Skip to main content
Log in

Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The code used in this paper is available at https://github.com/klu5893/LDOUP-Calibration.

References

  • Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Jensen JL, Sørensen M (1998) Some stationary processes in discrete and continuous time. Adv Appl Probab 30(4):989–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Pedersen J, Sato K (2001) Multivariate subordination, self-decomposability and stability. Adv Appl Probab 33(1):160–187

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc B 63(2):167–241

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer H (1992) Measure & integration theory. Walter de Gruyter, Berlin

    MATH  Google Scholar 

  • Benth FE, Kallsen J, Meyer-Brandis T (2007) A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing. Appl Math Finance 14(2):153–169

    Article  MathSciNet  MATH  Google Scholar 

  • Benth FE, Saltyte-Benth J (2006) Analytical approximation for the price dynamics of spark spread options. Stud Nonlinear Dyn Econ 10(3)

  • Bertoin J (1996) Lévy processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Brockwell PJ, Davis RA, Yang Y (2007) Estimation for nonnegative Lévy-driven Ornstein-Uhlenbeck processes. J Appl Probab 44(4):977–989

    Article  MathSciNet  MATH  Google Scholar 

  • Buchmann B, Kaehler B, Maller R, Szimayer A (2017) Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing. Stoch Proc Appl 127(7):2208–2242

    Article  MathSciNet  MATH  Google Scholar 

  • Buchmann B, Lu KW, Madan DB (2019) Calibration for weak variance-alpha-gamma processes. Methodol Comput Appl Probab 21(4):1151–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Buchmann B, Lu KW, Madan DB (2019) Weak subordination of multivariate Lévy processes and variance generalised gamma convolutions. Bernoulli 25(1):742–770

    Article  MathSciNet  MATH  Google Scholar 

  • Buchmann B, Lu KW, Madan DB (2020) Self-decomposability of variance generalised gamma convolutions. Stoch Proc Their Appl 130(2):630–655

    Article  MathSciNet  MATH  Google Scholar 

  • Cariboni J, Schoutens W (2009) Jumps in intensity models: investigating the performance of Ornstein-Uhlenbeck processes in credit risk modeling. Metrika 69:73–198

    Article  MathSciNet  MATH  Google Scholar 

  • Cummins M, Kiely G, Murphy BB (2018) Gas storage valuation under multifactor Lévy processes. J Bank Finance 95:167–184

    Article  Google Scholar 

  • Endres S, Stübinger J (2019) Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes. Appl Econ 51(29):3153–3169

    Article  Google Scholar 

  • Fasen V (2013) Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to co-integration. J Econom 172:325–337

    Article  MathSciNet  MATH  Google Scholar 

  • Gottardo R, Raftery AE (2008) Markov chain Monte Carlo with mixtures of mutually singular distributions. J Comput Graph Stat 17(4):949–975

    Article  MathSciNet  Google Scholar 

  • Grabchak M (2020) On the simulation of general tempered stable Ornstein-Uhlenbeck processes. J Stat Comput Sim 90(6):1057–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin JE, Steel MFJ (2006) Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility. J Econom 134(2):605–644

    Article  MathSciNet  MATH  Google Scholar 

  • Grubbström RW, Tang O (2006) The moments and central moments of a compound distribution. Eur J Oper Res 170:106–119

    Article  MathSciNet  MATH  Google Scholar 

  • Gushchin A, Pavlyukevich I, Ritsch M (2020) Drift estimation for a Lévy-driven Ornstein-Uhlenbeck process process with heavy tails. Stat Infer Stoch Process 23:553–570

    Article  MATH  Google Scholar 

  • Heijmans RDH, Magnus JR (1986a) On the first-order efficiency and asymptotic normality of maximum likelihood estimators obtained from dependent observations. Stat Neerl 40(3):169–188

  • Heijmans RDH, Magnus JR (1986b) Consistent maximum-likelihood estimation with dependent observations: the general (non-normal) case and the normal case. J Econom 32(2):253–285

    Article  MATH  Google Scholar 

  • Hu Y, Long H (2009) Least squares estimator for Ornstein-Uhlenbeck processes driven by \(\alpha \)-stable motions. Stoch Proc Appl 119(8):2465–2480

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J (2004) The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann Probab 32(3):1830–1872

    Article  MathSciNet  MATH  Google Scholar 

  • Jacod J, Protter P (1998) Asymptotic error distributions for the Euler method for stochastic differential equations. Ann Probab 26(1):267–307

    Article  MathSciNet  MATH  Google Scholar 

  • Jongbloed G, van der Meulen FH (2006) Parametric estimation for subordinators and induced OU processes. Scand J Stat 33(4):825–847

    Article  MathSciNet  MATH  Google Scholar 

  • Jongbloed G, van der Meulen FH, van der Vaart AW (2005) Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 11(5):759–791

    Article  MathSciNet  MATH  Google Scholar 

  • Liptser RS, Shiryaev AN (2001) Statistics of random processes: II. Applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Luciano E, Semeraro P (2010) Multivariate time changes for Lévy asset models: characterization and calibration. J Comput Appl Math 233(5):1937–1953

    Article  MathSciNet  MATH  Google Scholar 

  • Madan DB, Carr PP, Chang EC (1998) The variance gamma process and option pricing. Rev Finance 2(1):79–105

    Article  MATH  Google Scholar 

  • Mai H (2014) Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 20(2):919–957

    Article  MathSciNet  MATH  Google Scholar 

  • Masuda H (2004) On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process. Bernoulli 310(1):97–120

    MATH  Google Scholar 

  • Mathai A, Provost SB (1992) Quadratic forms in random variables: Theory and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  • Michaelsen M, Szimayer A (2018) Marginal consistent dependence modeling using weak subordination for Brownian motions. Quant Finance 18(11):1909–1925

    Article  MathSciNet  MATH  Google Scholar 

  • Peng Y, Fu MC, Hu J (2014) Gradient-based simulated maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck stochastic volatility models. Quant Finance 14(8):1399–1414

    Article  MathSciNet  MATH  Google Scholar 

  • Qu Y, Dassios A, Zhao H (2021) Exact simulation of gamma-driven Ornstein-Uhlenbeck processes with finite and infinite activity jumps. J Oper Res Soc 72(2):471–484

    Article  Google Scholar 

  • Sabino P (2020) Exact simulation of variance gamma-related OU processes: application to the pricing of energy derivatives. Appl Math Finance 27(3):207–227

    Article  MathSciNet  MATH  Google Scholar 

  • Sabino P, Cufaro Petroni N (2021) Gamma-related Ornstein-Uhlenbeck processes and their simulation. J Stat Comput Simul 91(6):1108–1133

    Article  MathSciNet  MATH  Google Scholar 

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sato K, Yamazato M (1983) Stationary processes of Ornstein-Uhlenbeck type. In: Itô K, Prohorov JV (eds) Probability theory and mathematical statistics. Springer, Berlin, pp 541–551

    Chapter  Google Scholar 

  • Sato K, Yamazato M (1985) Completely operator-selfdecomposable distributions and operator-stable distributions. Nagoya Math J 97:71–94

    Article  MathSciNet  MATH  Google Scholar 

  • Schervish MJ (1995) Theory of statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Hoboken

    Book  Google Scholar 

  • Semeraro P (2008) A multivariate variance gamma model for financial applications. Int J Theor Appl Finance 11(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Taufer E, Leonenko N (2009) Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes. J Stat Plan Inference 139(9):3050–3063

    Article  MathSciNet  MATH  Google Scholar 

  • Tran NK (2017) LAN property for an ergodic Ornstein-Uhlenbeck process with Poisson jumps. Commun Stat Theory Methods 46(16):7942–7968

    Article  MathSciNet  MATH  Google Scholar 

  • Valdivieso L, Schoutens W, Tuerlinckx F (2009) Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type. Stat Infer Stoch Process 12:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Wu L, Zang X, Zhao H (2020) Analytic value function for a pairs trading strategy with a Lévy-driven Ornstein-Uhlenbeck process. Quant Finance 20(8):285–1306

    Article  MATH  Google Scholar 

  • Zhang S (2011) Transition law-based simulation of generalized inverse Gaussian Ornstein-Uhlenbeck processes. Scand J Stat 13(3):619–656

    MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang X (2008) Exact simulation of IG-OU processes. Methodol Comput Appl Probab 10(3):337–355

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang X (2009) On the transition law of tempered stable Ornstein-Uhlenbeck processes. Methodol Comput Appl Probab 46(3):721–731

    MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang X (2013) A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric \(\alpha \)-stable motions. Ann Inst Stat Math 65(1):89–103

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang X, Shuguang S (2006) Parametric estimation of discretely sampled Gamma-OU processes. Sci China Ser A 49(9):1231–1257

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Boris Buchmann for discussions and suggestions, and two anonymous referees for their helpful comments and suggestions. The author also thanks Liwei Cao for work on part of the code. The substantial majority of this work was done when the author was at the Research School of Finance, Actuarial Studies and Statistics, Australian National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Lu.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by ARC Grant DP160104737.

A The Connection Between LDOUPs and Self-Decomposability

A The Connection Between LDOUPs and Self-Decomposability

In this appendix, we review the well-established connection between LDOUPs and self-decomposability.

All self-decomposable distributions are infinitely divisible and there is a one-to-one correspondence between the stationary solutions of LDOUPs and self-decomposable distributions, which we summarise in the following lemma [see Sato (1999, Theorems 17.5 and 17.11)].

Lemma 5

Fix \(\lambda >0\) and let \(\mathbf{X}\) be the LDOUP given by (4) with BDLP \(\mathbf{Z}\sim L^n(\varvec{\mu },\varSigma ,\mathcal{Z})\).

  1. (i)

    For all \(\mathbf{Z}\sim L^n(\varvec{\mu },\varSigma ,\mathcal{Z})\) satisfying (6), there exists a \(\mathbf{Y}\sim SD^n\) such that \(\mathbf{X}\) has stationary distribution \(\mathbf{Y}\).

  2. (ii)

    For all \(\mathbf{Y}\sim SD^n\), there exists a \(\mathbf{Z}\sim L^n(\varvec{\mu },\varSigma ,\mathcal{Z})\) satisfying (6), unique in law, such that \(\mathbf{X}\) has stationary distribution \(\mathbf{Y}\).

  3. (iii)

    If \(\mathbf{Z}\sim L^n(\varvec{\mu },\varSigma ,\mathcal{Z})\) does not satisfy (6), then \(\mathbf{X}\) has no stationary distribution.

Furthermore, it is possible to convert between the characteristic exponents of the stationary distribution \(\mathbf{Y}\) and the BDLP \(\mathbf{Z}\) using the next result [see Sato (1999, Theorem 17.5) for (i) and Masuda (2004, Lemma 2.5) for (ii)].

Lemma 6

Fix \(\lambda >0\) and let \(\mathbf{X}\) be the LDOUP given by (4).

  1. (i)

    Let \(\mathbf{Z}\sim L^n(\varvec{\mu },\varSigma ,\mathcal{Z})\) satisfying (6) be the BDLP of \(\mathbf{X}\), then the stationary distribution \(\mathbf{Y}\) has characteristic exponent (19).

  2. (ii)

    Let \(\mathbf{Y}\sim SD^n\) be the stationary distribution of \(\mathbf{X}\). Suppose \(\varPsi _{\mathbf{Y}}\) is differentiable for all \(\varvec{\theta }\ne \mathbf{0}\) and \(\langle \nabla _{\varvec{\theta }} \varPsi _{\mathbf{Y}} (\varvec{\theta }),\varvec{\theta }\rangle \rightarrow \mathbf{0}\) as \(\varvec{\theta }\rightarrow \mathbf{0}\), then the BDLP \(\mathbf{Z}\) has characteristic exponent

    $$\begin{aligned} \varPsi _\mathbf{Z}(\varvec{\theta }) = \langle \nabla _{\varvec{\theta }} \varPsi _{\mathbf{Y}} (\varvec{\theta }),\varvec{\theta }\rangle ,\quad \varvec{\theta }\in \mathbb {R}^n. \end{aligned}$$

The next lemma is about \(\mathbf{Z}^*(\varDelta )\) defined in (7), it is implied by Sato and Yamazato (1983, Theorem 2.2) and Kac’s theorem. It explains why the observations of a LDOUP form a AR(1) process, and why the stationary solution of a LDOUP gives rise to self-decomposable distributions.

Lemma 7

Let \(\varDelta >0\) and \(\mathbf{Z}\sim L^n\). For \(t_0=0,t_1=\varDelta , \dots ,t_m= m\varDelta \),

$$\begin{aligned} \Bigg ( {\int _{t_{k-1}}^{t_k} e^{\lambda s}\,\mathrm{d}\mathbf{Z}(\lambda s)}\Bigg )_{k=1,\dots ,m} \end{aligned}$$

is an iid sequence equal in distribution to \(\mathbf{Z}^*(\varDelta )\), which has characteristic exponent (20).

Remark 15

Applying (4) at the times \(t=t_0,t_1,\dots ,t_m\), we have

$$\begin{aligned} \mathbf{X}(t_{k})= b\mathbf{X}(t_{k-1})+\mathbf{Z}_{b}^{(k)},\quad k=1,\dots ,m, \end{aligned}$$
(41)

where \(b=e^{-\lambda \varDelta }\) and \(\mathbf{Z}_{b}^{(k)}=e^{-\lambda \varDelta } \int _{t_{k-1}}^{t_k} e^{\lambda s}\,\mathrm{d}\mathbf{Z}(\lambda s)\). Now by Lemma 7, \(\mathbf{Z}_{b}^{(k)}{\mathop {=}\limits ^{D}}e^{-\lambda \varDelta }\mathbf{Z}^*(\varDelta )\), \(k=1,\dots ,m\), are iid, and \(\mathbf{X}(t_{k-1})\), being a function of \(\mathbf{X}_0,\mathbf{Z}_{b}^{(1)},\dots , \mathbf{Z}_{b}^{(k-1)}\) only, is independent of \(\mathbf{Z}_{b}^{(k)}\). \(\square \)

From (41), the observations \(\mathbf{X}(0),\dots ,\mathbf{X}(t_m)\) follow an AR(1) process with innovation terms \(\mathbf{Z}_{b}^{(k)}\), \(k=1,\dots ,m\). With a minor abuse of terminology, we call \(\mathbf{Z}^*(\varDelta )\) the innovation term. As noted in Barndorff-Nielsen et al. (1998, Sections 3 and 5), (41) satisfies (5) with stationary distribution \(\mathbf{Y}{\mathop {=}\limits ^{D}}\mathbf{X}(t_k){\mathop {=}\limits ^{D}}\mathbf{X}(t_{k-1})\), \(b=e^{-\lambda \varDelta }\) and \(\mathbf{Z}_b=\mathbf{Z}_{b}^{(k)}\). This demonstrates the connection between the stationary distribution of a LDOUP and self-decomposability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K.W. Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination. Stat Inference Stoch Process 25, 365–396 (2022). https://doi.org/10.1007/s11203-021-09254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-021-09254-4

Keywords

Mathematics Subject Classification

Navigation