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Abstract
We consider the problem of estimation of the drift parameter of an ergodic Ornstein–
Uhlenbeck type process driven by a Lévy process with heavy tails. The process is observed
continuously on a long time interval [0, T ], T → ∞. We prove that the statistical model is
locally asymptotic mixed normal and the maximum likelihood estimator is asymptotically
efficient.
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1 Introduction, motivation, previous results

In this paper, we deal with an estimation of the drift parameter θ > 0 of an ergodic one-
dimensional Ornstein–Uhlenbeck process X driven by a Lévy process:

Xt = X0 − θ

∫ t

0
Xs ds + Zt , t ≥ 0.

The process Z is a one-dimensional Lévy processwith known characteristics andwith infinite
variance. The process X is observed continuously on a long time interval [0, T ], T → ∞.
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The problem is to study asymptotic properties of the corresponding statistical model and to
show that the maximum likelihood estimator of θ is asymptotically efficient in an appropriate
sense. Although the continuous time observations are far from being realistic in applications,
they are of theoretical importance since they can be considered as a limit of high frequency
discrete models.

Since we deal with continuous observations, it is natural to assume that the Gaussian
component of the Lévy process Z is not degenerate. In this case, the laws of observations
corresponding to different values of θ are equivalent and the likelihood ratio has an explicit
form.

There are a lot of papers devoted to inference for Lévy driven SDEs. Most of the literature
treats the case of discrete time observations both in the high and low frequency setting. A
general theory for the likelihood inference for continuously observed jump-diffusions can be
found in Sørensen (1991).

A complete analysis of the drift estimation for continuously observed ergodic and non-
ergodic Ornstein–Uhlenbeck process driven by a Brownian motion can be found in Höpfner
(2014, Chapter 8.1).

For continuously observed square integrable Lévy driven Ornstein–Uhlenbeck processes,
the local asymptotic normality (LAN) of the model and the asymptotic efficiency of the
maximum likelihood estimator of the drift have been derived by Mai (2012, 2014) with the
help of the theory of exponential families, see Küchler and Sørensen (1997).

High frequency estimation of a square integrableLévy drivenOrnstein–Uhlenbeck process
with non-vanishing Gaussian component has been performed by Mai (2012, 2014). Kawai
(2013) studied the asymptotics of the Fisher information for three characterizing parame-
ters of Ornstein–Uhlenbeck processes with jumps under low frequency and high frequency
discrete sampling. The existence of all moments of the Lévy process was assumed. Tran
(2017) considered the ergodic Ornstein–Uhlenbeck process driven by a Brownian motion
and a compensated Poisson process, whose drift and diffusion coefficients as well as its jump
intensity depend on unknown parameters. He obtained the LAN property of the model in the
high frequency setting.

We also mention the works by Hu and Long (2007, 2009a, b), Long (2009) and Zhang and
Zhang (2013) devoted to the least-square estimation of parameters of theOrnstein–Uhlenbeck
process driven by an α-stable Lévy process.

There is vast literature devoted to parametric inference for discretely observed Lévy pro-
cesses (see, e.g. a survey byMasuda (2015)) and Lévy driven SDEs.More results on the latter
topic can be found e.g. in Masuda (2013), Ivanenko and Kulik (2014), Kohatsu-Higa et al.
(2017), Masuda (2019), Uehara (2019), Clément and Gloter (2015), Clément et al. (2019),
Clément andGloter (2019), Nguyen (2018) andGloter et al. (2018) and the references therein.

In this paper, we fill the gap and analyse a continuously observed ergodic Ornstein–
Uhlenbeck process driven by a Lévy process with heavy regularly varying tails of index −α,
α ∈ (0, 2), in the presence of a Gaussian component. It turns out that the log-likelihood
in this model is quadratic, however the model is not asymptotically normal and we prove
only the local asymptotic mixed normality (LAMN) property. We refer to Le Cam and Yang
(2000) and Höpfner (2014) for the general theory of estimation for LAMN models.

The fact that the prelimiting log-likelihood is quadratic automatically implies that the
maximum likelihood estimator is asymptotically efficient in the sense of Jeganathan’s con-
volution theorem and attains the local asymptotic minimax bound. Another feature of our
model is that the asymptotic observed information has spectrally positive α/2-stable distri-
bution. This implies that the limiting law of the maximum likelihood estimator has tails of
the order exp(−xα) and hence finite moments of all orders.
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The paper is organized as follows. In the next section we formulate the assumptions of
our model and the main results of the paper. Section 3 contains auxiliary results that will be
used in the proof of the main Theorem 2.5. In particular, we calculate the tail of a product
of two iid heavy-tail random variables (Lemma 3.2), a conditional law of inter-arrival times
of a Poisson process, and prove a technically involved Lemma 3.7. Eventually in Sect. 4, the
proofs of the main results are presented.

2 Setting and themain result

Consider a stochastic basis (�,F ,F,P), F being right-continuous. Let Z be a Lévy process
with the characteristic triplet (σ 2, b, ν) and the Lévy–Itô decomposition

Zt = σWt + bt +
∫ t

0

∫
|z|≤1

z Ñ (dz, ds) +
∫ t

0

∫
|z|>1

zN (dz, ds), (2.1)

where W is a standard one-dimensional Brownian motion, N is a Poisson random measure
on R\{0} with the Lévy measure ν satisfying

∫
R
(z2 ∧ 1) ν(dz) < ∞, Ñ is the compensated

Poisson random measure, and b ∈ R.
For θ ∈ R, let X be an Ornstein–Uhlenbeck type process being a solution of the SDE

Xt = X0 − θ

∫ t

0
Xs ds + Zt , t ≥ 0, (2.2)

where θ ∈ R is an unknown parameter. The initial value X0 ∈ F0 is a random variable
whose distribution does not depend on θ . Note that X has an explicit representation

Xt = X0e
−θ t +

∫ t

0
e−θ(t−s) dZs, t ≥ 0,

see, e.g. Applebaum (2009, Sections 4.3.5 and 6.3) and Sato (1999, Section 17).
Let D = D([0,∞),R) be the space of real-valued càdlàg functions ω : [0,∞) → R

equipped with Skorokhod topology and Borel σ -algebra B(D). The space (D,B(R)) is
Polish, andB(D) coincides with the σ -algebra generated by the coordinate projections. We
define a (right-continuous) filtration G = (Gt )t≥0 consisting of σ -algebras

Gt :=
⋂
s>t

σ
(
ωr : r ≤ s, ω ∈ D

)
, t ≥ 0.

For each θ ∈ R, the process X = (Xt )t≥0 induces a measure Pθ on the path space
(D,B(D)). Let

Pθ
T = Pθ

∣∣∣
GT

be a restriction of Pθ to the σ -algebra GT .
In order to establish the equivalence of the laws Pθ

T and Pθ0
T , θ, θ0 ∈ R, we have to make

the following assumption.
Aσ : The Brownian component of Z is non-degenerate, i.e. σ > 0.

Proposition 2.1 Let Aσ hold true. Then for each T > 0, any θ, θ0 ∈ R

Pθ
T ∼ Pθ0

T ,
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and the likelihood ratio is given by

LT (θ0, θ) = dPθ
T

dPθ0
T

= exp
(

− θ − θ0

σ 2

∫ T

0
ωs dm

(θ0)
s − (θ − θ0)

2

2σ 2

∫ T

0
ω2
s ds

)
, (2.3)

where

m(θ0)
t = ωt − ω0 + θ0

∫ t

0
ωs ds − bt −

∑
s≤t

�ωsI(|�ωs | > 1)

−
∫ t

0

∫
|x |≤1

x
(
μ(dx, ds) − ν(dx)ds

)

is the continuous local martingale component of ω under the measure Pθ0
T , and the random

measure
μ(dx, ds) =

∑
s

I(�ωs 	= 0)δ(�ωs ,s)(dx, ds)

is defined by the jumps of ω.

Proof See Jacod and Shiryaev (2003, Theorem III-5-34). 
�
Consider a family of statistical experiments(

D,GT , {Pθ
T }θ>0

)
T>0

. (2.4)

Our goal is to establish local asymptotic mixed normality (LAMN) of these experiments
under the assumption that the process Z has heavy tails. We make the following assumption.
Aν : The Lévy measure ν has a regularly varying heavy tail of the order α ∈ (0, 2), i.e.

H(R) :=
∫

|z|>R
ν(dz) ∈ RV−α, R > 0.

In otherwords, H : (0,∞) → (0,∞) and there is a positive function l = l(R) slowly varying
at infinity such that

H(R) = l(R)

Rα
, R > 0.

Let us consider the function

H̃(R) = α

∫ ∞

R

H(z)

z
dz, R > 0.

Since H(z) > 0, z > 0, the function H̃ is absolutely continuous and strictly decreasing.
Moreover, by Karamata’s theorem, see e.g. Resnick (2007, Theorem 2.1 (a)), applied to the
function H(z)

z ∈ RV−α−1 we obtain the equivalence

lim
R→∞

H̃(R)

H(R)
= lim

R→∞

α

∫ ∞

R

H(z)

z
dz

H(R)
= 1.

We use the function H̃ to introduce the continuous andmonotone increasing scaling {φT }T>0

defined by the relation
1

φT
:= H̃−1

( 1

T

)
, (2.5)

where H̃−1(R) := inf{u > 0 : H̃(u) = R} is the (continuous) inverse of H̃ . It is easy to see
that φT ∈ RV−1/α .
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Remark 2.2 We make use of the absolutely continuous and strictly decreasing function H̃
just for convenience in order to avoid technicalities connected with the inversion of càdlàg
functions. For instance, one can equivalently defineφT := (

H←(1/T )
)−1 for the generalized

inverse H←(R) := inf{u > 0 : H(u) > R}, see Bingham et al. (1987, Chapter 1.5.7).

Remark 2.3 ByTheorem17.5 in Sato (1999), for each θ > 0 theOrnstein–Uhlenbeck process
X has an invariant distribution if

∫
|z|>1 ln |z| ν(dz) < ∞. The latter inequality easily follows

from Assumption Aν and Potter’s bounds (3.2).

Example 2.4 Let the jump part of the process Z be anα-stable Lévy process, i.e. forα ∈ (0, 2)
and c−, c+ ≥ 0, c− + c+ > 0, let

ν(dz) =
( c−

|z|1+α
I(z < 0) + c+

z1+α
I(z > 0)

)
dz.

Then

H(R) = H̃(R) = c− + c+
αRα

,

H̃−1(T ) =
(c− + c+

α

)1/α 1

T 1/α ,

and

φT =
( α

c− + c+

)1/α 1

T 1/α .

The main result is the LAMN property of our model.

Theorem 2.5 Let Aσ and Aν hold true. Then the family of statistical experiments (2.4) is
locally asymptotically mixed normal at each θ0 > 0, namely for each u ∈ R

Law
(
ln LT (θ0, θ0 + φT u)

∣∣∣Pθ0
T

)
→ N

√
S(α/2)

2σ 2θ0
u − 1

2

S(α/2)

2σ 2θ0
u2, T → ∞,

where N is a standard Gaussian random variable and S(α/2) is an independent spectrally
positive α/2-stable random variable with the Laplace transform

Ee−λS(α/2) = e−�(1− α
2 )λα/2

, λ ≥ 0. (2.6)

Theorem 2.5 is based on the following key result.

Theorem 2.6 Let Aσ and Aν hold true. Then for each θ0 > 0

Law
(
φ2
T

∫ T

0
X2
s ds

∣∣∣Pθ0
T

)
→ S(α/2)

2θ0
, T → ∞,

where S(α/2) is a random variable with the Laplace transform (2.6).

Corollary 2.7 Let Aσ and Aν hold true. Then for each θ0 > 0

Law
(
φT

∫ T

0
Xs dWs, φ

2
T

∫ T

0
X2
s ds

∣∣∣Pθ0
T

)
→

(
N

√
S(α/2)

2θ0
,
S(α/2)

2θ0

)
, T → ∞. (2.7)

Proposition 2.1 and Theorem 2.5 allow us to establish asymptotic distribution of the
maximum likelihood estimator θ̂T of θ . Moreover, the special form of the likelihood ratio
guarantees that θ̂T is asymptotically efficient.
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Corollary 2.8 1. Let Aσ hold true. Then the maximum likelihood estimator θ̂T of θ satisfies

θ̂T = θ0 −
∫ T
0 ωs dm

(θ0)
s∫ T

0 ω2
s ds

. (2.8)

2. Let Aσ and Aν hold true. Then

Law
( θ̂T − θ0

φT

∣∣∣Pθ0
T

)
→ σ

√
2θ0 · N√

S(α/2)
, T → ∞. (2.9)

Themaximum likelihood estimator θ̂T is asymptotically efficient in the sense of the convo-
lution theorem and the local asymptotic minimax theorem for LAMNmodels, seeHöpfner
(2014, Theorems 7.10 and 7.12).

Remark 2.9 It is instructive to determine the tails of the random variable N/
√
S(α/2): for

each α ∈ (0, 2)

lim sup
x→+∞

x−α lnP
( |N |√

S(α/2)
> x

)
< 0, (2.10)

and in particular all moments of the r.h.s. of (2.9) are finite.

3 Auxiliary results

We decompose the Lévy process Z into a compound Poisson process with heavy jumps, and
the rest. Consider the non-decreasing function RT = T ρ : [1,∞) → [1,∞), where ρ ≥ 0
will be chosen later.

Denote

ηTt =
∫ t

0

∫
|z|>RT

zN (dz, ds),

ξ Tt = σWt +
∫ t

0

∫
|z|≤RT

z Ñ (dz, ds),

bT = b +
∫
1<|z|≤RT

zν(dz),

ZT
t = Zt − ηTt = ξ Tt + bT t .

For each T ≥ 1, the process ηT is a compound Poisson process with intensity H(RT ), the
iid jumps {J Tk }k≥1 occurring at arrival times {τ T

k }k≥1, such that

P(|J Tk | ≥ z) = H(z)

H(RT )
, z ≥ RT ,

P(τ T
k+1 − τ T

k > u) = e−H(RT )u, u ≥ 0.

Denote also by NT the Poisson counting process of ηT ; it is a Poisson process with intensity
H(RT ).
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We decompose the Ornstein–Uhlenbeck process X into a sum

Xt = XT
t + XηT

t ,

XT
t : = X0e

−θ t +
∫ t

0
e−θ(t−s) dZT

s ,

XηT

t : =
∫ t

0
e−θ(t−s) dηTs . (3.1)

Since H(·) ∈ RV−α and φ· ∈ RV−1/α , α ∈ (0, 2), by Potter’s bounds (see, e.g. Resnick
(2007, Proposition 2.6 (ii)) for each ε > 0 there are constants 0 < cε ≤ Cε < ∞ such that
for u ≥ 1

cε

uα+ε
≤ H(u) ≤ Cε

uα−ε
,

cε

u
1
α
+ε

≤ φu ≤ Cε

u
1
α
−ε

. (3.2)

The following Lemma gives useful asymptotics of the truncated moments of the Lévy
measure ν.

Lemma 3.1 1. For α ∈ (0, 1] and any ε > 0 there is C(ε) > 0 such that∫
1<|z|≤R

|z|ν(dz) ≤ C(ε)R1−α+ε. (3.3)

2. For α ∈ (1, 2) there is C > 0 such that∫
1<|z|≤R

|z|ν(dz) ≤ C . (3.4)

3. For α ∈ (0, 2) and any ε > 0 there is C(ε) > 0 such that∫
1<|z|≤R

z2ν(dz) ≤ C(ε)R2−α+ε. (3.5)

Proof To prove the first inequality we integrate by parts and note that for any ε > 0∫
1<|z|≤R

|z|ν(dz) = −
∫

(1,R]
z dH(z) = −zH(z)

∣∣∣R
1

+
∫

(1,R]
H(z) dz

≤ H(1) + Cε

∫ R

1

dz

zα−ε
.

Hence (3.3) follows for any ε > 0 and (3.4) is obtained if we choose ε ∈ (0, α − 1). The
estimate (3.5) is obtained analogously to (3.3). 
�

The next Lemma will be used to determine the tail behaviour of the product of any two
independent normalized jumps |J Tk ||J Tl |/R2

T , k 	= l.

Lemma 3.2 Let UR ≥ 1 and VR ≥ 1 be two independent random variables with probability
distribution function

P(UR > x) = P(VR > x) = F̄R(x) = H(x R)

H(R)
, R ≥ 1, x ≥ 1.

Then for each ε ∈ (0, α) there is C(ε) > 0 such that for all R ≥ 1 and all x ≥ 1

P(URVR > x) ≤ C(ε)

xα−ε
.
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Proof Recall that Potter’s bounds Resnick (2007, Proposition 2.6 (ii)) imply that for each
ε > 0 there is C0(ε) > 0 such that for each x ≥ 1 and R ≥ 1

F̄R(x) = H(x R)

H(R)
≤ C0(ε)

xα−ε
.

Moreover,
F̄R(x) ≡ 1, x ∈ [0, 1].

For x > 1 we write

P(URVR > x) =
∫ ∞

1

∫ ∞

x/u
dFR(v) dFR(u)

=
( ∫ x

1
+

∫ ∞

x

)
F̄R(x/u) dFR(u) = I (1)

R (x) + I (2)
R (x).

Then

I (2)
R (x) =

∫ ∞

x
F̄R(x/u) dFR(u) ≤

∫ ∞

x
dFR(u) ≤ F̄R(x) ≤ C0(ε)

xα−ε
.

Eventually,

I (1)
R (x) ≤ C0(ε)

xα−ε

∫ x

1
uα−ε dFR(u) = −C0(ε)

xα−ε

∫ x

1
uα−ε dF̄R(u)

= −C0(ε)

xα−ε
uα−ε F̄R(u)

∣∣∣x
1

+ (α − ε)
C0(ε)

xα−ε

∫ x

1
uα−1−ε F̄R(u) du

≤ C0(ε)

xα−ε
+ (α − ε)

C0(ε)
2

xα−ε

∫ x

1

uα−1−ε

uα−ε
du

≤ C0(ε)

xα−ε
+ (α − ε)

C0(ε)
2

xα−ε
ln x

≤ C(ε)

xα−2ε

for some C(ε) > 0. 
�

Remark 3.3 A finer tail asymptotics of products of iid non-negative Pareto type random
variables can be found in Rosiński and Woyczyński (1987, Theorem 2.1) and Jessen and
Mikosch (2006, Lemma 4.1 (4)). In Lemma 3.2, however, we establish rather rough estimates
which are valid for the families of iid random variables {UR, VR}R≥1.

The following useful Lemma will be used to determine the conditional distribution of the
interarrival times of the compound Poisson process ηT .

Lemma 3.4 Let T > 0 and let N = (Nt )t∈[0,T ] be a Poisson process, {τk}k≥1 be its arrival
times, τ0 = 0. Then for each m ≥ 1, and 1 ≤ j < j + k ≤ m

P(τ j+k − τ j ≤ s|NT = m) = P
(
σk ≤ s

T

)
, s ∈ [0, 1], (3.6)

where σk is a Beta(m, k − 1)-distributed random variable with density

f (m)
σk

(u) = m!
(k − 1)!(m − k)!u

k−1(1 − u)m−k, u ∈ [0, 1], m ≥ 1, 1 ≤ k ≤ m. (3.7)
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Proof It is well known that the conditional distribution of the arrival times τ1, . . . , τm , given
that NT = m, coincides with the distribution of the order statistics obtained from m samples
from the population with uniform distribution on [0, T ], see Sato (1999, Proposition 3.4).

Let, for brevity, T = 1. The joint density of (τ j , τ j+k), 1 ≤ j < j + k ≤ m is well
known, see e.g. Balakrishnan and Nevzorov (2003, Chapter 11.10):

f (m)
τ j ,τ j+k

(u, v) = c j,k,m · u j−1(v − u)k−1(1 − v)m− j−k
I(0 ≤ u < v ≤ 1),

c j,k,m = m!
( j − 1)!(k − 1)!(m − j − k)! ,

and consequently

f (m)
τ j+k−τ j ,τ j

(u, v) = c j,k,m · v j−1uk−1(1 − u − v)m− j−k , u, v, u + v ∈ [0, 1].
Hence, the probability density of the difference τ j+k − τ j is obtained by integration w.r.t.
v ∈ [0, 1],

f (m)
τ j+k−τ j

(u) = ck, j,m · uk−1
∫ 1−u

0
v j−1(1 − u − v)m− j−k dv

v=(1−u)z= c j,k,m · uk−1 · (1 − u)m−k
∫ 1

0
z j−1(1 − z)m− j−k dz.

Recalling the definition of the Beta-function, we get

∫ 1

0
z j−1(1 − z)m− j−k dz = ( j − 1)!(m − j − k)!

(m − k)! ,

which yields the desired result. 
�

Lemma 3.5 LetAν hold true and {φT } be the scaling defined in (2.5). Then for any ρ ∈ [0, 1
α
)

φ2
T [ηT ]T d→ S(α/2), T → ∞,

where S(α/2) is a spectrally positive α/2-stable random variable with Laplace transform
(2.6).

Proof The process t �→ φ2
T [ηT ]t is a compound Poisson process with Lévy measure νT with

the tail

HT (u) =
∫ ∞

u
νT (dz) = H

(√
u

φT
∨ RT

)
, u > 0.

The Laplace transform of φ2
T [ηT ]T has the cumulant

KT (λ) := lnEe−λφ2
T [ηT ]T = −T

∫ ∞

0

(
e−λu − 1

)
dHT (u), λ ≥ 0.

Integrating by parts yields

KT (λ) = −T
(
e−λu − 1

)
HT (u)

∣∣∣∞
0

− λT
∫ ∞

0
e−λu HT (u) du. (3.8)
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Since the first summands on the r.h.s. of (3.8) vanish, it is left to evaluate the integral term.
Taking into account (2.5), namely that 1

T = H̃( 1
φT

), we write for any u0 > 0

KT (λ) = −λT
∫ ∞

0
e−λu HT (u) du

= −λT
∫ u0

0
e−λu H

(√
u

φT
∨ RT

)
du

−λ
H(1/φT )

H̃(1/φT )

1

H(1/φT )

∫ ∞

u0
e−λu H

(√
u

φT
∨ RT

)
du

= −I (1)
T (λ) − I (2)

T (λ).

It is evident that limT→∞ H(1/φT )

H̃(1/φT )
= 1. Moreover for ρ ∈ [0, 1/α) due to Resnick (2007,

Proposition 2.4), the convergence

lim
T→∞

H
(√

u
φT

∨ RT
)

H
( 1

φT

) = 1

uα/2

holds uniformly on each half-line [u0,∞), u0 > 0, and thus for each u0 > 0

lim
T→∞ I (2)

T (λ) = λ

∫ ∞

u0

e−λu

uα/2 du.

Further we estimate

I (1)
T (λ) ≤ 2λTφ2

T

∫ √
u0/φT

0
yH(y) dy.

Note that y �→ yH(y) is integrable at 0 by the definition of the Lévy measure, 0 ≤
− ∫ 1

0 y2dH(y) < ∞, and the integration by parts. Eventually by Karamata’s theorem
(Resnick 2007, Theorem 2.1 (a))

I (1)
T ≤ 2λ

H(1/φT )

H̃(1/φT )
· φ2

T

H(1/φT )
·
∫ √

u0/φT
0 yH(y) dy

u0
φ2
T
H(

√
u0

φT
)

· u0
φ2
T

· H
(√

u0
φT

)

→ 2λ

2 − α
u
1− α

2
0 , T → ∞.

Hence choosing u0 > 0 sufficiently small and letting T → ∞ we obtain the convergence of
KT to the cumulant of a spectrally positive stable random variable

lim
T→∞ KT (λ) = −λ

∫ ∞

0

e−λu

uα/2 du = −�
(
1 − α

2

)
λα/2.


�

Lemma 3.6 For any ρ ∈ [0, 1/α) and any θ > 0

φ2
T |XT

T |2 d→ 0, T → ∞,

φ2
T

∫ T
0 |XT

s |2 ds d→ 0, T → ∞. (3.9)
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Proof

|XT
s |2 ≤ 3|X0|2e−2θs + 3e−2θs

∣∣∣
∫ s

0
eθr dξ Tr

∣∣∣2 + 3b2T e
−2θs

∣∣∣
∫ s

0
eθr dr

∣∣∣2

= a1(s) + a2(s) + a3(s).

By the Itô isometry and Lemma 3.1, for any ε > 0 we estimate for each s ≥ 0

φ2
TEa2(s) = φ2

T · 3

2θ

(
σ 2 +

∫
|z|≤RT

z2ν(dz)
)

· e−2θs(e2θs − 1)

≤ C1 · T− 2
α
+ε+ρ(2−α+ε). (3.10)

Analogously, Lemma 3.1 yields

b2T ≤
{
C2T

2ρ(1−α+ε), α ∈ (0, 1],
C2, α ∈ (1, 2).

and hence for each s ≥ 0

φ2
T · a3(s) ≤ C3 max{1, T 2ρ(1−α+ε)} · T− 2

α
+ε → 0. (3.11)

Finally, for s ≥ 0

φ2
T a1(s) ≤ C4|X0|2 · T− 2

α
+ε → 0 a.s. as T → +∞. (3.12)

For any ρ ∈ [0, 1/α) we can choose ε > 0 sufficiently small such that the bounds in
(3.10) and (3.11) and (3.12) converge to 0 as T → ∞ which gives (3.9). Integrating these
inequalities w.r.t. s ∈ [0, T ] results in an additional factor T on the r.h.s. of these estimates,
and convergence to 0 still holds true for ε > 0 sufficiently small. 
�
Lemma 3.7 For any ρ > 1

2α and any θ > 0

φ2
T

∫ T

0
XηT

s− dηTs
d→ 0, T → ∞.

Proof The Ornstein–Uhlenbeck process XηT as well as its integral w.r.t. ηT can be written
explicitly in the form of sums:

XηT

t =
∞∑
j=1

J Tj e
−θ(t−τ Tj )

I[τ Tj ,∞)(t),

XηT

τ Tk − =
k−1∑
j=1

J Tj e
−θ(τ Tk −τ Tj )

, k ≥ 1,

∫ T

0
XηT

s− dηTs =
NT
T∑

k=1

XηT

τ Tk − J Tk =
NT
T∑

k=1

J Tk

k−1∑
j=1

J Tj e
−θ(τ Tk −τ Tj )

.

As always, we agree that
∑m

j=k = 0 for m < k.

Note that for NT
T = 0 and NT

T = 1,
∫ T
0 XηT

s− dηTs = 0. For m ≥ 2, on the event NT
T = m

we get the estimate

∣∣∣
∫ T

0
XηT

s− dηTs

∣∣∣ ≤
m∑

k=2

|J Tk |
k−1∑
j=1

|J Tj |e−θ(τ Tk −τ Tj ) =
m−1∑
j=1

m− j∑
k=1

|J Tj+k ||J Tj |e−θ(τ Tj+k−τ Tj )
.

(3.13)

123



564 Statistical Inference for Stochastic Processes (2020) 23:553–570

We also take into account that for all m ≥ 2 and 1 ≤ j < j + k ≤ m

Law
(
|J Tj+k ||J Tj |e−θ(τ Tj+k−τ Tj )

∣∣∣NT
T = m

)
d= Law

(
R2
T ·UT · VT · e−θTσk

)
,

where UT , VT are iid random variables with probability law

P(UT ≥ x) = H(x RT )

H(RT )
, x ≥ 1,

and σk , k = 1, . . . ,m − 1, is a Beta(k,m − 1+ k)-distributed random variable independent
ofUT and VT with probability density (3.7). For each m ≥ 0 denote by P(m)

T the conditional
law P( · |NT

T = m).
For some ε ∈ (0, 2−α

α
) which will be chosen sufficiently small later, and for each m ≥ 2

define the family of positive weights

wk,m =
(
C(α, ε) · (m − 1) · k 2

α
−ε

)−1
, k = 1, . . . ,m − 1,

where
C(α, ε) =

∞∑
k=1

k− 2
α
+ε < ∞

is the normalizing constant. With this construction for each m ≥ 2

m−1∑
k=1

m−k∑
j=1

wk,m =
m−1∑
k=1

(m − k)wk,m = 1

C(α, ε)

m−1∑
k=1

m − k

m − 1
· k− 2

α
+ε ≤ 1. (3.14)

Let γ > 0. In order to show that the sum (3.13) multiplied by φ2
T converges to zero, we take

into account (3.14) and write

P(m)
T

(
φ2
T

m−1∑
j=1

m− j∑
k=1

|J Tj+k ||J Tj |e−θ(τ j+k−τ j ) > γ
)

≤ P(m)
T

(
φ2
T

m−1∑
k=1

m−k∑
j=1

|J Tj+k ||J Tj |e−θ(τ j+k−τ j ) > γ

m−1∑
k=1

m−k∑
j=1

wk,m

)

≤
m−1∑
k=1

m−k∑
j=1

P
(
φ2
T R

2
TUT VT e

−θTσk > γwk,m

)

=
m−1∑
k=1

(m − k)P
(
φ2
T R

2
T ·UT VT e

−θTσk > γwk,m

)
.
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Applying Lemma 3.2 and the independence of UT VT and σk we obtain for some ε > 0

pk,m(T ) = P
(
φ2
T R

2
T ·UT VT e

−θTσk > γwk,m

)

= m!
(k − 1)!(m − k)!

∫ 1

0
P
(
UT VT > γ

wk,m

φ2
T R

2
T

· eθTu
)
(1 − u)m−kuk−1 du

≤ C(ε)
m!

(k − 1)!(m − k)!
(
γ

wk,m

φ2
T R

2
T

)−α+ε
∫ 1

0
e−θTu(α−ε)(1 − u)m−kuk−1 du

≤ C(ε)
m!

(k − 1)!(m − k)!
(
γ

wk,m

φ2
T R

2
T

)−α+ε
∫ ∞

0
e−θTu(α−ε)uk−1 du

≤ C(ε, α, γ )
m!

(k − 1)!(m − k)!
(
k

2
α
−ε(m − 1)T− 2

α
+2ρ+ε

)α−ε (k − 1)!
(θT (α − ε))k

≤ C(ε, α, γ ) · T (− 2
α
+2ρ+ε)(α−ε) · m!m2k2

(m − k)! · 1

(θT (α − ε))k
,

where we have used the well known relation
∫ ∞
0 aune−au du = n!/an , a > 0, n ≥ 0, as

well as the elementary estimates (m − 1)α−ε ≤ m2 and k( 2
α
−ε)(α−ε) ≤ k2 which are valid

for ε > 0 and α ∈ (0, 2).
Hence

p(T ) : =
∞∑

m=2

[
P(NT

T = m)

m−1∑
k=1

(m − k)pk,m(T )
]

= C(ε, α, γ ) · T (− 2
α
+2ρ+ε)(α−ε)

×
∞∑

m=2

[
e−T ·H(RT ) (T · H(RT ))m

m!
m−1∑
k=1

(m − k)
m!m2k2

(m − k)! · 1

(θT (α − ε))k

]

= C(ε, α, γ ) · e−T ·H(RT ) · T (− 2
α
+2ρ+ε)(α−ε)

×
∞∑
k=1

k2

(θT (α − ε))k

∞∑
m=k+1

m2 (T · H(RT ))m

(m − k − 1)! . (3.15)

To evaluate the inner sum we use the formula
∑∞

j=0( j + k)2a j/ j ! = ea(a2 + 2ak + a+ k2)
to obtain

∞∑
m=k+1

m2 (T · H(RT ))m

(m − k − 1)!

= (T · H(RT ))k+1
∞∑
j=0

( j + k + 1)2
(T · H(RT )) j

j !

≤ 3
(
(T · H(RT ))k+3 + (k + 1)2(T · H(RT ))k+1

)
eT ·H(RT ). (3.16)

Combining (3.15) and (3.16), it is left to estimate two summands. For the first one, we use
the formula

∑∞
k=1 k

2qk = q(q + 1)/(1 − q)3, |q| < 1, to get

S1 =
∞∑
k=1

k2

(θT (α − ε))k
(T · H(RT ))k+3 ≤ C1 · T 3 · H(RT )4.
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For the second summand,we use the formula
∑∞

k=1 k
2(k+1)2qk = 4q(q2+4q+1)/(1−q)5,

|q| < 1, to get

S2 =
∞∑
k=1

k2(k + 1)2

(θT (α − ε))k
(T · H(RT ))k+1 ≤ C2 · T · H(RT )2.

Combining (3.15) with the bounds for S1 and S2 we obtain

p(T ) ≤ C · T (− 2
α
+2ρ+ε)(α−ε) ·

(
T 3−4ρ(α−ε) + T 1−2αρ+ε

)
.

Since ρ > 1
2α , one can choose ε > 0 sufficiently small to obtain the limit p(T ) → 0,

T → ∞. 
�

4 Proofs of themain results

Proof of Theorem 2.6 Let ρ ∈ ( 1
2α , 1

α
) be fixed. With the help of the decomposition (3.1) we

may write

∫ T

0
X2
s ds =

∫ T

0
(XηT

s )2 ds +
∫ T

0
(XT

s )2 ds + 2
∫ T

0
XT
s · XηT

s ds. (4.1)

Then by Lemma 3.6, φ2
T

∫ T
0 (XT

s )2 ds
d→ 0. Recall that XηT satisfies the SDE

dXηT

t = −θXηT

t dt + dηTt , XηT

0 = 0.

The Itô formula applied to the process XηT yields

(
XηT

T

)2 = −2θ
∫ T

0

(
XηT

s

)2 ds + 2
∫ T

0
XηT

s− dηTs + [ηT ]T . (4.2)

The decomposition (3.1) implies that (XηT

T )2 ≤ 2X2
T + 2(XT

T )2. Since for θ > 0 the process
X has an invariant distribution (see, e.g. Sato 1999, Theorem 17.5 and Remark 2.3), we get
that φ2

T X
2
T → 0 in law. On the other hand, φ2

T (XT
T )2 → 0 in law by Lemma 3.6. Therefore,

Lemmas 3.5, 3.7 and (4.2) yield

φ2
T

∫ T

0

(
XηT

s

)2 ds d→ S(α/2)

2θ
, T → ∞.

Eventually, the last integral in (4.1) multiplied by φ2
T converges to 0 by the Cauchy–Schwarz

inequality. 
�

Proof of Corollary 2.7 The decomposition

Xt = XT
t + XηT

t = X0e
−θ t + bT

1 − e−θs

2θ
+

∫ t

0
e−θ(t−s) dξ Ts + XηT

t

allows us to write ∫ T

0
Xs dWs =

∫ T

0
XT
s dWs +

∫ T

0
XηT

s dWs
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as well as (4.1). It is easy to check that φT
∫ T
0 XT

s dWs
d→ 0. Indeed, due to the independence

of X0 and W

φT

∫ T

0
X0e

−θs dWs = φT · X0 ·
∫ T

0
e−θs dWs → 0 a.s.

and obviously by Lemma 3.7

φT bT

∫ T

0
(1 − e−θs) dWs

d→ 0.

Finally by the estimate (3.10) of Lemma 3.6

E
[
φT

∫ T

0

(
XT
s − X0e

−θs − bT
1 − e−θs

2θ

)
dWs

]2

= φ2
TE

[ ∫ T

0

∫ s

0
e−θ(s−r) dξ Tr dWs

]2

= φ2
T

∫ T

0
E

[ ∫ s

0
e−θ(s−r) dξ Tr

]2
ds

= φ2
T

∫ T

0

∫ s

0
e−2θ(s−r) dr ds ·

(
σ 2 +

∫
|z|≤RT

z2ν(dz)
)

→ 0, T → ∞.

Taking into account the argument in the proof of Theorem 2.6, we conclude that it is sufficient

to consider the limiting behaviour of the pair
(
φT

∫ T
0 XηT

s dWs, φ
2
T

∫ T
0 (XηT

s )2 ds
)
.

The processes ηT and W are independent and

MT
t =

∫ t

0
XηT

s dWs, t ≥ 0,

is a continuous local martingale with the angle bracket

〈MT 〉t =
∫ t

0

(
XηT

s

)2 ds,
which is independent of W . Then for u, v ∈ R we get

E exp
(
iuφT M

T
T + ivφ2

T 〈MT 〉T
)

= E
[
E

[
exp

(
iuφT M

T
T + ivφ2

T 〈MT 〉T
)∣∣∣F ηT

T

]

= E
[
exp

(
ivφ2

T 〈MT 〉T
)
E

[
exp

(
iuφT M

T
T

)∣∣∣F ηT

T

]]

= E
[
exp

(
ivφ2

T 〈MT 〉T
)
exp

(
− u2

2
φ2
T 〈MT 〉T

)]

= E exp
((
iv − u2

2

)
φ2
T 〈MT 〉T

)

→ E exp
((
iv − u2

2

)S(α/2)

2θ0

)

= E exp
(
iuN

√
S(α/2)

2θ0
+ iv

S(α/2)

2θ0

)
, T → ∞.


�
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Proof of Theorem 2.5 The statement of the theorem follows immediately from Proposition
2.1 and Corollary 2.7. Indeed, for each θ0 > 0 and u ∈ R we use the formula (2.3) for the
likelihood ratio as well as semimartingale decompositions (2.1) and (2.2) to conclude that

ln LT (θ0, θ0 + φT u) = −φT u

σ 2

∫ T

0
Xs d(σWs) − (φT u)2

2σ 2

∫ T

0
X2
s ds

= − u

σ
· φT

∫ T

0
Xs dWs − u2

2σ 2 · φ2
T

∫ T

0
X2
s ds

d→ − u

σ
· N

√
S(α/2)

2θ0
− u2

2σ 2 · S
(α/2)

2θ0
, T → ∞.


�
Proof of Corollary 2.8 . The relation (2.8) follows from Proposition 2.1. Due to the linear-
quadratic form of the likelihood ratio, the maximum likelihood estimator coincides with
the so-called central sequence. This implies the asymptotic efficiency in the aforementioned
sense. The limit (2.9) follows from Corollary 2.7. 
�
Proof of Remark 2.9 For x > 0,

P
( |N |√

S(α/2)
> x

)
≤ P

(
S(α/2) ≤ xα−2

)
+ P(|N | > xα/2) = p1(x) + p2(x).

By the well known property of the Gaussian distribution

p2(x) ≤
√

2

π

e−xα/2

xα/2 .

To estimate p1(x), we apply the exponential Chebyshev inequality to get

p1(x) = P
(
S(α/2) ≤ xα−2

)
≤ inf

λ>0
eλxα−2

Ee−λS(α/2)

= inf
λ>0

eλxα−2−�(1− α
2 )λα/2 ≤ exp

(
− C(α)xα

)

for some C(α) > 0. Hence the estimate (2.10) follows. 
�
Acknowledgements OpenAccess funding provided byProjektDEAL.The authors thank theDAADexchange
programme Eastern Partnership for financial support. A.G. thanks Friedrich Schiller University Jena for
hospitality. The authors are grateful to the anonymous referees for their valuable comments and careful
reading of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Statistical Inference for Stochastic Processes (2020) 23:553–570 569

References

ApplebaumD (2009) Lévy processes and stochastic calculus, vol 116, 2nd edn. Cambridge studies in advanced
mathematics. Cambridge University Press, Cambridge

Balakrishnan N, Nevzorov VB (2003) A primer on statistical distributions. Wiley, Hoboken
Bingham NH, Goldie CM, Teugels JL (1987) Regular variation, vol 27. Encyclopedia of mathematics and its

applications. Cambridge University Press, Cambridge
Clément E, Gloter A (2015) Local asymptotic mixed normality property for discretely observed stochastic

differential equations driven by stable Lévy processes. Stoch Process Appl 125(6):2316–2352
Clément E, Gloter A (2019) Joint estimation for SDE driven by locally stable Lévy processes. Preprint, 2019.

HAL Id: hal-02125428
Clément E, Gloter A, Nguyen H (2019) LAMN property for the drift and volatility parameters of a SDE driven

by a stable Lévy process. ESAIM: Probab Stat 23:136–175
Gloter A, Loukianova D, Mai H (2018) Jump filtering and efficient drift estimation for Lévy-driven SDEs.

Ann Stat 46(4):1445–1480
Höpfner R (2014) Asymptotic statistics: with a view to stochastic processes. Walter de Gruyter, Berlin
Hu Y, Long H (2007) Parameter estimation for Ornstein—Uhlenbeck processes driven by α-stable Lévy

motions. Commun Stoch Anal 1(2):1
Hu Y, Long H (2009a) Least squares estimator for Ornstein–Uhlenbeck processes driven by α-stable motions.

Stoch Process Appl 119(8):2465–2480
Hu Y, Long H (2009b) On the singularity of least squares estimator for mean-reverting α-stable motions. Acta

Mathematica Scientia 29(3):599–608
Ivanenko D, Kulik A (2014) LAN property for discretely observed solutions to Lévy driven SDE’s. Modern

Stoch Theory Appl 1(1):33–47
Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes, vol 288, 2nd edn. Grundlehren der

Mathematischen Wissenschaften. Springer, Berlin
Jessen AH,Mikosch T (2006) Regularly varying functions. Publications de L’InstitutMathematique. Nouvelle

série 80(94):171–192
Kawai R (2013) Local asymptotic normality property for Ornstein–Uhlenbeck processes with jumps under

discrete sampling. J Theor Probab 26(4):932–967
Kohatsu-Higa A, Nualart E, Tran NK (2017) LAN property for an ergodic diffusion with jumps. Stat: J Theor

Appl Stat 51(2):419–454
Küchler U, Sørensen M (1997) Exponential families of stochastic processes. Springer series in statistics.

Springer, New York
LeCamL,YangGL (2000)Asymptotics in statistics: some basic concepts, 2nd edn. Springer series in statistics.

Springer, New York
LongH (2009) Least squares estimator for discretely observedOrnstein–Uhlenbeck processes with small Lévy

noises. Stat Probab Lett 79(19):2076–2085
Mai H (2012) Drift estimation for jump diffusions. Ph.D. thesis, Humboldt-Universität zu Berlin. https://doi.

org/10.18452/16590
Mai H (2014) Efficient maximum likelihood estimation for Lévy-driven Ornstein–Uhlenbeck processes.

Bernoulli 20(2):919–957
Masuda H (2013) Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE

observed at high frequency. Ann Stat 41(3):1593–1641
Masuda H (2015) Parametric estimation of Lévy processes, vol 2128. Lévy Matters IV. Lecture Notes in

Mathematics. Springer, Berlin, pp 179–286
Masuda H (2019) Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process.

Stoch Process Appl 129(3):1013–1059
Nguyen TTH (2018) Estimation of the jump processes. Ph.D. thesis, Université Paris-Est. HAL Id: tel-

02127797
Resnick SI (2007) Heavy-tail phenomena: probabilistic and statistical modeling. Springer series in operations

research and financial engineering. Springer, New York
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