1
1

7

{V+(9f‘, 62)c(62)' 2 =y (6, 92)0(92)’2(511)71} AjY

i

+ E | sup Z{exp (—a(@f,@z)(t,- —tj_l))
926@2 j:1

Py
—exp (_a(éf, 02)(1; — t,_l))} v @, 6)c6) @AY } . (24

The first term of the right-hand side can be bounded by the mean value theorem and
Theorem 2.1:

A P ?
{exp(—a(ef, 62)1) — exp(—a (6!, 92)1‘)} mo‘ }

E | sup
0,0, (3.25)
1
1

= CE[10r —671]" < cnh.
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Next we evaluate the second term using (3.16). Noting that by the mean value theorem
and Lemma 3.2, we have

lexp(—a (6], 02)(t; — 5)) — exp(—a (6], 02)(t; — t;-1))]
— |a(6F. 62) exp(—a (67 62)(1; — ) (s — 1;_1)]
< Ce—C(t,'—u)(S — l‘jfl)

< Ce Cli=9)p
and

|t — 5) exp(=a (6], 02)(t; — 5)) — (1 — 1j-1) exp(—a (0], 02)(1; — ;1))
< [(tj—1 — s)exp(—a(0f, 02) (ti — 5)|
+ (1 — tj-1) exp(—a (8], 62)(t; — 5)) — exp(—a (6], 62)(t; — 1;-1)|
< Ce ClimIp,

where tj_| < u < s < tj, it follows from (3.16)

t
E [ sup / exp (—a (6], 02)(t; — 5)) v+ (0] 62)c(62) = dY,
6he®y [JO
; an
= exp (= (6], 0)(ti — tj-1)) v+ (6} . 62)c(62) T AyY
j=1

i
=E | sup Z/ {exp(—a (6}, 62)(t; — 5))
92&(")2 j=1 fj—l
1

T

—exp(=a (0], 02)(ti — ;1) } v+ (0] 02)c(62) = ¥,

d lj
= Cp sup E / lexp(—a (6], 02)(t; — 5))
6,0, j=1 ti—1

—exp(—a(d7, )t —tj—1))lds

Ij
ti—1

99,00 (07, 02) (1 — ) exp(—a (O], 02)(ti — 5))

— g, (07, 02)(t; — tj—1) exp(—a (OF, 62)(t; — tj—1))lds

l
tj—1

lexp(—a (6}, 62) (i — $)) — exp(—a (6}, 62)(ti — 1j-1))]*ds

i
X[ 1nar. 096 - 9 exp-ar 6 - )
j=1"11

2
—0p,2 (67, 2)(t; — tj—1) exp(—a (O, 02)(1; — tj—1))|2dS) }
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1

i 4 i
<C, Z/ e €U Vdsh +Cp | Y e ClmIn?
j=1"4 j=1

ti—1

1
ti 1 2
< Cp/ e—C(ti—s)dsh + Cp (/ e—C(ti—s)dsh2>
0 0

< Cph. (326)
As for the third term, in the same way as Proposition 3.13, we have
i

E| sup | exp(-a(6f, )0 —1j-1)
6@y j=1

{01 00002 = @1 02c0 2@ Ay

since it holds

E | sup
6Oy
by the mean value theorem and Theorem 2.1.
Finally, we consider the forth term of (3.24). Noting that it follows from Lemma 3.2 and
the stability of —« (01, 63),
lexp (— [c(61, 62) + { (0], 62) — (01, ) } u] (i — tj-1))|

= [exp (=61, 62) (1 — u)(t; — tj-1)) |l exp (@(6F, B)u(t; — 1j-1))]
< Ce~CU=Wi=1j-1) p=Culti=tj-1) — C(=Cli=tj-1)

<=

_ A A 1|P _1
Y05, 02)c0)' T =y (0], 62)c () T @) 1' } <Cpn"2 (327

we have
i
j=1

1
/ exp (= [a(@1.62) + [a(6F. 62) — (61,0} u] (i — 1j-1)) du
0

& —tj—1)

h<C.

In the same way, we obtain the boundedness of

i

2

j=1

& —tj-1)

h,

1
xa(g,ﬁz)/o exp (— [a (B, 62) + {a(®f, 62) — (61, 02) }u] (i — tj—1)) du

i
j=1

& —tj-1)

2
h

1
x / exp (= [a(@1.62) + [a(6F. 62) — (61,0} u] (4 — 1j_1)) du
0
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and
i
>l =)
Jj=1
1
Xa(el,ez)/ exp (— [0, 62) + {0, 02) — a (01, 62) }u] (i — tj—1)) du| h.
0
Thus by (3.17) we obtain
i
ZE |: sup |(t —lj_l)
j:1 926@2
1 ~ ~
| exo (= a0+ [t 0 - ot 00} u] 6~ 1))
0
. R p
Y @], 02)c(02)' @) AjY ] = Cp.
Therefore it follows
i
E| sup | {eXp(—a(Gf,ez)(ti—tjfl))
6he®y =1
R R X P (3.28)
—exp (—a@ 62t —1;-1)) | v+ @ o) =@ ' Ay ]
< Cpn_%.
Now we completed the proof by (3.24)—(3.28). O
Next, we replace m and y,* with mq and y, (6*) in (3.10), and introduce
t
= exp(—a*t)mo + / exp(—a* (1 — $))y+ @) o~ dW,. (3.29)
0
Furthermore, we consider for every n,i € N,
t
Yt = YO +/ c*ﬂz}‘ds + O’*Wt, (330)
0
i (62) = exp (—a @, 02)1;) mo
i
+ Y exp (—a @i 02t = 1;-0) v4 OF. 020 TOD AT (331
j=1
and
AY = Mg 1(05)h 4+ o * AW, (3.32)
Then in the same way as Proposition 3.13, it holds for any p > m| + m2
sup E |: sup |8§2rh§’(02)|p:| <00 (k=0,1,2,3). (3.33)

ieN 926@2
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Proposition 3.15 Forany p > 0 andt > 0, it holds
1
E[lmf —mf|P]? < Cpe .
Proof Use (3.10), (3.29), Lemmas 3.1 and 3.2, Proposition 3.9 and the stability of «. ]

Proposition3.16 Let A : © — My, 4,(R) be a continuous mapping. Then for any i,n €
N,p>0andk =0,1,2,---, it holds

i

E| sup > (6 —tj-n)Fexp (=@, 02t —1;-1))
01€01,0,€0, =1

- Ll
xA01,0)(A;Y — A;Y) ] < Cprae Ch.

Proof It can be shown that by Lemma 3.1 and Proposition 3.15, since

~ 1
AJ'Y - A_,'Y = C*/ {I’h;k — mf}ds
t

j—1

By (2.14) and (3.31), we obtain the following corollaries.

Corollary 3.17 Foranyi,n € N, p > 0andk =0, 1,2, 3,4, it holds

1

5
E [ sup [of (! 6) — na;?(e)}"]] < Cpe=CH,
926@2

Corollary 3.18 Foranyi,n € Nand p > m + my, it holds
1
16y = &71P]" < Cphd +nih ey,

Proof This result directly follows from By (3.9), (3.32), (3.12), Lemma 3.1, Propositions 3.14
and 3.15 and Corollary 3.17. O

Proposition3.19 Let A : ® — My, 4,(R) be a continuous mapping. Then for any n €
N,p>mi+myandk =0,1,2,3

p

i| < Cp.

E | sup
6re®y

Proof By (2.14) and (3.31), we have

> ok (il (62) — ! (0)}AO) A Y

i=1

mi_y(02) — mii_ (02)

= Y exp (—a@}, 6 — 1;-1)) 7+ O, 0@ TE TN A - A D).
j=1
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Hence forevery k =0, 1, 2, 3, 8(5‘2 {n%;[] (62) —m7_;(62)} is a sum of the form

> b exp (—a @, 0t — 1)) A1ONA;Y = A;T)
=1

(1=0,1,2,3),
where A} is a My, 4, (R)-valued k-dimensional tensor of class C!. Thus if we set
i
D(0) =), exp (—a(6r, 02) (1 — 1j-1)) A1O)(A;Y — A;Y),
j=1

it is enough to show

Xn:QD(H)AiY

ah
} <Cp. (3.34)
i=1

E | sup
0e®
By Haber (2018), we have

E [sup |q>(9)|1’] "< CpeCl
0e®

and

1

E [sup |39<1>(0)|P] " < cpeCn,
0e®

Thus it holds by (3.17) and Proposition 3.16
1
P

p n
E | sup <C)) e i<Cy
0e® i=1

Hence we obtain (3.34). ]

ZCD(Q)A,Y

i=1

Proposition 3.20 Let Z be a My, (R)-valued random variable. Then for any n € N, k =
0,1,2,3 and p > m + my it holds
1
p:| >

|

<Gy (E A7) nh+ E[|AP] <"”)%) '

n

sup Z 352 {rhi—l (92)/6(92)/}ZA]'Y
6@ )

Proof By (2.14), 852 {m!(62) c(62)'} is a sum of the form
Ai@7, 62 exp (—a @l 6211 )

k i
+ 33 o, exp (—a@ 020 — 1) Bi(6}. 62, Y,
1=0 j=1
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where A; and B; are k-dimensional tensor valued continuously differentiable mappings on
®. Thus if we set

Vi (0) = Vi (01, 02) = A;(0) exp (—a(6)1;)
ki
+ 33" 9, exp (—aBr. 02) (1 — 1j-1)) Bi(0)A;Y,
1=0 j=1

it is enough to show

|

In the same way as Proposition 3.13, we first obtain

E[W:O)"] < Cp

n

sup » Wi 1(0)ZA;Y
0€0 ;7

an
} <C, (E[|A|4P]$ nh+E[|A|2P]ﬁ(nh)%>. (3.35)

and
E [199W;(0)|7] < Cp.
Therefore noting that ¥; (9) is F;,_,-measurable, we obtain (3.35) by (3.17). ]

Next, we define ]ﬁlﬁ, Afl, l:,zl and Y,zl by

- 1 <& o .
H(02) = 5 le {—hz* [(c(Om}_ (62)%%]
il (02) c(0) =X TAY 4+ A Y e@ml (92)] (3.36)
2 1 T2 2 (%
Y; (62) = T{H" (62) — H,(6;)} (3.37)
n
- 1 ~
A2 = — 92 (6), 3.38
n \/a 0 n( 2) ( )
and
~ 1 ~
2= —ragHﬁ(eg), (3.39)
respectively.

Proposition 3.21 Foranyn € N, p > my +mpy andk =0, 1,2, 3, it holds

E| sup
6O

Proof We only consider the case of k = 0. The rest is the same. By (2.15) and (3.36),
E | sup
6,0y

< E| sup
6r€0

1
~ |7 3
agz{Hn(e»—Hn(ez)}] } < Cy(nh? +n7h+1).

~ P r
H, (62) — T, (02)] }

1 - ) - ~n
5h E{E(e?)‘l — = @)’ (2)%7]

1
p}p
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l .
+E| sup |5 Y it (62)c0){Z@) T - = Ay
202 |2 [

_ 1

1 ¢ A _ .
+E| sup EZAjY’{Z(Oi’)_l — = @ (62)
_926@2

i=l1

|~ _ .
+E{ sup |50 Y {2 @i, 602)%)
i=1

_926@2
1
P} 7

| N _
5 D1 (6)e(@)' S Ay

i=1
1
P]p

1 ¢ _ .
5 DNAAGYET ey (6)

i=1

—x ey 62)%1)

+ E| sup
926@2

—c(O)i"_ ()T A;Y)

+ E | sup
6re®y

1
bl
—A; YT @i (6)) ],, : (3.40)

For the first three terms of the right-hand side, we have by Theorem 2.1 and Proposi-

tion 3.13
p:|,1)

1

pi| »
In the same way, the third term can be bounded by C), (n_%h +h 2 ).
Furthermore, making use of Proposition 3.13, (3.33) and Corollary 3.17, we can bound
n

1 n R B .
SO EEN T = B @ (62)%]

i=1

E | sup
6he®y
< Cpn%h,

and by Proposition 3.20

E | sup
6,e0,

< Cpn~2{nh + (nh)2} < Cp(n~2h + h7).

1 &, - _
3 2 @) @) 2@ - =AY

i=1

the fourth term by C,, Z he=Ci < Cph, noting that
i=1
ZOD T (@R 02)%°]1 = O (O] (62))%°]
= {1 (02) + Mt (62)Y c(02) Z(O]) e (B ('} (62) — it} _ (62))
+ {1 (62) — i (62)Y c(02) T @O]) '} (62)
+ i (02)c(62) RO TR (02) — i (62)).
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n
Finally, the last two terms can be bounded by Cp, + Cp S (h% +n™2h + ¢ Clih) <
i=1
Cp(1+nh? +n?h + h) due to the Corollary 3.18, Proposition 3.19 and the identity
W (62) c(02) SO TIAY — i (62) c(62) (@) A Y
= (it} (62) — '} (62)) c(62) 2@OH Ay
R (02) c(92> O A — AjY).

Putting it all together, we obtain

E | sup
6he®y

~ P 7 3
Hn(ez)—Hn(Gz)‘:| < Cp(1+nh? +nih+h? +h)

< Cp(1+nh? +n2h).

Proposition 3.22 For any p > 2, it holds

supE[|An|p] <00

neN

Proof If we set M; (62) = c(62)1"(6), we have

o
A2 = 2@2{892 6™ ™ AW + AW ot B 02))

fZ[aezM"(Qz)/ AWl

by (3.32), (3.38) and (3.51). Thus by Lemma 3.1 and (3.33),

(3.41)

n

2
-2 AL
E[1A7]" = = E [ (D 10,017 020" ™" P

In? i=1

1 2
—~ pZE[wezM”(ez)’ <R

2 i—1

| /\

IA

— X Cpnh = C,.
Iy 2

[m}

Next, we define the process {u,} by replacing ¥ with Y (therefore m} with m,(6*) and
y* with y4.(0%)) in (2.12);

e (62) = exp (—a(82)t) mo

‘ L (3.42)
+/0 exp (—a(B2)(t — ) y+(62)c(62) ¥ dY;.
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Then as m;, is the solution of (2.11), so u, is the solution of
Ay (62) = —a (@) uidt + y4 (02)c(62) =¥, (3.43)

no(62) = my.
Moreover, it holds u,(65) = i} since by (3.31) 7} is the solution of
dinf = —a*in} + y (0% o* AW,
which is equivalent to
din = —a(05)ymldt + y4(0)c* =7 dY,.
Moreover, just as Proposition 3.14, the following proposition holds:

Proposition 3.23 Foranyn,i € Nand p > m| + m, we have

1

?

~ _1

E |: sup |y, (62) —m§1(92)|p:| <Cp(n~2 +h).
6re®y

Together with (3.33), we obtain the following corollary.
Corollary 3.24 Foranyi € Nand p > m| + my, we have
»
E| sup |u; (@27 | =<Cp.
926(:‘)2

Proposition 3.25

E[Z* e (02) — c(03) 1 (03)}221], = —2Y (6) + O (e ™)

where O(e™") is some continuous function r : ® — R such that
Ir@)| < Ce ",
Proof By (3.42) and (3.31), we have
i (0) = exp(—a(62)1)mo

t
+/ exp(—a(B2)(t — 5))y4 (02)c(02) =%~ c*ringds
0

t
+/0 exp(—a(62)(t — )+ (62)c(62) 0 * ™ dW,
= exp(—a(6)t)mgp

+/0 exp(—a(t2)(t — )1 (B2)c(62) B c*

\}

x {exp(—a*s)mo + / exp(—a*(s — u))er(G*)c*/a*/i1
0

t
+/0 exp(—ar(62) (1 — $)y4 (62)c(62) o™ ™ dW,

= exp(—a(6)t)mg

qu} ds

t
+/ exp(—a(02)(t — 5))y+(02)c(02) =%~ c* exp(—a*s)mods
0
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+ /0’ /: exp(—a () (t — $)y+(B2)c(2) =% 'e*

x exp(—a* (s — )y (0%)c* o™~ AW ds

+ /0’ exp(—a(02)(r — S))V+(92)C(92)'0*/71dWs
= exp(—a(62)1)mo

t
+/ exp(—a(02)(t — 5))y+(02)c(62) =~ ¢* exp(—a*s)mods
0

t t
+/0 {/ exp(—a(02)(t — u))y,(02)c(6>) T* ' c*
exp(—a*(u — s))y+(9*)c*/0*’_]du
+exp(—a (@) (t — )y O)c(®) o™~ } iV, "

Therefore

E[Z" [{e®) e (02) — (03 (03)}%2]]
= E[Z* [{c@) i (62) — c(03)7}1®%]

t t
=E[2*‘1 H /0 { / c(62) exp(—a(02)(t — )y (B2)c(2) =% 'c*

x exp(—a*(u — $))y4 (0%)c* du
+ ¢(62) exp(—a(02) (1 — $))y4(02)c(62)

—c*exp(—a*(t — 5))y+(0)c*'} o aw, }®2H + 0@~

t t
=Tr /0 ! H / c(62) exp(—a () (t — u))y+(02)c (@) =¥ c*

x exp(—a*(u — $))y4 (0%)c* du
+ c(02) exp(—a(B2)(t — 5))y+(62)c(62)

—c*exp(—a*(t — s)>y+(0*>c*/}®2] (@™ )®ds + 0~

t K
=Tr f ! H f c(62) exp(—a(B2)u) y4 (02)c(62) T '
0 0

x exp(—a*(s — u))y; (0%)c* du
+ ¢(62) exp(—a(62)s) v+ (62)c(62)

®2
—c* exp(—a*s)y4(0%)c* } } [(0*)®)ds + 0 (e,
Now we have
/0 |c(62) exp(—a (02)u) y+ (02)c(62) £* ' ¢* exp(—a* (s — u))y4 (0*)c* |du

s
< / Cpefcuefc(s*“)du < Cpse7CS < C,,efcx
0
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and thus by (2.6)
|E[Z* " [{c@) i (62) — c(03) 11, (0))5] + 2Y2(6))]

/ = H/o c(62) exp(—a (0)u)y1 (B2)c(62) B* ' ¢*
t

x exp(—a*(s — u))y,L (0%)c*du
+ ¢(62) exp(—a(62)s)y+ (62)c(62)
—c* exp(—a*s)y+(6*>c*/}®2] [(@* ™) 1ds

5 Ce*Ct

Proposition 3.26 For anyn € N and p > m1 4+ my, it holds

7
E| sup [V262) - Y2(00)I” | <Cp <h+n*%+t,f%).
6,€0,

Proof By (3.30) and (3.37)

~ 1 « - n (et *

V262 = 52[ ST @) 6% + b R 05) %)
R (62 e(0) — iy (65) Y5 (i1 (05)h + 0 A W)
+ G103 h+ AW o) S He@)m!_ (62) — il 1(92)}]

n

1 . ) i
= 5= Y {-hE T @iy ) — e )%
" =1
+ (R (02) c(82) — il (83) Y= o A W)
FA W o' S e @)l (62) — i 1(9;)}] .
Thus we have
1

P
E [ sup |Y2(6,) — Y2(92)|p:|

026@2
h S 3

< —E| sup |y =* (e} (62) — i}, (05)%]
2tn 6e®y i—1

1
P:|11

Z (=@, 0 — ¢y @)%
=1

—=* @Dy, 02) — ¢y, (05)%%]

—|—E|:sup

Iy 6,0,

1

7

+2Y2(6)}
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p:| H
1
p] »
For the first term of this, making use of Proposition 3.23, Corollary 3.24 and (3.33), we obtain
h E
— sup
2111 6,0,

2" (e, 02) — * i, (03)%7]

n
Y it (02) c(02) — il (03) IS ot AW
i=1

1
+ —FE | sup
Ztn |:92€®2

1
+ —FE| sup
Ztn |:92€®2

n

AW o™ S He @iy (02) — ¢t} (63)

i—

i=1

(3.45)

Y2 ey 02) — ¢t (05)F%]

i=1

1

”} » (3.46)

h
< Cpym (™I +h) xn<Cp(n2 +h),

n

just as we evaluated the fourth term of (3.40).
Now we consider the second term. Due to the proof of Proposition 3.25, c(6;) ,uZ, (62) —
c* Wy (65) has the form

c(@) g (62) — c* 11y (07) = pi(62) + /Oti qi(s; 02)dW
where
pi(62) = exp(—a(02)t;)mo — exp(—a(95)t;)mo
+ /O " lexp(—a @) — )4 @cb:)
— exp(—a(03)(t; — )4 (03)c*' Y B* ' ¢* exp(—a*s)mods,
gi(s: 02) = / " (0 exp(—a (@)t — W)y O2)c(O)

x ol exp(—a*(u — )y (0%)c* du
+ c(62) exp(—a(2)(1; — $))y4(02)c(62)’
— c*exp(—a*(t; — $)y+(0")c*.

1
Then if we set v, (62) = p; (62) + / qi(s; 62)d W, 1to’s formula gives
0
_ 2
27 {e@nl @) — ¢ty o)) ]
fi .
= 2710 6)%) = / =0} )%
0
ti _
=2 i) +2/ vi02) =" gi (53 02)d W
0

t
+Tr/ =* qi(s; 02)%%1ds
0
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B 2
= E[2 7 [{c@n; @) - ui o) ]
ti [
+2/ Vi (62)(02) =i (s; 02)d W
0
i R
= —2Y%(6,) + 2/0 vi(02) 5 gi (51 02)d W + O (e=C").
Therefore
n

h
—FE | sup
2ty |:92e(~)2 Z

i=1

1
p:|,,
et

)4 1 n

+— Y CeCih (347
2tn i=1
L
:|p 3
+ —.
In

Now by Lemma 3.11 and the continuos differentiability of p; and ¢;, we can assume v,i (62)
is continuously differentiable with respect to 8, and almost surely

{2 e, @) - cui_ 009 +27°0)]

"ot _
> [ vl (02) 5% g (53 02)d W
i=1

IA

h
—E | sup
Iy 6@

h
—E | sup
In 6 e®y

n . o
Z/ vi(62) = i (53 02)d W,
— Jo

i=1

IA

t

39, v} (62) = 3, pi (62) + / 39, i (s: 02)ds.
0
Thus by Lemma 3.1 (2) we obtain for any 7 > 0, p > 2 and 65, 9£ € 0,

sup E [1v](62) = vl @)1 ] = Cplex — 0417
0=<t<T

and

sup E [|392v§(92) - aezu;'(eg)w] < Cplor — )P

0<t<T

i _
Then again by Lemma 3.11, / v, (02)/2*71% (s; 62)d W is continuously differentiable and
0

we have almost surely

Lo _ _ ti . _ —
9, / vl (62) = gi (s 62)d W, = / 39, (VE(02) =71 gi (55 62))d W .
0 0
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Therefore the Sobolev inequality gives for any p > m| + m

1
p:|,,

tn n . .
f > vl 02) = gi (51 02) 110,41 (5)d W
0 iz

n

E | sup
EY>

=E| sup
926@2

Lo _
/ Vi62) =% gi (s 62)d W,
0

1

1

1 (3.48)
th M P
o _
<Cp sup E f D i 0 = gi(s: 02) 110,11 ()W
6he®y 0 i=1
tn N p %
o _
+cp9sug E|:/0 > 5, (v (62) T i (51 00} 0,11 () W ] :
2€02 i=1

Now we have |p;(62)| < Ce™C"i | |qi(s; 02)| < CeC =) and hence
E[wi@1"] < ).

Thus we obtain

n
> vl (02) = g (51 02) 110,41 (5)

i=1

|

P c
=< PR
~h

and therefore by Lemma 3.1

w N )
n . _ o C
- H/ > vi62) 2 i (51 0) Lo (5)d W } < Tptn .
0 o

In the same way, we obtain
pe
14 Cp
< L, 7.
h

S

th n . R
E H / 3, (v (62) 5% g1 51 00} 0.1 ()W
0

i=1
Hence by (3.48), it follows

]

n

i / — b :) C P
E| sup Z/ Vi) = gi(s: 0)dW,| | < =L1,7,
6,eO) i=1 0 h
and therefore by (3.47)
h n p %
S—E| sup |3 T (e@ug (62) = cup (03)%7] = Y2 6)
2tn 6e®y |
i=1 (3.49)
he,? C 1
<C —_

<Cpt 4 2 <Cp—r.
Pt bt L

th?
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Finally, as for the third and fourth terms in (3.45), by the Sobolev inequality, Lemma 3.1
and (3.33) it holds

- Hn 10,y — sy/ iy vk—] s I
E Lzsggz E{mi_l(ez) c(62) — ! (63) ) * oA W } 50
<Cpty”.
We obtain the desired result by putting (3.45), (3.46), (3.49) and (3.50) together. ]
Now we set
M7 (62) = c(62)1'}(6). (3.51)

Then by (3.32) and (3.39), we have

. 1 « -

2 —1ra®2

= ) :{z* [0S (0™
i=1

OB, M 0% o™ T AW — A W o g M 69))

Moreover, by (2.16) and (3.44), we obtain the following results in the same way as
Propositions 3.25 and 3.26:

E[= 021 0%) | =12 + 0™ ) (3.52)
1 & ! L
E||=> = agmp 0h —T?| | <Cp(hP +n727 + — (3.53)
Iy i=1 2 2
) 1
E [|F,, _ F2|P] <C, (hP fnIP g tp) . (3.54)
n2

Proposition 3.27 It holds
A2 4 N, ).
Proof Since Aﬁ is given by the formula (3.41), we set

1 - o
£ = fagzMi"_l(9;)/0*’ "AW.
n

Then (i—‘l.")®2 is the matrix whose (i, j) entry is

a -~ -1, — J =~ -1 —
——M!" () o AW—M" (7)o AW
el i1 @A 20§ =1 A

3 ~ —1 _— —_— -1 8 ~
= ——M" (0¥ AWAW* — M (63).
tn 395 l*l( 2) l l 8921 171( 2)

Hence it follows from (3.53)

S E[EHF, =) E [2*‘1[35@2’2]1\71;1_1(92)|ft,_1] 212 (= o).

i=1 i=1
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Moreover, we have for € > 0

n
> ELE P e =) Fip_ ]

i=1

n
1 1
<Y EUEF 12 PUE > €l Fy)?

i=1

. o1 1
<D ENEF 12 x S ENE )2
i=1
| *— 1|4
—Z i 10 M O ELA W)Y

|a*“|4 .
- Y 8 M (01,
€ty
i=1
and hence
1
lo* 1|4

[ZE[IS”I Ljer)>ey | Frr_ 1]} <Z e E[0oM]'_, (6%)|*1n?

n

Therefore we obtain the desired result by the martingale central limit theorem.

Proposition 3.28 For any p > m| + my, it holds

1
— 05, H3 (62)
In

neN 92 E@z

1
P>
< o0.

sup £ |: sup

Z% 2_——>O(n—>oo).

Proof Use (2.15) to divide the left-hand side into three parts, and then apply (3.13) and

Proposition 3.20.

Proof of Theorem 2.2 We set A2, T'2 and Y2 by

1
Y2(6,) = t—{H,%(@z) — H,(65)}

A2 =

n— ﬁtn
1

r2—= 82H2(92)

n

2 (62)

Then by Proposition 3.21 for any n € N and p > m; + m2, it holds
P L
E HA% - Aﬁ’ ]” <C, (nf +h+ (nh)*l)

E[[r2 =52 <, (bt +nt + i)
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and
1

»
Y (62) — Yﬁ(ezﬂ"} <Cp (h FnTI 4 (nh)_l) .

E | sup
6re®y
Together with Proposition 3.22, (3.54) and Proposition 3.26, we have for any p > m+m»
(therefore for any p > 0)

1
sup E [|A2|7]7 < oo, (3.60)
neN

1
sup E [ 13 (T2 — rz)‘p]” < 00 3.61)
neN

and

1
12 2 s
supE | sup |£,2(Y;, @) —Y (92))‘ < 00. (3.62)
neN 6O

Moreover, by Proposition 3.27 and (3.58) we obtain

A N, T?). (3.63)

Then we have proved the theorem by the assumption [AS5], Proposition 3.28, (3.60)—(3.63)
and Theorem 5 in Yoshida (2011). O

4 One-dimensional case

In this section, we consider the special case where di = d» = 1. In this case,
a(6y), b(6>), c(62) and o (01) are scalar valued, so we setm; = 1 and o (6;) = 6;. Moreover,
we assume ®; C (€, 00) for some € > 0. In the one-dimensional case, (1.5) is reduced to

c(62)?
02 v+ 2a(B2)y +b(62)> =0,
1

and the larger solution of this is
61%a(62) b(62)c(62)*
01,0)) = —= I+ ———F -1
7002 = 7 ) 61%a(62)>

20(6,)2
a (b1, 62) = \/0(92)2 + % (4.1)

Thus we have

1

by (2.13). Furthermore, the eigenvalues of H (61, 67) in Assumption [A4] is +«/(0;, 62) and
hence one can remove Assumption [A4].
As for the estimation of 81, one can obtain the explicit expression of 61. In fact, we have

n

1 1
H! 6) = -3 > {W(AJY)Z +210g61}
j=1
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and hence

d 1 < n
—Hlo) = — AiY)?— =,
a6, O =503 j;( =5

Thus we obtain the formula

1
2

. 1 <
or = - Z(A in?
n j=l
Moreover, Y1 (01) and ['! can be written as

1 (6;? 0
Y1(01)=—E 9—2—1—210ga
1

2
L1 (29;) 2
=z 2 = %27
2\of o1
Therefore noting that x2—1- 2logx > (x — 1)2 (x > 0) we have

ES 2 _ *\2
Vi) < — (9—‘—1) <oy

and

91 262
and hence (2.8) holds.
As for the estimation of 6, since we have
0,2
Y (61, 602) = —— {a(61, 02) —a(62)} 4.2)
c(62)

by (2.13), we obtain for «(6;) # a*

L {a®) — @} @0)) —a*)
Be=m /o { ab)—ar
(@) — @) @B) —a D))y }2 "
a(0y) — a*
_ 1
© dara(O)f{a* + a(62)} 4.3)

x [{a*a(@) — a@)a @)Y + a*a @) {2 @) — a®) — a6F) + a*}z]
_ a*a(®)? {a(@g) a(®3) }2
© da@){aF +a@) a6 a®)

1 o L 62
 dara(B){a* + a(6)} (@) —a@) —a@) + a7,

making use of (2.6) and the identity

00 2
—at —pt zdt _r 2pq a-
/0 (pe™" +qe ") 2a+a+ﬁ+2ﬂ

2

1
= Jap (@ + P +aBp—q)’}.
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where «, 8 > 0 and p, g € R. Even if «(6,) = a*, we obtain the same formula by letting
a* — a(6y) in (4.3).
Now we obtain a sufficient condition for (2.9) by the following proposition.

Proposition 4.1 Assume [A3], inf |c(62)| > C and

2 ~2
la(62) — a(63)| + |a(62) — a(65)] > C|6 — 65]. (4.4)
Then it holds
Y (6) < —Cl6> — 6512 4.5)

Proof Let us assume there is no constant C satisfying (4.5). Then there exists some sequence
6. € @, (n € N) such that

a(0") (83
a@yy a®3)

1
< =165 — 63|

and

‘a(eg’”) —a®™) — a(03) +a* |9<"> 63,

Thus if we set

A(02) = a(62) — a(62)

and
a(62)
B(6,) = ,
a(62)
it follows that
ABL) A63)

9(") _ 9* — _

_ 146" — A6 1AG)11BG") - BO3)
BO;") -1 (B®;") - 1{BE) - 1)

C
(n) *
< —16," — 65,
= 16, i
noting that it holds B(62) — 1 > C by the assumptions and (4.1). In the same way, we have
jr(03”) — (83)] = |9(”> 031,
but these contradict (4.4). ]

We similarly obtain the explicit expression of I'2 by (4.2):
s
= o [Tegh | [ o e-awmr ey e
0
exp(—a*(s — u)y,(0%)c* du

+¢(62) exp(—a(62)s)y+(02)c(62) } ds

6 :92*
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o0
- / (Bpa(0%)e™ ™™ — dga(0*)e )45
0

_ 00,0 @)® (3n,a(0%)?

20* 2a*
_ 0p,a(68%) ® 9g,a(0%) + 0p,a(6") @ g, (6)
o* 4+ a*
1 20[* ®2 (a*)Z + (a*)Z &2
iy (392(1(9*) - m%ﬂ@"‘)) + m{?)ezaw*)} .

Hence I'? is positive definite if and only if {35,a(9*)}®? or {3g,a(9*)}®? is positive definite.
This does nothappenifmy > 3;in fact, one can take x € R™2 sothatx’dg,a(6*) = x'dg,a(6*)
if my > 3. Thus we need to assume m, < 2 in the one-dimensional case.

Putting it all together, we obtain the following result.

Theorem4.2 Letm) = 1,my <2,0(01) = 0 and ©1 C (€, 00) for some € > 0. Moreover,
we assume [Al], [A2] and the following conditions:

[B1]
i 0 =0
Bziggz |b(62)] > 0
Gzig(gz lc(@2)] > 0

[B2] Forany 6y € ©1 and 6,65 € O,
la(62, 01) — a5, 01)| + (62, 61) — (63, 61)| = Cp, 162 — 05 ].
[B3] Forany 6 € ©, {35,a(9)}®? or {99,a(9)}®? is positive definite.
(1) If we set

1

2

. 1 &
or={—-> @] .
nj:]

then for every p > 0 and any continuous function f : R? — R such that

i [f ()]
im sup ,
|x|—=00 [x]?
it holds that
E[f(Vn@] — 0] — E[f(Z)] (n — 00),
0*2
where Z ~ N 0,17 .

In particular, it holds that

*2

i@ -5 5 N (o, 9‘2) (n — 00).
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(2) Let us define y1 (01, 62) and a(01, 62) by
01%a(62) b(62)%c(62)?
01,0) = ———— 14+ —=—"" 1
v+(01,602) )2 0 2a(0,)2

b(02)2c(6,)?
0,2

and

)

a(br, 02) = \/61(92)2 +

respectively, and set
i (62; mo) = e~ 1-)lim,
1 < 5
— Z 0] .02 —Tj—l)y+(9{" 62)c(2)A Y,
(9] ) j=l

+

n

1
Hy (023m0) = 5 3 {—h(cwz)n%'},l(ez))z + 21 (@2)e(62) A ,-Y} :

i=1
and
{09, (0} {0g,a(0%))®?
o 2o* 2a(6%)
_ 09,0(6%) ® 9g,a(0") + 9p,a(6™) ® Ig,x(67)
a(6%) + a(6*)

1—*2

)

where mg € R is an arbitrary initial value.
Then, if 6 = 03 (mg) is a random variable satisfying

HZ(6}) = max H2(6)
6,e0,

for each n € N, then for any p > 0 and continuous function f : R4 — R such that

; |f 0l
im sup

|x|—00 [x]?

it holds that
ELf (V105 — 0] — E[f(2)] (n — 00),

where Z ~ N (0, ()1,
In particular, it holds that

@ —65) L N, TH ) (1 = ).

5 Proof of Theorem 2.1

In this section, we prove Theorem 2.1, which can be proved in the same way as the diffusion
case in Yoshida (2011).
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Lemma 5.1 Forevery p > 2 and A € My, (R), it holds

n n p F
E DALMY =3 Ale*A;WHB)| | < CplAImh? +n2hi).
j=1 j=1
Proof First we get
1
n n P
E D AN =) Al(e™A; W2
j=1 j=1
M| » B 4 ®2 n p %
=E|[|> A <c*/ X,ds+a*AjW2> =Y Al(c*A; W2
Lli=t | 1j-1 j=1
K B 1 ®27 P »
<E ZA (c*/ X,ds)
L=t L\
1
JE 1 ik
+E[[D A |:c/ X,ds,a*AjW2:|
=1 v _
— -1
n l]' P V4
+E||Y A |:U*AjW2,c*/ X,dsi|
=1 b _

For the first term of the rightest-hand side, we obtain by Lemmas 3.1 and 3.3

n 1 ®2
E[> A <c*/ Xtds>
j=1 tj—1
lj
/ X,ds
tj—1

n t}
S|
=1 g

p

1
2p7]»

n
<I|Allc*|)_E
j=1

1

E[|X,|2P]> ds

-1

< CplAlnh?®.

For the second and third terms, it holds
1
Py

n tj
E ZA[C*/ Xtds,a*AjW2i|
j=1 -

tji—1
1
Py

n tj
<E||Y A |:c* /, l(x, — th])ds,a*AjW2j|
j=1 i
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: ok
+E| D A[c* X, h.o*A; W]
j=1
n 1 P %
s|A||c*||a*|ZE[/ (X; = Xi;_))ds |AjW2|P}
=1 i1
: ok
+hE | |Y X, ' Ac*A;W?
j=1
2p ﬁ

n
1
< |Allc*lo*| Y E E[|a;W?Pr]e

j=1

1
/ (Xt - thfl)ds
tji—1

n i
+hE | |YX; AT A;W?
j=1

€1
2p

EllX, — Xy, , |2”]du> 2

n tj
<Al (h”” /
t

j=1 i1

n
+CplAln | )2~V ENNX,, 1P 1h
j=1

2 1.3
< CplA|(nh* +n2h2).
Therefore we get the desired result. O

Lemma5.2 Let Ay e Mg (R) (k=1,2,---,d), A= (A1, -+, Ag) and

n

My(A) =) {lA[(A_,» w2)®2] — TrA} :

o U
Then it holds that
E[|M,(A)P] < CplAlV/n (5.1
and
LM,, 4 N(0, 2(TrA)®?) (n — o0). (5.2)

v

Proof On account of

E [%A[(AJ- W2)®2] _ TrA .7-',1.71] = %E [AL(A;W2)52]] - TrA =0,
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{Al(A; W2)®2]/h —TrA}; is a martingale difference sequence with respect to {.7-}]. }. Hence
the Burkholder inequality gives

2p7] 2p
L
2

n
1
ENM|"12 < CpE | |3 ~ALA; W] —TrA
j=1

2p7 2»

n
1
<C,> E |:‘hA[(AjW2)®2] —TrA
j=1 J
4p
+ |A|2p} }
and we obtain (5.1).

Moreover, due to the fact that {A[(A; w2)®2) /h — TrA}; is independent and identically
distributed, we have

1 2\@2 ®
E <ZA[(A]~W) ]—TrA)

_ %E [(A[(A; W?)®2))®2] — %E[A[(Aj W TrA

1
< Cpn :|A|21’E th,f

= CplAln,

—~ (TrA)’%E[A[(A JWHP] 4 (TrA)®?
=3(TrA)®? — 2(TrA)®? + (TrA)®? = 2(TrA)%2.

Thus we obtain (5.2). ]

By Lemmas 5.1 and 5.2, we get the following lemma.

Lemma5.3 Let Ay e Mg (R) (k=1,2,---,d), A= (A1, -+, Ag) and

Ly(A) =) {%A[(AJ»Y)@’Z] - TrAZ} :

J=1

Then it holds that

E[La(A)|"] < CplAl(nh +nh? +n?) (5.3)
and
1 d ®2
—L, 5 N, 2TrAX)®?) (n — 00). (5.4)
Jn
Lemma 5.4 Forevery p > 0, it holds
| p
sup E | |— sup 831]}]1,11(91) < 00
neN n 6,0,
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Proof Tt is enough to prove the inequality for sufficiently large p. By Lemmas 5.2 and 5.1
and Assumptions [A2] and [A4] we get

1
Pi|,,
B 1

1 < (1 P75
= 35—l v \®2 3
=k %Xgiha@‘z ODI(A;Y) ]-I—Bgllogdet):(el)}
]:

130
E ||~} H, 1)

1
— P

1 {33 271 ODIA,; 1) — Tra; =7 (01))

<E||—
- 2nh 4
j=1

1 _
+ 5 {ITrd, 271 00)] + 19], logdet Z(01)1}
< Cplo3 =7 O)Ih+n"2h? +077)
1 Trag ©71(61)| + |83 logdet = (6;)
—|—2{|r91 1| + 195, logde 1|}
< Cp,

and similarly

ar
| =

Thus we get the desired result for p > d; by the Sobolev inequality. O

1
E H;agIH;(el)

Proof of Theorem 2.1 Let

1
Al = ﬁi)@lH}l(Ql*),

1
rl= —;ang},(e;“)

n

and
Yl _lHl —Hl *
n(91)—n{ 2 01) 20D}
Then
1 (1 0y, det (07)
Al =— —3, 27 NOH[(A; V) 4+ ——— 12
" 2ﬁ;{h o2 ODUAIH 55

| B _ -
=2ﬁ2{zz* L9, =)= (A 7)®?] — Tre* 139,2(91*)},
j=1

and hence by Lemma 5.3, we obtain
E[lANP1 < Cp (5.5)
and

AL L N©, H Y (1= ). (5.6)

@ Springer



326 Statistical Inference for Stochastic Processes (2023) 26:279-330

By the same lemma, it follows that

dl

1
byl
n%(r,‘l—r‘)’ ]”

1
p

?
IR RS R ITe 201 L a2 (5.7)
=E | |n2 ;X} {53012 HOHIA;Y)®) + 87, 1ogdet2(9;*)} -r!
Jj=
< CpP R+ 13 1) = 0(1),
noting that
Tro; =~ @)=
=Tr {2{2* 9y, T (6:)1%2 — 2—1112(9*)
1 1 89{ 89{ 1
is equal to —83} logdet =(0f) + I'L.
Moreover, we can show
1
1 1
sup E [ (n3 [V 60) — Y' @) ]”
01€0
Y
=sup E||->— {f{z—lwn — =N OMIA,; )]
01€01 ZN/Z]X:; h ! !
1
~Tr(zen~" - nj|"]”
<Cpnth+h+1)=0()
and in the same way
L 1 1 P % _
sup E | (n2]3p,{Y,(01) — Y (O} = 0().
9[6@[
Thus by the Sobolev inequality, it holds for p > d;
1
)4
1
E [ sup (n2[Y,(61) — Y‘(em)f’} = 0(1). (5.8)
01€0

Then we have proved the theorem by the assumption [A5], Lemma 5.4, (5.5), (5.6), (5.7),
(5.8) and Theorem 5 in Yoshida (2011). O

6 Simulations

In this section, we will verify the results of the previous sections by computational simulations.
We set d| = dy = 1 and consider the equations

dX, = —aX,dt + bd W]
dY; = X,dt + cdW?
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Table 1 The summary of the simulation results with n = 10%, 1 = 0.0001

mo Remove o a b
True value (standard error) Xo=0 0.02 1.5 0.3
(1.414 x 1079) (0.2115) (0.01324)
Estimation (i) 0 0 1.495 0.3011
(0.2123) (0.01338)
Estimation (ii) 1 0 0.02007 1.715 0.3249
(1.640x1075) (0.2452) (0.01338)
Estimation (iii) 1 100 1.706 0.3239
(0.2436) (0.01333)
Estimation (iv) 1 1000 1.535 0.3059

0.2177) (0.01304)

with Xy = Yy = 0, where we want to estimate 81 = o and 8, = (a, b) from observations of
Y, t-

We generated sample data Y;, (i =0, 1,---,n) withn = 10%, 2 = 0.0001 and true value
of (a*, b*, o) = (1.5, 0.3, 0.02), and performed 10000 Monte Carlo replications. Recall that
for the estimation of 6, we first calculate i by (2.14), and we have to choose its initial value
mg. Although we proved that Theorem 2.2 holds for an arbitrary choice of my, this value is
a substitute for E[Xg|Yo], and thus in practice the choice of mg is very important as will be
shown in the following. Also, the choice of the number of terms to drop, which is explained
below, is relevant.

Taking these facts into account, we calculated the estimator of 6, in the following ways
for each simulated data.

Estimation (i) mo = 0.
Estimation (ii) mg = 1.
Estimation (iii) m¢ = 1 and removed first 100 terms of n%:?; i.e. we replaced H,zl (02; mg)
with

1 n
5 2 {—htc@piny_ 0 + 2 @)c@5,7 ]
i=101

Estimation (iv) mo = 1 and removed first 1000 terms of /!'; i.e. we replaced H,% (02; mg)

with

n

1
5> 2 {he@i_ 0 + 21 @08, Y|

i=1001

Table 1shows the means and standard deviations of each estimators, and one can observe
asymptotic normalities of them in Fig. 1. Note that the difference of four estimations are not
relevant to the estimation of 6;.

We can see from the results of first estimation and the corresponding histograms that the
estimators behaved in accordance with the theory. At the same time, the following results
shows that the wrong value of mg can significantly impact the accuracy of our estimator, but
it can be improved by leaving out first several terms of 72} . One can figure out the reason why
this modification of removing first terms works by looking at Fig.2; it shows that 77 (6%)
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(a) Estimated values of \/n(c — o*). (b) Estimated values of v/t,(a — a™).
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Fig. 1 Histograms of normalized estimators in Estimation (i). The red lines are the density of the normal
distributions with means and standard deviations of data

1.0

3I>%

08
1

04

0.2

-0.2
1

Fig.2 A path of X; and ! (6*) with mg = 1

with mg = 1 well approximate X, except at the beginning. However, according to the result
of Estimations (iii) and (iv), removing first 100 terms is not enough to improve estimators,
whereas significant improvement is made by removing 1,000 terms. Thus, it is important
choose mq which is closer to E[X(|Yy] when some information of X is available. Note that
if X and Y are independent, then the best choice of mq is E[Xo|Yo] = E[Xo]-
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On the other hand, when you have no information of Xy, it will be interesting to consider
the way to decide how many terms of 72} (9) should be removed. One possible way is to
increase the removing number and calculate estimators until they converge. However, this
method is computationally intensive, and more theoretical way will be needed.

The data and script that supports the findings of this study are available in the
supplementary material of this article.
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