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Abstract

We consider parameter estimation of stochastic differential equations driven by a Wiener
process and a compound Poisson process as small noises. The goal is to give a threshold-type
quasi-likelihood estimator and show its consistency and asymptotic normality under new
asymptotics. One of the novelties of the paper is that we give a new localization argument,
which enables us to avoid truncation in the contrast function that has been used in earlier
works and to deal with a wider class of jumps in threshold estimation than ever before.
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1 Introduction
This paper is concerned with the following stochastic differential equation (SDE):

dX; = a(X}, po)dt + eb(X;, 09)dW; + ec(X]_, ozo)dZ?S, X5 =x0 €R, (1.1)
where ¢ > 0, and ®; (i = 1, 2, 3) are smooth bounded open convex sets in R% withd; € N
(i = 1,2, 3), respectively, and OQ = (1o, 00,q0) € Op := O] X Oy x O3 C R? with

d := dy + dy + d3 with ® := @y, and each domain of a,b,cis R x ©; (i = 1,2,3),
respectively. Also, Z* = (Z;xg) >0 1s a compound Poisson process given by

N}e
Zir=3"Vi, Zy =0,
i=1
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where N* = (N,AE),EO is a Poisson process with intensity A, > 0, and V;’s are i.i.d. random
variables with common probability density function f,,, and are independent of N*¢ [cf.
Example 1.3.10 in Applebaum (2009)]. W = (W;);>0 is a Wiener process. Here, we denote
the filtered probability space by (€2, F, (F;)s>0, P). Suppose that we have discrete data
Xfo, e an from (1.1) forO0 =19 < --- < t, = 1 witht; — t;_1 = 1/n. We consider the
problem of estimating the true 8y € ®¢ under n — oo and ¢ — 0. We also define x; as the
solution of the corresponding deterministic differential equation

dxt
—— = a(x, o)

dr
with the initial condition x.

In the ergodic case, threshold estimation for SDEs with Lévy noise is proposed in Shimizu
and Yoshida (2006), and has been considered so far by various researchers [see, e.g., Amorino
and Gloter 2019; Gloter et al. 2018; Ogihara and Yoshida 2011; Shimizu 2017, and other
references are given in Amorino and Gloter (2021)]. On the other hand, in the small noise case,
no one has succeeded in giving a proof for such joint threshold estimation of the parameter
relative to drift, diffusion and jumps. So in this paper, we give a framework and a proof for
the threshold estimation in the small noise case.

As an essential part of our framework for estimation, we suppose not only n — oo and
& — Obut A, — oo, while the intensity A, is fixed,n — oo and ¢ — 0 in the previous works
of estimations for SDEs with small noise [see, e.g., Gloter and Sgrensen 2009; Kobayashi and
Shimizu 2022; Long et al. 2013; Sgrensen and Uchida 2003, and references are given in Long
et al. (2017)]. The asymptotics with A, — oo would be the first and new attempt in many
works of literature, and enables us to deal with the joint estimation of the parameter (., o, o)
relative to drift, diffusion and jumps, while the papers above deal with only the estimation
of drift and diffustion parameters (or in some papers drift parameter only). Indeed, one can
immediately notice that if the intensity A is constant, then the number of large jumps never
goes to infinity in probability, and so we would never establish a consistent estimator of jump
size density. Therefore, we suppose that A, — oo as e | 0 (A, is not necessary to depend on
¢ as in Remark 2.4). Also, the assumption A, — 00 seems natural when we deal with data
obtained in the long term with the pitch of observations shortened, which is familiar in both
cases of ergodic and small noise. Thus, one can agree with our proposal.

Another attempt in this paper is to give a proof by using localization argument [as in, e.g.,
Remark 1 in Sgrensen and Uchida (2003)] in the entire context, though the argument is usually
omitted, or instead, Propostion 1 in Gloter and Sgrensen (2009) is just referred. As to the
proof, we prepare the localization assumptions for jump size densities, i.e., Assumptions 2.9
to 2.12, together with usual localization assumptions for coefficient functions in (1.1), i.e.,
Assumptions 2.5 and 2.6. Owing to prepare Assumptions 2.9 to 2.12, this paper has more
examples of jump size densities than the papers (Ogihara and Yoshida 2011; Shimizu and
Yoshida 2006) (see Sect. 5 in this paper, and see, e.g., Ogihara and Yoshida 2011, Example).
On the other hand, Assumptions 2.9 to 2.12 are too complicated for us to omit the localization
argument. Thus, we show our main results under the localization argument in the entirety of
our proof, which is one of the novelties of our paper.

A further attempt of this paper is to simplify the contrast functions used in earlier works
(Ogihara and Yoshida 2011; Shimizu and Yoshida 2006) by removing ¢, defined in Ogihara
and Yoshida (2011) and Shimizu and Yoshida (2006) from their contrast functions. As we
mentioned above, the class of jump size densities is wide and includes unbounded densities
[e.g., log-normal distribution) which are not included in Ogihara and Yoshida (2011) and
Shimizu and Yoshida (2006). Note that the class of jump size densities in Shimizu (2006) is
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also wide (Shimizu 2006 does not assume the twice differentiability of jump size densities,
while conversely this paper does not assume f |z|P % f«(2)dz (p = 1) as in the assumption
A5 in Shimizu (2006)], but (Shimizu 2006) is concerned with moment estimators in the
ergodic case.

In order to see the behavior of our estimator in numerical experiments, we give Table 1
under the assumption that A, is known. Of course, this assumption is impractical when we
deal with only observations, and how to choose threshold v, /n in filters 1C,’(”5'p and 1 Dper
defined in Notation 2.7 is one of the crucial points for estimation with jumps, but it is not
within the scope of this paper (see, e.g., Shimizu 2008, 2010 for the readers who are interested
in the techniques of the way to choose such threshold, and then Lemma 4.8 may also help
you estimate the intensity A.). Instead of this discussion, we give another experiment as in
Table 2 to see what will occur by using different thresholds.

In Sect. 2, we set up some assumptions and notations. In Sect. 3, we state our main results,
i.e., the consistency and the asymptotic normality of our estimator. In Sect. 4, we give a
proof of our main results. In Sect. 5, we give some examples of the jump size density for
compound Poisson processes in our model. In Sect. 6, we give two numerical experiments
to see the finite sample performance of our estimator. In “Appendix A”, we state and prove
some slightly different versions of well-known results.

2 Assumptions and notations

This section is devoted to prepare some notations and assumptions. Before going to see our
assumptions, we begin by setting up the following two notations:

Notation 2.1 Let I, be the image of t — x; on [0, 1], and set
= {y c R‘ dist(y, Iy,) = inf |x —y| < a] .
xele

Notation 2.2 A function ¥ on R x R x O3 is of the form

ﬁfa (ﬁ)’ ifc(x,a) # 0and f, (C(%a)) > 0,

otherwise.

Y y.@) = {log
0

Then, we prepare the following assumptions:
Assumption 2.1 a(-, io), b(-, 09) and c(-, arp) are Lipschitz continuous on R.

Assumption 2.2 The functions a, b, c are differentiable with respect to 6 on 1 jfo x © for some
s 9 b p) S
5 > 0, and the families {ﬁ (. u)}M@l, {@ ., 0)}(’6@2, [ﬁ G a)]a€®3 G=1,....d)

are equi-Lipschitz continuous on / )fo.

Assumption 2.3 For any p > 0, let fy, : R — R satisfy

/ 1217 fuy (3)dz < 00
R

Assumption 2.4 The family { f} satisfies either of the following condtions:

acO;

(i) fa,a € O3 are positive and continuous on R.
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() fu, o€ ©3 are positive and continuous on R (= (0, 00)), and are zero on (—o0, 0].

Assumption 2.5 The family {b(-, 0)}(,6@2 satisfies
inf |b(xs, 0)] > 0.

(X,(T)EIXO)(@Q

Assumption 2.6 The familiy {c(-, o)} satisfies

0e@3
0<ci <letx,a)| <cp for(x,a) € Iy, x O3

with some positve constants ¢ and c;. In this paper, without loss of generality, we may
assume
c(x;,a) > ¢ for (x,a) € Iy X O3.

Assumption 2.7 If u # po, 0 # o or @ # «p, then

a()’, /~’L) %‘a(y,,uo), b()’,‘f) 7_éb(y500) or lb(y,c(y, Z,Ol) 7é l/,(yv Z,OlO), respectively

for some y € 1)‘30 with some § > 0, and for some z € R.

Assumption 2.8 v, ..., v,, are random variables such that v, is F;_,-measurable (or
measurable with respect to {X;;; j < k}), and they satisfy

0<v vk =
for some constants v; and v;.

Assumption 2.9 There exists § > 0 such that for (x, y, @) € Ifo x R x ® withyy # 0, ¥ is
differentiable with respectto o; (i = 1, ..., d3). Fora € ©3

x'—>/w(x,C(x,ao)z,a)fao(Z)dz, x'—>/Ilﬂ(x,C(x,ao)z,a)lz.fao(z)dz

are continuous at every points in /,,, and there exist § > 0 and C > 0 such that

% (x, c(x,0)z, @)| ¢ fau(2)dz < 00.
aaj

d3
f sup [Y(x,e(x,00)z, @)+ ) sup

(x,a)e[fox(-f)g j=1 (x,a)e]§0x®3

Assumption 2.10 Relative to the choice (i) or (ii) in Assumption 2.4, we assume either of
the following conditions (i) or (ii), respectively:

(1) Under Assumption 2.4 (i), there exist constants C > 0, g > 1 and 6 > 0 such that

a
o (x,y,) =CA+ T (yeR).

sup 3y

(x,a)e];?o X 03

(i) Under Assumption 2.4 (ii), we assume the following three conditions:

(ii.a) There exists § > 0 and L > O such thatif 0 < y; <y < yp, then

dy
5()67 y5a)

=

9
dy (x, y1, @)
dy

+ L forall (x,a) € Ifo X 3.

9
+ ‘w (x, y2, @)
dy
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(ii.b) There exist constants ¢ > 0 and § > 0 such that

1
<0 <—> as |y| — 0.
Lyl

(ii.c) There exists § > 0 such that for any C; > 0 and C, > 0 the map

xl—)/ sup
aEe®3

takes values in R from I;fo, and is continous on / )‘30.

0
sup —w (x,y,)

(x,a)elfox®3

7()5 Ciy + Co, )| foo (y)dy

Assumption 2.11 For (x, y,a) € I)‘fo x R x ® with ¢ # 0, ¢ is differentiable with respect
toa € ®3, and

RV
r—>/ LA 4 (x, c(x, @0) 2, ) foy()dz (G, j=1,...,d3)

oa; doj

is continuous at every point x € Iy,.

Assumption 2.12 The functions a, b, ¢ are twice differentiable with respect to 6 on / fo X ©®
s 9%a . 9%c . ]

for some &, and the families [760,-80,- ( ,,LL)}ME®1, {ae 90, (,o )Leo {780,-80_,- (-, ) weos

(i,j = 1,...,d) are equi-Lipschitz continuous on / Xo' There exists § > 0 such that for

(x,y,a) € I;fo x R x ® with ¢ # 0, ¢ is twice differentiable with respect to «; (i =

1,...,d3).Fora € ®,i =1,...,d3

2

xr—)/%(x,c(x,ao)z,a)fao(z)dz, xl—)/‘%(x,c(x,ao)z,a) fuo(2)dz

are continuous at every points x € Iy, and there exist § > 0 such that
d3

[ s
i j=10 0)61‘S x®

Relative to the choice (i) or (ii) in Assumption 2.4, we assume either of the following condi-
tions (i) or (ii), respectively:

a2y

oo

aj(x, clx, @)z, 0)| fup(2)dz < 0.

(i) Under Assumption 2.4 (i), there exist constants C > 0, g > 1 and 6 > 0 such that
32

—a; (x,y,a)

3 =C+ 1y (yeR).
y

sup
(x,a)€1f0x®3

(i) Under Assumption 2.4 (ii), we assume the following three conditions:

(ii.a) There exists § > 0 and L > O such thatif 0 < y; <y < yp, then

2

—a; (x,y, )| <
dy

2
W“i (x,y1, )

2

—a; (x, y2, Q)

+8y

+ L forall (x,a) € 1)‘30 X O3.
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(ii.b) There exist constants ¢ > 0 and § > 0 such that

1
<O0|l— as |[y| — 0.
<Iy|q>

(ii.c) There exists § > 0 such that for any C; > 0 and C; > 0 the map

)CI—>/ sup
ae®s3

takes values in R from / fo, and is continous on / )fo.

82
sup —a; (x,y,a)

(x,ot)el'fo x 03

7011 x,Ciy +Cr, )

fao (»dy

Remark 2.1 Instead of Assumptions 2.5 and 2.6, the following stronger assumptions are often
used:
inf  |b(x,0)| >0, inf  |c(x, )| > 0.
(x,0)ERXx Oy (x,0)eRx O3
(see, e.g., Remark 1 in Sgrensen and Uchida 2003). However, the ‘classical’ localization
argument mentioned in Sgrensen and Uchida (2003) is hard to apply for our purpose. Thus,
we employ our milder assumptions and show how it works well.

Remark 2.2 Under Assumption 2.9,

oy a
@tz =5 [Vl cwaz o) fy@az)
oo oo o=
atevery x € I;fo.
Remark 2.3 Assumption 2.12 is given by replacing a, b, ¢, ¥ with -2 du , a";’l , aaof , gf , respec-

tively, in Assumptions 2.2, 2.9 and 2.10, and is needed for obtaining the convergence (4.16)
of the matrix containing the second derivatives of the contrast function.

Furthermore, we introduce the following notations:

Notation 2.3 Denote
AX] =X —X;_ fort >0,

where & > 0.
Notation 2.4 Denote

ALX® = XE — X¢

. AINM =N - fork =1,

lkl

wheren € N, ¢ > 0.

Notation 2.5 Define random times

7 = 1inf{r € [tr—1, ]| AX] #Qort =1},
Nk :=sup{t € [tr—1, ] | AX] #0ort =ty_1}.

Notation 2.6 Define events J,? fk=1,...,n,i=0,1,2) by
oo = {AgNY =0}, Bl = {ANY =1}, Iy = (AN > 2}

wheren € N, ¢ > 0.
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Notation 2.7 Under Assumption 2.8, set events C,';’s’p and DZ’S") (k=1,...,n) by

e ”A”X5| < l;l’—”‘} under Assumption 2.4 (i),
Ci {A”Xg Tk } under Assumption 2.4 (ii),
_ N
It

DerP .
k :

wheren € N, ¢ > 0, p € (0, 1/2). Then, put

|A” XS‘ > 1}’1’—”‘} under Assumption 2.4 (i),

I

ALXE > Tk } under Assumption 2.4 (ii),

Coil =P nglE, DEPP =D 0l fork=1,...,n,i=0,1,2,
wheren € N, ¢ > 0, p € (0, 1/2). Furthermore, for sufficiently small 5 > 0, we may put

Cpr —CZ,‘EPQ{XEEI‘S Sorallt €0, 11},
DE? = DOP N {XE € I3, forall t € [0, 1])

fork=1,...,n,i=0,1,2.

Remark 2.4 We treat (n, ¢) as a directed set with a suitable order according to a convergence.
For examples, when we say that n — oo, ¢ — 0 and A, — 00, we mean that the index set
(n, &) is a directed set in N x (0, oo) with order <; defined by

(n1,€1) <1 (n2,€) ifny <na, &1 > exand Ag; < Ay,
and when we say thatn — 0o, & — 0, ., — oo and A, leKC/np Jay(z)dz — 0 with some
constants C, p > 0, we mean that the index set (n, €) is a directed set in N x (0, co) with

order < defined by

(n1,61) <2 (n2,8) ifny <nz, &1 > €2, A < Agy

and Ag, / S (2)dz > )‘-82/ Jao (2)dz.
lz|<

\Z|<T;
n
Needless to say, the identity map Id from ({(n, &)}, <2) to ({(n, €)}, <1) is monotone, and
Id({(n, &)}) is cofinal in ({(n, &)}, <1).

e

Remark 2.5 In this paper, we can assume A, does not depend on ¢. In this case, we treat
{(n, &, 1)} instead of {(n, &)} as a driected set, and we must write X, Z*, W, . ;, etc.,
instead of X¢, Z*, W,, ., etc., respectively. But, for simplicity, we assume X, depends on &.

3 Main results

We define the following contrast function ¥, . (6) after the quasi-log likelihood proposed in
Shimizu (2017):

W, e (0) = W), 0) + WP () forf = (n.0,0) €0,

n,e
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where for p € (0, 1/2), \11,5‘2 (u, o) and \I’,(,zg () are given by using Notations 2.4 and 2.7 as
the following:

2
1
o _ Iy ’AZXS - za(ka_pM)‘ !
n,a(“v(;) - _; 21 bXE 2 +§
k=1 n |8 ( lk—l’0)|

log |b(X: ., o)) Leper,

k-1’

n

1 AT XE
\I"r(l,zg‘(a) = Zw (ka—l’ kT, (X) 1D]:1.£,p (31)

with

ey fau (s )| i e £ 0and £ (255) = 0.
otherwise.

Yy, @) = {log
0

Then, the quasi-maximum likelihood estimator is given by

GA”,S = argmax W, . (0). (3.2)
0e®

The goal is to show the asymptotic normality of QA,M when n — oo and ¢ — 0 at the
sametime. In the sequel, we will also assume that A, — oo as € | 0 for consistency of én, .-
Our interest is in a situation where the number of jumps is large and the Lévy noise is small.
In practice, A, the intensity of jumps, should be estimated, and it is possible by Lemma 4.8:

n
p
Ae ~ Z IDZ‘” ase | 0.
k=1

Theorem 3.1 Under Assumptions 2.1 to 2.10, take p as either of the following:

(i) Under Assumption 2.4 (i), take p € (0, 1/2).
(ii) Under Assumption 2.4 (ii), take p € (0, min{1/2, 1/4q}), where q is the constant in
Assumption 2.10 Assumption (ii.).
Then,
bn.e 2> 6o
asn — o0, & —> 0, Ay > 00, )Lg/n — 0, ey = O and A, flz\s4vz/clnf’ S (2)dz = 0 with

lim(e2n)~! < oco. Here, the constants ¢i and vy are taken as in Assumptions 2.6 and 2.8,
respectively.
Theorem 3.2 Under Assumptions 2.1 to 2.12, take p as either of the following:

(i) Under Assumption 2.4 (i), take p € (0, 1/2).
(ii) Under Assumption 2.4 (ii), take p € (0, min{1/2, 1/4q}), where q is the constant in
Assumptions 2.10 (ii.b) and 2.12 (ii.D).

If 6y € © and Iy, is positive definite, then
gl (l)«n,a — o)

\/ﬁ((}n,s —00) —d> N (O» 19;1>
\/K(&n,s —a)
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asn — 00,6 — 0, ke = 00, A2/n — 0, ek — 0and i, flz\<4v2/clnﬂ fuo(2)dz — 0 with

lim(g2n)~! < oo, where

0O
I, =101, 0
00 5L
and
1 3a aa (x )
. Ern aM s MO o
1Y ::/ B (,j=1,....d),
! 0 |b(xt,uo)|2
1923 () )
i d0; 6(: 5,00
17 ::2/ Rl e T G, j=1,....d), (3-3)
2 o Ib(x;, 00)?

o= / /81/’ aw' (x1, c(xr, @)z, @0) fap (2)dzdr - (i, j =1,...,ds).

da; 0

Remark 3.1 1f { fu}qco, is given by the class of the densities of normal distributions as in
Example 5.1, then the range of p in Theorems 3.1 and 3.2 is same as in Shimizu and Yoshida
(2006) and Ogihara and Yoshida (2011). However, if { f(,[}%@3 is given by the class of the
densities of gamma distributions as in Example 5.2, then the range of p is (0, 1/4) which is
different from the range (3/8 + b, 1/2) of p in Ogihara and Yoshida (2011), where b is the
constant defined in the equation (1) in Ogihara and Yoshida (2011).

4 Proofs
4.1 Inequalities

Lemma 4.1 Under Assumptions 2.1 and 2.3, suppose that 0 < & < 1, .o > 1, el < 1 and
0<s <t <1 Then, for p>2,

E| sup |X5—Xx:|f ‘.7-}
u€els,t]
<cC {(z — )P 4P ((z P2 gt —5) + AP — )P £ AP (1 — S)p>} (1+1x517),

where C depends only on p,a, b, c and fu,. In particular, when A¢/n < 1 and A; > 1, it
holds for p > 2and k = 1, ..., n that

’Xg X 1 1

A
E sup 7‘?[](1 fc{m+m+f}(l+lxi|p),

re€(tr—1,1] er

E|:sup ‘Xf—xo‘p }]—',0 5C{1+spkf}(1+|x0|p),
t€[0,1] |

where C depends only on p,a, b, c and fy,.
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Proof For any p > 2, we have

1/p
E | sup |X3—X§|p ‘fs
u€ls,t]

t
< <EU (X5, 10) — a(X, )| du
S
» I/p
+e|E| sup ’fs
u€ls,t]
p 1/p
+e|E| sup ‘-7:3
ue(s,t]
+ (t — ) [a(XE, po)| + Cev/t — 5 |b(XE, 00)|

u 14 I/p
[dzﬁf D , 4.1

where C depends only on p. Then, it follows from the Lipschitz continuity of a(-, ;o) that

t P t p
E[([ |a(X,i,u0)—a(X§,u0)|du) ‘fs]ECEKf |X§—x§|du> ‘}}]

t

<C( —s)"“/ E[|x; - Xi|" | 7 ]au,
N

(4.2)

P 1/p
=)

/u {b(X5, 00) — b(XS, 00)} AW,

/ {e(XE, ag) — c(XE, )} dZ}e
s

+e }C(Xi, Ol())‘ (E |: sup

u€ls,t]

where C depends only on a, and it follows from the Lipschitz continuity of b(-, op) and
Burkholder’s inequality (see, e.g., Theorem 4.4.21 in Applebaum (2009)) that

u P
E| sup /{b(xg,ao)—b(x§,ao)}dwv ‘j’-‘s
uels,t] |Js

t 5 r/2
<CE /|X;—X§} au| |7
s

t
<cu _swzflf E[|xg - x5 | 7] aw, 43)
N

where C depends only on p and b, and from the Lipschitz continuity of c¢(-, tp), itis analogous
to the proof of Theorem 4.4.23 in Applebaum (2009) that
p
&

E | sup
u€ls,t]

t 2 p/2
< C {E |:</ / |X; - Xﬂ |Z|2)\-5 fozo(Z)dZdu) ‘j:s:|
s R

t
+E [/ f |XE — X517 1217 Ao fuy(2)dzdu \ ,7-"{|
K R

t )
+E[<//|X§_X§||Z|)“Efao(z)dzdu> \f]}
s JR

u
f {e(XE, @) — c(XE, p) } dZ))
N
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where C depends only on p and c. Here, we have

! ) p/2
E (//|X5—X§| |Z|2)»efao(z)dzdu) |7
s JR

r/

t 2
<A (/ (£ [|X; — xt| ‘Fs])% du) ,
N

t
< ng/z(t—s)f’/z“/ E[|X§ — x¢|P ‘fs]du,
s

where C depends only on p and fy,, and

. |:(/t /]R |XZ - X§| |z] Ae fao(Z)dzdu>p ‘]:Sj|
= CAf (/t (E[|X; — Xt ’ﬂ])l/p du)ﬁ

t
< CAP(t — 5)P~1 / E [}Xf, — x¢|P ‘]—'S] du,
s
where C depends only on p and f,. Thus,

P
E| sup ‘]—'S
uels,t]

t
< C (2@ 5Pt +M+A£(r—s>'”—1)/ E[Ix; - x:|” |7 ]du, @4
s

/ (c(XE, ag) — c(XE, ag)) dZ})
s

where C depends only on p, ¢ and fq,. By using the Burkholder-Davis-Gundy inequality,

u P
E | sup / dzke
uels,t] 1Js

where C depends only on p and fy,. From (4.1), (4.2), (4.3), (4.4) and (4.5),

} < C (LR =P+ ot — ) + AL — $)P), (4.5)

E|: sup |X& — x¢|7 ‘]-}:|

u€(s,t]

p— I4 p—
<c {((r B I <Ag P2 -9 A - s)P—1>>

t
x/ E[1x; - x;|" | 7] du
N
+(t — )7 |a(XE, 1o)|” + &7t — )P/ |b(XE, 00)|"
+el (Aot —5) + 1Pt — )P/2 422 (t — $)P) |e(XE, a0)|"}
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where C depends only on p, a, b, ¢ and fy,. By Gronwall’s inequality,

E|: sup | X —Xﬂp ‘]—}]
u€ls,r]
< C{t = 9P |a(XE, no)|” + P (t — )P/ |b(XE, 00)|”
+&P (he(t —5) + A2t —)P/2 + 22 (t — $)P) [e(XE, a0)|"}
x exp (C {(r — )P 4+ &Pt — )PP+ ePrp(t — 5)
+eP AP (t — P2 4 Pl (1 — 5)PY).
This implies the conclusion. O

Lemma 4.2 Under Assumptions 2.1 and 2.3, suppose that 0 < & < 1, .o > 1, ex, < 1 and
0<s <t <1 Then, forp>?2

E [ sup | X5 — x,|” }fs} S Cel ((t = )PP 40t — ) + 122 — )PP+ 2L (t = 5)P),
u€ls,t]

where C depends only on p, a and b.

Proof Same as the proof of Lemma 4.1, for any p > 2, we obtain

E[ sup |X& —x,|” ’f{|

uels,t]
< CeP ((t = )PP+ het — ) + 222 — P2+ 00t — 5)P)
x exp (C{(t — )P + &P ((t = )P/* + ho(t —5) + AL2(t = )P2 + 2L (1t —5)P)}).,

where C depends only on p, a, b, ¢ and fy,. O

Lemma 4.3 Under Assumptions 2.1 and 2.3, for p > 1

& —
| x5 —x. ||LP(Q;L°°([0,I])) = 0(ehe)
ase — 0, Ay > coand e,y — 0, and
sup | X5 — xs] = 0(1/n+ ek;)
0<u,s<1
lu—s|<l/n LP(Q)
asn — 00, & > 0, Ay > coand ery — 0.
Proof Both rates of convergence are obtained immediately from Lemma 4.2. O

Lemma 4.4 Under Assumptions 2.1 and 2.3, suppose that a family {g(-, 0)}gce of functions
Sfrom R to R is equicontinuous at every points in I,. Then,

| » [}
e (xi0) S [ s
n 0
k=1
asn — 00, & — 0, ., = oo and ery — 0, uniformly in 6 € ©.

Proof This follows from Lemmas 4.3 and A.2. O
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Lemma 4.5 Under Assumptions 2.1 and 2.3 with Notation 2.5, suppose that 0 < ¢ < 1,
Ae > land ey < 1. Then, for any p € [1, 00),

E p‘}' <c(Lti® <1+|X€ |1’>
Su N R ,
te[tk,llj,rk) =1 | = np np/2 Tk—1

where C depends only on p, a and b, and

1 ep
& _ ye|P £ P
E L?:EU | X5 —Xx¢ | ‘]—',“} <C <nP + nl’/2> (1 +1X;, 1 ) :

where C depends only on p,a, b, c and fy,.

Xt —X¢

k-1

Proof Fort € [ty—1, x) and p > 2,

I/p
p
El sw |xi-x;[" |7
SE[tg—1,1)

! R e |P 1/p 1 R
= C/ (E UXS - Xlk—l‘ ’ffk—l]) ds + ; ’a(ka—l’ /’LO)‘
Tk—1

t
+Ce (/ ([]xs-x;
lk—1

where C depnds only on p, a and b. By using Gronwall’s inequality, we obtain

p o 2 1 &2
E sup ’FIk_l < CeC(l/n+s )t <72 + 7) (1 + |X§(71 |2),
SE[tg—1,1) n n

where C depnds only on p, a and b. Similarly,

2/p 1 82 5
E| sup ‘Xf—ka‘p ‘]—',,H EC(—Z—F—) (1+E[|ka| ‘-7:%1])’
s€ln. k] n n

where C depnds only on p, a and b. From Lemma 4.1, we have

1 s
E[ sup |X,‘;—X§|p|]—'tk]:|§C(np+8pn£)<l+|ka_l|p),

u,SE[tg—1,1]

P 2/p Vo e
Fu])as) oo,

Xe - x¢

k-1

where C depnds only on p,a, b, c and f,,. We can easily extend this result to the case
p € [1, 2) by using Holder inequality. O

Lemma 4.6 Under Assumptions 2.1 and 2.3, suppose that 0 < & < 1, Lo > 1, eA, < 1. Let
X — X7

|
Y{:= sup R sup

t€lty—1,7) € t€ng, k] €

|X7 — X5

Then, for any p € (2, 00),

1 1
& __
k:SluP Yy =0p <8n171/p + nl/27l/p)

asn — 00, & —> 0, A, > coand ehy — 0.
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Proof By using Lemmas 4.4 and 4.5, we have
XS

"N_o n n
”‘")_ b (srz)l’—i_np/2

asn — 00,6 — 0, A, — oo and e, — 0. It follows from Lemma A.3 that

) n
P - - IZ
E E|:|Y,f’ ‘-ﬁkl]sc(wli)l’_'—’“)/z)"k:l <1+

k=1

n 1/p 1 1
& e|pP _
P Vel = (Z 7] ) =0p <sn1—1/1’ + ,,1/2—1/17)'

asn — 00,6 —> 0, A, —> ocoand A, — 0. O
4.2 Limit theorems

We make a version of Lemma 2.2 in Shimizu (2017) in the sequel.

Lemma 4.7 Under Assumptions 2.1, 2.3, 2.6 and 2.8 with Notations 2.3 to 2.5 and 2.7,
suppose that 0 < ¢ <1, .y > 1 and ek < 1. Then, for p > 2 and p € (0, 1/2)

1 eP
nsp —Ag/n _
P ‘f’k ‘] = {1 ¢ (nmfp) + np(l/sz) (1 +1XG | )}

1 eP
nsp P
P[ ‘}—’k ‘] = C<np(1—p) +np(1/2—p)>< X )’

plei )

2o (S ey + ) (141 |)+/ fun(2)d

T n np(—p) np(1/2—p) n tr—1 2| <dva fern? ap{2)dz
plprer|r 1< lc(-L e’ PN (14 xe 1

[ k1 ‘ ”‘*‘]—7 ar(=p T o= T, ( + X5, | )+ ;

22 22
Plas’|ma] =% pois? |7l ] =5

where c1 = inf;e[0,1] |c(xs, )| > 0, c2 1= sup,¢(o, 1] lc(x, @0)|, and C depends only on
p.a,b,c, fo, and v.

Proof We only give a proof for the case (i) in Assumption 2.4, because the same argument
still works under the case (ii) in Assumption 2.4-. Same as in the proof of Lemma 2.2 in
Shimizu and Yoshida (2006), Section 4.2, it follows that

A

n

Epe

NS

[ nep‘ftk 1] I:DZ,’;p’fl‘k—l:I =
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Also, it follows from

Unk

Tk — k-1

PHX — Xt 4+ AXS +XE_ —XE

‘flk L ATNRe = 1]

P &
X; th .

§P[|XZ—X§k|+ sup ’ =

t€lte—1,%%)

‘}—tk 13 AnN}\E _1:|

4y c
+P|[azZk] < X or sup  [e(XE a0) — clxr a0)| > o ]f,k_l, AIN* =11,
cin’ relty,tr—11 2
Unk
Tk — k-1

PHX — Xt 4+ AXE + XS - XE

’]—}k AN = 1]

X; - X;

k-1

v,
<p |-l |

r€(tr—1.7k)

‘]:fk 1 AN* = 1i|

v
+ P |:|AZ;§ > " o sup |c(X‘E,oz0) —c(xt,oco)| > ) ‘]-',k " A”N’\‘g = 1i|

4can” el tx—1]

and Lemmas 4.2, 4.5 and A.2 that

Ae 1 eP
’1 &,p e —A e/n
pleii?|m] =5 {C (npu—p) + np(l/z—m) (1+1x51)
A
+ / o - }
|z|<4vui /c1nP
A 1 eb
n sp & —hie/n
P[ ‘F’k 1] = {C (nmfp) + np(l/%p))( XL )

[’}\8
+ Sy (2 ,
|z|>vpk /4con®

where C depends only on p,a,b,c, fo, and vi. The other inequalities follow from
Lemma 4.5. O

In the proof of Proposition 3.3 (ii) in Shimizu (2017), the intensity of the Poisson process
driving on the background is constant, although we assume the intensity A, goes to infinity.
So, we prepare the following lemma.

Lemma 4.8 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, for p € (0, 1/2)

1 n »
EI;IDZJ,/) —_— 1,

asn — 00, & > 0, Ay = 00, A¢/n — 0and ek, — 0. More precisely, for p € (0, 1/2)
and p € [2/(1 —2p), 00)

LN o 1 &P

re D logpe = O ren? 1 T 1 )

1 Ag 1 &P

— | :1—|—0 — 4+ =+ +/ ZdZ),
)\.5 ; Dk.l ? p < n n[’(l—/)) n[’(l/z_/)) |zl <4vpi [cin? fao( )

1 n Ao
=0 ()
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asn — 00, & > 0, Ay > coand ery — 0.
Proof Since

A
oot
n

he A
Moo Ao —rein

A
ie_)\g/n - P I:Dl}:lsp )ffk—l:l
n ,

n n
A

() rfeti ).
n

it follows from Lemmas 4.4 and 4.7 that for p > 2 and p € (0, 1/2)

" 1 1 1 &
nsp
ZEHAQDZ:V—”‘ \%} = e |7 ]

k=1 k=1

Ae 1 gP gp)\a
= e (np(l—ﬂ) o Tt ) Z <] 1| )

+ / fuy(2)dz 50
|z|<4vy/cinP

asn — 00,& > 0, L = 00, Ag/n — 0 and eA, — 0. Similarly, we obtain

n E [ 1 1
E _— n,&,p0
o L Do

n

1 1 gP
f’k*‘] <% (nn(kp) + np(l/%p)) Z (1 X5 )

n
1 A
S e e [ | =
k=1 e n
Hence, the conclusion follows from Lemma A.3. O

Lemma 4.9 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, for p € (0, 1/2)

72101&/7 —)1

asn — 00, & - 0, Ay = 00, Ag/n — 0and ers — 0. More precisely, for p € (0,1/2)
and p € [2, 00)

1 ¢ A

~D e =140y <i> ;

n P B n

1 Ae &P, Ae

n I; Leppe = Op (,,pafpm t oz T /|z|<4vnk/q,1p f“(’(Z)dZ> ’

1 | _0 A2
w2tz =0 (5

asn — 00,& —> 0, .y = 00, A¢/n — 0 and er, — 0.

Proof From Lemma 4.8 we have
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asn — 0o0,& = 0, Ay = 00, As/n — 0 and eA, — 0. It follows from Lemmas 4.4 and 4.7

that for any p € [0, c0)
£ 1-1vp cree
t—1 | — ; Z ]:tk 1
k=1

Zn: E H ! 1
—_ Cn.s.p
— n k1

p p
= C% (np(}—p) + np(f/Z—p) +- nh)
S N (RO | oo
nis o n Jii<dvmsene
n n 2
];Eli’ilcxw ’ftkl]:i;p[ nep‘]_—tk 1]5%'
The conclusion follows from Lemma A.3. m]

Remark 4.1 From this lemma, under Assumptions 2.1, 2.3, 2.4, 2.6 and _2.8, for p € (0, 1/2)
and for any random variables E,:’”; k=1,....,n,neN, ¢ >0, § € ®), when

)\2
Ae = 00, elg — 0, £ =0, AE/ Jop(2)dz = 0
n |z|<4va/cinP

ase — 0,
n

g]:‘;{ nep = 1Cngp} =o0,(1)
k=1

asn — oo and ¢ — 0, uniformly in 6 € ©, since for any n > 0

(sup kag Cnep >77> <P<
0e®

k=1
Similarly, from Lemma 4.8, when
Le > 00, €rg — 0,

/1ep

> 1/2) forj=1,2.

2
£ -0

ase — 0,
n
Zgl?,’; {IDZ'”’ - 1DZ_']”’} =op(D)
k=1
asn — oo and ¢ — 0, uniformly in 6 € ©,

Lemma 4.10 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, let p € (0,1/2), § > 0 and
" F P be an event defined by

Dyy? =Dyt niXE e 1) forallt €0, 1]},

and let S,:l”g (k=1,....,n, neN, ¢ >0, 0 € ®)be random variables. If

52
Ae = 00, €ry — 0, £ =0, AS/ Sap()dz — 0 (4.6)
n

|z|<dvz/cinP
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as & — 0, then

n
](X:E/:l,’;‘{lDZ,s,p— Zfﬂ]—()p(l) Zé [ 1fp—1J)zF}_0p(1)
=1

asn — oo and ¢ — 0, uniformly in 0 € ©.

Proof Since from Lemma 4.3

P (X{ eI} forallt € [0,1]) > P ( sup | XF — x| 55) -1
tel0,1]

asn — 00,& — OQand er; — 0, forany n > 0
( 118{1 "SP—l n&p} >?’])
P(
k=1

n,e
: ~1, }
k@{ nsp nlsp
n
n,e . _
P( G e =ty
k=1

g

P({Xx; ¢l XO, ref0, 1))+ P (

> n/2> +P({XE¢ 1), 3t el0,1]}),

> 17/2).

Take sufficiently large p € [2/(1—2p), 00). Thus, we obtain from Remark 4.1 the conclusion.
]

n
&.n,a lcmew
z : k.0 “Cply

k=1

Remark 4.2 In this lemma, if {5,:"; } o is bounded in probability, we can replace the
*C In,ek,

condition (4.6) with a milder condition

Ae
e > 00, &rg — 0, — — 0.
n

But, we will never use this fact in this paper.

Lemma 4.11 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, let p € (0, 1/2), and suppose
that a family {g(-, 0)}gce of functions from R to R is equicontinuous at every points in Iy,.

Then,
1
fZg(th O erer = / g(x, 0)d
0

asn — 00, & —> 0, Ay > 00, Ag/n — 0 and eh; — 0, uniformly in 6 € . Also, for
p €200

1
72 ( f-1° ) e’ i)/o g(x, 0)dz,

1 (X8 9)] o —o0 Ae eP g Ao )
n 28 Kuer0) Lepior = O apt F it o i e 72099

1 < 22
=3 g (X5 ,.0)1cner =0, =5
n 8\ At = p

k=1
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asn — 00, & —> 0, Ly > 00, Ag/n — 0 and ek — 0, uniformly in 6 € ©.

Proof of Lemma4.11 Since {g(-, #)}4ce is equicontinuous at every points in /,, there exists

& > 0 such that
sup lg(x,0)] < oo.
(x,H)EI)‘?Ox@

)

)\‘ 1 n
<P sup  |X; —xp | =8 )+ P sup |g(x,9)|—8—21Dn,s,p >n|,
k= 1 (r.0)eld, xO nohe = 7k

Forany n > 0

l Xt ,0)1
n Zg t—1° DZ'S"O

1 ¢ ,
+P sup g, 0)|= D lenew > | forj=1,2.
(r.0)eld x© n.oo e

It follows from Lemmas 4.3, 4.4 and 4.9 that

1< 1
- 3 (ka_l , 9) Lepen —/ ¢(xr, 6)dr
= 0

1 & 1 p
& &
k_]g(th_l,H) Lo | + n,;_lg(xtk"’e)_/o g, 0)dt| 2> 0,

! XE . 0)1 =0 he | s 42 )d
w228 (G100 Vepio = Op (it & 7ot * oy g o 700

1< 22
- Z Xt o)1 =0,
0 8\ Au_re Gyt =Y\ 2

asn — 00,6 — 0,1, = 00, A¢/n — 0 and e, — 0, uniformly in 6 € ©. O

Lemma 4.12 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, let p € (0, 1/2). We assume
either of the following conditions (i) or (ii):
(i) Under Assumption 2.4 (i), we assume the following four conditions:

(i.a) There exists § > 0 such that for every (x,0) € I;fo x 0, g(x,v,0) is continuously

differentiable with respect to'y € R.
(i.b) There exist constants C > 0, g > 1 and § > 0 such that

sup

ag
= (x, yﬁ)‘ <CA+p?) (yeR).
(x,(i)el'éox(:)
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(i.c) There exists a sufficiently large p > 2 such that

22
de —> 00, —£ >0, erp >0, en'"VP 5 o0, )»a/ Jop(2)dz = 0
n lz|<4va/cinP
asn — oo and e — 0.
(i.d) Let p be taken as in the condition (i.c). Put ry, ¢ by

1 1
Tne == 1=1/p + L2=1/p

(ii) Under Assumption 2.4 (ii), we assume the following six conditions:

(ii.a) There exists § > 0 such that for every (x,0) € Igo x O, g(x, v, 0) is continuously
differentiable with respect to y € (0, 00).
(ii.b) There exists § > 0 and L > 0 such that if 0 < y1 <y < y», then

ag
dy

(ii.c) There exist ¢ > 0 and § > 0 such that

(x Vi, 9)‘

(x y2,9)‘+L forall (x,0) € I‘S0 x 0.

g 1
x,y,0)| <0|— as |y| — 0.
dy [yle

(ii.d) There exists § > 0 such that for any C; > 0 and Cy > 0 the map

[ w5
x> [ sup|—=
o |0y

takes values in R from 1 )fo, and is continous on | )fo.
(ii.e) Let q be the constant in the condition (ii.c), and let p < 1/4q. For any large p >
2/(1 —2qp),

sup
(x.0)elf x©

(x, C1y + €2, 0)| fuy (¥)dy

2
£

n

)\5/ fao(Z)dZ -0
|z|<4va/ein?

asn — 0o, & — 0.
(ii.f) Let p and q be the constants in the condition (ii.e). Put r, ¢ by

1 1
eni—p—ap T pi—T/p—ap"

1 & AllX®
Ek 1g Xy =0 IDZ’W

n
& & V
8 (Xlk 1’ (th,l ) (XO)VN;}:" s 9) 1]]:115
=1

Ae = 00, — 0, ek — 0, enl=1P7Vr 5 oo,

ne =

Then,

= Op(rn,s)

Ae h
asn — oo and ¢ — 0, uniformly in 0 € ©.

Remark 4.3 Assumption 2.4 is used only for defining DZ’S’p in Lemmas 4.7, 4.8, 4.10
and 4.11, while it is essentially used in Lemma 4.12.
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Remark 4.4 The assumptions (i.c) and (ii.e) in Lemma 4.12 are ensured if

de = 00, €he = 0, (e/n)"' <00 and AS/ fap(2)dz — O
lz|<dva/cinP
asn — oo and ¢ — 0. This condition seems to be natural when we consider the asymptotic
normality for our estimator (see, e.g., the condition (B2) in Sgrensen and Uchida (2003)).

Proofof Lemma 4.12 Let § > 0 be a sufficiently small number satisfying the conditions of
the statement and

Cl
> <c(x,a0) <2c; forx e Ixo,

where ¢1 and ¢ are the constants from Assumption 2.6. In this proof, we may simply write
the maps

gk
(7, 0) > g(X5 . v.0) = g(r,6) and (v, m—(xye)\ =5y 00,

k 1

and we denote the following event by DZ:f’p
Dyy? =Dy n{Xf eI} forallt e [0,1]}.

Since
2

A
Y00 / fuo ()2 0,
|z|<4va/c1nP

n

under either of the assumptions (i.c) or (ii.e), we obtain from Lemma 4.10 that for any
non-random rn e >0meN,e>0),

. Akxg ,
7ng {1DZ£0—1 "f”}zop(rn,s)’

1 & . /
73 ;gk (C(th—1 > OlO)VN?ks s 9) {152:18,;) — ljlfls} = Op(rn,g)

asn — 00,& = 0A, = ooand er; — 0, uniformly in & € ®. Thus, it is sufficient to show

that
1 ¢ ARX® AXS | o i
)Tskzl 8k s — 8k £ D,’(f = p(rn,a), 4.7
1 ¢ AXE | 1
e ,; {gk ( € ’9> 8 <C(X’k "aO)VNrA;f’9>} Lpper = 0p (an/" + n1/271/p>
(4.8)

asn — 0o,& —> 0,1, — oo and €A, — 0, uniformly in 6 € ©.

Put
e £ e _ ye
Yy = X = X + Xu- =X, <= ALX* — AKX on Dz'f’p>.

& & &

By using Taylor’s theorem under either of the assumptions (i.a) or (ii.a), we have

AT XE AXE Ly AXE,
gk< k ,9>—gk< tk,@)z/ ﬁ( )ka§ onD”p.
e € o 0y €
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Here, we remark that A} X® and AX?, are almost surely positive on D}"{"” under Assump-
tion 2.4 (ii). To see (4.7), it is sufficient to show that

U 108 (AXG e o) ye
" Z/O Iy (T + ;“Yk,49> YEAL1 gy i<y
k=1

sup = Op(ra.e) (4.9)

0e®

asn — 00,& — 0, X — oo and eA, — 0. Indeed, for any M > 0

1 ¢ AlX® AXE,
(oo e (35 0) - (555 =

€ k=1

<P| sup |VI>1
k=1,..., n

1 gk X .
%;/0 3y< & SREal Yedg Lpperngye <ty

> Mr,,,g) s

and from Lemma 4.6 the first term converges to zero as n — oo, ¢ — 0, A, — oo and
e,e — 0, since from either of the assumptions (i.c) or (ii.e) we have en'=YP - oo or
en'=9P=1/P 5 oo, respectively.

We first consider the case (ii) in Assumption 2.4. Since for ¢ € [0, 1] we have

+ P | sup
0e®

E
P

— o

Unk . D™
§Y£>(1—§)C(er ,aO)VN?If—I—{n—pZmln{ Vfokg,nfp} on D

>3

we obtain from the assumption (ii.b) that

1 €
8gk Aer .

gk I8k (V1 98k
f{ ay <2VNM79)’+ E<n779) + T(zczVN?kp‘l'l,@) +L 1D,Lf {‘Yk‘<1}

{5 G| Gl e G +1.0)| 1 1

dy \2 N 5y (o a
Since
! ; agk C1
):’;E [ ooy ( 2 VNM’Q) Lo ]:tk,l]
Ly 08k
= sup | —— (fz 0) Joo(2)dz - P <Jn,a)
he ;'/ o |0y \2 o e
n

IA
S| -
—
w
S =1

98k (

Dai (<1 )
Ploy (2%
it follows from Lemma A.3 (ii), Lemmas 4.4 and 4.6 and the assumption (ii.d) that

3gk 1 1
Z mg) 1/“ SUP |Yk| = enl—1/p + nl/2=1/p

.....

fao(z)dz,

asn — 00,& — 0, L, = oo and er; — 0, uniformly in 6 € ©®, where p is given in the
assumption (ii.e). Similarly, it follows from Lemma A.3 (ii), Lemmas 4.4 and 4.6 and the
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assumption (ii.d) that

Zag" 262V +1,6)| 1 sup [¥f| =0 L]
2V s S =Y e T

.....

asn — 0o,& — 0, A — oo and er; — 0, uniformly in & € ©, and it follows from
Lemma A.3 (ii), Lemma 4.6 and the assumption (ii.c) that

Z‘agk

asn — 00,¢& — 0, L, — oo and €A, — 0, uniformly in 6 € ®. Thus, we obtain (4.9).
Under the case (i) in Assumption 2.4, as in the same argument above, we have

1 1
&
0)| 1y Suw Y[ =0, <8n1—1/p—qp + n1/2—1/p—qp>

.....

1 u agk ( X
— sup / K cYE, 0)YEde| 1 anen ye
Ag = 0e6 1o ay g k k Dy MYy I=n
C v » . 1 1
= he 1; (2 + ’ZCZVN?; ) L k:sll?g’n Yi| =0, <8n171/p + n1/27l/p>

asn — 00,& — 0, A, — oo and A, — 0. Thus, we obtain (4.9).
Analogously, it follows that for ¢ € [0, 1]

AX Cl ~
(1—¢)—% 4 {c(XtL 17a0)VN?If > ?VNYA; on DZ:]E’/’,

nsp

and that on D

08k er
By (I = —— +¢e(X;, 1> @0) Ve, 0 )| d¢
0 T
‘ZCQV e p) in the case (i),
Tk
agk (% V)] + |5 (2¢2Vs0.0) | in the case i,
so that, (4.8) holds. O

Lemma4.13 Let p € (0, 1/2). Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, suppose that
forf € ®

X > fg(x,C(X»oto)Z»O)fao(z)dz, x'—>/Ig(x,C(x,Oto)Z,9)|2fa0(Z)dZ (4.10)

are continuous at every points in I, and that there exist 5 > 0, C > 0 and g > 0 such that

/ sup  |g(x, c(x, ap)z, 0)]
(x,(-))e]fox@)
d
+2. s
j=1(x 9)615 x©®

%(x c(x, o)z, 6’)’ Sop (2)dz < o0. 4.11)

Then,

n

1 o (!
I g( fe o (X5 I,Oto)VN;‘}f,Q) Lpnes —>/ /g(xz,C(xz,olo)z,f’)fao(z)dzdl
£ =1 ’ 0
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asn — 00, & = 0, .y = 00 and e, — 0, uniformly in 0 € ©.

Proof 1t follows from Lemma 4.4 and the assumption (4.10) that for each 6 € ®

ZE[AS ( Ti— I’C(ka—]’aO)VN?kg’e) IJk"_’f flk71i|

1
= ;Z/ Xy c(Xp l,oeo)z,e) Jop(2)dz
k=1

1
. / f g(xs, ¢(xr, @0)z, 0) fug (2)dzdt
0

asn — 00,& — 0, A, — oo and ¢A; — 0, and that

2
ZE[AZ ‘g( Ti— 1 € fk 1’0[0)VN?,5’0)‘ lfkn.’f

asn — o0,& —»> 0, A, = oo and eA, — 0. Thus, Lemma 9 in Genon-Catalot and Jacod
(1993) shows us that for each 6 € ®

]—'] 0

1 < P
” g(kal, (ka_lqao)VN,*;v@)llﬁ'f_’ /0 f 8(xr, c(xr, €0)z, 0) fup (2)dzdt

asn — 00,& — 0, A, — oo and A — 0. Put

o= I8 N XS e I forall t € [0, 1]).
Then, by the same argument in the proof of Lemma 4.10, it follows from Lemma 4.3 that

n
L (xs (X2 )V 9){1 re —1; } 20
Ae k—1° k-1’ Ngf? J, Vi

asn — 00,& — 0, L, — oo and €A, — 0, uniformly in 6 € ©.
Now, we have for each 0 € ®

1
P
_ Zg( i1 € fk l,ao)Vw;,@) lfk".f — /0 /g(xt, c(x;, 0)z, 0) fo (2)dzdt

asn — 0o, & — 0, 1, — oo and ex, — 0. To say the uniformity of this convergence in
0 € O, put

n

1 1
KO == g (X e (ka,l,ao)vaxkg,e)lm— fo / g(x1, (¥, @0)z., 6) fuy (2)dzdr
. ,

k=1

and we shall use Theorem 5.1 in Billingsley (1999) with the state space C(®), same as in the
proofs of Propositions 3.3 and 3.6 in Shimizu and Yoshida (2006) !. From the assumption

1 We cannot use Theorem 20 in Ibragimov and Has’minskii (1981), Appendix I (or Lemma 3.1 in Yoshida
(1990)), as in the proof of Lemma 2 in Sgrensen and Uchida (2003). In fact, we fail to say that {x"+¢} satisfies
(1) and (2) in Lemma 3.1 in Yoshida (1990).
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(4.11), we obtain

1<
E | sup *Zg(ka L (ka_l,ao)VNAg,e) e
0e® =1 Tk k.1
1 n
< rg ZE sup ‘g(X,C(xa aO)VN?\kp,e)’ 1']]?,.18

k=1 (X,H)EI)‘EOX@

=/ sup  |g(x, c(x, @0)z, 0)] fu (2)dz (< 00)

and
1 < dg
E|sup|— —(X‘E Le(XE L ag)V 8,0)1%8
|:92(Pi) e - 20, s € (X _,> @0) N3 T
l & Bg
< — E sup (x c(x,ag)V A;,O) Ine
Ao | worer <o 96 -

— (x c(x,00)z,0)| foo(@)dz(<00) forj=1,....d.

00;

= / sup
(x.0)eld) C)
The above equalities hold from the fact that V, 1. and 1 e are independent. Hence, for any
‘[k 5

closed ball By, of radius M > 0 centered at zero in the Sobolev space W12°(@), we obtain
from Markov’s inequality that
ne 2C
SUPP(X ’ ¢BM)=P(||X ||wloo(®)>M)<*,
n,e M

where C is defined as (4.11) and forg > 1

lullwrae) = llullLe@) + Z foru € Wh4(0).

j=1

89 L4(®)

From Rellich-Kondrachov’s theorem (see, e.g., Theorem 9.16 in Brezis (2011)), it follows
that the balls By, M > 0 are compact in C(®), and so from Theorem 5.1 in Billingsley
(1999) that {x"™¢} is relatively compact in distribution sense as in the Billingsley’s book.
Since foreach 6 € © {x™¢(0)} converges to zero in probability, all convergent subsequences
of { "¢} converges to zero in probability. Analogously, all subnet of { x "¢} has a subsequence
convergent in probability to zero, and so {x" ¢} converges to zero in probability as n — oo,
g —> 0,1, > ocoand er, — 0. m]

Lemma 4.14 Under Assumptions 2.1, 2.3, 2.4, 2.6 and 2.8, let p € (0, 1/2), and let g :
R x ® — R satisfy that { 3‘5 G, 9)} ,J =1,...,d are equi-Lipschitz continuous on I)‘EO

0e®
for some small § > 0. Then,

1 1
fZ (X5, 1,0){A2X8— Za(ka,l,Mo)} 1eper L /0 2Cxr, 0)b(x;, 0)AW,

asn — 00, & = 0, Ay — 00, Ag/n — 0, eAe — 0 and A f|Z|<4U2/C|ﬂ'” Jap()dz — 0,
uniformly in 6 € ©. B
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Proof At first, we can easily check that

k
fzg(X,k . {/ a(X{, po)dr — a(X,k I,Mo)} leper =50 (412)
k-1

asn — 00,& = 0,1 — 00, en — 00, and e, — 0, uniformly in 6 € ©®. Indeed, this
follows from Lemmas 4.3, A.2 and A.3 with the equicontinuity of g on Iy, and the following
estimate:

- ZE [sup

174 1
g(X; . 0) {/ a(Xy, uo)dt — ;a(XZF,,MO)} Lemes

’:F[k—l]

k 1 0e® th—1
XE_xe | 2 1/2
l—1

§C— E | sup|g(X; ,0) sup ——— ‘f_

Z 0€0 = el & et

(." Schwartz’s inequality and 2.1)

1 1 e
=0, —+—4=+=2 (.- Lemma 4.1 and 4.4)

en  J/n n

asn — 00,& —> 0,1, —> ocoand eA; — O.
At second, we show that

I 1
Zg(X,k 1,0)/ b(X7,00)dW1cmer —/ g(X7,0)b(X[, 00)dW;
th—1 0
= Z/ g(x,k " )—g(XE,G)}b(XE,ao)dW,lcz,s,p

—Z/ (X5, (X[, o0)dW, 1 e .0 (4.13)
tk—1

asn — 00, & — 0, ks — 00, A2/n — 0, eh, — 0 and A, f‘z‘<4vz/qnp fup(2)dz — 0,
uniformly in 6 € ®. When we put -

é:’s’p =C" N sup [XP—xi| <8¢,
t€[0,1]

it holds from Morrey’s inequality (see, e.g., Theorem 5 in Evans (2010), Section 5.6) that for
q € (d, 00)
|7 ]

3
f { (X5, 0) — g(X, 9)}b(X5,cro)dW, ces ’f,k_1:|,
Tk—1 wha(®)

Z E |:sup

k=1 0e®

n
scle[
k=1

/ [g(th 1’ )_g(X870)}b(XSaO'O)thlélr(hs,p
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where the constant C; depends only on d, ¢ and ®. Then, it follows that

2ol

(. Holder’s and Burkholder’s inequalities)

Tk—1,1k]

C3
<—=> (E|: sup X | — X2
tel
a/2\ /4
X (l—i- sup |th ] —X£|2+|th l| ) ‘}',kli|

t€ftk—1,%]

(. Holder’s inequality and the equi-Lipschitz continuity of g and b on I fo)

1
=0, (ﬁ +ete )\e) (.- Lemmas 4.1and 4.4)

asn — 00,& — 0, A, = oo and eA, — 0, where C, depends only on ¢, and C3 depends
only on ¢, b, g and ®. By the same argument with Theorem B.4 in Bhagavatula (1999), it

follows that
k(g . 8g 8
/tk_l {391 (th*"e) 36, (X7.0) b(X], 00)dW;1 g

1
:Op(%—i—g—i—s AE>

asn — 00,& —> 0, A, — oo and eA, — 0. Thus, it follows from Lemma A.3 that

n t 1
g(X; .0) —g(X7,0)1 b(X[,00)dW;1 crer =0 <—+e+s A)
o R LA CR

asn — 00,& — 0, X, — oo and er, — 0, uniformly in & € ®, and therefore, from

Lemma 4.3 we obtain the convergence of the first term in the left-hand side of (4.13). To
obtain (4.13), we remain to prove

Z/ 8(X7, 0)b(X[, 00)dW; 1 e 20 (4.14)
te—1

2
as Ay — 00, ehe = 0. % = 0, e [ 4y /eowo Jap(@)dz — 0, uniformly in 6 € ©.

Put DZ = D" PN {XS € I‘S forall ¢ € [0, 1]}. We begin with showing that for any
p € (2,00) andq e (1,d/(d — 1))

1 (eral 1/2+1/4'
g)b(Xa,O'())dW n€/> = —_— < +)\. ) (415)
> [ s =00 ( G :
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asn — 00,& = 0, Ay — oo and ex, — 0, uniformly in 8 € ©. It follows from Morrey’s
inequality (see, e.g., Theorem 5 in Evans (2010), Section 5.6) that for ¢ € (d, c0)

ZE [sup ‘flk—l:|

0e®
" ‘Ftkl:| ’
wla(®) '

sCIZE[
k=1

where the constant C| depends only on d, ¢ and ®. If we put ¢’ = ¢ /(g — 1), then it follows
from Holder’s inequality, Burkholder’s inequality (see, e.g., Theorem 4.4.21 in Applebaum
(2009)), the equicontinuity of g and Assumption 2.1 that
k
g(X[Ea e)b(va GO)dWI

n
= et Lff<0> o

S (L] wdef”

- 1/q'

x P (D | 7
> alz \ 4
dt‘}}k71:| d9>

o (L[

k=1
1/q'
x P (DL | i)

/ g(XE,Q)b(XEaUO)thlf)Z:f-ﬂ

s
g(X;,0)b(X], 00)dW;

Tk—1

1
/ g(X;,0)b(X;, 00)15;:»f~pdwz
Tk—1 ’

g(X7,0)b(X7, 00)1521,16.0

|©|1/a 1/24+1/q’
S0 s I8 Ob(r o)l g ZP( | F) ,
(x.6)eld x©

where C, depends only on ¢. By using Lemmas 4.4 and 4.7, for any p > 2 we obtain
n
ZE[ Lo f}
k=1 L1(®)

Ae 1 eP ePre\ A |2V
=0p (ﬁ{n (npm—p) o T, ) t

asn — 00,& — 0, L — ooand eA, — 0. Similarly, by using Theorem B.4 in Bhagavatula
(1999), we obtain for j = 1,...,d

Z E |: lélr{t:l&p ka|:|
L4(©)

Ae 1 gl ePhe A | V2TV
=0y (ﬁ{n (npm—p) o T, ) t

asn — 00, & — 0, A, — 00 and e, — 0. Since we can take ¢ < 2 small enough, we
obtain (4.15) from Remark A.3. Hence, (4.14) holds from (4.15) and Lemma 4.10.

g(X7, 0)b(X[, 00)dW;

k-1

"
a—g ( ,0) b(XE, 00)dW,;
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At last, it is an immediate consequence from Lemma 4.9 that
173
& re P
Zg(x,k . 0) / (X, a0)dZ{" 1enes = 0
Tk—1

asn — 00, & — 0, Ay — 00, A2/n — 0, ehe — 0 and A, f‘z‘<4v2/qnp fuo(2)dz — 0,
uniformly in 6 € ®. - o

Lemma 4.15 Under Assumptions 2.1 2.3, 2.4, 2.6 and 2.8, let p € (0,1/2). and let g :
R x ® — R satisfy that { - (-, 9)} (i =1,...,d) are equicontinuous on 1)‘50 for some
small § > 0. Then,

2 1
ZZg(X,kl, ‘Azxs —a(xtkl,uo) Lenon = / (x;, 0)[b(x;. 00)|*dr
0

asn — 00, & — 0, Ay — 00, eAe — 0, A2/n — 0 and A, f|z|<4vz/cmﬂ fao(@)dz — 0,
uniformly in 6 € ©. -

Proof From Lemma 4.9, it is sufficient to show that

2

1 P ! 2
= Zg(X,k y ‘Azxg — e mo)| epge = | g, O)lbxe, o) dr

asn —> 00,& > 0, s = 00, €As = 0, A%/n — 0 and A, f‘z‘<4v2/c‘1nﬂ Jao(2)dz = 0,
uniformly in § € ®, and we note that N

2

1
AZXS _ ;a(kail, 0) 11:69

|

/9
+2/ [acx;, wo) — acx;,_ I,Mo)}dt/

Ix—1 k-1

2 2
+

1
/ {axX;, o) — ax; . no) e
tk—1

%
/ b(XE, 00)dW,
tk—1

73

b(X¢, CT())th} ll/?’og'

Similarly to the proof of (4.12), it follows that

1 1
82 Zg(sz 1’ 0) = Op (782,13 + n7>

asn — 00,& —> 0, A, — 00, en — 00, and er, — 0. Also, it holds that

2
sup Lonen
0e® k.0

173
/ [acx;, wo) = atx;_ . o)} dr

k-1

sup |—
0e®

Zg(X,L 1,0)/ a(xa,;m a(x;,_ l,m}dr
k=1

1 1
=% \oonth

&

173
&
X /,k_l b(X7?, og)dW; lclzr..é,p
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asn — o0o,& - 0,1, = oo and eA, — 0, uniformly in # € ©. Indeed, by using
Assumption 2.1, Holder’s inequality and Burkholder’s inequality, we obtain

- ZE [sup

0ec®

173
g(X;,_ 1,0)/ {acx;, wo) = acx;_,, o)} ar
Tk—1

. ) 1/2
Zsup g(XE . 0)| (E [2 sup |XF—Xp | ‘Ek .D
]

€7 reln—1.w]

12
1
X <nE|: sup | X7 — X 1| +Ib(X7, 1’00)|2 ’flk—l:|)

teltk—1,7%]

173
£
—I—/tk 1b(X , 00)dW,; lC;’S’p

where C depends only on a, b. By applying Lemmas 4.3 to 4.5 and A.3 and the boundedness
of gon/ ;30 x © for some small § > 0, we obtain the above convergence.
From Lemma 4.11, we remain to prove that

Zg(X,k .0

asn — 00,& - 0,A, — ocander; — 0, uniformlyinf € ®. Atfirst, by using Lemma4.4,
we have

2
ZE |:g(th . 0) ‘/ b(X{ ., 00)dW,

—”>f g(x. 0)|b(x,, 00)[2dr
0

r 2

1
b(X{. o0)dW;| Leper —> / 8(xi, 0)lb(xi, o) dr
0

k-1

\f-} Zg(X,k LOBXE_ oo

asn — 00,& —> 0, A, —> ocoand er, — 0, and

ZE

g(X_ . 0) ‘/ b(X;_, o0)dW,

‘]—‘,k_l 20

asn — 0o0,& — 0, L — oo and e, — 0. Thus, by Lemma 9 in Genon-Catalot and Jacod
(1993), we obtain

1
i> f g(xr, 0)[b(x;, 0)[7dr
0

Zg(X,k L 0) V b(X: . 00)dW,

asn — 0o, & — 0, L, — oo and eA, — 0. From the equidifferentiablities of g on / )‘EO for
some § > 0, the uniform tightness is shown by the same argument in the proof of Lemma4.13.
At second, we shall see

Zg(th 1 [

2

173
/ b(X7, 00)dW;
-1

Ik
/ b(X; . 00)dW;
l—1

2
P
1nep —> 0
} Cio”
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asn — oo, - 0, A, — 00, eA¢ — 0 and A./n — 0, uniformly in & € ©. This
convergence is obtained from Lemma A.3 and the following estimate:

1 2 1 2
ZE |:sup g(X; 1,9){ / b(X;,00)dW;| — / b(X; _,,00)dW; } Ly ’]:lkl:|
k=1 0e® Tr—1 Tr—1 ’
2 1/2
= Z;up |g(X[k 170)| ( |: / {b(XE’ UO)+b(th 170—0)}th 1],:15 -7:[](_1:|>
=1 00 '
" ) 1/2
X (E |:/ {b(X7. 00) — b(X] . 00)}dWi| 1 e }}klj|> (.- Holder’s inequality)
Tk—1 !

Iy 1/2
< Z sup [g(X}, |, 0)] (E U Ib(X;. 00) + b(X_,,00)*1 pedr \ f])
-1 '

k= lé)e()

i 1/2
X (E [/ |b(X7, 00) — b(X} _ 1,<7())|21Jkn.0sdt ’.7—},(7,]) (. Burkholder’s inequality)

Ix—1

1 . 1/2
<C= Y swplexs O (E| swp (41X = X] P +1XG P A

=100 re€ltk—1,%]
12
X (E |: sup X7 — Xz | ’f,k 1i|> (.- b is Lipschitz)
teltr—1,7]
_0 (l N i) (- Lemma 4.4 and 4.5)
P n \/E .

asn — 00,6 > 0, A, > ocoand eA, — 0.
At last, since

is bounded in probability, it follows from Lemmas 4.1, 4.8 and 4.9 and the linearity of b that
2
Z 8 (X k-1’

1 n,e n,&e n,E€. _p> 0
DyPuc TP uC s’
asn — 00,& — 0, A, — 00, ery — Oand A./n — 0, uniformly in 6 € ©. O

T
f b(X;_,.o0)dW,
tr—1

4.3 Proof of main results
4.3.1 Proof of Theorem 3.1

Proof of Theorem 3.1 It follows from Lemmas 4.11 and 4.14 that

O (1, o) 1= ne? (W, o) = W (o, )
2": (A"XS —a(Xp |, MO)/”) (a(X,k M) = a(ka_l,/Lo))
k=1 |b(X;,_ o)’

1Cl:l~&ﬂ
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2
1 2": ’a(Xi_l,u)—a(Xg_l,uo)‘
T h, 2
2n k=1 |b(th 1’0’)}
p L Vate, w) — alx, 1o)l?
— —= 3 dr
2 Jo |b(x;, o)

1C;(1.€,p

asn — 00,& — 0, Ay, —> o0, )\g/n — 0, erly — 0 and A, f‘z‘<4v2/clnﬂ Jao(2)dz = 0,
uniformly in (i, o) € ©) x ©3, and from Lemmas 4.11, 4.14 and 4.15 that

v, o)

1 1 1
= @cb,i;(u, o)+ i) (o o)

2
|a7xe = acx;_,, mo)/n|

Lo -1y

nio 2L leb(X; . 0)
» 1 YaGx, ) — alx, po)l?
n% g 0 2|b(x;, o)

e—0
1 /
2 0

asn — 00, & — 0, Ay — 00, A2/n — 0, ehe — 0 and A, f‘z‘<4v2/qnp fao(2)dz — 0,

2
o P [ e

1
’2 2 log |b(X?

b(x;, 00) |*

1 1
dt — = [ log|b(x;, o) |2dt
b(x,.0) 2/0 og |b(xs, 0)|

uniformly in (11, 0) € @1 x Oy, Also, it follows from Lemmas 4.12 and 4.13 that

nXS
(2) (o{) Z w ( e T O{) lDz,e.p

1 y
_>/ /ooc(x,,ao) (c(x,,ao)>1°g{c(xt,a)f“(cm,a))}dyd’

asn — 00, & — 0, Ay — 00, A2/n — 0, ehe — 0 and A, f‘z‘<4v2/qnﬂ fao(2)dz — 0,

uniformly in o« € ©3. Thus, by using usual argument (see, e.g., the proof of Theorem 1 in
Sgrensen and Uchida (2003)), the consistency of 8, . holds under Assumption 2.7. ]

4.3.2 Proof of Theorem 3.2

To establish the proof of this theorem, we set up random variables éék, éék €=1,...,3,
i=1,...,de, k=1,...,n) as the followings:
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Lo fapxe = ok o) (x5 k)

an(l)
VS_Z a’u’:E (M,o-)‘ =—7Z ’2 lclzx.s,p

0=09 & =1 |b(th " o) 0=>0p
. " ; » 137,.()%#0) N
=: & — ——dW; |, (. Lemma4.14)
b 0 b(x:,00)
k=1 ’
2
(1 n Arxe — Lacxe )‘
oy, 1 ‘ 1> M
I )| = +1
d0; =6y ﬁk:l |sb(th 1’0)|
b
30; (thk 1’0)
X 71(1#:,5,,0
b(X;_,,0) ko lo=6p
n
= Zéik’
(2) nye n
Wl ( AlX ) ,
VA = ( , ———, a0 | L pner =: L
* B ( )a=0to «/72 oa; fit e b ;53’]{
and
n n da (Xs ) I
- i k1> MO
Elx = —b(X ) / dw;1, nep,
k=1 k=1 le=1° Te=1
" i w2 53'<XZ 1700)
&, =—/n - / dw;| + - ’716,“’
1; ' k=1 fi-1 n) bXj .00 TR
n n
- 1 oy
k=1 ok k=1 Ve a; (ka 1’ (X’gkfl’aO)VNrkf’ao) Lt

Lemma 4.16 Under Assumptions 2.1 to 2.6, 2.8 and 2.10, the following convergences are
holds.
Fort=1,2

n n
Zéék_zgék L0 (i=1,....dp)
k=1 k=1

asn — oo, ¢ — 0, A — oo,sn—>oo,8kg—>0,)»§/n—>0and

he '[\Z|§4vz/c1np Joy(2)dz — 0.
For € = 3, take p as either of the following:

(i) Under Assumption 2.4 (i), take p € (0, 1/2).
(ii) Under Assumption 2.4 (ii), take p € (0, min{1/2, 1/4q}), where g is the constant given
in Assumption 2.10 Assumption (ii.b).

Then,

n n
Se =S E 0 (=1.....d)
k=1 k=1
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asn — o0, & = 0, Ay = 00, eAe — 0, Ag/n — 0and A flz\<4vz/clnf’ S (2)dz — 0 with
lim(e2n)~! < occ.

Proof For £ = 1, 2, from Lemmas 4.9 and A.3, it is suffcient to show that for p € (0, 1/2)
n
i zi 14
> Efleit g — ] |7 ] 0
k=1

asn — o00,e — 0,1 — 00, en — 00, €Ay — O,Ag/n — 0 and
A ey <t eyne oo )4z — 0.

For¢ =1,leti € {1,...,d}, and put g(x) = =% (x, o) /|1b(x, 00)|2. Then,

0 Wi

. ~. Tk 1
e —Ho=g (X)) { [tk war = Sacxs o)

T

T
+8/ {b(XS,O‘()) b(th I,UO)}dW[} ngp
T—1 s

Asin the same argument in Lemma4.14, itholds from Assumptions 2.1 to 2.3 and Lemmas 4.4

and 4.5 that
1 1
Fur | =0\ n T

= Z E [lg(X,k ,
asn — o0o,& = 0, A, — oo and er; — 0, and from Assumption 2.1, Burkholder’s
inequality, Lemmas 4.4 and 4.5 that

ZE[Ig(th l (Xt 00) — b(XE |, o)}dW;| Lenes | o 1]
-1

1/2
1
X¢ S Xt — ’.7—" =0,|— +8>
Zlg( k=t < |:l‘€[[kl_111),tk]| ! tk 1 k= ]:|> p(\/ﬁ

asn — 00,6 > 0, A, > ocoand eA, — 0.

For¢ =2,leti € {1,...,d>}, and put g(x) = _W§ (x, 09). Then, we have

nrp

Tk 1
f a(X; o)t~ a(X]_, o)1

nF[)

2

Ik
/ {acx;, wo) = acx;_, o) f @

Ik—1

55,/(11,:"3 —&5r=8 (stk—l) [

/g 73
+2¢ / {acx;, no) — acx;_, no) s / b(X{. 00)dW,
Tk Tk—1

-1
2 2
1onen,
Co

173
5/ b(X¢, 00)dW;

k-1

+

173
€ / b(X{ . 00)dW,

Th—1
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‘Ftk—l:|

and by the same argument as in the proof of Lemma 4.15, we obtain

2
1, nep
Cio

\/ﬁ . £ tk &€ &
Y I [ faxs w0 —a(x o) | ar
k=1 fi—1
1

1
=0 <82n5/2 + n3/2> ’

n e
oy Hg(xg_g/ {acx. wo) = atx;_ . o)} ar
Tk—1

&
k=1
]:fk—l]

179
+ f b(XE, op)d W,

k-1

1 1
=0 —_— — ],
! <en - ﬁ)
n t
Ui E / b(XE . 00)dW,
1 tk—1

k=

1 -nep
Ck,O

g(X; )

2

1m0
Ck.()

2
173
f b(X;,_,, 00)dW,
tk—1

.
o5+

asn — 00,6 —> 0, Ay — 00, en — oo and e, — 0.
For £ = 3, let , . be defined as either of the following:

(1) Under Assumption 2.4 (i), rp ¢ = snl%l/l’ + ,,1/2%1/,7 with sufficiently large p > 1.

(i1) Under Assumption 2.4 (ii), 7, s = + /27ll/p7q - with sufficiently large p > 1.

enl=1/p—aqp

Then, it follows from Lemmas 4.10 4.12 and A.3 that
n
ZE H%,kbﬁf - %,k‘ “Ek—l] =0, ( )‘srn,«?)
k=1

asn — o00,e — 0, A — 00, en — 00, €Ay — O,Ag/n — 0 and
ke Jye<avs jerne Jao ()42 = 0. o

Lemma 4.17 Under Assumptions 2.1 to 2.3, 2.5, 2.6, 2.8 and 2.9,

n
S E[E A ] o =123
k=1

asn — 00,& —> 0, Ly = 00, eAe = 0and Ay/n — 0.

Proof For ¢ =1,leti € {1,...,d;}, and put g(x) = ;’—;’i (x, o) /b(x, 0p). Since

t /9
E [/ dw, :Ftk—li| =0, and / dW, and l,/;r._s (i =1, 2) are independent,
th—1 -1 !
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it holds from Lemmas 4.4 and 4.7 that for any p > 1
n I
S E[E]A ] £ ) U AW, lener | 7 1]‘
k=1 k-1
Tk
Z §(X5_) [ / - dWil ppeeygreusrs fzk_l]

_0 1 &b 0, LA A2
= O a2 Y-z ) YO ) T O 2

asn — 00,6 > 0, A, > ocoand eA, — 0.
For¢ =2,leti e {1,...,d>}, and put g(x) = —%% (x, 09g). Since

t 2 I
E / dw, / dw,
th—1 fe—1

it follows from Lemmas 4.4 and 4.7 that for any p > 1

n -~ Ik 2 1
Z E [Sé,k ‘ ‘7:tk—1:| fzg(xtk 1 /; dW[ - ; 1C:»é,p flk71
k=1 k—1 ’

Ik 2 1
= |Vn Zg(Xt“ “ f dw, —n]IDz:g” f}'
asn — 00,6 —> 0, A, —> ocoand er, — 0.

_o 1 eP
= TP pp-p)-1/2 + np(1/2=p)—1/2
For £ = 3, we may assume sup, |X; — x;| < § for some enough small 6 > 0. From
Assumption 2.9, we obtain

ZE[%" ‘fzk = «/):2/ oy Xe L e(Xt ],ao)z,ao) foo(@dz

\/A:Z o </ (ka s (kafl,oto)z,a) faO(Z)dZ) —0.

=0

2
and 1 e (i =1, 2) are independent,

1
‘flk1:| =;, and

The last equality holds from the fact that
o= / v X;_,,c(X;_, a0z, a) S (2)dz

behaves like the Kullback Leibler divergence from pg x t0 pgy . at x = X,EH, where
Pax(Y) = fa(y/c(x,a))/c(x, o). |

Lemma 4.18 Under Assumptions 2.1 to 2.6, 2.8, 2.9 and 2.11,
n .
2 E &

Z E [

asn— 00, & —0, Ay > 00 and ery, — 0, where Iy, . . ., I3 are the matrices defined as (3.3).

14 i1 PR
_]—>1;”2 (C=1,2,3, ir,in=1,....dp),

Fi_ 1:|i>0 €1,2=1,2,3, £1 # L2, ijzl,...,d[j, j=12)
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da_da

Proof For ¢ = 1,i,j € {l,...,d1}, put g(x) = (x, o) /b(x, 00)?. Since from

31t
Lemmas 4.4 and 4.7 for any p > 1 we have

¢ }_ _o 1 eb Ae
Zg( ) b=t [ = FP L p(I—p) + np(1/2=p) + n

asn — 00,6 — 0, A, — oo and eA, — 0, we obtain
Ftk—1:|

" ~ o~ 17 2
Z E I:‘gikgljk ’]:fk—l:l Zg(th | |: / dw;
k=1 fe=1

1 eb e
" Zg(th DO\ ot T e Ty

. / g(x,)dr
0

17 2
dw,

1 nep, | e, | ne
fee1 Dk,() U‘Ik.IU‘]k.Z

1, nep
Cio

asn — 00,6 —> 0, A; —> 00,81, —> O,and)\g/z; - 0.
For¢ =2,i,j €{l,...,d2},put g(x) = b%g—(i;—fj (x, 00). Since similarly to the proof

of Lemma 4.17, it follows from Lemmas 4.4 and 4.7 that for any p > 1
I 2
n Z 8 (th 1 / dw;
Tk—1

_0 1 eP 0 he o 22
= O\ pa=p T pa=p ) T Op TO |2

asn — 00,6 — 0, A — oo and A, — 0, we obtain from Lemma 4.4 that

ZEI:%/(SZ/('}—M 1]—”Zg(xtkl /r:klth

*aw,| 1 7 0, (-1 e’ he
R ‘ v | H O pan Tz T

Fi
k—1
n

1Drl£pujneujn2€

2
2

1,nen | F
Cio Te=1

—”Zg(xtk 1 ‘

1
BN 2/ g(xy)dr
0

asn — 00,& = 0, A, = 00, ex, — Oand A./n — 0.

For¢ =3,i,j € {1,...,d3}, put g(x,y) = g(‘f ng (x, y, ag). Then, it follows from
Lemma 4.4 and Assumption 2.11 that
n . 1 n

Y E [ggyksg’k ’]:,k_l] S E[ (ka . (kail,ao)VN;\kg) e

A
k=1 € k=1

]:lk—l:l

[
M
\

Xy oc(Xp 1,010)z> Ja (2)dz

_p) /O f 8 (xtv C(-xl" (XO)Z) fot() (Z)dzdt
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asn — 00, & — 0, X, — oo and e, — 0. The second equality holds from the fact that

VN;\kg and 1 Jeg are independent.

Foré;=j,ij=1,....d; (j =1,2),put g(x) = —

i
E [( L dw) ‘]-}H] =0, and

i
( lk dW,) and 1 n.c are independent i = 1,3, j =1,2),
J

(x 0p). Since

k-1

it follows from Lemmas 4.4 and 4.7 that for any p > 1

n
Z E I:éilk‘ggk ‘ ‘ka—l:l

k=1
17 2 1 Ik
_ \fZg(X,k . - / dw,| + — / AWilerer | Fyy
tk—1 ny Jy_, ,
173 2 1 Ik
= fzg(xtk . - / dw,| + - f AWl pres | Fy
li—1 N k.0
1 eP
=0 (npufp) + np(l/zfm)
asn — 00,6 —> 0, A, —> ocoand i, — 0. O

Lemma 4.19 Under Assumptions 2.1 to 2.3, 2.5, 2.6, 2.8 and 2.9,
" - 2
UL
k=1

asn — 00, > 0, ., > 00, e = 0 and A, /n — 0.

L0 w=1,2,3)

Proof This follows from the same argument as in the proof of Lemma 4.17. O

Lemma 4.20 Under Assumptions 2.1 to 2.3, 2.5, 2.6, 2.8 and 2.11,
n
> £ |
k=1
asn — 00, & —> 0, A, > coand ehy — 0.

Proof For ¢ = 1,leti € {1,...,d;}, and put g(x) = |d“ (x, o) /b(x, 09)|*. Then, it holds
from Lemma 4.4 that
17 4
/ aw,
Tk—1

n . 4 n
> e 7] = e (v0) £ |
k=1 k=1
1 9b 4
For ¢ = 2,leti € {1,...,d>}, and put g(x) = ‘Eﬁ (x, 00)‘ . Then, it follows from

asn — 00,6 —> 0, A, —> ocoand er, — 0.
Lemma 4.4 that
179 2
/ aw,
Tk—1

4 P
‘]—',k_l] 2.0 =1,2,3)

\ft“} .

4
1
n

ZEI:‘$ZI<‘ ‘]:tk 1] <n22g(X,L | ’
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asn — 00,6 > 0, A, > ocoand eA, — 0.

Fort¢ =3,i e{l,...,d3},putg(x,y) =
of Lemma 4.18, it follows from Lemma 4.4 and Assumption 2.11 that

" _. |4
S [[8f 7] = 5 2 (xh ekt eomig )
=1

asn — 00,6 > 0, A, > ocoand eA, — 0. O

Proof of Theorem 3.2 From Theorem A.3 in Shimizu (2007) and Lemmas 4.16 to 4.20,

n

T
1 d 1 d. 1 d d
Anei= 0 (&6l 8l 8 E L ER) SN (0 1)

k=1

4
% (x,y, ao)‘ . Then, similarly to the proof

]-',H] LA

asn — 00, & — 0, Ay — 00, eAe — 0,A2/n — 0 and A, f‘zlf4v2/clnﬂ fao(z)dz — 0 with
lim(e?n)~! < o0o. Also, it follows from Lemmas 4.11 to 4.15 under Assumption 2.12 that

2 P 2, (W
&2 (o (9)) &2 ( ot (9))1.’/ 0
Wy W6 ' P
Cen(0) = (3(,,,3/;]. (9)),;,- (3(,,.3(,]. (9)>u 0 — —1Iy, (4.16)
W,
0 0 (30{,‘30(]' (9))131

asn — 00, > 0, A; —> 00, €A — 0, Ag/n — O and XA, f‘zl<4v2/qnp Jao(2)dz — 0 with

lim(szn)_1 < 00, uniformly in 8 € ®. Indeed,

9%a £
. " s (X n)
2, Ve (0)=Z{AZX8—*61(XU( W )]%ww
i pot (X5, 0)

da da

1 i Oni Ok (X’Sk*l’“)
- 2
e 16 GRS

n

) :—ZZ{AZXS a(th ,,u)}

da_ & b (ye
i (Xion) 32 (X0 0)
X

p .
lcz-&p — —I{J,

5 Wy,
EN—
3/1,,‘80]‘

14
1Cl:l.w — 0,

3
|b(th l’U)}
1 0b
az\pn’e 1 Z ’A"XE — 7L1(th ) M)‘ 41 d (Z(‘)a,') (Xs 0) |
— — _— s Cn,s.p
80i80] ni— |8b(th 1’0)| 90 fe—1 X
ab db
2 < ALY o )2 90i 90} ( fgk—l’a)l P b
- _ *Cl s n,e, — ,
&2 L S BT NS 2
W, . 1 Z 1 3% e MXTON
=—) - s ) Ipne
801,30(] T e = daidoj X e D"

n
1 ¢ 0 ATX®
Zii’l (x5 S5 ) 1 > -
= lo|* da; Ao - & k

@ Springer



400 Statistical Inference for Stochastic Processes (2023) 26:361-411

where ¢(x, v, o) :=exp ¥ (x, y, «). Since

g1 (,&n,s — o)
Dy e \/E(Un,a —o00) | = Ane,
kY% )\s(&n,s — o)

where

1
Dy e = /0 Che (@0 + u(0y,e — 6)),

the conclusion follows by the same argument in the proof of Theorem 1 in Sgrensen and
Uchida (2003). O

5 Examples

This section is devoted to give some examples of densities which satisfy Assumptions 2.9
to 2.12. For simplicity, suppose that ¢(x, ) is an enough smooth postive function on / )fo x 03,
and derivatives of ¢ are uniformly continuous. Let D is the interior of the common support
of { fulaco,. €.

>0 forze Dy,

fa(Z) [

=0 otherwise.

Note that y € D (= RorRy) if and only if y/c(x, o) € Dy for (x, ) € Ij?o X ©3 owing
to Assumption 2.4. If (x, y, o) € I)‘EO X Dy x O3,

” A,
o T G ()

M _y
% (x’ y. a) _ _a(lOgC) (x, a) <1 + y% (x’ y, (X)) + M
30[/ 30(] ay c(x, ) fu (ﬁ)

for (x,a) € I;fo X ©3. The values of these functions may be undefined if (x, y, ) €
1 )‘30 x 0Dy x ©3. Otherwise their values are equal to zero.

First, we show an example such that the class of jump size densities satisfies Assump-
tion 2.4 (i).

Example 5.1 (Normal distribution) Let ®3 be a smooth open convex set which is compactly
contained in R x Ry x R®=2 and let f, be of the form

1
A /2710{%

2
I—a
Ja(2) = exp <—|1|> fora = (ay, a2) € O3.

2
205

Then,

y 2
o il

o on IJ‘CSO x R x ©3.
2

1
Yx,y,a) =—loge(x, @) — 3 log(2ma3) —
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Since
7 —a 31, z—a 3, 1 (z—ap)?
fa@ =—"—F—fu(@), ()= fo@), =@ ={-——+ =1 fal2),
o 0oy o dorn o a;

we have

oy 1 1 y

7(%)”0{):_ - -y,

ay c(x,a) o c(x,a)

3 a(l 3 oo

Wy = =208 (¢ oy (1452 (a0 ) - B 2

o3| doy ay aye(x, a)

Y d(logc) oy

7(95»)”05):_ (X,Ol) 1+y7(x,y»f¥)

dan dan dy

1 1 |C(xy,a) - Ol]|2
c(x, ) o ag ’

oY d(logc) oY

7()‘,)’705):_ (X,(X) 1+)’7(X7)’»0‘)

%) 0ot ay
for (x,y,@) € ijo xRy x®3and j = 3, ..., ds. Furthermore, the derivatives of ¢ and log ¢

with respect to « are bounded on / )‘30 x ®3, and so

(x,y, )| <C +|yD,

32
‘Bocjay
B

80{,-80@

(x,y, )

< C(+|y[) for(x,y,a) €I} xR x O,

where C is a constant not depending on (x, y, ). Thus, Assumptions 2.9 to 2.12 are satisfied.

Next, we show examples such that the class of jump size densities satisfies Assumption 2.4

(ii).
Example 5.2 (Gamma distribution) Let ©3 be a
Ry x (1, 00) x R®=2 and let f, be of the form

1
[(an)a}?
0

Jfa(2) =

for @ € ®3. Then,

Yx,y,a) =—logc(x,a)—logI'(ar) —ar logag

Since
-1 1
fo/t(z) = (aZ - 071> fo (D),
o (e, ) _
%(Z) = ( M + a%> Jo(2), b (@) =

az—le

n open interval compactly contained in

—z/ay

(z > 0),

(z<0)

+(@—1)logz—— on I} xRy xO3.
o

M)
[ (a2)

{

—loga; +10gZ} Ja(2),
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for z > 0 and o € ®3, we have

31// oy — 1 1
87 ()C, Yy, C() = - 5

y y arc(x, o)
d d(logc 0 1 L«
‘gﬁdﬂﬁi—(g)@ﬂwﬁ+%ﬂwdﬂo+ e
oy ooy dy c(x, ) ar aje(x, o)
Y d(log ) Y
oy = 2 o) (1450 (e o)
dan dan ay

1 () y
— —1 1 ,
c(x, @) { [(a2) oge +log c(x, @)

oV d(logc) Iy
S ye@) = =5 () (145 (3 )

a; oo ay
for (x,y,a) € Iy xRy x®zand j =3, ..., d3. Furthermore, the derivatives of ¢ and log ¢

with respect to « are bounded on / )‘30 X O3, and SO

9%y

3 <C{+yDh for(x,y,a)eI)fOXRx®3,
ajdy

82
(x.y.@)| < ‘ V(e y.a)

Oa; o

where C is a constant not depending on (x, y, ). Thus, Assumptions 2.9 to 2.12 are satisfied,
and p in Theorems 3.1 and 3.2 can be taken as p € (0, 1/4). Here, we remark that

1
/*fa(z)dz < oo ifandonlyif o > 1.
Z

Example 5.3 (Inverse Gaussian distribution) Let ®3 be smooth, open, convex and com-
pactly contained in Rﬁ_ x R%~2 and let f, be of the form

f@‘{/mwwﬂ“ﬁmﬂ@>m
2() =
0

(z<0)

for @ € ®3. Then,

2
U ( ) log 22— 3log —2 “ e _al‘ I xRy x©
X, y,a) = og — —3lo - on 1’ xRy x ©3.
Y 2¢(x, o) £on g c(x, ) 207y *0 + 3
Since
3 wmE—a)  az—a)?
! — —_—— — J—
fa(Z) - { 2Z O[%Z 2011z2 fa(Z)y
9 0z —a)) 1 z—a?
%mz———wm ﬁn—g—u—ffmm
o] 0‘1 20 207z
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for z > 0 and o € ®3, we have

2
% (x y O{) _ 3 az {c(x),ot) - O“} @2 cloa) O“’
s Vs - 5 = 2 - 2 )
ay 2y ayy 204 c()yc’a)
y
0 (1 . 9 [0%) ( ; - Oll)
W e yoo = 202D (g (1 Y (x,y,a)> e e E
oy ooy ay ajc(x, a)
0 d(logc 0
Wy = =202 (¢ oy (1432 (4, y, 0
dap day dy
) 2
n 1 _ |c(xv,ot) _al|
2000¢(x, o) Zafy
0 d(logc 0
W e yiay =~ 202D (g (1+y£(x,y,a)>
0o 0o ay
for (x, y, @) € Ij?o xRy x®3and j = 3, ..., d3. Furthermore, the derivatives of ¢ and log ¢

with respect to « are bounded on / jfo X ©3, and so

82

IV v

su
P dajady

(x,a)el'éo x 03

1
< 0(72> asy — 0,
[¥]

for (x,y,a) € ijo x Ry x ©3 with y/c(x, @) # «p. Thus, Assumptions 2.9 to 2.12 are
satisfied, and p in Theorems 3.1 and 3.2 can be taken as p € (0, 1/8).

Example 5.4 (Weibull distribution) Let ®3 be smooth, open, convex and compactly con-
tained in Ry x (1, 00) x RB2 and let f, be of the form

fa(@) = a1 \oj
0 (z<0)

ar—1
* (i) e~ @/a)*®? (z > 0),

for @ € ®3. Then,

1//(x, y’a) =

{logaz—azlogal—(az—l)log Y )} onI)fOXR+><®3.

cx,a

1
c(x,a)

Since

) o — 1 z ar—1
fo@) = - (*) fa@) (2 #0),
Z o]

(%) )
gﬁ@:—%{H(i) }fa(z), af"‘(z)z{iﬂogi—(i) logi}fa@
o o o] dap o) o o] o
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for z > 0 and o € ®3, we have

oy @-1 o N

o (X, Yy, O[) = -

dy y c(x,a) \aje(x, o)

0 d(logc 0 o @2
i(x’yva)=_ ( g)(-xva) 1+y71//(x!y’a) _72 1+ L )
oag oo ay ajc(x, a) ajc(x, a)
oY d(logc) oy
Sy = =l () <1+y—<x,y,a)

[0%) 30!2 8y

1 1 “2
+ — +log—2>— — z log —2>— 1,
c(x,a) | oz aje(x, o) aje(x, a) ajc(x, o)

oV 8(10 c) oy
Fyo (x,y,0) = £ (x, ) (1 +y—(x,y )

oj oaj ay
for (x, y, ) € 1)‘30 xRy x®3and j =3, ..., d3. Furthermore, the derivatives of ¢ and log ¢

with respect to « are bounded on / )‘?0 X ©3, and so

1
§0<7> asy — 0,
y

for (x,y,a) € 1)‘?0 x R x ®3 with y/c(x, @) # a1, where C is a constant not depending on
(x, y, «). Here, we remark that

2

sup (x, y, @)

(x, oz)EI‘S X 03

dajady

1
/*fa(y)dy < oo ifandonlyif ap > 1
y

and that there exists a constant C > 0 such that
_ -1 -1
Iy Mog y| < [y727 log yi| + [y5> " logys| + C fory; <y < y.

Thus, Assumptions 2.9 to 2.12 are satisfied, and p in Theorems 3.1 and 3.2 can be taken as
p € (0,1/4).

Example 5.5 (Log-normal distribution) Let ®3 be smooth, open, convex and compactly
contained in R x [0, 00), and let f, be of the form

1 292
—(log z—a1)* /205 ( 0)
—e z>0),
fa(@) = V2rasz
0 (z<0)
for @ € ®3. Then,
1 2many 1 g s
Ly, ) = —1 - — — 1 R 3.
vy, @) c(x,oz){ 08 c(x, o) 20 c(x, ) 1 O L X R XT3
Since
1 logz — oy
fa(@) = {— - gz} S (2),
z a5z
9 logz — |logz — a|?
aﬁ(@ 2B @), ﬁ( )= {— 2 )
aq a2 2% Olz
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for z > 0 and o € ®3, we have

0 1

lf(x,y,ol)z—f ) + o3 + log Y

ay a%y c(x, o)

3 ad 3 log gy — a1
W ey =208 (g (1 T4 (x,y,oﬂ) +—
doy doy ay ayc(x, a)
oY d(logc) oY

— (,y,0)=— o)\ L+y—(x,y, )

dan dan dy

1 1 log gy —al?
_ + - s s
c(x, ) o Olg

oY d(logc) oy
T(xﬁyvo{):_ (.X,D[) 1+y7(x,y701)

aj oa; ay

for (x, y, @) € ijo xRy x®3and j = 3, ..., d3. Furthermore, the derivatives of ¢ and log ¢

with respect to « are bounded on ijo x O3, and so
32

S
up dajoy

(x,a)el)‘fox(~)3

(x,y, )

1 1
§0<7+710gy> asy — 0,
y oy

for (x,y,a) € I)‘fo x R x ®3 with y/c(x, @) # a1, where C is a constant not depending on
(x, y, @). Here, we remark that

/ (1 + 10gy> Ja(y)dy < 00
y y

and that there exists a constant C > 0 such that

=

+C fory; <y =<y.

1 1 1
‘*logy — log y +‘f10gyz
Y1 Y2

y
Thus, Assumptions 2.9 to 2.12 are satisfied, and p in Theorems 3.1 and 3.2 can be taken as
p € (0,1/4).

Remark 5.1 As in the assumptions of Theorems 3.1 and 3.2, the range of p depends on ¢
in Assumption 2.10 (ii.b) and Assumption 2.12 (ii.b). So, the differences of the ranges of p
in the examples above are caused by the differences of ¢g: ¢ = 2 in Example 5.3, ¢ = 1 in
Examples 5.2 and 5.4, and any g € [0, 1) in Example 5.5.

6 Numerical experiments

In this section, we show some numerical results of our estimator for the Ornstein-Uhlenbeck
processes given by

dX8 = —poX2dt + eJoodW; + edZ;e, X5 =xo € R, (6.1)

where Z,}‘ ¢ is acompound Poisson process with the Lévy density f;,, and with the intensity A,.
In particular, we fix xo = 0.8 and A, = 100, and we employ the inverse Gaussian densities
fo’s as in Example 5.3.
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Table 1 Sample means (with standard deviations in parentheses) of é,,,g’s, based on 1000 sample paths from
the OU process (6.1) with inverse Gaussian f, asin Example 5.3 with (1, 09, @g1, @g2) = (1.0, 2.0, 1.2, 0.5)
and with Np = A (= 100)

n = 200 n = 500 n = 1500 n = 5000 true
" e =1.00 0.989141 1.016899 1.007082 1.002970 1.0
(0.068480) (0.061120) (0.050175) (0.048399)
e =0.10 0.978554 1.024855 1.010180 1.001047
(0.060345) (0.055804) (0.045878) (0.043720)
e =0.01 0.912885 1.005487 1.010121 1.000906
(0.030783) (0.026575) (0.026601) (0.023244)
- e =1.00 1.920753 1.886210 1.068844 2.002727 2.0
(0.165435) (0.086929) (0.053557) (0.039613)
e =0.10 1.942879 1.874213 1.969947 2.002262
(0.163257) (0.085449) (0.050984) (0.035897)
e =0.01 2.379172 1.932349 1.961293 2.000971
(0.179838) (0.074998) (0.053425) (0.035739)
a e = 1.00 1.326379 1160758 1.192697 1.178391 12
(0.288811) (0.200419) (0.222514) (0.211085)
e =0.10 1.381731 1.129643 1.173607 1.188770
(0.308788) (0.205739) (0.204944) (0.212477)
e = 0.01 1731430 1.231199 1.153611 1.182000
(0.371265) (0.259936) (0.204695) (0.210043)
@ e =1.00 0.099654 0.358790 0.500877 0.533962 05
(0.060910) (0.095974) (0.155927) (0.215146)
e =0.10 0.109767 0.322201 0.483286 0.527680
(0.067662) (0.096333) (0.144849) (0.202786)
e =0.01 0.266864 0.077035 0.363671 0.490374
(0.177911) (0.055310) (0.140516) (0.208392)

To avoid the discussion about how we find some ’appropriate’ v, and p, we suppose that
the intensity A, = 100 is known, and we set

CA',iVD = HAZXe is not contained in the [Np7 largest positive numbers of {A;’ Xg} - I ,
j=l,.n
ﬁ/iVD = {AZXg is one of the [Np] largest positive values of [A;’ Xg] - } ,
j=1,...n

where Np > 0 and [-] is the ceil function (we take Np = A, in Table 1, and Np =
50, 100, 150 in Table 2). Then we replace 1c,f’5"’ and lD;:,e.p in (3.1) with

1 élivD and 1 bliVD7 respectively,
and we calculate our estimator é,,ya = (fn.e, On.es An.e.1, One2) as in (3.2) from a sample
path of (6.1) under the true parameter (o, 00, o1, ®02). We iterate this calculation 1000
times with n = 200, 500, 1500, 5000 and ¢ = 1, 0.1, 0.01. and we summarize the averages
and the standard deviations of 6, ;’s in Tables 1 and 2.
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Table 2 Sample means (with standard deviations in parentheses) of é,,,g’s, based on 1000 sample paths from
the OU process (6.1) with inverse Gaussian f, asin Example 5.3 with (1, 09, @g1, @g2) = (1.0, 2.0, 1.2, 0.5)
and with (n, &, A¢) = (5000, 0.01, 100)

M o o o
true 1.0 2.0 1.2 0.5
Np =50 0.851616 3.028911 2.103949 3.025209
(0.045741) (0.424354) (0.392786) (0.971591)
Np =100 1.000666 2.001121 1.183114 0.484350
(0.024807) (0.037437) (0.211747) (0.205930)
Np =150 1.040850 1.933562 0.807600 0.144996
(0.024657) (0.022237) (0.143919) (0.022638)

The numbers written in bold are computed by using the same threshold as in Table 1, i.e., Np = 100

Remark 6.1 Note that ﬁ,ﬁvn (and C ,iv D) are defined by using the whole data {ij} J=l,ens
which conflicts Assumption 2.8, however, for simplicity of our numerical experiment we
replace DZ’e’p with IA),)(‘E above. We give an intuitive explanation of the reason why we use
this setting as follows: The continuous increments go to zero and the jumps are remained as
n — oo with ¢ fixed (recall that in our asymptotics n increases much faster than 1/e and A,
as in Theorems 3.1 and 3.2), and in this case, from Lemma 4.8, {A} X® | AR X® > vy /n”}
with ‘appropriate’ v,; and p would be the A, largest numbers of {X f/, }j in probability. Hence,

we replace DZ’S’p with [A)k‘g .

In Table 1, the averages of (u, o, a1, @) becomes close to the true paramter as n grows
and ¢ goes to zero. However, the standard deviation of «, for each fixed ¢ increases as n
grows. The reason why it happens is expected as follows: If n is not enough large with
fixed ¢, then the continuous increments in A} X® is too larger than the jumps. In this case,
some of A} X®’s including positive jumps may be negative, and furthermore even positive
A} X®’s may be closer to zero than the jumps included in them. This implies that A} X® with
small jumps are ignored and the remained A} X® regared as jumps are underestimated, and
therefore, the mean and standard deviations of &, are near zero when n is few with fixed ¢.

In Table 2, we consider the following two cases: One is Cz's’p is too loose, i.e., the case

Np = 50, and the other is C,?’g’p is too tight, i.e., the case Np = 150. In the former case,
some small jumps are not removed for the estimation of (i, ') and are in short supply for
the estimation of «. Thus, it is natural that o, a1, o take bigger values than true values. In
the latter case, some Brownian increments are mistakenly regarded as jumps, and so «; is
closer to zero than the true value.
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A Appendix

In this section, we state and prove some slightly different versions of well-known results.
More precisely, we prepare Lemma A.2 as localization of the continuous mapping theorem.
Lemma A.3 is a slightly different version of Lemma 9 in Genon-Catalot and Jacod (1993).

LemmaA.1 Let X be a Banach space, and let {gp}gcq be a family of functions from X to R,
and let Ty, be the composition operator on L*°([0, 1]; X) generated by gy, i.e.,

Toe(3.) == go(3) fory. € L*([0, 1]; X).

Suppose that y. is a version of a function of C ([0, 1]; X) in L*°([0, 1]; X), and that {gg}pce is
equicontinuous at every points inImage(y.) := {y; |t € [0, 11}. Then, there is a neighborhood
ANy of y.in L= ([0, 1]; X) such that {Tg@ } is a family of operators from A5, to L*°([0, 1]),
and is equicontinuous at y..

6e®

Proof Fix an arbirary n > 0. For each x € Image(y.), there exists §, > 0 such that if
||x —x’”X < 8¢, x,x" € X, then

n
sup [go(x) — go (x| < 7
0e®

Since Image(y.) is compact in X, there are finite points xi, ..., x; € Image(y.) such that

k
Image(y.) C U B(xi, 6y, /2),

i=1

where B(x;, 8y, /2) is the ballin X centered at x; withradius 8, /2. If [|3. — .|| poo(0,17:.20) < 0
with § := min{éy, /2, ..., 8, /2}, then for a.e. t € [0, 1] there is i; € {1, ..., k} such that
Yi, Yi € B(xi,, 8x;,)- Thus, we obtain

sup |go (1) — 8o (y)| < sup |go(Fr) — go(xi,)| + sup |go (xi,) — go ()| < n.
fe® fe® fe®

that is,
sup [lgo (3.) — g0 (¥l Loogo,17) < 1-
0e®
This implies the conclusion. O

We prepare the following lemma as localization of the continuous mapping theorem.

LemmaA.2 Under the same assumptions as in Lemma A.1, suppose that {g(-, 0)}gcq is
equicontinuous at every points in Image(y.) := {y; |t € [0, 11}, and that (Y'),c; is a net
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of X-valued bounded random processes on [0, 1] with a directed set 1. If the net (Y'),c;
converges in probability to y. in L°°([0, 1; X)), i.e.,

50

’

” Yi—y. ||L°°([O,1];X)

then P
YL, 0) — L0 o0 0.
sup lg!.6) = 8. o1y

Proof Take an arbitrary n > 0. It follows from Lemma A.1 that there exists a sufficiently
small 8§ > 0 such thatif [|3. — y.|l oo (j0,1): ) < &, then {g(F., D) }pee C L([0, 1]) and

sup [1g(3., 0) — (v, Dl Lo jo,17) < 7,

0e®

and therefore,

F <Z”g lg(¥6) =8O Loqo.1 > ") =P (“ =3 o) > 5)'
pr

This implies the conclusion. O

Remark A.1 By the proof of Lemma A.2, it also follows that for any C; > 0,

P (sug le¥,6) = 8O 101 > C2> <P (”Y'L N P C1) ’
e
where C; depends only on Cy, g and Image(y.).

Lemma A.3 Suppose that (X, || - ||) is a Banach space, {(n, €)} is a directed set and {g;”}i
is a filtration for each n, ¢. Let Xi" ¢ U be X-valued gi"’s-measurable random variables.

(i) If foranyn > 0

n
lim P (Z E[I |6 ] = n) =0,
i=1
n
. n,e _
Eif?P(XI:X" >n)_0.
=
n
lim sup P <ZE [||Xl,”75|| ‘gl”jl] > M) =0,

M— o0 n,e i
> M) =0.

then for any n > 0

(i) If

then

n
n,e
Xi
i=1

lim sup P (
M—0o0 ¢ .
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Proof Since for any n,n’ > 0

n n
P =0 SB[ ]gs] = o

i=1 i=1
1 B n
<-E xC1 1
n ; ' { o E[nx,-“u 9,-”;5.}9;'}
1 B n—1
< £ |(E[ben]or ]+ ) 1
n n n—1 ; i {Z?:lEI:”X:” sH gfnfli|§’7/]
1 B n—1 77/
< —-E n +Z<”Xn£ E["X ”‘ngl]) n.e n,e <
n P {E[Hxi' Il Qigl]ﬁn’} n
we obtain
n
P> =0 <f+P ZE[HX I g ] >
i=1 i=1
Thus, the assertions (i) and (ii) follows. ]

RemarkA.2 When X = R, this lemma can be shown by the same argument in the proof
of Lemma 9 in Genon-Catalot and Jacod (1993). However, the argument does not work in
general, since we may not have Lenglart’s inequality (e.g., Lemma 3.30 in Jacod and Shiryaev
Jacod and Shiryaev (2003)) when X is a Banach space.

Remark A.3 We have an immediate consequence from this lemma that

n n
SE[I|g ] = optne = 3 A =000,
i=1

i=1
n
SE[1] 9] = 0ptne) = A = 0y

i=1 i=1

where r, . € R.
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